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Weak and strong convergence of an inertial proximal method for solving bilevel
monotone equilibrium problems∗

A. Balhag† , Z. Mazgouri ‡ , and Michel Théra§

Abstract. In this paper, we introduce an inertial proximal method for solving a bilevel problem involving
two monotone equilibrium bifunctions in Hilbert spaces. Under suitable conditions and without
any restrictive assumption on the trajectories, the weak and strong convergence of the sequence
generated by the iterative method are established. Two particular cases illustrating the proposed
method are thereafter discussed with respect to hierarchical minimization problems and equilibrium
problems under saddle point constraint. Furthermore, a numerical example is given to demonstrate
the implementability of our algorithm. The algorithm and its convergence results improve and
develop previous results in the field.

Key words. Bilevel Equilibrium problems; Monotone bifunctions; Proximal algorithm; Weak and strong con-
vergence; Equilibrium Fitzpatrick transform.
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Let K be a nonempty closed and convex subset of a real Hilbert space H, and let f :
K × K → R be a real-valued bifunction. The equilibrium problem [9] associated with the
bifunction f on K is stated as follows: find x̄ ∈ K such that

(EP ) f(x̄, y) ≥ 0, ∀y ∈ K.

This abstract variational formulation constitutes a convenient unified mathematical model for
many problems in applied mathematics such as optimization problems, variational and hemi-
variational inequalities, fixed-point and saddle point problems, network equilibrium problems,
Nash equilibrium and others, see for instance [9, 13, 15, 24] and the bibliography therein.

One of the most popular algorithm for solving (EP ) is the proximal point method (PPM)
extended from variational inequalities to equilibrium problems by Moudafi [25]. In this regard,
by introducing the resolvent of the bifunction f (see, [9]), defined, for λ > 0, by

Jfλ (x) := {z ∈ K : f(z, y) +
1

λ
〈z − x, y − z〉 ≥ 0, ∀y ∈ K},

the author in [25] suggested a basic version of (PPM) for (EP ) in the monotone frame-
work. This method generates the next iterate xn+1, for each n ≥ 0, by solving the following
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subproblem xn+1 = Jfrn(xn), i.e.,

(0.1) f(xn+1, y) +
1

rn
〈xn+1 − xn, y − xn+1〉 ≥ 0, ∀y ∈ K,

where {rn} is a sequence of nonnegative numbers.
Under the monotonicity condition on f, Moudafi proved the weak convergence of the sequence
{xn} generated by algorithm (0.1) to a solution of (EP ). Thereby, a great interest has been
brought to the study of (EP ) by means of splitting proximal point (or backward) methods;
one can consult [4, 14, 28] and the references therein.

Given its growing interest in applications to different applied domains, the problem (EP )
is currently considered as one of the important research directions in which the optimization
community is interested. Indeed, the study of the existence of a solution to this problem still
falls within the scope of very recent studies concerning new methods of resolution. Let us quote
in this sense the paper [20] in which the authors, by using the celebrated Ekeland variational
principle under a weaker notion of continuity and without any convexity assumptions, studied
the existence of equilibria and quasi-equilibria in the setting of metric spaces. The bibliography
of this article refers to new equilibrium concepts in which quasi-monotonicity and quasi-
convexity are relaxed.
In this paper, we study the problem (EP ) in a general framework where we focus our interest
on the following bilevel equilibrium problem: find x̄ ∈ Sf such that

(BEP ) g(x̄, y) ≥ 0, ∀y ∈ Sf ,

where g : K × K → R is another real-valued bifunction and Sf stands for the set of
constraints defined by solutions to the second level equilibrium problem (EP ) given by
Sf := {u ∈ K : f(u, y) ≥ 0 ∀y ∈ K}. We denote by S the set of solutions to (BEP )
which we assume to be nonempty.

The problem (BEP ) was implicitly introduced in the paper by Chadli, Chbani and Riahi
[15] in the setting of the so-called viscosity principle for equilibrium problems. This principle
aims at a good selection of the upper equilibrium among solutions to the lower level equilibrium
problem. This class of hierarchical problems covers in both levels, all the cases cited previously
for an equilibrium problem. Besides their unification aspect, bilevel equilibrium problems has
proved over the past two decades, very good applicability in different fields covering mechanics,
engineering sciences and economy, see [21] and references therein. Greater attention was
then paid to this class of problems regarding the existence of solutions via dynamical and
algorithmic approaches and also from the point of view of parametric stability. The interested
reader can consult the following recent investigations [1, 8, 16, 19, 27, 34] and the references
therein. In recent years, algorithmic resolution procedures have been widely studied for solving
(BEP ). Moudafi [27] introduced, by using the penalty method [15], the regularized proximal
point method (RPPM) for solving (BEP ). This algorithm is described as follows: from
a starting point x0 ∈ K, for each n ≥ 0, the next iterate xn+1 is defined by the proximal
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iteration xn+1 := Jf+βngλn
(xn), i.e.,

(0.2) f(xn+1, y) + βng(xn+1, y) +
1

λn
〈xn+1 − xn, y − xn+1〉 ≥ 0, ∀y ∈ K,

where {βn} and {λn} are two sequences of nonnegative reals. More precisely, under suitable
assumptions on the bifunctions f and g, Moudafi proved that the sequence {xn} generated by
algorithm (0.2) converges weakly to a solution of (BEP ) provided that

lim inf
n→+∞

λn > 0,

+∞∑
n=0

λnβn < +∞ and ‖xn+1 − xn‖ = o(βn).

The drawback of the last assumption is the difficulty to choose such a control sequence (βn)
because we do not know the convergence rate of ‖xn+1 − xn‖. The author in [27] conjectured
that this restrictive assumption can be removed via the introduction of a conditioning notion
for equilibrium bifunctions.

Later on, the authors in [19] considered an alternate proximal scheme, which generates

the next iterates xn+1 by solving the regularized problem xn+1 := Jβnf+gλn
(xn), i.e.,

βnf(xn+1, y) + g(xn+1, y) +
1

λn
〈xn+1 − xn, y − xn+1〉, ∀y ∈ K.

Here, the difficulty of the method (RPPM) mentioned in [27] has been solved. Following
[5] and under a similar geometric assumption formulated in terms of the Fenchel conjugate
function associated to the bifunction f , they analyzed both the weak and strong convergence
of their algorithm to a solution of (BEP ). More recently, in [31], the authors proposed a
forward-forward algorithm and a forward-backward algorithm for solving (BEP ) under quite
mild conditions where the bifunction of the two level equilibrium problems are supposed pseu-
domonotone.

As a continuity of the studies of equilibrium problems by means of proximal iterative
methods, we propose an inertial proximal method for solving (BEP ). It is well known that the
inertial proximal iteration, where the next iterate is defined by making use of the previous two
iterates, may be interpreted as an implicit discretization of differential systems of second order
in time. The presence of inertial terms improves the convergence behavior of the generated
sequences. We emphasize that the origin of these methods dates back to [3] as part of the
approach to a solution of an abstract inclusion of the form: find x̄ ∈ H such that

(0.3) 0 ∈ A(x̄),

where A : H ⇒ H is a maximally monotone operator and the solution set A−1({0}) is assumed
to be nonempty. In this regard, giving two sequences of nonnegative numbers {αn} and {λn},
the authors in [3] considered the following iterative scheme:

xn+1 − xn − αn(xn − xn−1) + λnA(xn+1) 3 0,
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and proved the weak convergence of the sequence {xn} generated by the above algorithm
towards a solution of (0.3) under appropriate conditions on the parameters {αn} and {λn}

whenever the restrictive assumption

+∞∑
n=1

αn‖xn − xn−1‖2 < +∞ holds.

