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In this paper, we introduce an inertial proximal method for solving a bilevel problem involving two monotone equilibrium bifunctions in Hilbert spaces. Under suitable conditions and without any restrictive assumption on the trajectories, the weak and strong convergence of the sequence generated by the iterative method are established. Two particular cases illustrating the proposed method are thereafter discussed with respect to hierarchical minimization problems and equilibrium problems under saddle point constraint. Furthermore, a numerical example is given to demonstrate the implementability of our algorithm. The algorithm and its convergence results improve and develop previous results in the field.

Let K be a nonempty closed and convex subset of a real Hilbert space H, and let f : K × K → R be a real-valued bifunction. The equilibrium problem [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF] associated with the bifunction f on K is stated as follows: find x ∈ K such that (EP ) f (x, y) ≥ 0, ∀y ∈ K.

This abstract variational formulation constitutes a convenient unified mathematical model for many problems in applied mathematics such as optimization problems, variational and hemivariational inequalities, fixed-point and saddle point problems, network equilibrium problems, Nash equilibrium and others, see for instance [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF][START_REF] Brézis | A remark on Ky Fan's minimax principle[END_REF][START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF][START_REF] Mosco | Implicit variational problems and quasi variational inequalities[END_REF] and the bibliography therein. One of the most popular algorithm for solving (EP ) is the proximal point method (P P M ) extended from variational inequalities to equilibrium problems by Moudafi [START_REF] Moudafi | Proximal point algorithm extended to equilibrium problems[END_REF]. In this regard, by introducing the resolvent of the bifunction f (see, [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF]), defined, for λ > 0, by J f λ (x) := {z ∈ K : f (z, y) + 1 λ z -x, y -z ≥ 0, ∀y ∈ K}, the author in [START_REF] Moudafi | Proximal point algorithm extended to equilibrium problems[END_REF] suggested a basic version of (P P M ) for (EP ) in the monotone framework. This method generates the next iterate x n+1 , for each n ≥ 0, by solving the following subproblem x n+1 = J f rn (x n ), i.e., (0.1) f (x n+1 , y) + 1 r n x n+1 -x n , y -x n+1 ≥ 0, ∀y ∈ K, where {r n } is a sequence of nonnegative numbers. Under the monotonicity condition on f, Moudafi proved the weak convergence of the sequence {x n } generated by algorithm (0.1) to a solution of (EP ). Thereby, a great interest has been brought to the study of (EP ) by means of splitting proximal point (or backward) methods; one can consult [START_REF] Antipin | Convergence and estimates for the rate of convergence of proximal methods to fixed points of extremal mappings[END_REF][START_REF] Burachik | On a generalized proximal point method for solving equilibrium problems in Banach spaces[END_REF][START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF] and the references therein.

Given its growing interest in applications to different applied domains, the problem (EP ) is currently considered as one of the important research directions in which the optimization community is interested. Indeed, the study of the existence of a solution to this problem still falls within the scope of very recent studies concerning new methods of resolution. Let us quote in this sense the paper [START_REF] Cotrina | An existence result for quasi-equilibrium problems via Ekeland's variational principle[END_REF] in which the authors, by using the celebrated Ekeland variational principle under a weaker notion of continuity and without any convexity assumptions, studied the existence of equilibria and quasi-equilibria in the setting of metric spaces. The bibliography of this article refers to new equilibrium concepts in which quasi-monotonicity and quasiconvexity are relaxed. In this paper, we study the problem (EP ) in a general framework where we focus our interest on the following bilevel equilibrium problem: find x ∈ S f such that (BEP ) g(x, y) ≥ 0, ∀y ∈ S f , where g : K × K → R is another real-valued bifunction and S f stands for the set of constraints defined by solutions to the second level equilibrium problem (EP ) given by S f := {u ∈ K : f (u, y) ≥ 0 ∀y ∈ K}. We denote by S the set of solutions to (BEP ) which we assume to be nonempty.

The problem (BEP ) was implicitly introduced in the paper by Chadli, Chbani and Riahi [START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF] in the setting of the so-called viscosity principle for equilibrium problems. This principle aims at a good selection of the upper equilibrium among solutions to the lower level equilibrium problem. This class of hierarchical problems covers in both levels, all the cases cited previously for an equilibrium problem. Besides their unification aspect, bilevel equilibrium problems has proved over the past two decades, very good applicability in different fields covering mechanics, engineering sciences and economy, see [START_REF] Dempe | Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[END_REF] and references therein. Greater attention was then paid to this class of problems regarding the existence of solutions via dynamical and algorithmic approaches and also from the point of view of parametric stability. The interested reader can consult the following recent investigations [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF][START_REF] Bento | Generalized proximal distances for bilevel equilibrium problems[END_REF][START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF][START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems[END_REF][START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF][START_REF] Thuy | A projected subgradient algorithm for bilevel equilibrium problems and applications[END_REF] and the references therein. In recent years, algorithmic resolution procedures have been widely studied for solving (BEP ). Moudafi [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF] introduced, by using the penalty method [START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF], the regularized proximal point method (RP P M ) for solving (BEP ). This algorithm is described as follows: from a starting point x 0 ∈ K, for each n ≥ 0, the next iterate x n+1 is defined by the proximal

iteration x n+1 := J f +βng λn (x n ), i.e., (0.2) f (x n+1 , y) + β n g(x n+1 , y) + 1 λ n x n+1 -x n , y -x n+1 ≥ 0, ∀y ∈ K,
where {β n } and {λ n } are two sequences of nonnegative reals. More precisely, under suitable assumptions on the bifunctions f and g, Moudafi proved that the sequence {x n } generated by algorithm (0.2) converges weakly to a solution of (BEP ) provided that lim inf

n→+∞ λ n > 0, +∞ n=0 λ n β n < +∞ and x n+1 -x n = o(β n ).
The drawback of the last assumption is the difficulty to choose such a control sequence (β n ) because we do not know the convergence rate of x n+1 -x n . The author in [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF] conjectured that this restrictive assumption can be removed via the introduction of a conditioning notion for equilibrium bifunctions.

Later on, the authors in [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems[END_REF] considered an alternate proximal scheme, which generates the next iterates x n+1 by solving the regularized problem x n+1 := J βnf +g λn (x n ), i.e.,

β n f (x n+1 , y) + g(x n+1 , y) + 1 λ n x n+1 -x n , y -x n+1 , ∀y ∈ K.
Here, the difficulty of the method (RP P M ) mentioned in [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF] has been solved. Following [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] and under a similar geometric assumption formulated in terms of the Fenchel conjugate function associated to the bifunction f , they analyzed both the weak and strong convergence of their algorithm to a solution of (BEP ). More recently, in [START_REF] Riahi | Weak and strong convergences of the generalized penalty Forward-Forward and Forward-Backward splitting algorithms for solving bilevel hierarchical pseu-domonotone equilibrium problems[END_REF], the authors proposed a forward-forward algorithm and a forward-backward algorithm for solving (BEP ) under quite mild conditions where the bifunction of the two level equilibrium problems are supposed pseudomonotone.

