
HAL Id: hal-03808046
https://hal.science/hal-03808046v1

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Open-Source GNU Radio Framework for LoRa
Physical Layer and Collision Resolution

Weixuan Xiao, Gil de Sousa, Nancy El Rachkidy, Alexandre Guitton

To cite this version:
Weixuan Xiao, Gil de Sousa, Nancy El Rachkidy, Alexandre Guitton. An Open-Source GNU Radio
Framework for LoRa Physical Layer and Collision Resolution. IEEE Vehicular Technology Conference,
IEEE, Sep 2022, Londres, United Kingdom. pp.1-6, �10.1109/VTC2022-Fall57202.2022.10013071�.
�hal-03808046�

https://hal.science/hal-03808046v1
https://hal.archives-ouvertes.fr


An Open-Source GNU Radio Framework for LoRa
Physical Layer and Collision Resolution

Weixuan Xiao∗, Gil De Sousa†, Nancy El Rachkidy∗, Alexandre Guitton∗‡

∗Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP,
LIMOS, 63000 Clermont-Ferrand, France

†Université Clermont-Auvergne, INRAE, UR TSCF, 63178, Aubière, France
‡Univ Lyon, INSA Lyon, Inria, CITI, F-69621 Villeurbanne, France

Emails: {weixuan.xiao, nancy.el rachkidy, alexandre.guitton}@uca.fr, gil.de-sousa@inrae.fr

Abstract—LoRa (Long Range) is a physical layer designed
for low-power wide area networks. It is widely used to provide
long range connectivity to Internet of Things devices. In order
to improve the limited throughput of LoRa, researchers have
proposed several collision resolution algorithms. However, a
common software framework to compare these algorithms is
lacking. In this paper, we propose an open-source framework
using GNU Radio, mainly designed to test and compare collision
resolution algorithms, as well as physical layer algorithms. Our
framework can help optimizing the parameters of algorithms
according to channel conditions such as very low signal to noise
ratio for instance. We also discuss technical implementation issues
of existing collision resolution algorithms. Finally, we show how
our framework can be used for either real experiments on USRPs,
or for simulations with a large number of nodes.

I. INTRODUCTION

A Low-Power Wide Area Network (LPWAN) is a network
where battery-powered devices are distributed in a large area,
typically of tens or hundreds of square kilometers. LPWANs
have recently obtained a lot of attention from industrial and
academic communities thanks to recent wireless technologies
such as LoRa (Long Range) [1], enabling one-hop commu-
nications over several kilometers. LoRa is widely used for
environmental monitoring of forests [2] or volcanoes [3], smart
buildings, smart cities [4], the Internet of Things [5], etc.

The main drawback of LoRa is its very small throughput,
which is typically a few hundred bits per second. This through-
put is further reduced by the overhead of the LoRaWAN
protocol, the most common MAC protocol for LoRa, and by
country-dependent regulations on the ISM sub-GHz band used
by LoRa. For instance, in Europe, LoRaWAN devices cannot
transmit for more than 1% of the time, which reduces the
actual throughput to a few bits per second.

As the network density increases, more transmissions oc-
cur, and these transmissions might collide. When a collision
occurs, the devices typically retransmit their frames, which
increases the energy consumption and the end-to-end de-
lay, while further reducing the throughput. Thus, several re-
searchers have proposed algorithms to resolve LoRa collisions.

The performance of LoRa collision resolution algorithms
greatly depends on several physical parameters, including
the signal-to-noise ratio (SNR) of the LoRa signals (which

can even be negative), the presence of a carrier frequency
offset (CFO), the presence of a sample time offset (STO) in
transmissions, etc. These parameters are not studied consis-
tently in the literature, which makes the existing algorithms
hard to compare. Moreover, existing algorithms generally use
sophisticated signal processing techniques, which are often
programmed in different environments (ex: Matlab, Python,
etc.) or not described in the publications. They are difficult to
re-implement, and their details might be missing in the papers.