Inspired by the results presented in [26] in the framework of solving (EP ) by an approxi-
mate second order differential proximal procedure, and also illuminated by the results explored
in [19, 27], we propose a new approximate inertial proximal scheme to solve (BEP ):

Algorithm: (Inertial proximal algorithm (IPA)).

Initialization: Choose positive sequences {βn}, {λn}, and a nonnegative real number α ∈
[0, 1]. Take arbitrary x0, x1 ∈ K.

Iterative step: For every n ≥ 1 and given current iterates xn−1, xn ∈ K set yn := xn +
α(xn − xn−1) and define xn+1 ∈ K by xn+1 := Jβnf+gλn

(yn), i.e.,

(0.4) βnf(xn+1, y) + g(xn+1, y) +
1

λn
〈xn+1 − yn, y − xn+1〉 ≥ 0, ∀y ∈ K.

In the above algorithm, {λn} denotes the sequence of step sizes, {βn} the sequence of
penalization parameters, and α ∈ [0, 1] the parameter that controls the inertial terms. The
proposed numerical scheme recovers, when α = 0, the algorithm investigated in [19], and if in
addition f = 0, the one suggested in [25]. The Fitzpatrick transform of the bifunction f will
be a key ingredient in our convergence analysis. Indeed, we provide conditions under which
the sequence generated by the algorithm (IPA) weakly or strongly converges to a solution
of (BEP ). More precisely, under a discrete counterparts (2.1) of the geometric condition
used in [16] and formulated in terms of the Fitzpatrick transform of the bifunction f , we first
prove that (see Theorem 1) the sequence generated by (IPA) weakly converges to a solution of
(BEP ) provided that 0 ≤ α < 1

3 , lim inf
n→+∞

λn > 0 and lim
n→+∞

βn = 0. Afterwards, by strengthen-

ing the monotonicity assumption on the upper level bifunction g, and whenever 0 ≤ α < 1
3 and

∞∑
n=1

λn = +∞, we show (see Theorem 2) the strong convergence of the trajectories generated

by the proposed algorithm to the unique solution of (BEP ). Then, we show (see Theorem 3)
that, without the need of the geometric assumption (2.1), the sequence converges strongly to
the unique solution of (BEP ) when the parameters λn and βn satisfy additionally conditions

lim
n→+∞

λn = 0, lim
n→+∞

βn = +∞ and lim inf
n→+∞

λnβn > 0. The main advantage of our approach

is that it provides convergence without any restrictive assumption on the trajectories. The
results can be seen as an extension to the second order counterparts of the ones given in
[19, 27]. To our knowledge, such inertial proximal schemes have been studied only for the
first level equilibrium problem (EP ), see for instance [18, 23] and the references therein. As
applications, we discuss the hierarchical convex minimization case and equilibrium problems
under a saddle point constraint. Numerical experiment is thereafter given to illustrate our
theoretical results. We end the paper by concluding comments.
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1. Background and technical lemmata. In this section, we give some preliminary results
and definitions that will be used in the sequel. Throughout this paper, unless stated otherwise,
let K be a nonempty closed and convex subset of a real Hilbert space H. We first recall some
well known concepts on monotonicity and continuity of real bifunctions.

Definition 1. A bifunction f : K ×K → R is called:
(i) monotone if f(x, y) + f(y, x) ≤ 0 for all x, y ∈ K;

(ii) γ-strongly monotone, if there exists γ > 0 such that

f(x, y) + f(y, x) ≤ −γ‖x− y‖2 for all x, y ∈ K;

(iii) upper hemicontinuous, if

lim
t↘0

f(tz + (1− t)x, y) ≤ f(x, y) for all x, y, z ∈ K;

(iv) lower semicontinuous at y with respect to the second argument on K, if

f(x, y) ≤ lim inf
w→y

f(x,w) for all x ∈ K;

(v) an equilibrium bifunction, if for each x ∈ K, f(x, x) = 0 and f(x, ·) is convex and lower
semicontinuous.

The dual equilibrium problem associated with the bifunction f on K is stated as follows:
find x̄ ∈ K such that

(DEP ) f(y, x̄) ≤ 0, ∀y ∈ K.

The set of solutions to (DEP ) is called the Minty solution set. The following result gives the
link between Minty equilibria and the standard ones.

Lemma 1 (Minty’s Lemma, [9]).
(i) Whenever f is monotone, every solution of (EP ) is a solution of (DEP ).
(ii) Conversely, if f is upper hemicontinuous and equilibrium bifunction, then each solution of

(DEP ) is a solution of (EP ).

The next lemma introduces the notion of resolvent associated to bifunctions. This concept is
crucial in our approach for solving (BEP ).

Lemma 2. [17] Suppose that f : K×K → R is a monotone equilibrium bifunction. Then
the following are equivalent:

(i) f is maximal: (x, u) ∈ K×H and f(x, y) ≤ 〈u, x−y〉, ∀y ∈ K imply that f(x, y)+〈u, x−y〉 ≥
0 ∀y ∈ K;

(ii) for each x ∈ H and λ > 0, there exists a unique zλ = Jfλ (x) ∈ K, called the resolvent of f at
x, such that

(1.1) λf(zλ, y) + 〈y − zλ, zλ − x〉 ≥ 0, ∀y ∈ K.
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Moreover, x̄ ∈ Sf if, and only if, x̄ = Jfλ (x̄) for every λ > 0 if, and only if, x̄ = Jfλ (x̄) for some
λ > 0.

For the first main result of Section 3 concerning the weak convergence of the sequence
generated by algorithm (0.4), we will make use of the two following useful lemmata.

Lemma 3 (discrete Opial Lemma, [29]). Let C be a nonempty subset of H and (xk)k≥0
be a sequence in H such that the following two conditions hold:

(i) For every x ∈ C, lim
k→+∞

‖xk − x‖ exists.

(ii) Every weak sequential cluster point of (xk)k≥0 is in C.
Then, (xk)k≥0 converges weakly to an element in C.

Lemma 4. Let 0 ≤ p ≤ 1, and let {bk} and {wk} be two sequences of nonnegative numbers
such that, for all k ≥ 0,

bk+1 ≤ pbk + wk.

If
∑+∞

k=0wk < +∞, then
∑+∞

k=0 bk < +∞.

Proof. We have
(1− p)bk ≤ bk − bk+1 + wk.

Summing up from k = 0 to n, we get

(1− p)
n∑
k=0

bk ≤
n∑
k=0

(bk − bk+1) +
n∑
k=0

wk

= b0 − bn+1 +

n∑
k=0

wk

≤ b0 +

n∑
k=0

wk.

And since 1− p ≥ 0 and
∑+∞

k=0wk < +∞, we conclude that
∑+∞

k=0 bk < +∞.

We also need the following technical lemmata.

Lemma 5. [7] For all x, y ∈ H and β ∈ R, the following equality holds,

‖βx+ (1− β)y‖2 = β‖x‖2 + (1− β)‖y‖2 − β(1− β)‖x− y‖2.