As a continuity of the studies of equilibrium problems by means of proximal iterative methods, we propose an inertial proximal method for solving (BEP ). It is well known that the inertial proximal iteration, where the next iterate is defined by making use of the previous two iterates, may be interpreted as an implicit discretization of differential systems of second order in time. The presence of inertial terms improves the convergence behavior of the generated sequences. We emphasize that the origin of these methods dates back to [START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[END_REF] as part of the approach to a solution of an abstract inclusion of the form: find x ∈ H such that

(0.3) 0 ∈ A(x),
where A : H ⇒ H is a maximally monotone operator and the solution set A -1 ({0}) is assumed to be nonempty. In this regard, giving two sequences of nonnegative numbers {α n } and {λ n }, the authors in [START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[END_REF] considered the following iterative scheme:

x n+1 -x n -α n (x n -x n-1 ) + λ n A(x n+1 ) 0,
and proved the weak convergence of the sequence {x n } generated by the above algorithm towards a solution of (0.3) under appropriate conditions on the parameters {α n } and {λ n } whenever the restrictive assumption

+∞ n=1 α n x n -x n-1 2 < +∞ holds.
Inspired by the results presented in [START_REF] Moudafi | Second-order differential proximal methods for equilibrium problems[END_REF] in the framework of solving (EP ) by an approximate second order differential proximal procedure, and also illuminated by the results explored in [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems[END_REF][START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF], we propose a new approximate inertial proximal scheme to solve (BEP ):

Algorithm: (Inertial proximal algorithm (IP A)).

Initialization: Choose positive sequences {β n }, {λ n }, and a nonnegative real number α ∈ [0, 1]. Take arbitrary x 0 , x 1 ∈ K.

Iterative step: For every n ≥ 1 and given current iterates x n-1 , x n ∈ K set y n := x n + α(x n -x n-1 ) and define x n+1 ∈ K by x n+1 := J βnf +g λn (y n ), i.e., (0.4)

β n f (x n+1 , y) + g(x n+1 , y) + 1 λ n x n+1 -y n , y -x n+1 ≥ 0, ∀y ∈ K.
In the above algorithm, {λ n } denotes the sequence of step sizes, {β n } the sequence of penalization parameters, and α ∈ [0, 1] the parameter that controls the inertial terms. The proposed numerical scheme recovers, when α = 0, the algorithm investigated in [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems[END_REF], and if in addition f = 0, the one suggested in [START_REF] Moudafi | Proximal point algorithm extended to equilibrium problems[END_REF]. The Fitzpatrick transform of the bifunction f will be a key ingredient in our convergence analysis. Indeed, we provide conditions under which the sequence generated by the algorithm (IP A) weakly or strongly converges to a solution of (BEP ). More precisely, under a discrete counterparts (2.1) of the geometric condition used in [START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF] and formulated in terms of the Fitzpatrick transform of the bifunction f , we first prove that (see Theorem 1) the sequence generated by (IP A) weakly converges to a solution of (BEP ) provided that 0 ≤ α < 1 3 , lim inf λ n = +∞, we show (see Theorem 2) the strong convergence of the trajectories generated by the proposed algorithm to the unique solution of (BEP ). Then, we show (see Theorem 3) that, without the need of the geometric assumption (2.1), the sequence converges strongly to the unique solution of (BEP ) when the parameters λ n and β n satisfy additionally conditions lim

n→+∞ λ n = 0, lim n→+∞ β n = +∞ and lim inf n→+∞ λ n β n > 0.
The main advantage of our approach is that it provides convergence without any restrictive assumption on the trajectories. The results can be seen as an extension to the second order counterparts of the ones given in [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems[END_REF][START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF]. To our knowledge, such inertial proximal schemes have been studied only for the first level equilibrium problem (EP ), see for instance [START_REF] Chbani | Weak and strong convergence of an inertial proximal method for solving Ky Fan minimax inequalities[END_REF][START_REF] Hieu | Strong convergence of inertial algorithms for solving equilibrium problems[END_REF] and the references therein. As applications, we discuss the hierarchical convex minimization case and equilibrium problems under a saddle point constraint. Numerical experiment is thereafter given to illustrate our theoretical results. We end the paper by concluding comments.

1. Background and technical lemmata. In this section, we give some preliminary results and definitions that will be used in the sequel. Throughout this paper, unless stated otherwise, let K be a nonempty closed and convex subset of a real Hilbert space H. We first recall some well known concepts on monotonicity and continuity of real bifunctions.

Definition 1. A bifunction f : K × K → R is called: (i) monotone if f (x, y) + f (y, x) ≤ 0 for all x, y ∈ K;
(ii) γ-strongly monotone, if there exists γ > 0 such that f (x, y) + f (y, x) ≤ -γ x -y 2 for all x, y ∈ K;

(iii) upper hemicontinuous, if lim t 0 f (tz + (1 -t)x, y) ≤ f (x, y) for all x, y, z ∈ K;

(iv) lower semicontinuous at y with respect to the second argument on K, if

f (x, y) ≤ lim inf w→y f (x, w) for all x ∈ K; (v) an equilibrium bifunction, if for each x ∈ K, f (x, x) = 0 and f (x, •) is convex and lower semicontinuous.
The dual equilibrium problem associated with the bifunction f on K is stated as follows:

find x ∈ K such that (DEP ) f (y, x) ≤ 0, ∀y ∈ K.
The set of solutions to (DEP ) is called the Minty solution set. The following result gives the link between Minty equilibria and the standard ones.

Lemma 1 (Minty's Lemma, [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF]). (i) Whenever f is monotone, every solution of (EP ) is a solution of (DEP ). (ii) Conversely, if f is upper hemicontinuous and equilibrium bifunction, then each solution of (DEP ) is a solution of (EP ).

The next lemma introduces the notion of resolvent associated to bifunctions. This concept is crucial in our approach for solving (BEP ).

Lemma 2. [START_REF] Chbani | Variational principles for monotone and maximal bifunctions[END_REF] Suppose that f : K × K → R is a monotone equilibrium bifunction. Then the following are equivalent:

(i) f is maximal: (x, u) ∈ K ×H and f (x, y) ≤ u, x-y , ∀y ∈ K imply that f (x, y)+ u, x-y ≥ 0 ∀y ∈ K; (ii) for each x ∈ H and λ > 0, there exists a unique z λ = J f λ (x) ∈ K, called the resolvent of f at x, such that (1.1) λf (z λ , y) + y -z λ , z λ -x ≥ 0, ∀y ∈ K.
Moreover, x ∈ S f if, and only if, x = J f λ (x) for every λ > 0 if, and only if, x = J f λ (x) for some λ > 0.