Setting up a real test bed is also difficult, because it is
often hindered by the duty-cycle on the ISM band. In order
to study collisions, researchers either need a large number
of devices (e.g., more than 20) or configure the devices to
exceed the maximum duty-cycle of 1% in order to produce
enough collisions. Additional collisions might also occur due
to pre-deployed nodes from other networks or from concurrent
technologies on the ISM band. In addition, the CFO, the STO
and the noise are often hard to predict or to control, and their
randomness make the experiments difficult to realize.

To the best of our knowledge, there is no framework
that compares existing collision resolution protocols with all
the parameters of a physical LoRa signal such as the noise
strength, the CFO and the STO. Thus, in this paper, we present
our framework on GNU Radio in which we implemented
several existing collision resolution protocols. This framework
can be used to optimize the parameters of an individual
collision resolution protocol, or to compare all the protocols
in similar conditions. To do so, our contributions can be seen
as follows.

• We propose an open-source framework using GNU Ra-
dio, aimed at comparing LoRa collision resolution algo-
rithms, or more generally, LoRa algorithms. Our frame-
work is extensible to new algorithms and features, and it
enables homogeneous comparisons between algorithms,
based either on real USRP hardware or on simulations.

• We carry on with a technical discussion on some imple-
mentation issues of existing algorithms, when these issues
are missing from the original description. These issues in-
clude CFO correction, STO correction, and computational
complexity.

• We use our framework to compare the existing algorithms



in a common scenario. We also include an analysis on the
memory requirement and on the time complexity of our
implementation of these algorithms.

The remainder of this paper is organized as follows. Sec-
tion II gives details on the LoRa physical layer and presents
several representative LoRa collision resolution algorithms.
Section III explains our proposed open-source framework.
Section IV gives our simulation results in an ideal scenario
first, and then in a more realistic scenario. Finally, Section V
concludes our work.

II. STATE OF THE ART

In this section, we first describe the LoRa physical layer, in-
cluding LoRa modulation, demodulation and coding. Then, we
present several representative collision resolution algorithms,
which are implemented in our framework.

A. LoRa

LoRa modulation: LoRa is a physical layer for LPWANs
based on a chirp spread spectrum modulation. A chirp is a
linear frequency sweep over a fixed bandwidth (BW). The
chirp is called upchirp when the frequency increases over
time, and downchirp otherwise. The initial frequency of a
chirp encodes its value. A LoRa uplink frame starts with a
preamble composed of 8 upchirps encoding value 0, a network
identifier of 2 upchirps, and a delimiter of 2.25 downchirps.
The frame continues with the payload encoded with upchirps
and including a cyclic redundancy check. A LoRa downlink
frame follows the same structure except that upchirps are
replaced with downchirps, and conversely.

The duration SD of a chirp depends on a parameter called
spreading factor (SF), and is equal to 2SF /BW . SF also
defines the number of bits encoding the value of the chirp.
A large SF improves the sensitivity of the receiver, thereby
increasing the communication range, but also increases the
chirp duration, thereby reducing the throughput.

LoRa demodulation: To demodulate a frame, the receiver
uses the preamble to synchronize itself with the transmitter.
Then, the receiver captures the time-varying signal fm(t) for
each chirp of value m. The signal is multiplied by an inverse
chirp f ′(t) encoding value 0, which removes the time-variant.
The multiplication on phase is translated into an addition in
frequency, as follows (for the case of an upchirp):

fm(t)+f ′(t) =

{
BW
SD τm, t ∈ [−SD

2 , SD
2 − τm)

BW
SD τm −BW, t ∈ [SD

2 − τm, SD
2 )

(1)

where τm = (m × SD)/2SF encodes the m-th value. One
of the two cases of Equation 1 is outside of the bandwidth.
However, when BW is used as the sample rate, the aliasing
makes the two cases identical in terms of frequency. Once
the time-variant part of the signal is removed and the signal
contains a single constant frequency, the receiver performs
a Fast Fourier Transform (FFT) on the result, and finds
the strongest FFT peak. This peak translates into the chirp
value m, encoded with SF bits. After having computing the

value of each chirp of the payload, the frame is completely
demodulated and can be thus decoded. An open-source LoRa
demodulation module1 for GNU Radio is described in [6].