Lemma 6. [19] Let {an} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {ank}k≥0 of {an} which satisfies

ank < ank+1 for all k ≥ 0.

Then, the sequence of integers {σ(n)}n≥n0 defined by σ(n) := max{k ≤ n : ak < ak+1} is a
nondecreasing sequence verifying lim

n→+∞
σ(n) =∞ and, for all n ≥ n0

aσ(n) < aσ(n)+1 and an ≤ aσ(n)+1.
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In the rest of this section we recall some background material from convex analysis. For
a function ϕ : H → R ∪ {+∞} we denote by dom ϕ = {x ∈ H : ϕ(x) < +∞} its effective
domain and say that ϕ is proper, if dom ϕ 6= ∅. We also denote by minϕ := inf

x∈H
ϕ(x) the

optimal objective value of the function ϕ and by argmin ϕ := {x ∈ H : ϕ(x) = minϕ} its set
of global minima.

For a proper lower semicontinuous convex function ϕ : H → R ∪ {+∞} and x ∈ H, let
ϕ∗ : H → R∪{+∞} be its Fenchel conjugate defined by ϕ∗(x) := sup

y∈H
{〈x, y〉−ϕ(y)}. If ϕ = δK

is the indicator function of K ⊂ H, i.e., δK(x) = 0 if x ∈ K and +∞ otherwise, its Fenchel
conjugate at x∗ ∈ H is the support function of K at x∗, i.e., δ∗K(x∗) = σK(x∗) = sup

y∈K
〈x∗, y〉.

The subdifferential of ϕ at x ∈ H, with ϕ(x) ∈ R is the set ∂ϕ(x) := {v ∈ H : ϕ(y) ≥
ϕ(x) + 〈v, y − x〉, ∀y ∈ H}. We take by convention ∂ϕ(x) := ∅ if ϕ(x) = +∞.

The normal cone to K ⊂ H at x ∈ H is

NK(x) =

{
{x∗ ∈ H : 〈x∗, u− x〉 ≤ 0, ∀u ∈ K} if x ∈ K
∅ otherwise.

We mention that NK = ∂δK , and that x∗ ∈ NK(x) if, and only if, σK(x∗) = 〈x∗, x〉. For
every u ∈ K, we denote by fu the function defined on H by fu(x) = f(u, x) if x ∈ K and
fu(x) = +∞ otherwise. For an equilibrium bifunction f : K ×K → R, the associate operator
Af is defined by

Af (x) := ∂fx(x) =

{
{z ∈ H : f(x, y) + 〈z, x− y〉 ≥ 0, ∀y ∈ K} if x ∈ K
∅ otherwise.

The Fitzpatrick transform Ff : K×H → R∪{+∞} associated to a bifunction f and introduced
in [2, 12], is defined by

Ff (x, u) = sup
y∈K
{〈u, y〉+ f(y, x)}.

Given its continuity and convexity properties, the function Ff has proven to be an important
tool when studying the asymptotic properties of dynamical equilibrium systems, see [16] for
a detailed presentation of these elements. This section concludes with the following auxiliary
result needed for establishing our results.

Proposition 1. [16] If f(x, y) = ϕ(y)−ϕ(x) where ϕ : H → R∪{+∞} is convex and lower
semicontinuous with dom ϕ ⊂ K, then for every (x, u) ∈ K ×H, Ff (x, u) = ϕ(x) + ϕ∗(u).

2. The main results. In the remaining part of the paper, f and g are two monotone
and upper hemicontinuous bifunctions. We suppose that for each y ∈ K, ∂gy(y) 6= ∅ (i.e.,
dom (Ag) = K) and that K ∩ Sf 6= ∅ and R+(K − Sf ) is a closed linear subspace of H. In
this case, the operator gx + δSf is maximally monotone, see [6, 30], and the subdifferential
sum formula ∂(gx + δSf ) = ∂gx + NSf holds. The following geometric assumption will be
also needed and considered as a key tool in our treatment of the convergence analysis: ∀u ∈
Sf , for all p ∈ NSf (u),

(2.1)

+∞∑
n=1

λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
< +∞.



8 A.BALHAG, Z. MAZGOURI , M. THÉRA

Let us mention that hypothesis (2.1) is the discrete counterpart of the condition introduced
in [16] in the context of continuous-time dynamical equilibrium systems. Note also that it is a
natural extension of similar assumptions known in the literature for the convergence analysis of
variational inequalities expressed as monotone inclusion problems and for constrained convex
optimization problems, see [5, 10, 11] and references therein for further useful comments on
these assumptions.

2.1. Weak convergence analysis. In this paragraph, under natural conditions, we obtain
weak convergence result for the trajectory generated by (0.4) to a solution of (BEP ). We
first prove the following preliminary estimation.

Lemma 7. Let {xn} be a sequence generated by algorithm (0.4). Take u ∈ S and set
an := ‖xn − u‖2. Then, there exists p ∈ NSf (u) such that for each n ≥ 1 the following
inequality holds:

(2.2)
an+1 − an − α(an − an−1) + λnβnf(u, xn+1)

≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2 + λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
.

Proof. Since {xn} is generated by algorithm (0.4), we have for each x ∈ K

(2.3)
0 ≤ λnβnf(xn+1, x) + λng(xn+1, x)

+
1

2

(
‖yn − x‖2 − ‖xn+1 − x‖2 − ‖xn+1 − yn‖2

)
.

By Lemma 5, we have for all n ≥ 1

‖yn − x‖2 = ‖xn + α(xn − xn−1)− x‖2

= ‖(1 + α)(xn − x)− α(xn−1 − x)‖2

= (1 + α)‖xn − x‖2 − α‖xn−1 − x‖2 + α(1 + α)‖xn − xn−1‖2.(2.4)

Also, we have

(2.5)
‖xn+1 − yn‖2 = ‖xn+1 − xn − α(xn − xn−1)‖2

= ‖xn+1 − xn‖2 + α2‖xn − xn−1‖2 − 2α〈xn+1 − xn, xn − xn−1〉
≥ (1− α)‖xn+1 − xn‖2 + (α2 − α)‖xn − xn−1‖2.

Combining (2.4) and (2.5) with (2.3), we get for every x ∈ K

(2.6)
‖xn+1 − x‖2 − (1 + α)‖xn − x‖2 + α‖xn−1 − x‖2
≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2 + 2λnβnf(xn+1, x) + 2λng(xn+1, x).

Since u ∈ S, according to the first-order optimality condition, we have

0 ∈ ∂(gu + δSf )(u) = Ag(u) +NSf (u).

Let p ∈ NSf (u) be such that −p ∈ Ag(u), we have for every n ≥ 1

(2.7) λng(u, xn+1) + λn〈−p, u− xn+1〉 ≥ 0,
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and by taking x = u and an = ‖xn − u‖2 in (2.6), we also have

(2.8)
an+1 − (1 + α)an + αan−1 ≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2

+2λnβnf(xn+1, u) + 2λng(xn+1, u).

By summing up the above inequalities and using the monotonicity of g, we get

an+1 − an − α(an − an−1) ≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2

+ 2λnβnf(xn+1, u) + 2λn〈−p, u− xn+1〉.