For the first main result of Section 3 concerning the weak convergence of the sequence generated by algorithm (0.4), we will make use of the two following useful lemmata.

Lemma 3 (discrete Opial Lemma, [START_REF]Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]). Let C be a nonempty subset of H and (x k ) k≥0 be a sequence in H such that the following two conditions hold: (i) For every x ∈ C, lim k→+∞ x k -x exists.

(ii) Every weak sequential cluster point of (x k ) k≥0 is in C.

Then, (x k ) k≥0 converges weakly to an element in C.

Lemma 4. Let 0 ≤ p ≤ 1, and let {b k } and {w k } be two sequences of nonnegative numbers such that, for all k ≥ 0,

b k+1 ≤ pb k + w k . If +∞ k=0 w k < +∞, then +∞ k=0 b k < +∞. Proof. We have (1 -p)b k ≤ b k -b k+1 + w k .
Summing up from k = 0 to n, we get

(1 -p) n k=0 b k ≤ n k=0 (b k -b k+1 ) + n k=0 w k = b 0 -b n+1 + n k=0 w k ≤ b 0 + n k=0 w k .
And since 1 -p ≥ 0 and +∞ k=0 w k < +∞, we conclude that +∞ k=0 b k < +∞. We also need the following technical lemmata. Lemma 5. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] For all x, y ∈ H and β ∈ R, the following equality holds,

βx + (1 -β)y 2 = β x 2 + (1 -β) y 2 -β(1 -β) x -y 2 .
Lemma 6. [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems[END_REF] Let {a n } be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence {a n k } k≥0 of {a n } which satisfies

a n k < a n k +1 for all k ≥ 0.
Then, the sequence of integers {σ(n)} n≥n 0 defined by σ(n

) := max{k ≤ n : a k < a k+1 } is a nondecreasing sequence verifying lim n→+∞ σ(n) = ∞ and, for all n ≥ n 0 a σ(n) < a σ(n)+1 and a n ≤ a σ(n)+1 .
In the rest of this section we recall some background material from convex analysis. For a function ϕ : H → R ∪ {+∞} we denote by dom ϕ = {x ∈ H : ϕ(x) < +∞} its effective domain and say that ϕ is proper, if dom ϕ = ∅. We also denote by min ϕ := inf x∈H ϕ(x) the optimal objective value of the function ϕ and by argmin ϕ := {x ∈ H : ϕ(x) = min ϕ} its set of global minima.

For a proper lower semicontinuous convex function ϕ :

H → R ∪ {+∞} and x ∈ H, let ϕ * : H → R∪{+∞} be its Fenchel conjugate defined by ϕ * (x) := sup y∈H { x, y -ϕ(y)}. If ϕ = δ K is the indicator function of K ⊂ H, i.e., δ K (x) = 0 if x ∈ K and +∞ otherwise, its Fenchel conjugate at x * ∈ H is the support function of K at x * , i.e., δ * K (x * ) = σ K (x * ) = sup y∈K x * , y .
The subdifferential of ϕ at x ∈ H, with ϕ(x) ∈ R is the set ∂ϕ(x) := {v ∈ H : ϕ(y) ≥ ϕ(x) + v, y -x , ∀y ∈ H}. We take by convention ∂ϕ(x)

:= ∅ if ϕ(x) = +∞. The normal cone to K ⊂ H at x ∈ H is N K (x) = {x * ∈ H : x * , u -x ≤ 0, ∀u ∈ K} if x ∈ K ∅ otherwise.
We mention that N K = ∂δ K , and that x * ∈ N K (x) if, and only if, σ K (x * ) = x * , x . For every u ∈ K, we denote by f u the function defined on H by

f u (x) = f (u, x) if x ∈ K and f u (x) = +∞ otherwise. For an equilibrium bifunction f : K × K → R, the associate operator A f is defined by A f (x) := ∂f x (x) = {z ∈ H : f (x, y) + z, x -y ≥ 0, ∀y ∈ K} if x ∈ K ∅ otherwise.
The Fitzpatrick transform F f : K×H → R∪{+∞} associated to a bifunction f and introduced in [START_REF] Alizadeh | On the Fitzpatrick transform of a monotone bifunction[END_REF][START_REF] Bot | Approaching the maximal monotonicity of bifunctions via representative functions[END_REF], is defined by

F f (x, u) = sup y∈K { u, y + f (y, x)}.
Given its continuity and convexity properties, the function F f has proven to be an important tool when studying the asymptotic properties of dynamical equilibrium systems, see [START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF] for a detailed presentation of these elements. This section concludes with the following auxiliary result needed for establishing our results.

Proposition 1. [16] If f (x, y) = ϕ(y) -ϕ(x)
where ϕ : H → R ∪ {+∞} is convex and lower semicontinuous with dom ϕ ⊂ K, then for every (x, u)

∈ K × H, F f (x, u) = ϕ(x) + ϕ * (u).
2. The main results. In the remaining part of the paper, f and g are two monotone and upper hemicontinuous bifunctions. We suppose that for each y ∈ K, ∂g y (y) = ∅ (i.e., dom (A g ) = K) and that K ∩ S f = ∅ and R + (K -S f ) is a closed linear subspace of H. In this case, the operator g x + δ S f is maximally monotone, see [START_REF] Attouch | Somme ponctuelle d'opérateurs maximaux monotones[END_REF][START_REF] Riahi | On the maximality of the sum of two maximal monotone operators[END_REF], and the subdifferential sum formula ∂(g x + δ S f ) = ∂g x + N S f holds. The following geometric assumption will be also needed and considered as a key tool in our treatment of the convergence analysis: ∀u ∈ S f , for all p ∈ N S f (u), (2.1)

+∞ n=1 λ n β n F f u, 2p β n -σ S f 2p β n < +∞.
Let us mention that hypothesis (2.1) is the discrete counterpart of the condition introduced in [START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF] in the context of continuous-time dynamical equilibrium systems. Note also that it is a natural extension of similar assumptions known in the literature for the convergence analysis of variational inequalities expressed as monotone inclusion problems and for constrained convex optimization problems, see [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF][START_REF] Bot | Forward-backward and Tseng's type penalty schemes for mono-tone inclusion problems[END_REF][START_REF] Bot | An inertial proximal-gradient penalization scheme for constrained convex optimization problems[END_REF] and references therein for further useful comments on these assumptions.