LoRa coding: LoRa introduces four channel coding steps.
First, LoRa uses a Hamming code in order to add redundancy
in the bits of the application payload. According to the coding
rate (CR) parameter, from CR=1 to CR=4 bits of redundancy
are added every 4 bits of payload. Second, LoRa uses a
whitening sequence in order to reduce the probability of
long sequences of identical bits. Third, LoRa uses a diagonal
interleaver to distribute consecutive payload bits into differ-
ent codewords, and consequently into different transmitted
symbols. This allows to distribute the potential errors of a
symbol on distant bits, which can be detected more easily,
and even corrected if a large coding rate (CR=3 or CR=4) is
used. Fourth, a Gray decoding is used for the transmission.
This ensures that a decoding error of one in the symbol value
translates into a single bit error.

B. Existing collision resolution algorithms

CHOIR [7] leverages tiny frequency offsets in symbols that
occur due to hardware imperfections of real devices. These
tiny offsets are shown to be stable over the entire duration of
a frame. By having the receiver perform an FFT on a large
window (typically, ten times the original window size), these
tiny frequency offsets can be extracted and can help to identify
the transmitter, even when frame collisions occur.

FTrack [8] uses the time offset among colliding frames to
decode them. After the LoRa downchirp multiplication, each
symbol becomes a series of constant frequencies over SD,
called a track. FTrack uses these tracks to match the symbols
to the transmitters. FTrack requires that the symbol frontiers
of colliding frames are separated by at least SD/10.

OCT [9] also uses the time offset to match the symbols to
the transmitters. The receiver computes segments according to
the symbol edges of the colliding LoRa frames, and performs
an FFT on each segment. It stores all the peaks of each
FFT, and determines the sent symbols based on the symbols
that are repeated on all the corresponding segments. When
the colliding frames are quasi-synchronized, the previous
approach cannot be used and OCT instead uses the power
level of symbols to match them to the correct frame.

CIC [10] is similar to OCT, and also leverages the time
offset to divide each SD into segments, with an FFT being
performed on each segment. CIC computes the intersection
of the set of symbols of contiguous segments to extract the
correct symbol. It is important to notice that CIC is one of the
few collision resolution algorithms that has been tested under
low SNR [10].

In Successive Interference Cancellation (SIC) approaches
such as in [11], a strong LoRa signal can be demodulated
even if it collides with weaker signals, thanks to the capture
effect. By reconstructing the stronger signal and removing
it from the superposed signals, it is possible to attempt to

1The module from [6] is available at https://github.com/rpp0/gr-lora.



iteratively demodulate the next stronger signal. This requires
the signal-interference ratio to be above 6 dB, where the signal
interference ratio is formally defined as:

SIR = 10 log10
Sref

Sint
= 20 log10

Aref

Aint
, (2)

where Sref and Aref are the energy and amplitude of the
reference signal, and Sint and Aint are the energy and
amplitude of the interfered signal.

In [12], we showed that frame collisions might cause symbol
ambiguities in most collision resolution algorithms. These
ambiguities come from noise, close symbol edges in time-
based approaches, or similar receive power in power-based
approaches. We proposed to benefit from the LoRa coding,
and especially from the diagonal interleaver and the Hamming
code, in order to remove most symbol ambiguities.

III. FRAMEWORK ARCHITECTURE IN GNU RADIO

In this section, we first describe the GNU Radio program-
ming environment. Second, we present the architecture and
the general modules of our framework. Third, we present
our implementation of a few existing collision resolution
algorithms, as well as how to integrate a new algorithm into
our framework. Finally, we explain how to add extra features.