Using the monotonicity of f , we obtain

an+1 − an − α(an − an−1) + λnβnf(u, xn+1)
≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2 + λnβnf(xn+1, u) + 2λn〈−p, u− xn+1〉
= (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2

+λnβn

[〈
2p
βn
, xn+1

〉
+ f(xn+1, u)−

〈
2p
βn
, u
〉]
.

Finally, using the fact that p ∈ NSf (u), i.e., δSf (u) + σSf (p) = 〈p, u〉, we obtain

an+1 − an − α(an − an−1) + λnβnf(u, xn+1)
≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2

+λnβn

[
supx∈H

{〈
2p
βn
, x
〉

+ f(x, u)
}
− σSf

(
2p
βn

)]
= (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2

+λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
.

The proof is complete.

Remark 1. We can continue our analysis assuming that
+∞∑
n=1

‖xn−xn−1‖2 < +∞; however

this condition involves the trajectory {xn} which is unknown. In the next corollary we prove
that the above condition holds under a suitable control of the parameter α.

Corollary 1. Under hypothesis (2.1) and by assuming that 0 ≤ α < 1
3 , we have

(i)

+∞∑
n=1

‖xn − xn−1‖2 < +∞;

(ii)

+∞∑
n=1

λnβnf(u, xn+1) < +∞, for each u ∈ S.

Proof. (i) First we simplify the writing of the estimation (2.2) given in Lemma 7. Since
u ∈ Sf and λnβn ≥ 0, we have λnβnf(u, xn+1) ≥ 0. Setting δn = ‖xn−xn−1‖2, then inequality
(2.2) gives

(2.9) an+1 − an − α(an − an−1) + (1− α)δn+1 − 2αδn ≤ λnβn
[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
.
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In order to simplify its summation we rewrite (2.9) as

(2.10)
an+1 − an − α(an − an−1) + (1− α)(δn+1 − δn) + (1− 3α)δn

≤ λnβn
[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
.

Now, summing up (2.10) from j = 1 to n, we obtain

(an+1 − a1)− α(an − a0) + (1− α)(δn+1 − δ1) + (1− 3α)
∑n

j=1 δj

≤
∑n

j=1 λjβj

[
Ff
(
u,

2p

βj

)
− σSf

(
2p

βj

)]
.

Assumption (2.1), infers that

(2.11) (an+1 − αan) + (1− α)δn+1 + (1− 3α)
n∑
j=1

δj ≤ C,

for some nonnegative constant C.
Since α < 1

3 yields 1− 3α > 0 and 1− α > 0, then inequality (2.11) implies for all n ≥ 1

(2.12) an+1 ≤ αan + C.

Recursively we obtain for all n ≥ n0 ≥ 1

an+1 ≤ αn−n0an0 + C(1 + α+ α2 + ...+ αn−n0−1)

= αn−n0an0 + C
1− αn−n0

1− α
.

Therefore the sequence {xn} is bounded and since

(2.13) sup
n
‖xn+1 − xn‖ ≤ 2 sup

n
‖xn‖ < +∞,

the sequence {δn} is also bounded. Combining (2.13) with (2.11) and noticing that 1−3α > 0,
yields

+∞∑
j=1

δj < +∞,

ensuring (i).
Returning to inequality (2.2), we have

an+1 − an − α(an − an−1) + λnβnf(u, xn+1) ≤ λnβn
[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
+ (α− 1)︸ ︷︷ ︸

≤0

δn+1 + 2αδn.

≤ λnβn
[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
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+ 2αδn.

By summing up from n = 1 to +∞, we obtain

+∞∑
n=1

λnβnf(u, xn+1) ≤ a1 − αa0 +
+∞∑
n=1

λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]

+ 2α

+∞∑
n=1

‖xn − xn−1‖2.

Then, assumptions (2.1) and (i) ensure (ii).

In order to further proceed with the convergence analysis, we have to choose the sequences
{λn} and {βn} such that lim inf

n→+∞
λn > 0 and βn → +∞. We are now able to state and prove

the first main result of this section.

Theorem 1. Suppose given monotone and upper hemicontinuous bifunctions f and g. Let
{xn} be a sequence generated by algorithm (0.4). Under hypothesis (2.1) and by assuming
that

0 ≤ α < 1
3 , lim inf

n→+∞
λn > 0 and lim

n→+∞
βn = +∞,

the sequence {xn} weakly converges to x̄ ∈ S.

Proof. The proof relies on the discrete Opial Lemma. To this end we will prove that the
conditions (i) and (ii) in Lemma 3 for C = S are satisfied.
Returning to inequality (2.2), since u ∈ Sf and λnβn ≥ 0, we have λnβnf(u, xn+1) ≥ 0, and
then

an+1 − an ≤ α(an − an−1) + 2α‖xn − xn−1‖2 + λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
.

Taking the positive part, we immediately deduce that

[an+1 − an]+ ≤ α[an − an−1]+ + 2α‖xn − xn−1‖2 + λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
.

Using assumption (2.1) together with the fact that

+∞∑
n=1

‖xn − xn−1‖2 < +∞ and applying

Lemma 4 with

bn = [an − an−1]+ and wn = 2α‖xn − xn−1‖2 + λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
,

we obtain
+∞∑
n=1

[an − an−1]+ < +∞.

Since an is nonnegative, this implies the existence of lim
n→+∞

an and the one of

lim
n→+∞

‖xn − u‖.
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It remains to show that every weak cluster point x̄ of the sequence {xn} lies in S. Let
nk → +∞ as k → +∞ such that xnk ⇀ x̄. We want to show that x̄ ∈ S. Thanks to the
monotonicity of f and g, inequality (0.4) ensures that for all y ∈ K and for all k large enough

(2.14) f(y, xnk+1) ≤ −
1

βnk
g(y, xnk+1) +

1

λnkβnk
〈xnk+1 − ynk , y − xnk+1〉.

Since ∂gy(y) 6= ∅, one can find x∗(y) ∈ H such that for every z ∈ K

g(y, z) ≥ 〈x∗(y), z − y〉 ≥ −‖x∗(y)‖ · ‖y − z‖.

Thus there exists γ(y) := ‖x∗(y)‖ > 0 such that for every z ∈ K

(2.15) − g(y, z) ≤ γ(y).‖y − z‖.

Returning to (2.14), we can write

f(y, xnk+1) ≤
γ(y)

βnk
‖y − xnk+1‖+

1

λnkβnk
‖xnk+1 − ynk‖.‖y − xnk+1‖.

Passing to the limit, and using the facts that {xnk} is bounded, {βnk} → +∞, lim inf
k→+∞

λnk > 0

and ‖xnk+1 − ynk‖ → 0, we deduce that f(y, x̄) ≤ 0 for all y ∈ K. Lemma 1 leads to x̄ ∈ Sf .
By using (0.4) and the monotonicity of f and g, we have for every u ∈ Sf ,

λnβnf(u, xn+1) + λng(u, xn+1) ≤ 〈yn − xn+1, xn+1 − u〉.

By exploiting that lim
n→+∞

‖xn − u‖ exists and thanks to (i) of Corollary 1, we deduce that

〈yn − xn+1, xn+1 − u〉 →n→+∞ 0.