2.1. Weak convergence analysis. In this paragraph, under natural conditions, we obtain weak convergence result for the trajectory generated by (0.4) to a solution of (BEP ). We first prove the following preliminary estimation.

Lemma 7. Let {x n } be a sequence generated by algorithm (0.4). Take u ∈ S and set a n := x n -u 2 . Then, there exists p ∈ N S f (u) such that for each n ≥ 1 the following inequality holds:

(2.2) a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ S f 2p β n .
Proof. Since {x n } is generated by algorithm (0.4), we have for each

x ∈ K (2.3) 0 ≤ λ n β n f (x n+1 , x) + λ n g(x n+1 , x) + 1 2 y n -x 2 -x n+1 -x 2 -x n+1 -y n 2 .
By Lemma 5, we have for all n ≥ 1

y n -x 2 = x n + α(x n -x n-1 ) -x 2 = (1 + α)(x n -x) -α(x n-1 -x) 2 = (1 + α) x n -x 2 -α x n-1 -x 2 + α(1 + α) x n -x n-1 2 . (2.4)
Also, we have (2.5)

x n+1 -y n 2 = x n+1 -x n -α(x n -x n-1 ) 2 = x n+1 -x n 2 + α 2 x n -x n-1 2 -2α x n+1 -x n , x n -x n-1 ≥ (1 -α) x n+1 -x n 2 + (α 2 -α) x n -x n-1 2 .
Combining (2.4) and (2.5) with (2.3), we get for every x ∈ K

(2.6)

x n+1 -x 2 -(1 + α) x n -x 2 + α x n-1 -x 2 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , x) + 2λ n g(x n+1 , x).
Since u ∈ S, according to the first-order optimality condition, we have

0 ∈ ∂(g u + δ S f )(u) = A g (u) + N S f (u).
Let p ∈ N S f (u) be such that -p ∈ A g (u), we have for every n ≥ 1

(2.7)

λ n g(u, x n+1 ) + λ n -p, u -x n+1 ≥ 0,
and by taking x = u and a n = x n -u 2 in (2.6), we also have

(2.8) a n+1 -(1 + α)a n + αa n-1 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +2λ n β n f (x n+1 , u) + 2λ n g(x n+1 , u).
By summing up the above inequalities and using the monotonicity of g, we get

a n+1 -a n -α(a n -a n-1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , u) + 2λ n -p, u -x n+1 .
Using the monotonicity of f , we obtain

a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n f (x n+1 , u) + 2λ n -p, u -x n+1 = (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +λ n β n 2p βn , x n+1 + f (x n+1 , u) -2p βn , u .
Finally, using the fact that p ∈ N S f (u), i.e., δ S f (u) + σ S f (p) = p, u , we obtain

a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +λ n β n sup x∈H 2p βn , x + f (x, u) -σ S f 2p βn = (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +λ n β n F f u, 2p β n -σ S f 2p β n .
The proof is complete.

Remark 1. We can continue our analysis assuming that +∞ n=1

x n -x n-1 2 < +∞; however this condition involves the trajectory {x n } which is unknown. In the next corollary we prove that the above condition holds under a suitable control of the parameter α.

Corollary 1. Under hypothesis (2.1) and by assuming that 0 ≤ α < 1 3 , we have

(i) +∞ n=1 x n -x n-1 2 < +∞; (ii) +∞ n=1 λ n β n f (u, x n+1 ) < +∞, for each u ∈ S.
Proof. (i) First we simplify the writing of the estimation (2.2) given in Lemma 7. Since u ∈ S f and λ n β n ≥ 0, we have

λ n β n f (u, x n+1 ) ≥ 0. Setting δ n = x n -x n-1 2 , then inequality (2.2) gives (2.9) a n+1 -a n -α(a n -a n-1 ) + (1 -α)δ n+1 -2αδ n ≤ λ n β n F f u, 2p β n -σ S f 2p β n .
In order to simplify its summation we rewrite (2.9) as (2.10)

a n+1 -a n -α(a n -a n-1 ) + (1 -α)(δ n+1 -δ n ) + (1 -3α)δ n ≤ λ n β n F f u, 2p β n -σ S f 2p β n .
Now, summing up (2.10) from j = 1 to n, we obtain

(a n+1 -a 1 ) -α(a n -a 0 ) + (1 -α)(δ n+1 -δ 1 ) + (1 -3α) n j=1 δ j ≤ n j=1 λ j β j F f u, 2p β j -σ S f 2p β j .
Assumption (2.1), infers that

(2.11) (a n+1 -αa n ) + (1 -α)δ n+1 + (1 -3α) n j=1 δ j ≤ C,
for some nonnegative constant C. Since α < 1 3 yields 1 -3α > 0 and 1 -α > 0, then inequality (2.11) implies for all n ≥ 1 (2.12)

a n+1 ≤ αa n + C.
Recursively we obtain for all n ≥ n 0 ≥ 1

a n+1 ≤ α n-n 0 a n 0 + C(1 + α + α 2 + ... + α n-n 0 -1 ) = α n-n 0 a n 0 + C 1 -α n-n 0 1 -α .
Therefore 

a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ λ n β n F f u, 2p β n -σ S f 2p β n + (α -1) ≤0 δ n+1 + 2αδ n . ≤ λ n β n F f u, 2p β n -σ S f 2p β n + 2αδ n .
By summing up from n = 1 to +∞, we obtain

+∞ n=1 λ n β n f (u, x n+1 ) ≤ a 1 -αa 0 + +∞ n=1 λ n β n F f u, 2p β n -σ S f 2p β n + 2α +∞ n=1 x n -x n-1 2 .
Then, assumptions (2.1) and (i) ensure (ii).

In order to further proceed with the convergence analysis, we have to choose the sequences {λ n } and {β n } such that lim inf n→+∞ λ n > 0 and β n → +∞. We are now able to state and prove the first main result of this section.

Theorem 1. Suppose given monotone and upper hemicontinuous bifunctions f and g. Let {x n } be a sequence generated by algorithm (0.4). Under hypothesis (2.1) and by assuming that 0 ≤ α < Proof. The proof relies on the discrete Opial Lemma. To this end we will prove that the conditions (i) and (ii) in Lemma 3 for C = S are satisfied. Returning to inequality (2.2), since u ∈ S f and λ n β n ≥ 0, we have λ n β n f (u, x n+1 ) ≥ 0, and then

a n+1 -a n ≤ α(a n -a n-1 ) + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ S f 2p β n .
Taking the positive part, we immediately deduce that

[a n+1 -a n ] + ≤ α[a n -a n-1 ] + + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ S f 2p β n .
Using assumption (2.1) together with the fact that +∞ n=1

x n -x n-1 2 < +∞ and applying Lemma 4 with

b n = [a n -a n-1 ] + and w n = 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ S f 2p β n , we obtain +∞ n=1 [a n -a n-1 ] + < +∞.
Since a n is nonnegative, this implies the existence of lim n→+∞ a n and the one of lim n→+∞

x n -u .