A. GNU Radio primer

GNU Radio [13] is a free and open-source software provid-
ing signal processing blocks for software-defined radios.

The basic element in GNU Radio is the block. A block
usually contains input and output ports, from which it can
respectively receive and send data to other blocks. The data is
either a continuous stream (e.g., a signal is usually a stream
of complex float numbers representing the in-phase (I) and
quadrature (Q) components of the signal) or a discrete message
containing data with polymorphic type (i.e., a generic structure
holding a variety of data such as a number, a string, a tuple,
a list or a dictionary). Streamed data is also able to carry
discrete messages, named tags in GNU Radio. Each block can
be considered as a state machine with some initial parameters.
A block consumes the data from its input ports, processes it,
and produces data for the output ports. The blocks do not
require to load all the data at once. GNU Radio has an intuitive
graphical interface where blocks are interconnected through
links between output and input ports, as shown on Figure 1.
In the example of Figure 1, the output of the ”Throttle” block
is connected to the input of the ”Resampler” block. Blue ports
use a stream of complex float numbers, while white ports
represent messages.

B. Architecture of the proposed framework

Our proposed open-source framework is available at Zen-
odo2. The core of our framework is composed of two parts:
a decoder and a node abstraction. The decoder contains
an optional LoRa preamble detector, a demodulator (which
can implement a collision resolution algorithm) that retrieves

2Available at https://doi.org/10.5281/zenodo.6421804

demodulated symbols from a signal, and a LoRa decoder that
transforms symbols into application bits. The node abstrac-
tion is capable of generating superposed LoRa signals with
different parameters from a simulated network.

1) Decoder: The decoder part implements a single LoRa
demodulator with a known SF. Figure 1 shows the structure
of the entire receiver. The receiver takes the samples from a
file (block ”File Source”) or from a connected SDR hardware
(block ”UHD: USRP Source”). The ”LoRa Preamble Detect”
block processes the samples to find a preamble. The samples,
combined with preamble information of the detected frame,
are then processed by the ”Payload Decoder” block in order to
synchronize the receiver with the transmitted symbols. In the
example of Figure 1, the standard LoRa decoding algorithm
is used. Then, the demodulated symbols of the entire frame
are passed as a message to our ”LoRa Decoding” block. This
block decodes and outputs the original data from the symbols.

In a simulated scenario, the ”LoRa Preamble Detect” block
can be removed. In this case, the frame information is directly
dispatched to the decoders in a tag, along with the samples of
the base band signal.

Any GNU Radio block can be replaced by another block
with the same input and output, as long as they implement
similar features. Such decoupling can help to develop, evaluate
and improve the preamble detection algorithm, the payload de-
modulating algorithm (which is often the core of the collision
resolution algorithms) or the decoding algorithm.

2) Node abstraction: Figure 2 presents two node abstrac-
tions in our framework, depicted here as Node 1 and Node 2.
Node abstractions are used to generate application data. This
data can be randomly generated in GNU Radio for test purpose
(as in Node 1) or from an external application (as in Node
2 for an example with UDP) including a network simulator.
Note that the communication between the external application
and GNU Radio can be made through TCP, UDP or ZeroMQ
connections [13]. The generated data is packed as a message
and passed to our LoRa Encoding block, which performs
encoding and modulation, and produces LoRa signals.

The signals generated by our LoRa Encoding block have
a normalized amplitude and are perfectly synchronized at the
sample level. It is possible to implement a propagation model
by delaying the signals (see the ”Delay” blocks on Figure 2,
which can be configured with a given number of samples)
and by reducing the strength of the received signal with a
given factor (see the ”Multiply Const” blocks on Figure 2).
Then, the signals from the two nodes are added, and the output
is a colliding signal. Note that a very similar setup can be
configured to evaluate the impact of low SNR, by adding a
strong random noise to a weak signal. Also notice that this
delay is also used to implement desynchronized transmissions,
required by several existing collision resolution algorithms.