Using (ii) of the same Corollary, we obtain that lim sup
n→+∞

λng(u, xn+1) ≤ 0. Since g(u, .) is

lower semicontinuous, from the assumption lim inf
n→+∞

λn > 0 we derive that g(u, x̄) ≤ 0. Lemma

1 allows us to conclude that
g(x̄, u) ≥ 0, ∀u ∈ Sf ,

establishing the proof.

2.2. Strong convergence analysis. In this paragraph, under additional assumption on
the monotonicity of the bifunction of the upper level g, we ensure the strong convergence of
the trajectory in (0.4).

2.2.1. Strong convergence under assumption (2.1).

Theorem 2. Suppose that the bifunctions f and g are monotone and upper hemicontinu-
ous. Under hypothesis (2.1), if the bifunction g is ρ-strongly monotone, and if

0 ≤ α < 1

3
and

∞∑
n=1

λn = +∞,

the sequence {xn} generated by algorithm (0.4) strongly converges to a unique solution u ∈ S.
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Proof. Uniqueness of the solution for (BEP ) follows from strong monotonicity of g. For
the existence, see [15, Theorem 4.3].
Using inequalities (2.7) and (2.6), with x = u, by summing up and using the ρ-strong mono-
tonicity of g, we get for an := ‖xn − u‖2

an+1 − an − α(an − an−1) ≤ −2ρλnan+1 + (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2

+ 2λnβnf(xn+1, u) + 2λn〈−p, u− xn+1〉.

We follow the arguments in the proof of Lemma 7 to obtain

an+1 − an − α(an − an−1) + 2ρλnan+1 ≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2

+ λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]
.

Then, by summing up from n = 1 to +∞, we obtain

2ρ
+∞∑
n=1

λn‖xn+1 − u‖2 ≤ a1 − αa0 +
+∞∑
n=1

λnβn

[
Ff
(
u,

2p

βn

)
− σSf

(
2p

βn

)]

+ 2α

+∞∑
n=1

‖xn − xn−1‖2.

Using condition (2.1) and assumption (i) of Corollary 1, we deduce that

+∞∑
n=1

λn‖xn+1 − u‖2 < +∞.

Since lim
n→+∞

‖xn−u‖ exists and
∑∞

n=1 λn = +∞, we conclude that lim
n→+∞

‖xn−u‖ = 0, which

guarantees the strong convergence of the whole sequence {xn} to u.

2.2.2. Strong convergence without assumption (2.1). We will show that in this case,
the algorithm strongly converges without the need of the geometric hypothesis (2.1).

Theorem 3. Suppose that the bifunctions f and g are monotone and upper hemicontinuous
with Sf 6= ∅ and g is ρ-strongly monotone. Suppose moreover that

0 ≤ α < 1
3 , lim

n→+∞
λn = 0,

+∞∑
n=0

λn = +∞, lim
n→+∞

βn = +∞ and lim inf
n→+∞

λnβn > 0.

Then, the sequence {xn} generated by algorithm (0.4) converges strongly to the unique solu-
tion u of (BEP ).

Proof. Under assumptions on the two bifunctions f and g, we get the unique solution
denoted by x̄ of the bilevel equilibrium problem (BEP ).

Step 1: We show that {xn} is bounded.
Since {xn} is generated by algorithm (0.4), then by (2.6), we have for each x ∈ K

(2.16)
‖xn+1 − x‖2 − (1 + α)‖xn − x‖2 + α‖xn−1 − x‖2
≤ (α− 1)‖xn+1 − xn‖2 + 2α‖xn − xn−1‖2 + 2λnβnf(xn+1, x) + 2λng(xn+1, x).



14 A.BALHAG, Z. MAZGOURI , M. THÉRA

Fix x ∈ Sf , and set an(x) = ‖xn − x‖2 and δn = ‖xn − xn−1‖2. Thanks to the monotonicity
of f , then for each n ≥ 0,

(2.17)
an+1(x)− αan(x) + 2αδn+1

≤ (an(x)− αan−1(x) + 2αδn) + (3α− 1)δn+1 + 2λng(xn+1, x).

By setting bn(x) = an(x)− αan−1(x) + 2αδn, we obtain, for n ≥ 1,

(2.18) bn+1(x) ≤ bn(x) + (3α− 1)δn+1 + 2λng(xn+1, x).

• If there is n0 ∈ N such that {bn(x)} is decreasing for all n ≥ n0, then bn(x) ≤ bn0(x), which
infers that

an+1(x) ≤ αan(x) + bn0 for all n ≥ n0.

Recursively, we obtain for all n ≥ n0 ≥ 1

an+1(x) ≤ αn−n0an0(x) + bn0

1− αn−n0

1− α
,

and the boundedness of the sequence {an(x)}.
• Otherwise there exists an increasing sequence {kn} such that for every n ≥ 0, bkn+1(x) >
bkn(x). By Lemma 6, there exist a nondecreasing sequence {σn} and n0 > 0 such that

lim
n→+∞

σn = ∞, and for all n ≥ n0, bσn(x) < bσn+1(x) and bn(x) ≤ bσn+1(x). For n = σn

in (2.18), we get

(2.19) 0 < bσn+1(x)− bσn(x) ≤ (3α− 1)δσn+1 + 2λσng(xσn+1, x).

Using the ρ-strong monotonicity of g and relation (2.15), we deduce that for n ≥ n0

(2.20) − 2λσnγ(x)
√
aσn+1(x) ≤ 2λσng(x, xσn+1) ≤ (3α− 1)δσn+1 − 2λσnρaσn+1(x).

Since 3α− 1 < 0, we conclude that for n ≥ n0

(2.21) aσn+1(x) ≤
(
γ(x)

ρ

)2

and δσn+1 ≤
2γ2(x)λσn
ρ(1− 3α)

.

Hence, {aσn+1(x)} is bounded and since, {λσn} is bounded, then {δσn+1} is bounded, which
means that {bσn(x)} also is bounded. So, for all n ≥ n0, we have

an(x) ≤ αan−1 + bn(x)
≤ αan−1 + bσn(x)
≤ αan−1 + C

≤ αn−n0an0(x) + C 1−αn−n0
1−α .

Therefore the sequence {an(x)} is bounded, ensuring the boundedness of {xn}.



AN INERTIAL PROXIMAL METHOD FOR BILEVEL EQUILIBRIA 15

Step 2: We show that the sequence {xn} strongly converges to x̄, the unique
solution of (BEP ).
Let us consider two cases:
Case 1: There exists n0 such that {bn(x̄)} := an(x̄)−αan−1(x̄)+2αδn is decreasing for n ≥ n0.
Then, the limit of sequence {bn(x̄)} exists and lim

n→+∞
(bn(x̄)−bn+1(x̄)) = 0. Since x̄ ∈ Sf , then

by (2.18) we have

(2.22) bn+1(x̄) ≤ bn(x̄) + (3α− 1)δn+1 + 2λng(xn+1, x̄).

Hence, since 3α−1 < 0, lim
n→+∞

λn = 0 and g(·, x̄) is lower semi-continuous, then lim
n→+∞

δn+1 =

0.
Summing up inequality (2.22) from 1 to +∞, we deduce that

(2.23)

+∞∑
n=1

−λng(xn+1, x̄) ≤ b1(x̄),

which in combination with

+∞∑
n=0

λn = +∞ leads to lim inf
n→∞

−g(xn+1, x̄) ≤ 0.