It remains to show that every weak cluster point x of the sequence {x n } lies in S. Let n k → +∞ as k → +∞ such that x n k

x. We want to show that x ∈ S. Thanks to the monotonicity of f and g, inequality (0.4) ensures that for all y ∈ K and for all k large enough (2.14) f (y,

x n k +1 ) ≤ - 1 β n k g(y, x n k +1 ) + 1 λ n k β n k x n k +1 -y n k , y -x n k +1 .
Since ∂g y (y) = ∅, one can find x * (y) ∈ H such that for every z ∈ K g(y, z) ≥ x * (y), z -y ≥ -x * (y) • y -z .

Thus there exists γ(y) := x * (y) > 0 such that for every z ∈ K

(2.15) -g(y, z) ≤ γ(y). y -z .

Returning to (2.14), we can write

f (y, x n k +1 ) ≤ γ(y) β n k y -x n k +1 + 1 λ n k β n k x n k +1 -y n k . y -x n k +1 .
Passing to the limit, and using the facts that {x n k } is bounded,

{β n k } → +∞, lim inf k→+∞ λ n k > 0
and x n k +1 -y n k → 0, we deduce that f (y, x) ≤ 0 for all y ∈ K. Lemma 1 leads to x ∈ S f . By using (0.4) and the monotonicity of f and g, we have for every u ∈ S f ,

λ n β n f (u, x n+1 ) + λ n g(u, x n+1 ) ≤ y n -x n+1 , x n+1 -u .
By exploiting that lim n→+∞

x n -u exists and thanks to (i) of Corollary 1, we deduce that

y n -x n+1 , x n+1 -u → n→+∞ 0.
Using (ii) of the same Corollary, we obtain that lim sup n→+∞ λ n g(u, x n+1 ) ≤ 0. Since g(u, .) is lower semicontinuous, from the assumption lim inf n→+∞ λ n > 0 we derive that g(u, x) ≤ 0. Lemma 1 allows us to conclude that g(x, u) ≥ 0, ∀u ∈ S f , establishing the proof.

Strong convergence analysis.

In this paragraph, under additional assumption on the monotonicity of the bifunction of the upper level g, we ensure the strong convergence of the trajectory in (0.4).

Strong convergence under assumption (2.1).

Theorem 2. Suppose that the bifunctions f and g are monotone and upper hemicontinuous. Under hypothesis (2.1), if the bifunction g is ρ-strongly monotone, and if

0 ≤ α < 1 3 and ∞ n=1 λ n = +∞,
the sequence {x n } generated by algorithm (0.4) strongly converges to a unique solution u ∈ S.

Proof. Uniqueness of the solution for (BEP ) follows from strong monotonicity of g. For the existence, see [START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF]Theorem 4.3]. Using inequalities (2.7) and (2.6), with x = u, by summing up and using the ρ-strong monotonicity of g, we get for a

n := x n -u 2 a n+1 -a n -α(a n -a n-1 ) ≤ -2ρλ n a n+1 + (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , u) + 2λ n -p, u -x n+1 .
We follow the arguments in the proof of Lemma 7 to obtain

a n+1 -a n -α(a n -a n-1 ) + 2ρλ n a n+1 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ S f 2p β n .
Then, by summing up from n = 1 to +∞, we obtain

2ρ +∞ n=1 λ n x n+1 -u 2 ≤ a 1 -αa 0 + +∞ n=1 λ n β n F f u, 2p β n -σ S f 2p β n + 2α +∞ n=1 x n -x n-1 2 .
Using condition (2.1) and assumption (i) of Corollary 1, we deduce that

+∞ n=1 λ n x n+1 -u 2 < +∞.
Since lim n→+∞

x n -u exists and ∞ n=1 λ n = +∞, we conclude that lim n→+∞

x n -u = 0, which guarantees the strong convergence of the whole sequence {x n } to u.

Strong convergence without assumption (2.1

). We will show that in this case, the algorithm strongly converges without the need of the geometric hypothesis (2.1).

Theorem 3. Suppose that the bifunctions f and g are monotone and upper hemicontinuous with S f = ∅ and g is ρ-strongly monotone. Suppose moreover that

0 ≤ α < 1 3 , lim n→+∞ λ n = 0, +∞ n=0 λ n = +∞, lim n→+∞ β n = +∞ and lim inf n→+∞ λ n β n > 0.
Then, the sequence {x n } generated by algorithm (0.4) converges strongly to the unique solution u of (BEP ).

Proof. Under assumptions on the two bifunctions f and g, we get the unique solution denoted by x of the bilevel equilibrium problem (BEP ).

Step 1: We show that {x n } is bounded. Since {x n } is generated by algorithm (0.4), then by (2.6), we have for each x ∈ K (2.16)

x n+1 -x 2 -(1 + α) x n -x 2 + α x n-1 -x 2 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , x) + 2λ n g(x n+1 , x).
Fix x ∈ S f , and set a n (x) = x n -x 2 and δ n = x n -x n-1 2 . Thanks to the monotonicity of f , then for each n ≥ 0, (2.17)

a n+1 (x) -αa n (x) + 2αδ n+1 ≤ (a n (x) -αa n-1 (x) + 2αδ n ) + (3α -1)δ n+1 + 2λ n g(x n+1 , x).
By setting b n (x) = a n (x) -αa n-1 (x) + 2αδ n , we obtain, for n ≥ 1,

(2.18) b n+1 (x) ≤ b n (x) + (3α -1)δ n+1 + 2λ n g(x n+1 , x). • If there is n 0 ∈ N such that {b n (x)} is decreasing for all n ≥ n 0 , then b n (x) ≤ b n 0 (x), which infers that a n+1 (x) ≤ αa n (x) + b n 0 for all n ≥ n 0 .
Recursively, we obtain for all n ≥ n 0 ≥ 1

a n+1 (x) ≤ α n-n 0 a n 0 (x) + b n 0 1 -α n-n 0 1 -α ,
and the boundedness of the sequence {a n (x)}. • Otherwise there exists an increasing sequence {k n } such that for every n ≥ 0, b k n+1 (x) > b kn (x). By Lemma 6, there exist a nondecreasing sequence {σ n } and n 0 > 0 such that lim Using the ρ-strong monotonicity of g and relation (2.15), we deduce that for n ≥ n 0

(2.20) -2λ σn γ(x) a σn+1 (x) ≤ 2λ σn g(x, x σn+1 ) ≤ (3α -1)δ σn+1 -2λ σn ρa σn+1 (x).