For instance, let us consider that we deploy a LoRa gateway
which can receive the signals of two nodes, with a relative
power difference of 20 dB. From Equation 2, we have Aref =

Aint ·10
SIR
20 . If we set the amplitude of the weaker signal Aint



in outThrottle Resampler outin

Decoder

in outoutor

UHD: USRP Source

File Source

in LoRa Decodingframe

frame_update

frame_datain

frame_sym

Payload Decoder LoRaLoRa Preamble Detect

Fig. 1. Decoding LoRa frames from a signal sample, obtained from a file or from a USRP SDR hardware.

Random PDU Generator out

UDP Source LoRa Frame to Message

in

in

in

in

Delay

Delay

Delay

Delay

Multiply Const

Multiply Const

Multiply Const

Multiply Const

in

in

in

in

inout out

out

out

out

out

out

out

out

out

Node 1

Node 2

outAdd
in

in

Gateway 2

Gateway 1

Add out
in

in

in LoRa Encoding out

in LoRa Encoding out

Propagation

Model

Fig. 2. Generating signals with the node abstraction and multiple gateways.

to 1, this means that the amplitude of the stronger signal Aref

has to be multiplied by 1020/20 = 10.
Multiple gateways can be implemented by having as many

preamble detector and payload decoder blocks as there are
gateways (or more precisely, as there are demodulators). For
each gateway, the parameters corresponding to the propagation
model are likely to be different, as the signals received at each
gateway will experience different channel losses. Therefore,
we can set different parameters in the propagation models
by calculating them in advance using the relative distances
between the nodes and gateways.

C. Implementations of collision resolution algorithms

We hereby discuss the implementations of various algo-
rithms in our framework.

Our implementation of the default LoRa demodulation con-
sumes 2SF samples during SD, multiplies it with a downchirp,
performs an FFT on the samples, and finds the strongest FFT
bin. The index of this bin is the obtained symbol value.

In CHOIR, the decoder takes 2SF samples from the syn-
chronized frame during SD. CHOIR adds a zero padding to
expand the FFT size to ten times its default value. Then, it
stores the strongest FFT bin peaks into ten lists. The symbols
are taken from these lists when decoding.

FTrack requires parameters whose values are not given in
the reference article [8]: the number nstep of steps between
each FFT to extract a track, and the size Nwin of an FFT
window. Our block uses this sliding window on Nwin samples
to calculate the FFTs. The window advances by steps of nstep

samples. To extract the track of an entire symbol, we thus need
to review 2SF +Nwin samples.

OCT aims at a real-time decoding of LoRa collisions. To
do so, OCT divides each symbol duration SD into several
segments according to the time offset between the frames. We
implemented OCT with a minimal resolution of 1/8-th of SD,
that is 0.128 ms for SF = 7 and BW = 125 kHz. The decoder
needs to perform at most as many FFT within every SD as
there are collided frames.

CIC was not implemented in our framework, as the authors
of CIC already made their code available in both Python and
Matlab.

All these algorithms have in common the computation of
several FFTs. This allows us to compare them depending on
how many FFTs they perform, and on the size of these FFTs.
The space complexity also mainly depends on the number
of samples that a receiver has to review. Table I summarizes
the complexities of each algorithm. We use the following
notations: N is the size of each FFT (which depends on the
algorithm), nsym is the number of symbols in the collided
frames, and nc is the number of frames in collision. Note that
in the case of CIC, the space complexity is nsym×N according
to the code published in [10], but it could be reduced to N
by considering only the samples during an SF for each FFT.

SIC-based algorithms for LoRa need to store the samples
during the entire superposition (at least nsym×2SF samples),
so as to do the subtraction and recover a weaker signal. We
believe the SIC-approach needs to be implemented by storing
all the samples and analyzing them several times, in order to
be compliant with our framework (and more generally, with
the GNU Radio design).