On the other hand, since g is ρ-strongly monotone, then we have

(2.24)

lim
n→+∞

an+1(x̄) = lim inf
n→+∞

‖xn+1 − x̄‖2

≤ 1
ρ lim inf
n→+∞

−g(xn+1, x̄)︸ ︷︷ ︸
≤0

+1
ρ lim sup
n→+∞

−g(x̄, xn+1)

≤ −1
ρ lim inf
n→+∞

g(x̄, xn+1).

Hence, to prove that the sequence {an+1(x̄)} converges to zero, it is enough to verify that
lim inf
n→+∞

g(x̄, xn+1) ≥ 0. Since {xn} is bounded, let x be a weak cluster point of {xn}, i.e.

x = w − lim
n∈In⊂N

xn. By using the weak lower semicontinuity of g(x̄, ·) we have

g(x̄, x) ≤ lim inf
n∈I

g(x̄, xn+1).

Since x̄ is the unique solution of (BEP ), we need just to check that x ∈ Sf . In doing so, by
(2.15) and (2.6), we have for every y ∈ K,

(2.25) f(y, xn+1) ≤ −
1

λnβn
(bn+1(y)− bn(y)) +

1

2βn
γ(y)

√
an(x).

We have
bn(y)− bn+1(y)
= (an(y)− αan−1(y) + 2αδn)− (an+1(y)− αan(y) + 2αδn+1)
= (an(y)− an+1(y)) + α (an(y)− an−1(y)) + 2α (δn − δn+1)
= (an(x̄)− an+1(x̄) + 2〈xn − xn+1, x̄− y〉)

+α (an−1(x̄)− an(x̄) + 2〈xn − xn−1, x̄− y〉) + 2α (δn − δn+1)
= bn(x̄)− bn+1(x̄) + 2〈xn − xn+1, x̄− y〉+ 2α〈xn − xn−1, x̄− y〉.
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Since lim
n→+∞

(bn(x̄)−bn+1(x̄)) = 0 and lim
n→+∞

‖xn+1−xn‖ = 0, then lim
n→+∞

(bn(y)−bn+1(y)) = 0.

By using the weak lower semicontinuity of f(y, ·) and the fact that {xn} is bounded, lim
n→+∞

λn =

0, lim inf
n→+∞

λnβn > 0 and lim
n→+∞

βn = +∞, we conclude from (2.25) that for every y ∈ K

f(y, x) ≤ lim inf
n∈I

f(y, xn+1) ≤ 0.

Hence, by using Minty’s lemma we deduce that x ∈ Sf .
Therefore,

0 ≤ g(x̄, x) ≤ lim inf
n∈I

g(x̄, xn+1),

and so lim
n→+∞

an(x̄) = 0.

Case 2: There exists a subsequence {xnj} of {xn} such that bnj (x̄) ≤ bnj+1(x̄) for all j ∈ N.
By Lemma 6, the sequence σ(n) := max{k ≤ n : bk < bk+1} is a nondecreasing, lim

n→+∞
σ(n) =

∞ and, for all n ≥ n0
bσ(n) < bσ(n)+1 and bn ≤ bσ(n)+1.

Let us take n = σ(n) and x = x̄ in (2.18). We have

(2.26) 0 < bσ(n)+1(x̄)− bσ(n)(x̄) ≤ 2λσ(n)g(xσ(n)+1, x̄),

which yields g(xσ(n)+1, x̄) ≥ 0, and thus lim sup
n→+∞

g(xσ(n)+1, x̄) ≤ 0.

Using again the ρ-strong monotonicity of g and passing to the limit we have

(2.27)

lim sup
n→+∞

aσ(n)+1(x̄) ≤ 1
ρ lim sup
n→+∞

−g(xσ(n)+1, x̄)︸ ︷︷ ︸
≤0

+1
ρ lim sup
n→+∞

−g(x̄, xσ(n)+1)

≤ −1
ρ lim inf
n→+∞

g(x̄, xσ(n)+1).

Under the boundedness of {xn}, and similarly to the case 1, one can show that

lim inf
n→+∞

g(x̄, xσ(n)+1) ≥ 0.

Hence, by (2.24), we conclude that lim
n→+∞

aσ(n)+1(x̄) = 0.

Since bn(x̄) ≤ bσ(n)+1(x̄) for each n ≥ n0, we derive that

lim
n→+∞

an(x̄) ≤ lim
n→+∞

bn(x̄) ≤ lim
n→+∞

bσ(n)+1(x̄)

≤ lim
n→+∞

(
aσ(n)(x̄) + 2αδσ(n)

)
≤ (1 + 4α) lim

n→+∞
aσ(n)(x̄) + 4α lim

n→+∞
aσ(n)−1(x̄)

= 0,

thus guaranteeing the strong convergence of the whole sequence {xn} to x̄.

3. Application to optimization and saddle point problems. In this section, we give two
examples of particular bifunctions, for which our main weak and strong convergence theorems
apply.
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3.1. Hierarchical minimization. Our contribution in this paragraph discusses the follow-
ing hierarchical minimization problem:

(HMP ) min
x∈argmin

K

ψ
ϕ(x),

where ψ : H → R ∪ {+∞} is a proper, convex and lower semicontinuous extend real-valued
function such that K = dom ψ is closed and ϕ : H → R ∪ {+∞} is a differentiable and
lower semicontinuous function such that K = dom ϕ is closed. The above problem can be
equivalently expressed as:

find x̄ ∈ argmin
K

ψ such that

(3.1) ϕ(x̄) ≤ ϕ(y), ∀y ∈ argmin
K

ψ.

Clearly, (3.1) can be viewed as a bilevel equilibrium problem (BEP ) such that the associated
bifunctions are defined for all x, y ∈ K by f(x, y) = ψ(y)−ψ(x) and g(x, y) = ϕ(y)−ϕ(x). In
this case the bifunctions f and g are obviously monotone and upper hemicontinuous. Hence
theorems on weak (resp. strong) convergence apply, whenever (2.1) (resp. (2.1) and strong
monotonicity) is satisfied.

- Weak convergence: Without any loss of generality we assume minK ψ = 0.
Set M = argmin

K
ψ, and consider ψ(x) = ψ(x) if x ∈ K, and ψ(x) = +∞ if x /∈ K; then

ψ(x) − δM (x) ≤ 0 for all x ∈ H. Using the reverse inequality for their Fenchel conjugates,
we deduce ψ

∗
(p) − σM (p) ≥ 0 for all p ∈ H, and in view of Proposition 1, condition (2.1)

becomes: ∀u ∈M, for all p ∈ NM (u),

(3.2)
+∞∑
n=1

λnβn

[
ψ
∗
(

2p

βn

)
− σM

(
2p

βn

)]
< +∞.

Applying Theorem 1, and supposing that M is nonempty, lim inf
n→+∞

λn > 0, lim
n→+∞

βn = +∞ and

0 ≤ α < 1
3 , then the whole sequence {xn} generated by algorithm (0.4) weakly converges to a

point x̄ solution of (HMP ).

Consider the particular case where ψ(x) =
1

2
d(x,M)2 and M ⊂ K is a nonempty closed

convex set satisfying d(x,M) = inf
y∈M
‖x − y‖. Then, ψ

∗
(p) − σM (p) =

1

2
‖p‖2 for all p ∈ H.