Since 3α -1 < 0, we conclude that for n ≥ n 0

(2.21) a σn+1 (x) ≤ γ(x) ρ 2 and δ σn+1 ≤ 2γ 2 (x)λ σn ρ(1 -3α) .
Hence, {a σn+1 (x)} is bounded and since, {λ σn } is bounded, then {δ σn+1 } is bounded, which means that {b σn (x)} also is bounded. So, for all n ≥ n 0 , we have

a n (x) ≤ αa n-1 + b n (x) ≤ αa n-1 + b σn (x) ≤ αa n-1 + C ≤ α n-n 0 a n 0 (x) + C 1-α n-n 0 1-α .
Therefore the sequence {a n (x)} is bounded, ensuring the boundedness of {x n }.

Step 2: We show that the sequence {x n } strongly converges to x, the unique solution of (BEP ).

Let us consider two cases:

Case 1: There exists n 0 such that {b n (x)} := a n (x)-αa n-1 (x)+2αδ n is decreasing for n ≥ n 0 . Then, the limit of sequence {b n (x)} exists and lim

n→+∞ (b n (x) -b n+1 (x)) = 0. Since x ∈ S f , then by (2.18) we have (2.22) b n+1 (x) ≤ b n (x) + (3α -1)δ n+1 + 2λ n g(x n+1 , x).
Hence, since 3α -1 < 0, lim n→+∞ λ n = 0 and g(•, x) is lower semi-continuous, then lim

n→+∞ δ n+1 = 0.
Summing up inequality (2.22) from 1 to +∞, we deduce that

(2.23) +∞ n=1 -λ n g(x n+1 , x) ≤ b 1 (x),
which in combination with

+∞ n=0 λ n = +∞ leads to lim inf n→∞ -g(x n+1 , x) ≤ 0.
On the other hand, since g is ρ-strongly monotone, then we have

(2.24) lim n→+∞ a n+1 (x) = lim inf n→+∞ x n+1 -x 2 ≤ 1 ρ lim inf n→+∞ -g(x n+1 , x) ≤0 + 1 ρ lim sup n→+∞ -g(x, x n+1 ) ≤ -1 ρ lim inf n→+∞ g(x, x n+1 ).
Hence, to prove that the sequence {a n+1 (x)} converges to zero, it is enough to verify that lim inf n→+∞ g(x, x n+1 ) ≥ 0. Since {x n } is bounded, let x be a weak cluster point of {x n }, i.e.

x = w -lim n∈In⊂N

x n . By using the weak lower semicontinuity of g(x, •) we have

g(x, x) ≤ lim inf n∈I g(x, x n+1 ).
Since x is the unique solution of (BEP ), we need just to check that x ∈ S f . In doing so, by (2.15) and (2.6), we have for every y ∈ K,

(2.25) f (y, x n+1 ) ≤ - 1 λ n β n (b n+1 (y) -b n (y)) + 1 2β n γ(y) a n (x).
We have Hence, by using Minty's lemma we deduce that x ∈ S f . Therefore, 0 ≤ g(x, x) ≤ lim inf n∈I g(x, x n+1 ), and so lim n→+∞ a n (x) = 0.

b n (y) -b n+1 (y) = (a n (y) -αa n-1 (y) + 2αδ n ) -(a n+1 (y) -αa n (y) + 2αδ n+1 ) = (a n (y) -a n+1 (y)) + α (a n (y) -a n-1 (y)) + 2α (δ n -δ n+1 ) = (a n (x) -a n+1 (x) + 2 x n -x n+1 , x -y ) +α (a n-1 (x) -a n (x) + 2 x n -x n-1 , x -y ) + 2α (δ n -δ n+1 ) = b n (x) -b n+1 (x) + 2 x n -x n+1 , x -y + 2α x n -x n-1 , x -y .
Case 2: There exists a subsequence {x n j } of {x n } such that b n j (x) ≤ b n j +1 (x) for all j ∈ N. By Lemma 6, the sequence σ(n

) := max{k ≤ n : b k < b k+1 } is a nondecreasing, lim n→+∞ σ(n) = ∞ and, for all n ≥ n 0 b σ(n) < b σ(n)+1 and b n ≤ b σ(n)+1 .
Let us take n = σ(n) and x = x in (2.18). We have

(2.26) 0 < b σ(n)+1 (x) -b σ(n) (x) ≤ 2λ σ(n) g(x σ(n)+1 , x),
which yields g(x σ(n)+1 , x) ≥ 0, and thus lim sup

n→+∞ g(x σ(n)+1 , x) ≤ 0.
Using again the ρ-strong monotonicity of g and passing to the limit we have

(2.27) lim sup n→+∞ a σ(n)+1 (x) ≤ 1 ρ lim sup n→+∞ -g(x σ(n)+1 , x) ≤0 + 1 ρ lim sup n→+∞ -g(x, x σ(n)+1 ) ≤ -1 ρ lim inf n→+∞ g(x, x σ(n)+1 ).
Under the boundedness of {x n }, and similarly to the case 1, one can show that lim inf n→+∞ g(x, x σ(n)+1 ) ≥ 0.

Hence, by (2.24), we conclude that lim

n→+∞ a σ(n)+1 (x) = 0. Since b n (x) ≤ b σ(n)+1 (x) for each n ≥ n 0 , we derive that lim n→+∞ a n (x) ≤ lim n→+∞ b n (x) ≤ lim n→+∞ b σ(n)+1 (x) ≤ lim n→+∞ a σ(n) (x) + 2αδ σ(n) ≤ (1 + 4α) lim n→+∞ a σ(n) (x) + 4α lim n→+∞ a σ(n)-1 (x)
= 0, thus guaranteeing the strong convergence of the whole sequence {x n } to x.

3. Application to optimization and saddle point problems. In this section, we give two examples of particular bifunctions, for which our main weak and strong convergence theorems apply. Clearly, (3.1) can be viewed as a bilevel equilibrium problem (BEP ) such that the associated bifunctions are defined for all x, y ∈ K by f (x, y) = ψ(y) -ψ(x) and g(x, y) = ϕ(y) -ϕ(x). In this case the bifunctions f and g are obviously monotone and upper hemicontinuous. Hence theorems on weak (resp. strong) convergence apply, whenever (2.1) (resp. (2.1) and strong monotonicity) is satisfied.