D. Extra characterizations of LoRa signals

Noise is considered as an Additive Gaussian White Noise
(AGWN) with zero mean [14]. In our framework, such noise
can be simulated by the ”Noise Source” and added to the
superposed signals. The relative amplitude is computed ac-
cording to Equation 2:

Anoise = Aref × 10−
SNR
20 (3)

To simulate SNR = 0 dB, Anoise is set to the value of Aref .
Carrier frequency offset (CFO) is not negligible in a real

transmission. To simulate CFO in the base band signal in our
framework, it is possible to add a frequency offset in the ”LoRa
Encoding” block as part of the node abstraction. The CFO
is translated into a time offset in the synchronization by the
”LoRa Encoding” block.

Sample time offset (STO) can occur when the re-sampler in
the receiver side is not perfectly synchronized with the original



TABLE I
COMPLEXITIES OF THE IMPLEMENTED COLLISION RESOLUTION ALGORITHMS.

Algorithm Number of samples FFT size Time complexity of FFT per symbol Space complexity of FFT per symbol
LoRa 2SF N = 2SF O(N logN) N

CHOIR 2SF N = 10× 2SF O(N logN) N
FTrack various (≤ 2SF ) N = 2SF nstep ×O(N logN) N +Nwin

OCT various (≤ 2SF ) N = 2SF nc ×O(N logN) N
CIC various (≤ 2SF ) N = 2SF nc ×O(N logN) nsym ×N

signals. To simulate the STO in our framework, we can simply
configure the interpolation parameter in the ”LoRa Encoding”
block to generate the signals with a higher sample rate, and
re-sample the signal with sample-level offsets.

Large networks are usually difficult to simulate as they
require creating and interconnecting several blocks, which
is tedious and error-prone. To facilitate this, we provide
a script with an optional configuration file to automati-
cally generate a complex network. Suppose that 100 nodes
are deployed around a LoRa gateway, following a uni-
form distribution between 500 and 1000 meters. The path
loss model is a log distance model. The noise ampli-
tude Anoise equals to the amplitude of the weakest sig-
nal Asignal. Such a scenario can be described as follows:
[DEFAULT] [Nodes] Param1=1

Gateways=1 Distrib.=uniform Param2=7.7

Nodes=100 Radius=1000 Param3=3.76

[Gateway1] MinRadius=500 [Noise]

Algorithm=lora [Loss Model] exist=YES

Model=LogDist. min=0

IV. SIMULATION RESULTS

In this section, we use our framework to evaluate the
collision resolution algorithms under different scenarios. Our
goal is not to identify the best algorithm, but rather to show
that they can be compared in an homogeneous setup. We also
try to highlight results that are unknown (e.g., because the
algorithms were not systematically tested with negative SNR)
or inconsistent with previous works.

A. Scenario 1: impact of the duty-cycle

In the first scenario, we evaluate the ideal performance
of different decoding algorithms with different duty-cycle
constraints (or, equivalently, with different traffic load) without
noise. The network consists of one gateway and a varying
numbers of nodes. All the nodes have the same relative
distance to the gateway, which is the worst-case for the
algorithms based on power level. For the FTrack algorithm,
we set nstep to 8 and a sliding window of SD. Each node
periodically sends at least five frames of 20 random bytes.
The time on air of the frames is 57.3 ms for SF7 and 1.34 s
for SF12. We set the duty-cycle to 1% and 10%. We add a
random waiting time between each transmission in order to
desynchronize the nodes. The maximum waiting time is set to
100 times the time on air for 1% duty-cycle, which is 5.7 s
and 135 s for SF7 and SF12 respectively, and 10 times the
time on air for 10% duty-cycle, which is 0.57 s for SF7 and

13.5 s for SF12. Therefore, the simulation time is 57 s and
1350 s for 1% duty-cycle, 5.7 s and 135 s for 10% duty-cycle.
The results are averaged over 20 simulations.