Here, M is the minimum set of ψ, and then condition (2.1) is equivalent to
+∞∑
n=1

λn
βn

< +∞.

Remark 2. We note that the condition (3.2) is simply the assumption originates from [5]
in the framework of solving a variational inequality of the forme

Ax+NC(x) 3 0,
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where A : H ⇒ H is a maximally monotone operator and C ⊂ H is a closed convex set. For
this problem, the authors in [5] obtained solutions by means of the convergence analysis of
the trajectories of the following prox-penalization algorithm

xn = (I + λn(A+ βn∂ψ))−1xn−1,

where {βn} and {λn} are two sequences of nonnegative reals and ψ : H → R ∪ {+∞} acts as
an external penalization function with respect to the constraint x ∈ C. Indeed, several ergodic
and non ergodic convergence results have been justified for {xn} under the key assumption:
for all p ∈ R(NC),

+∞∑
n=1

λnβn

[
ψ∗
(
p

βn

)
− σC

(
p

βn

)]
< +∞,

where R(NC) denotes the range of NC .

- Strong convergence: To deduce the strong convergence of the algorithm (IPA) to
a solution of (HMP ), we’ll have to add a strong monotonicity condition on the function g.
However, when we set g(x, y) = ϕ(y) − ϕ(x), the strong monotonicity of g is not assured,
so that we take g(x, y) = 〈∇ϕ(x), y − x〉, where ∇ϕ is the gradient of ϕ (we identify ϕ with
ϕ(x) = ϕ(x) if x ∈ K, and ϕ(x) = +∞ if x /∈ K). In this case our inertial proximal scheme
associated to the problem (3.1) is the following: yn := xn + α(xn − xn−1) and xn+1 ∈ K such
that

(3.3) βn(ψ(y)− ψ(xn+1)) + 〈∇ϕ(xn+1), y − xn+1〉+
1

λn
〈xn+1 − yn, y − xn+1〉 ≥ 0, ∀y ∈ K.

Moreover, if we suppose ϕ to be strongly convex on K, i.e., for some κ > 0 and for all x, y ∈ K
and all t ∈ [0, 1]

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y)− κt(1− t)‖x− y‖2,

we deduce that g is strongly monotone, and thus the conclusion of Theorem 2 is valid when-

ever
∞∑
n=1

λn = +∞ and 0 ≤ α < 1
3 .

3.2. Equilibrium problem under a saddle point constraint. Let H1, H2 be two real
Hilbert spaces, U ⊂ H1 and V ⊂ H2 be nonempty closed convex sets, and let L : U × V → R
be closed and convex-concave, i.e., for each (u, v) ∈ U × V the real functions L(., v) and
−L(u, .) are convex and lower semicontinuous.

We consider the saddle-point problem: find (ū, v̄) ∈ U × V such that

(SP ) L(ū, v) ≤ L(ū, v̄) ≤ L(u, v̄) for every (u, v) ∈ U × V,

which is equivalent, see [22], to

max
v∈V

inf
u∈U

L(u, v) = min
u∈U

sup
v∈V

L(u, v) = L(ū, v̄).
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Setting H = H1 ×H2, K = U × V , we define the bifunction f : K ×K → R as:

f((u1, v1), (u2, v2)) := L(u2, v1)− L(u1, v2), for each (u1, v1), (u2, v2) ∈ K.

Let us observe that problems (SP ) and (EP ) are equivalent and we denote the solution set
of (SP ) by SL.

Using the definition of the Fitzpatrick transform Ff , we have
for all (u1, v1), (u2, v2) ∈ K:

Ff ((u1, v1), (u2, v2)) = sup
(x,y)∈K

{〈u2, x〉+ 〈v2, y〉+ f((x, y), (u1, v1))}

= sup
(x,y)∈K

{〈v2, y〉+ L(u1, y)− L(x, v1) + 〈u2, x〉}

= sup
y∈V
{〈v2, y〉 − (−L((u1, y))}+ sup

x∈U
{〈u2, x〉 − L(x, v1)}

= (−L(u1, .))
∗(v2) + (L(., v1))

∗(u2).

Therefore the condition (2.1) is satisfied when for all pairs (u, v) ∈ Sf and (p, q) ∈ NSf (u, v),

(3.4)

+∞∑
n=1

λnβn

[
(−L(u, .))∗

(
2q

βn

)
+ (L(., v))∗

(
2p

βn

)
− σSf

(
2p

βn
,

2q

βn

)]
< +∞.

We consider two single-valued monotone operators A and B such that K ⊂ dom A× dom B
and A×B +NSL is a maximally monotone operator (see [32, 33]). Furthermore we suppose
that the solution set SV L of 0 ∈ Ax̄× Bȳ +NSL(x̄, ȳ) is nonempty. By A× B, we mean the
operator defined for (u, v) ∈ H = H1×H2 by (A×B)(u, v) = Au×Bv. When the monotone
operator A×B +NSL is maximally monotone, then

(x̄, ȳ) ∈ SV L ⇐⇒ (x̄, ȳ) ∈ SL and 〈Ax̄, u− x̄〉+ 〈Bȳ, v − ȳ〉 ≥ 0, ∀(u, v) ∈ SL.

For each (u1, v1), (u2, v2) ∈ K, let us set

g((u1, v1), (u2, v2)) := 〈Au1, u2 − u1〉+ 〈Bv1, v2 − v1〉.

Then, our inertial proximal algorithm (IPA) used for approaching a solution to the problem
(BEP ) associated with the above bifunctions f and g, i.e., for finding a solution in SV L,
takes the following form: for every n ≥ 1, given current iterates (xin−1, x

i
n) ∈ K, i = 1, 2, set

yin = xin + α(xin − xin−1) and define (x1n+1, x
2
n+1) ∈ K in this way:

(3.5)


for all (u, v) ∈ U × V,
1
λn
〈(x1n+1, x

2
n+1)− (y1n, y

2
n), (u, v)− (x1n+1, x

2
n+1)〉+ 〈Ax1n+1, u− x1n+1〉

+〈Bx2n+1, v − x2n+1〉+ βn(L(u, x2n+1)− L(x1n+1, v)) ≥ 0.

In this case, Theorems 1 and 2 can be summarized as follows:
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Corollary 2. Let {x1n, x2n} be the sequence generated by (3.5). Under hypothesis (3.4) and
whenever 0 ≤ α < 1

3 , lim inf
n→+∞

λn > 0 and {βn} → +∞, the weak convergence of {x1n, x2n} to a

solution of SV L is ensured. Also, the strong convergence of {x1n, x2n} to the unique element of

SV L is ensured when 0 ≤ α < 1
3 ,
∞∑
n=1

λn = +∞ and A×B is strongly monotone on K.

Next, let us give an example where the condition (3.4) is verified.

Example 1. Take K = [0, 1] × [0, 1] and L the closed convex-concave function defined on
K by L(u, v) = u2(1 + v). Then, the set of saddle points of L, which is also the solution set
Sf , is Sf = {0} × [0, 1].
We also have

(p, q) ∈ N({0}×[0,1])(0, v)⇔ (p, q)(s, t− v) ≤ 0,∀ (s, t) ∈ {0} × [0, 1]⇔ q(t− v) ≤ 0, ∀t ∈ [0, 1]

and then
NSf (0, 0) = R× R−, NSf (0, 1) = R× R+ and NSf (0, v) = R× {0} for every v ∈]0, 1[.