-Weak convergence: Without any loss of generality we assume min K ψ = 0. Set M = argmin Here, M is the minimum set of ψ, and then condition (2.1) is equivalent to

+∞ n=1 λ n β n < +∞.
Remark 2. We note that the condition (3.2) is simply the assumption originates from [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] in the framework of solving a variational inequality of the forme Ax + N C (x) 0, where A : H ⇒ H is a maximally monotone operator and C ⊂ H is a closed convex set. For this problem, the authors in [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] obtained solutions by means of the convergence analysis of the trajectories of the following prox-penalization algorithm

x n = (I + λ n (A + β n ∂ψ)) -1 x n-1 ,
where {β n } and {λ n } are two sequences of nonnegative reals and ψ : H → R ∪ {+∞} acts as an external penalization function with respect to the constraint x ∈ C. Indeed, several ergodic and non ergodic convergence results have been justified for {x n } under the key assumption: for all p ∈ R(N C ),

+∞ n=1 λ n β n ψ * p β n -σ C p β n < +∞,
where R(N C ) denotes the range of N C .

-Strong convergence: To deduce the strong convergence of the algorithm (IP A) to a solution of (HM P ), we'll have to add a strong monotonicity condition on the function g. However, when we set g(x, y) = ϕ(y) -ϕ(x), the strong monotonicity of g is not assured, so that we take g(x, y) = ∇ϕ(x), y -x , where ∇ϕ is the gradient of ϕ (we identify ϕ with ϕ(x) = ϕ(x) if x ∈ K, and ϕ(x) = +∞ if x / ∈ K). In this case our inertial proximal scheme associated to the problem (3.1) is the following:

y n := x n + α(x n -x n-1 ) and x n+1 ∈ K such that (3.3) β n (ψ(y) -ψ(x n+1 )) + ∇ϕ(x n+1 ), y -x n+1 + 1 λ n x n+1 -y n , y -x n+1 ≥ 0, ∀y ∈ K.
Moreover, if we suppose ϕ to be strongly convex on K, i.e., for some κ > 0 and for all x, y ∈ K and all t ∈ [0, 1]

ϕ(tx + (1 -t)y) ≤ tϕ(x) + (1 -t)ϕ(y) -κt(1 -t) x -y 2 ,
we deduce that g is strongly monotone, and thus the conclusion of Theorem 2 is valid whenever ∞ n=1 λ n = +∞ and 0 ≤ α < 1 3 .

3.2.

Equilibrium problem under a saddle point constraint. Let H 1 , H 2 be two real Hilbert spaces, U ⊂ H 1 and V ⊂ H 2 be nonempty closed convex sets, and let L : U × V → R be closed and convex-concave, i.e., for each (u, v) ∈ U × V the real functions L(., v) and -L(u, .) are convex and lower semicontinuous.

We consider the saddle-point problem: find

(ū, v) ∈ U × V such that (SP ) L(ū, v) ≤ L(ū, v) ≤ L(u, v) for every (u, v) ∈ U × V,
which is equivalent, see [START_REF] Ekeland | Convex analysis and variational problems[END_REF], to

max v∈V inf u∈U L(u, v) = min u∈U sup v∈V L(u, v) = L(ū, v).
Corollary 2. Let {x 1 n , x 2 n } be the sequence generated by (3.5). Under hypothesis (3.4) and whenever 0 ≤ α < 1 3 , lim inf n→+∞ λ n > 0 and {β n } → +∞, the weak convergence of {x 1 n , x 2 n } to a solution of S V L is ensured. Also, the strong convergence of {x 1 n , x 2 n } to the unique element of

S V L is ensured when 0 ≤ α < 1 3 , ∞ n=1
λ n = +∞ and A × B is strongly monotone on K.

Next, let us give an example where the condition (3.4) is verified.

Example 1. Take K = [0, 1] × [0, 1] and L the closed convex-concave function defined on K by L(u, v) = u 2 (1 + v). Then, the set of saddle points of L, which is also the solution set 4. Numerical experiment. In this section, we present a numerical experiment to illustrate the convergence of the proposed algorithm. Let us consider the constrained minimization problem (HM P ), with

S f , is S f = {0} × [0, 1]. We also have (p, q) ∈ N ({0}×[0,1]) (0, v) ⇔ (p, q)(s, t -v) ≤ 0, ∀ (s, t) ∈ {0} × [0, 1] ⇔ q(t -v) ≤ 0, ∀t ∈ [0, 1] and then N S f (0, 0) = R × R -, N S f (0, 1) = R × R + and N S f (0, v) = R × {0} for every v ∈]0, 1[. To ensure (3.4), we check σ S f 2p β n , 2q β n = sup v∈[0,1] v 2q β n =    2q β n if q > 0 0 if q ≤ 0, (-L(0, .)) * 2q βn = sup 0≤s≤1 2q β(t) s =    2q β n if q > 0 0 if q ≤ 0, and (L(., v)) * 2p βn = sup 0≤s≤1 2p β n s -(1 + v)s 2 = p 2 (1 + v)β 2 n . Thus +∞ n=1 λ n β n (-L(u, .)) * 2q β n + (L(., v)) * 2p β n -σ S f 2p β n , 2q β n = p 2 (1+v) 
K = R 2 , ϕ(x) = 1 4 (x 1 -x 2 -2) 2 and ψ(x) = 1 4 (x 1 + x 2 -4) 2 .
Since ψ is convex, the minimum set of ψ is S ψ = ∇ψ -1 (0, 0) = {x = (x 1 , x 2 ) ∈ R 2 : x 2 = 4 -x 1 } and the solution set of the hierarchical problem min Since α(t) = (t -x 1 ) 2 + (t + x 2 -4) 2 is strongly convex and α (ȳ 1 ) = 2(2ȳ 1 + x 2 -4 -x 1 ) = 0 ⇔ ȳ1 = 1 2 (x 1 -x 2 + 4), we get d(x, S ψ ) 2 = α(ȳ 1 ) = (ȳ 1 -x 1 ) 2 + (ȳ 1 + x 2 -4) 2 = 2ψ(x), which yields ψ(x) = 1 2 d(x, S ψ ) 2 . Thus condition (2.1) is equivalent to

+∞ n=1 λ n β n < +∞.
Note that the associated bifunctions are defined for all x, y ∈ K by f (x, y) = ψ(y) -ψ(x) and g(x, y) = ϕ(y) -ϕ(x), that f and g are monotone and that weak and strong convergences coincide in finite dimension.