Figure 3 shows the throughput for a varying number of
nodes, for SF7 (on the left) and SF12 (on the right), for
four algorithms and two possible duty-cycles (1% or 10%).
Our results show that the setup with 1% duty-cycle does
not generate enough collisions: collision resolution algorithms
have similar performance as LoRa. LoRa saturation is not
reached with 100 nodes at 1% duty-cycle, while it is reached
at about 30 nodes with 10% duty-cycle. It can be seen that
FTrack performs the best in all setups, which is not consistent
with [10]. Indeed, the original paper for FTrack [8] mentions
that they use FTrack to decode the frames with similar power
levels and that the capture effect can be leveraged to decode
frames with different power levels. In [10] however, FTrack
is evaluated with collided frames of different power levels
though, which degrades the results.

B. Scenario 2: impact of the SNR

In this scenario, we set the duty-cycle to 10% and deploy
50 nodes in the network for guaranteed collisions. The nodes
are randomly deployed in a ring between 500 m and 1000 m
around the gateway. The relative receiving power levels are
calculated through a log distance loss model. The path loss
L in dB is L = L0 + 10nlog10(

d
d0
), where n = 3.76 is the

path loss exponent, d0 = 1 is the reference distance in meter,
L0 = 7.7 is the path loss at reference distance, and d is the
distance between a node and the gateway. We vary the strength
of the noise so that the SNR varies from 20 dB to -10 dB
(recall that a negative SNR means that the LoRa signals are
weaker than the noise). We also test two sliding windows for
FTrack: Nwin = 2SF and Nwin = 2SF /2.

Figure 4 shows the throughput for a varying SNR, for SF7
(on the left) or SF12 (on the right), for four algorithms, 50
nodes, and 1% duty-cycle. Our results show that FTrack with
full FFT window performs the best with SF7, while OCT
reaches the best performance with SF12. The performance of
most algorithms appears to be slightly impacted by the SNR,
except for CHOIR, and for FTrack on full window with SF12.
At SF7, throughput degradation can be seen from SNR=0 dB
and lower for CHOIR, FTrack with full window, and OCT. At
SF12, such degradation appears from SNR=10 dB for CHOIR
and FTrack with full window, and from SNR=5 dB for OCT.
Note that the impact of the SNR on the decoding algorithms
was only known for LoRa and for CIC.



20 40 60 80 100
Nodes

0

2000

4000

6000

8000

10000

12000
Th

ro
ug

hp
ut
 (b

ps
)

SF 7
LoRa (10%)
CHOIR (10%)
FTrack (10%)
OCT (10%)
LoRa (1%)
CHOIR (1%)
FTrack (1%)
OCT (1%)

20 40 60 80 100
Nodes

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (b

ps
)

SF 12
LoRa (10%)
CHOIR (10%)
FTrack (10%)
OCT (10%)
LoRa (1%)
CHOIR (1%)
FTrack (1%)
OCT (1%)

Fig. 3. Study of the throughput as a function of the number of nodes, with 1% or 10% duty-cycle, and with SF7 (on the left) and SF12 (on the right).

-10 -5 0 5 10 15 20
SNR (dB)

1000

2000

3000

4000

5000

6000

Th
ro
ug

hp
ut
 (b

ps
)

SF 7

LoRa
CHOIR
FTrack
FTrack (Half Win)
OCT

-10 -5 0 5 10 15 20
SNR (dB)

50

75

100

125

150

175

200

225

250

Th
ro
ug

hp
ut
 (b

ps
)

SF 12

LoRa
CHOIR
FTrack
FTrack (Half Win)
OCT

Fig. 4. Study of the throughput as a function of the SNR, for 50 nodes and a duty-cycle of 10%, and with SF7 (on the left) and SF12 (on the right).

V. CONCLUSION

LoRa technology is used in a large variety of LPWAN
applications. Several sophisticated collision resolution algo-
rithms have been proposed in order to increase the throughput
of LoRa. However, a common framework to compare these
algorithms, or to test new ones, is lacking. In this paper, we
described our open-source platform for GNU Radio. We dis-
cussed how we implemented several existing collision resolu-
tion algorithms, as well as specific features in a realistic LoRa
network. We used our framework to compare the performance
of several algorithms in various scenarios, and with various
metrics including their time and space complexity. As an
example, we use the ability of our framework to finely control
LoRa signal features in order to study the impact of SNR. We
believe that our framework can be used and improved by the
community to implement and evaluate new collision resolution
algorithms or new signal processing techniques.

REFERENCES

[1] Semtech Corporation, “AN1200.22 LoRa Modulation Basics,”
Semtech, Application note Revision 2, 2015. [Online]. Available:

http://www.semtech.com/uploads/documents/an1200.22.pdf
[2] S. Park, S. Yun, H. Kim, R. Kwon, J. Ganser, and S. Anthony, “Forestry

monitoring system using LoRa and drone,” in International Conference
on Web Intelligence, Mining and Semantics (WIMS), 06 2018, pp. 1–8.

[3] S. Awadallah, D. Moure, and P. Torres-Gonzáles, “An Internet of Things
(IoT) application on volcano monitoring,” Sensors (Basel), vol. 19,
no. 21, 2019.

[4] A. Lachtar, T. Val, and A. Kachouri, “Elderly monitoring system in a
smart city environment using LoRa and MQTT,” IET Wireless Sensor
Systems, vol. 10, 11 2019.

[5] S.-Y. Wang, Y.-R. Chen, T.-Y. C. Chen, C.-H. C. Chang, Y.-H. Cheng,
C.-C. H. Hsu, and Y.-B. Lin, “Performance of LoRa-based IoT applica-
tions on campus,” in VTC Fall (IEEE Vehicular Technology Conference),
2017, pp. 1–6.

[6] P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A Multi-Channel
Software Decoder for the LoRa Modulation Scheme,” in Proceedings of
the 3rd International Conference on Internet of Things, Big Data and
Security, Funchal, Madeira, Portugal, 2018.

[7] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan, “Empowering Low-
Power Wide Area Networks in Urban Settings,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17, Aug. 2017.

[8] X. Xia, Y. Zheng, and T. Gu, “FTrack: Parallel Decoding for LoRa
Transmissions,” in Proceedings of the ACM 17th Conference on
Embedded Networked Sensor Systems, New York, Nov. 2019. [Online].
Available: https://dl.acm.org/doi/10.1145/3356250.3360024

[9] Z. Wang, L. Kong, K. Xu, L. He, K. Wu, and G. Chen, “Online



concurrent transmissions at LoRa gateway,” in IEEE Conference on
Computer Communications (INFOCOM), 2020, pp. 2331–2340.

[10] M. O. Shahid, M. Philipose, K. Chintalapudi, S. Banerjee, and B. Krish-
naswamy, “Concurrent interference cancellation: decoding multi-packet
collisions in LoRa,” in ACM SIGCOMM, 2021, pp. 503–515.

[11] B. Laporte-Fauret, M. A. Ben Temim, G. Ferre, D. Dallet, B. Minger,
and L. Fuche, “An Enhanced LoRa-Like Receiver for the Simultane-
ous Reception of Two Interfering Signals,” in Proceedings of Annual
International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC), Sep. 2019.

[12] W. Xiao, N. E. Rachkidy, and A. Guitton, “Recovering Colliding LoRa
Frames from Uncertainties Using LoRa Coding,” in Proceedings of the
IEEE 46th Conference on Local Computer Networks (LCN), 2021.

[13] GNU Radio, accessed Feb. 2022. [Online]. Available:
https://www.gnuradio.org

[14] O. Georgiou and U. Raza, “Low Power Wide Area Network Analysis:
Can LoRa Scale?” IEEE Wireless Communications Letters, pp. 162–165,
Apr. 2017.