To ensure (3.4), we check

σSf

(
2p

βn
,

2q

βn

)
= sup

v∈[0,1]

{
v

2q

βn

}
=


2q

βn
if q > 0

0 if q ≤ 0,

(−L(0, .))∗
(

2q
βn

)
= sup

0≤s≤1

{
2q

β(t)
s

}
=


2q

βn
if q > 0

0 if q ≤ 0,
and

(L(., v))∗
(

2p
βn

)
= sup

0≤s≤1

{
2p

βn
s− (1 + v)s2

}
=

p2

(1 + v)β2n
.

Thus
+∞∑
n=1

λnβn

[
(−L(u, .))∗

(
2q

βn

)
+ (L(., v))∗

(
2p

βn

)
− σSf

(
2p

βn
,

2q

βn

)]
= p2

(1+v)

+∞∑
n=1

λn
βn
,

and then (3.4) is satisfied, whenever
+∞∑
n=1

λn
βn

< +∞.

4. Numerical experiment. In this section, we present a numerical experiment to illustrate
the convergence of the proposed algorithm. Let us consider the constrained minimization
problem (HMP ), with

K = R2, ϕ(x) =
1

4
(x1 − x2 − 2)2 and ψ(x) =

1

4
(x1 + x2 − 4)2 .

Since ψ is convex, the minimum set of ψ is Sψ = ∇ψ−1(0, 0) = {x = (x1, x2) ∈ R2 : x2 =
4− x1} and the solution set of the hierarchical problem min

Sψ
ϕ is S = {x̄} = {(3, 1)}.

We evaluate 1
2d(x, Sψ)2 where d(x, Sψ) = inf

y∈Sψ
‖y − x‖2 and ‖(x1, x2)‖2 :=

√
x21 + x22. For

x = (x1, x2) ∈ R2, we have
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d(x, Sψ)2 = inf
y1∈R

(
(y1 − x1)2 + (y1 + x2 − 4)2

)
= inf

y1∈R
α(y1).

Since α(t) = (t− x1)2 + (t+ x2 − 4)2 is strongly convex and
α′(ȳ1) = 2(2ȳ1 + x2 − 4− x1) = 0⇔ ȳ1 = 1

2(x1 − x2 + 4),
we get

d(x, Sψ)2 = α(ȳ1) = (ȳ1 − x1)2 + (ȳ1 + x2 − 4)2 = 2ψ(x),

which yields ψ(x) = 1
2d(x, Sψ)2. Thus condition (2.1) is equivalent to

+∞∑
n=1

λn
βn

< +∞.

Note that the associated bifunctions are defined for all x, y ∈ K by f(x, y) = ψ(y)−ψ(x)
and g(x, y) = ϕ(y)−ϕ(x), that f and g are monotone and that weak and strong convergences
coincide in finite dimension.

By using the proximal operator of ϕ+ βnψ, the drawing in Figure 1 displays the asymp-
totic behavior of the trajectories xn = (yn, zn) from the initial values (y0, z0) = (0, 0.5) and
(y1, z1) = (0, 0.5) with α = 0.1, λn = 1

n and different values of βn. We also use the iterate
error ‖xn − x̄‖2 as a measure to describe the computational performance of our algorithm.
The numerical results in Figure 2 illustrate the rate of convergence of ‖xn − x̄‖2 for different
choices of βn and α = 0.1, while Figure 3 displays the convergence rate of ‖xn − x̄‖2 for
different choices of α and βn = (1 + n).

Figure 1: The asymptotic behavior of the trajectories xn = (yn, zn).
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Figure 2: The rate of convergence of ‖xn − x̄‖2 for α = 0.1.

Figure 3: The convergence rate of ‖xn − x̄‖2 for βn = (1 + n).

We note in Figure 2, that when βn increases then the rate of convergence of ‖xn − x̄‖2
rapidly increases to 0, while in Figure 3, the constant coefficient α acts inversely on the speed
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of convergence of ‖xn − x̄‖2, (the convergence gets worst as the values of α exceed 1
3), which

confirms the importance of taking α < 1
3 in our theoretical results.

We note that all codes in this digital test are written in SCILAB-6.1.

5. Concluding Remark. In this paper, we presented an inertial proximal method for
solving bilevel monotone equilibrium problems in Hilbert spaces. Our analysis shows the
weak and the strong convergence of the trajectory generated by the algorithm under natural
assumptions. Our results can be seen as an extension and improvement of some known results
in the literature. In particular, the geometric assumption (2.1) shows that, as conjectured in
[27], the restrictive assumption ‖xn+1 − xn‖ = o(εn) may be removed via the introduction
of a notion of conditioning for equilibrium bifunctions. We illustrate this assumption with
two concrete particular cases and conclude this work by a numerical experiment, which shows
that, with a suitable choice of the parameters, the convergence conditions are satisfied and
the proposed iterative method succeeds in approximating a solution to bilevel equilibrium
problems.

Finally, we note that, to the best of our knowledge, our approach seems to be the first
introduced inertial proximal scheme for solving (BEP ) and then several extensions of our
main results may be analyzed. In particular, an interesting direction of future research will
be to obtain the above weak convergence result without condition (2.1) and also to develop
new splitting inertial proximal algorithms for solving bilevel equilibrium problems.
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2011, https://doi.org/10.1007/978-1-4419-9467-7.

[8] G. C. Bento, J. X. Cruz Neto, J. O. Lopes, P. A. Soares, Jr., and A. Soubeyran, Generalized
proximal distances for bilevel equilibrium problems, SIAM J. Optim., 26 (2016), pp. 810–830, https:
//doi.org/10.1137/140975589.

[9] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math.
Student, 63 (1994), pp. 123–145.
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[20] J. Cotrina, M. Théra, and J. Zúñiga, An existence result for quasi-equilibrium problems via Ekeland’s
variational principle, J. Optim. Theory Appl., 187 (2020), pp. 336–355, https://doi.org/10.1007/
s10957-020-01764-0.

[21] S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium
constraints, Optimization, 52 (2003), pp. 333–359, https://doi.org/10.1080/0233193031000149894.

[22] I. Ekeland and R. Temam, Convex analysis and variational problems, Studies in Mathematics and its
Applications, Vol. 1, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publish-
ing Co., Inc., New York, 1976. Translated from the French.

[23] D. V. Hieu and A. Gibali, Strong convergence of inertial algorithms for solving equilibrium problems,
Optim. Lett., 14 (2020), pp. 1817–1843, https://doi.org/10.1007/s11590-019-01479-w.

[24] U. Mosco, Implicit variational problems and quasi variational inequalities, in Nonlinear operators and
the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975), Lecture Notes in
Math., Vol. 543, Springer, Berlin, 1976, pp. 83–156.

[25] A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999),
pp. 91–100.

[26] A. Moudafi, Second-order differential proximal methods for equilibrium problems, JIPAM. J. Inequal.
Pure Appl. Math., 4 (2003), pp. Article 18, 7.

[27] A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Global Optim.,
47 (2010), pp. 287–292, https://doi.org/10.1007/s10898-009-9476-1.
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