By using the proximal operator of ϕ + β n ψ, the drawing in Figure 1 displays the asymptotic behavior of the trajectories x n = (y n , z n ) from the initial values (y 0 , z 0 ) = (0, 0.5) and (y 1 , z 1 ) = (0, 0.5) with α = 0.1, λ n = 1 n and different values of β n . We also use the iterate error x n -x 2 as a measure to describe the computational performance of our algorithm. The numerical results in Figure 2 illustrate the rate of convergence of x n -x 2 for different choices of β n and α = 0.1, while Figure 3 displays the convergence rate of x n -x 2 for different choices of α and β n = (1 + n). We note in Figure 2, that when β n increases then the rate of convergence of x n -x 2 rapidly increases to 0, while in Figure 3, the constant coefficient α acts inversely on the speed of convergence of x n -x 2 , (the convergence gets worst as the values of α exceed 1 3 ), which confirms the importance of taking α < 1 3 in our theoretical results.

We note that all codes in this digital test are written in SCILAB-6.1.

5. Concluding Remark. In this paper, we presented an inertial proximal method for solving bilevel monotone equilibrium problems in Hilbert spaces. Our analysis shows the weak and the strong convergence of the trajectory generated by the algorithm under natural assumptions. Our results can be seen as an extension and improvement of some known results in the literature. In particular, the geometric assumption (2.1) shows that, as conjectured in [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF], the restrictive assumption x n+1 -x n = o( n ) may be removed via the introduction of a notion of conditioning for equilibrium bifunctions. We illustrate this assumption with two concrete particular cases and conclude this work by a numerical experiment, which shows that, with a suitable choice of the parameters, the convergence conditions are satisfied and the proposed iterative method succeeds in approximating a solution to bilevel equilibrium problems.

Finally, we note that, to the best of our knowledge, our approach seems to be the first introduced inertial proximal scheme for solving (BEP ) and then several extensions of our main results may be analyzed. In particular, an interesting direction of future research will be to obtain the above weak convergence result without condition (2.1) and also to develop new splitting inertial proximal algorithms for solving bilevel equilibrium problems.

n→+∞ λ n > 0 and lim n→+∞ β n = 0 .

 0 Afterwards, by strengthening the monotonicity assumption on the upper level bifunction g, and whenever 0 ≤ α <1 3 and ∞ n=1

  n→+∞ σ n = ∞, and for all n ≥ n 0 , b σn(x) < b σn+1 (x) and b n (x) ≤ b σn+1 (x). For n = σ n in (2.18), we get (2.19) 0 < b σn+1 (x) -b σn (x) ≤ (3α -1)δ σn+1 + 2λ σn g(x σn+1 , x).

  (x)-b n+1 (x)) = 0 and lim n→+∞ x n+1 -x n = 0, then lim n→+∞ (b n (y)-b n+1 (y)) = 0. By using the weak lower semicontinuity of f (y, •) and the fact that {x n } is bounded, lim n→+∞ λ n = 0, lim inf n→+∞ λ n β n > 0 and lim n→+∞ β n = +∞, we conclude from (2.25) that for every y ∈ K f (y, x) ≤ lim inf n∈I f (y, x n+1 ) ≤ 0.

3. 1 .

 1 Hierarchical minimization. Our contribution in this paragraph discusses the following hierarchical minimization problem: (HM P ) min x∈argmin K ψ ϕ(x), where ψ : H → R ∪ {+∞} is a proper, convex and lower semicontinuous extend real-valued function such that K = dom ψ is closed and ϕ : H → R ∪ {+∞} is a differentiable and lower semicontinuous function such that K = dom ϕ is closed. The above problem can be equivalently expressed as: find x ∈ argmin K ψ such that (3.1) ϕ(x) ≤ ϕ(y), ∀y ∈ argmin K ψ.

Kψ, 2 p 2

 22 and consider ψ(x) = ψ(x) if x ∈ K, and ψ(x) = +∞ if x / ∈ K; then ψ(x) -δ M (x) ≤ 0 for all x ∈ H. Using the reverse inequality for their Fenchel conjugates, we deduce ψ * (p) -σ M (p) ≥ 0 for all p ∈ H, and in view of Proposition 1, condition (2.1) becomes: ∀u ∈ M, for all p ∈ N M (u), and supposing that M is nonempty, lim inf n→+∞ λ n > 0, lim n→+∞ β n = +∞ and 0 ≤ α < 1 3 , then the whole sequence {x n } generated by algorithm (0.4) weakly converges to a point x solution of (HM P ). Consider the particular case where ψ(x) = 1 2 d(x, M ) 2 and M ⊂ K is a nonempty closed convex set satisfying d(x, M ) = inf y∈M x -y . Then, ψ * (p) -σ M (p) = 1 for all p ∈ H.

ϕ

  is S = {x} = {(3, 1)}. We evaluate 1 2 d(x, S ψ ) 2 where d(x, S ψ ) = inf y∈S ψ y -x 2 and (x 1 , x 2 ) 2 := x 2 1 + x 2 2 . For x = (x 1 , x 2 ) ∈ R 2 , we have d(x, S ψ ) 2 = inf y 1 ∈R (y 1 -x 1 ) 2 + (y 1 + x 2 -4) 2 = infy 1 ∈R α(y 1 ).

Figure 1 :

 1 Figure 1: The asymptotic behavior of the trajectories x n = (y n , z n ).

Figure 2 :

 2 Figure 2: The rate of convergence of x n -x 2 for α = 0.1.

Figure 3 :

 3 Figure 3: The convergence rate of x n -x 2 for β n = (1 + n).
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Setting H = H 1 × H 2 , K = U × V , we define the bifunction f : K × K → R as: f ((u 1 , v 1 ), (u 2 , v 2 )) := L(u 2 , v 1 ) -L(u 1 , v 2 ), for each (u 1 , v 1 ), (u 2 , v 2 ) ∈ K.

Let us observe that problems (SP ) and (EP ) are equivalent and we denote the solution set of (SP ) by S L .

Using the definition of the Fitzpatrick transform F f , we have for all (u 1 , v 1 ), (u 2 , v 2 ) ∈ K:

Therefore the condition (2.1) is satisfied when for all pairs (u, v) ∈ S f and (p, q) ∈ N S f (u, v),

We consider two single-valued monotone operators A and B such that K ⊂ dom A × dom B and A × B + N S L is a maximally monotone operator (see [START_REF] Rockafellar | On the maximal monotonicity of subdifferential mappings[END_REF][START_REF] Rockafellar | On the maximality of sums of nonlinear monotone operators[END_REF]). Furthermore we suppose that the solution set S V L of 0 ∈ Ax × B ȳ + N S L (x, ȳ) is nonempty. By A × B, we mean the operator defined for (u, v)

Then, our inertial proximal algorithm (IP A) used for approaching a solution to the problem (BEP ) associated with the above bifunctions f and g, i.e., for finding a solution in S V L , takes the following form: for every n ≥ 1, given current iterates (

) and define (x 1 n+1 , x 2 n+1 ) ∈ K in this way:

In this case, Theorems 1 and 2 can be summarized as follows: