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Abstract: In this paper, the influence of the transverse wave on sound propagation in a porous
medium with a flexible structure is considered. The study is carried out in the time domain using
the modified Biot theory obtained by the symmetry of the Lagrangian (invariance by translation
and rotation). The viscous exchanges between the fluid and the structure are described by fractional
calculus. When a sound pulse arrives at normal incidence on a porous material with a flexible
structure, the transverse waves interfere with the longitudinal waves during propagation because of
the viscous interactions that appear between the fluid and the structure. By performing a calculation
in the Laplace domain, the reflection and transmission operators are derived. Their time domain
expressions depend on the Green functions of the longitudinal and transverse waves. In order to
study the effects of the transverse wave on the transmitted longitudinal waves, numerical simulations
of the transmitted waves in the time domain by varying the characteristic parameters of the medium
are realized whether the transverse wave is considered or not.

Keywords: porous materials; fractional calculus; Biot theory; transverse wave; transmission

1. Introduction

Osteoporosis is defined as a sickness that affects the bones, and to understand it, an
overview of the structure of bone tissues is necessary. Bones are in perpetual renewal;
this phenomenon is called bone remodeling: constant construction of new tissue and
destruction of old tissue. In osteoporosis, biochemical and hormonal changes occur and
affect this balance. The bone is, therefore, considerably weakened by reductions in its tissue
and mass [1], a fragility that is increased tenfold when the contribution of bone minerals is
reduced [2–4]. Therefore, there is a growing need for improved diagnosis and management
of osteoporosis. Indeed, the sooner the disease is detected, the more effective the care
can be.

As it is known, bone is an inhomogeneous porous material [5–9] and the determination
of its characteristics by means of ultrasound techniques can be a game-changer in the
diagnosis of osteoporosis since its elastic properties affect acoustic propagation. Within this
context, several studies have been conducted on cancelous and trabecular bone [10–13].
There are ultrasonic methods that rely on the speed of sound and the broadband attenuation
of a single wave to estimate the different stages of osteoporosis, but the poroelastic nature
of the bone generates two types of waves during the propagation of the acoustic wave
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in the bone. The most appropriate theory for the study of acoustic wave propagation in
porous media such as trabecular bone is the Biot theory [14–27]. This theory [14–27] has
been proven to be a very advantageous model for the description of wave propagation in
porous media saturated with fluids; it takes into account the movements of the solid and
fluid phases, and through the mass, elastic, and viscous couplings, the interaction between
these two phases is considered. Its main success lies in the prediction of the existence of
three waves in a porous material subjected to external stress: two longitudinal waves and
a transverse wave. The first compressional wave has the highest speed and is called the
“fast wave”, while the second compressional wave has a lower speed and is called the
“slow wave”.

Because of its very general and rather fundamental character, the Biot theory has been
used widely in the field of petroleum exploration and geoscientific testing, but many have
also applied it to the study of bone structures [14,15,28–31]. McKelvie [28,31] qualitatively
predicted that, for cancelous bone, attenuation is related to ultrasound frequency. The sec-
ond compressional wave with a lower velocity was reported in the studies by Lakes, Yoon,
and Katz [32] on wet human and bovine cortical bone. The connection between porosity
and longitudinal wave velocities and the relevance of the presence of these two waves to
bone characterization were demonstrated by Hosokawa and Otani [14] in their studies of
cancelous bone. By implementing the concepts of dynamic tortuosity, permeability, and
viscous characteristic length, in 1987, Johnson et al. [33] made a major input to the study of
porous media.

The modified Biot theory has been used to study the transmission and reflection of
acoustic waves for different media in the frequency domain [34–42]. In order to offer an
alternative to the frequency methods, Fellah and Depollier [43,44] have proposed a temporal
approach [43–52] that allows the phenomena that follow the propagation of acoustic waves
in porous media to be seen from a different angle. The viscous fluid/structure interactions
are described using fractional calculus, which has been proven to be a well-adapted tool
to describe the dispersion effects that develop when a wave passes in a saturated porous
medium. Fractional derivatives and integrals [53–65] have long been the focus of research
in mathematics, but their use outside mathematics is only recent. Indeed, the fractional
derivative was only used towards the end of the 1960s by Caputo [57–59] to describe
dissipation phenomena in solids and, later, by Bagley and Torvik [60] to treat viscoelastic
materials, but the most significant contribution in the field of acoustics remains the one
made by Matignon [61]. The reflection and transmission operators have been established
as a result to external solicitation of a saturated porous medium by a viscous fluid in the
frequency domain for normal incidence by considering the three Biot waves instead of only
the longitudinal waves, by Hodaei, Maghoul, and Popplewell [66].

The purpose of this article is to study, from a new perspective, the behavior of a porous
medium subjected to an external load when the three Biot waves (i.e., the transverse wave
in addition to the longitudinal waves) are considered. For that, we establish the expressions
of the diffusion operators in the time domain while including the effect of the transverse
wave; the fractional calculus as well as the Biot model modified by Johnson et al. [33]
will be used. Numerical simulations are given for the transmitted signals, with shear
being taken into account or not while applying a variation of the characteristic parameters
of the porous medium. The effect of transverse waves as well as the sensitivity of the
parameters are studied. The advantage of this model is that it presents a temporal modeling
of the propagation by taking into account both longitudinal and transverse waves in
normal incidence.
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2. Modified Biot Theory

The displacements of the solid phase u and the fluid phase U are modeled via the Biot
theory, where the equations of motion are given by the following:

ρ11
∂2u
∂t2 + ρ12

∂2U
∂t2 = P∇(∇.u) + Q∇(∇.U)− N∇∧ (∇∧ u),

ρ22
∂2U
∂t2 + ρ12

∂2u
∂t2 = R∇(∇.U) + Q∇(∇.u). (1)

N is the shear modulus of the solid structure. P, Q, and R are the elastic coefficients of
Biot; they are functions of the bulk modulus of the pore fluid K f , the bulk modulus of the
elastic solid Ks, the bulk modulus of the porous skeletal frame Kb as well as of the porosity
φ of the porous medium and are defined by the relations below:

P =
(1− φ)

(
1− φ− Kb

Ks

)
Ks + φ Ks

K f

1− φ− Kb
Ks

+ φ Ks
K f

+
4
3

N, (2)

Q =

(
1− φ− Kb

Ks

)
φKs

1− φ− Kb
Ks

+ φ Ks
K f

,

R =
φ2Ks

1− φ− Kb
Ks

+ φ Ks
K f

,

K f , Ks, and Kb depend on the classical mechanical parameters, which are Young’s
moduli, Poisson’s coefficients of the solid Es and νs, and Poisson’s coefficients of the
skeleton Eb and νb as follows:

Ks =
Es

3(1− 2νs)
, Kb =

Eb
3(1− 2νb)

, N =
Eb

2(1 + νb)
. (3)

The coefficients ρij involved in the motion equations are mass coefficients. They have
a density dimension and are linked to the skeleton-constituting solid density ρs, which
constitutes the skeleton, and to the fluid density ρ f by:

ρ11 = (1− φ)ρs − ρ12, (4)

ρ22 = φρ f − ρ12,

The term ρ12 expresses the fluid–structure inertial coupling. It appears as a contribu-
tion to the densities of the fluid and the solid because of the interactions between the fluid
and the structure.

ρ12 = −φρ f (α∞ − 1), (5)

α∞ is the tortuosity of the medium. When an acoustic wave crosses a fluid-saturated
porous medium, it is attenuated. This attenuation is mainly due to the viscous exchanges
that occur between the structure and the saturating fluid because of relative fluid/solid
displacements, leading to a modification of the densities. The tortuosity becomes a function
of the frequency and is called dynamic tortuosity α(ω):

ρ12(ω) = −φρ f (α(ω)− 1),

ρ11(ω) = (1− φ)ρs + φρ f (α(ω)− 1),

ρ22(ω) = φρ f + φρ f (α∞ − 1). (6)

In order to estimate the fluid domain affected by these exchanges, the thickness of

the viscous boundary layer δ =
(

2η
ωρ0

)1/2
(η fluid viscosity and ω angular frequency) is
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compared to a microscopic dimension characteristic of the medium such as the pore size
“a”. In the high-frequency mode, the viscous boundary layer thickness is small compared
to the pore size “a” i.e., if ( δ

a � 1). In this mode, the viscous effects take place only in
a small fluid thickness, at the walls where the velocities are affected by the fluid/solid
displacements. In the rest of the fluid volume, the fluid behaves like a perfect fluid.

In this case, the dynamic tortuosity takes the following form:

α(ω) ≈ α∞

(
1 +

2
Λ

√
η

jωρ f

)
, (7)

This model was proposed by Johnson et al. [33]. It involves the tortuosity α∞ and
the viscous characteristic length Λ, a geometric parameter indicative of small pores, in the
high-frequency limit and represents the thickness where viscous effects are important.

By replacing the new expressions for the mass coefficients in (6) where α(ω) is given
by (7) in the system of Equation (1), the motion equations becomes the following:

ρ11(ω)
∂2u
∂t2 + ρ12(ω)

∂2U(t)
∂t2 = P∇(∇.u) + Q∇(∇.U)− N∇∧ (∇∧ u),

ρ22(ω)
∂2U
∂t2 + ρ12(ω)

∂2u
∂t2 = R∇(∇.U) + Q∇(∇.u). (8)

This system is written neither in the time domain nor in the frequency domain, since
the densities depend on the frequency and the derivatives are in the time domain. In the
following section, we try to describe the above problem in the time domain.

3. Temporal Formulation of the Modified Biot Theory

In order to study the waves transmitted in the time domain through a porous medium,
we focus on the temporal formulation of the Biot theory. To achieve this, we introduce
the concept of the fractional derivative of order ν, the definition of which [56] is given by
the following:

Dν[x(t)] =
1

Γ(−ν)

∫ t

0
(t− u)−ν−1x(u)du, (9)

where ν is a real number and Γ is the Gamma function.
The high-frequency expression of the dynamic tortuosity includes the term

√
1

jω , of
which the time equivalent is a fractional derivative of order 1/2. Following the definition
in (9), the expression of the response factor α takes the following expression in the time
domain [43,49]:

α̃(t) = α∞

(
δ(t) +

2
Λ

√
η

πρ f
t−

1
2

)
, (10)

where δ(t) is the Dirac function. With this new expression of the dynamic tortuosity
α̃(t) in the system of Equation (1), the equations of motion in the time domain take the
following shape:

∫ t

0
ρ̃11
(
t− t′

) ∂2u(t′)
∂t′2

dt′ +
∫ t

0
ρ̃12(t− t′)

∂2U(t′)
∂t′2

dt′

= P∇(∇u(t)) + Q∇(∇.U(t))− N∇∧ (∇∧ u(t)), (11)∫ t

0
ρ̃22(t− t′)

∂2U(t′)
∂t′2

dt′ +
∫ t

0
ρ̃12(t− t′)

∂2u(t′)
∂t′2

dt′ = R∇(∇.U(t)) + Q∇(∇u(t)),

where the temporal operators ρ̃11, ρ̃12, and ρ̃22 are obtained by replacing α(ω) in Equation (6)
by its temporal equivalent α̃ given by Equation (10).
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3.1. Solution of the Motion Equations

According to Helmholtz’s theorem, a solution to the system in (12) has the follow-
ing form:

u(x, t) = ∇Φs(x, t) +∇∧Ψs(x, t), (12)

U(x, t) = ∇Φ f (x, t) +∇∧Ψf(x, t),

where Φs and Φ f are the scalar displacement potentials of the solid u and fluid U, respec-
tively, and Ψs and Ψ f are the vector potentials of u and U, respectively. The Biot equations
of motion are linear, and it it is possible to look for the scalar and vector solutions separately.

3.1.1. Longitudinal Waves

In the case of the longitudinal wave, the contribution of scalar displacement potentials
are obtained by substituting u(x, t) = ∇Φs(x, t) and U = ∇Φ f (x, t) in the equations of
motion, which gives(

ρ11 ρ12

ρ12 ρ22

)
∂2

∂t2

(
Φs(x, t)
Φ f (x, t)

)
+ a

(
1 −1
−1 1

)
∂

3
2

∂t
3
2

(
Φs(x, t)
Φ f (x, t)

)
=

(
P Q
Q R

)
∆
(

Φs(x, t)
Φ f (x, t)

)
, (13)

where a = 2
φρ f α∞

Λ
2
√

η
ρ f

∆ is the Laplacian. The viscous effects are included in the fractional

derivative term ∂
3
2

∂t
3
2

. To solve this system of equations, we use the Laplace transform.

The Biot equations are then written as follows:

∆
(

Φ̃s(x, s)
Φ̃ f (x, s)

)
= M

(
Φ̃s(x, s)
Φ̃ f (x, s)

)
, (14)

where Φ̃s and Φ̃ f are, respectively, the Laplace transform of Φs and Φ f . We note that
Φ̃s(x, s) is the Laplace transform of Φs(x, t) defined by the following:

Φ̃s(s) = L[Φs(t)] =
+∞∫
0

exp(−st)Φs(t)dt. (15)

The matrix M is given by the following:

M =

(
(R
′
ρ11 −Q

′
ρ12)s2 + as

3
2 (R′ + Q′) (R

′
ρ12 −Q

′
ρ22)s2 − as

3
2 (R′ + Q′)

(P
′
ρ12 −Q

′
ρ11)s2 − as

3
2 (P′ + Q′) (P

′
ρ22 −Q

′
ρ12)s2 + as

3
2 (P′ + Q′)

)
, (16)

with (
R′ −Q′

−Q′ P′

)
=

(
P Q
Q R

)−1

=

(
R

PR−Q2 − Q
PR−Q2

− Q
PR−Q2

P
PR−Q2

)
,

R′ =
R

PR−Q2 , Q′ =
Q

PR−Q2 , P′ =
P

PR−Q2 .

The system is solved by finding the eigenvalues of the matrix M:

∆
(

Φ1(x, s)
Φ2(x, s)

)
=

(
λ1(s) 0

0 λ2(s)

)(
Φ1(x, s)
Φ2(x, s)

)
. (17)
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This corresponds to the following equations:

∂2Φ1(x, s)
∂x2 = λ1(s)Φ1(x, s), (18)

∂2Φ2(x, s)
∂x2 = λ2(s)Φ2(x, s),

The solutions to the above are in the following form:

Φ1(x, s) = Φ11(s)e−x
√

λ1(s) + Φ12(s)ex
√

λ1(t), (19)

Φ2(x, s) = Φ21(s)e−x
√

λ2(s) + Φ22(s)ex
√

λ2(s). (20)

The displacements of the solid and fluid are the linear combinations of the displace-
ments due to the fast wave (first-type wave) characterized by the scalar potential Φ1(x, s)
and the slow wave (second-type wave) characterized by the scalar potential Φ2(x, s).

We associate the eigenvalues λ1(s) and λ2(s) with eigenvectors(1, V1(s)) and (1, V2(s)),
which link the fast and slow waves Φ1(x, s) and Φ2(x, s) to the solid and fluid waves
Φ̃s(x, s) and Φ̃ f (x, s).

(
Φ̃s(x, s)
Φ̃ f (x, s)

)
=

(
1 1

V1(s) V2(s)

)(
Φ1(x, s)
Φ2(x, s)

)
. (21)

The expressions for the eigenvalues λ1(s) and λ2(s)) and the components V1(s) and
V2(s) of the eigenvectors are given in Appendix A.

3.1.2. Transverse Wave

Fo the wave, the displacements of the solid and fluid phases can be written as follows:

u(t) = ∇∧Ψs(t), (22)

U(t) = ∇∧Ψ f (t).

The equations of motion in (12) are then

ρ̃11(t)
∂2Ψs(x, t)

∂t2 + ρ̃12(t)
∂2Ψf(x, t)

∂t2 = −N∇∧ (∇∧Ψs(t)), (23)

ρ̃22(t)
∂2Ψf(x, t)

∂t2 + ρ̃12(t)
∂2Ψs(x, t)

∂t2 = 0. (24)

A relation of proportionality between the solid and fluid displacement potentials is
obtained from Equation (24) by

Ψf(x, t) = V3(t)Ψs(x, t), (25)

where

V3(t) = −
ρ̃12(t)

ρ̃22(t)
. (26)

This last relation allows us to write the system of Equation (12) in the following form:

∆Ψs(x, t)− 1
N

ρ̃11(t)−
ρ̃2

12(t)

ρ̃22(t)

∂2Ψs(x, t)
∂t2 = 0. (27)
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Using the Laplace transform, where Ψ̃s(x, s) is the Laplace transform of Ψs(x, t) as
defined previously in (15) gives the following:

∆Ψs(x, s)− 1
N

ρ̃11(s)−
ρ̃2

12(s)

ρ̃22(s)

s2Ψs(x, s) = 0. (28)

Posing

λ3(s) =
1
N

ρ̃11(s)−
ρ̃2

12(s)

ρ̃22(s)

s2,

= C3s2 + D3s
3
2 + G3s,

where

C3 =
1
N

(
ρ11 −

ρ2
12

ρ22

)
, D3 =

A
N

(
1 +

ρ2
12

ρ2
22

+ 2
ρ12

ρ22

)
, G3 =

A
Nρ22

(
1 +

ρ2
12

ρ2
22

+ 2
ρ12

ρ22

)
.

The solution in the Laplace domain takes the following form

Ψ̃s(x, s) = Ψ̃1(s)e−x
√

λ3(s) + Ψ̃2(s)ex 2
√

λ3(s). (29)

The proportionality relation in (25) in the Laplace domain becomes

Ψ f (x, s) = V3(s)Ψs(s, t), (30)

with

V3(s) = − ρ̃12(s)

ρ̃22(s)
= A3 +

B3√
s

, (31)

and

A3 = −ρ12

ρ22
, B3 = A

(
ρ12

ρ2
22

+
1

ρ22

)
.

The following section focuses on the determination of the diffusion operators in the
time domain; the expressions of the longitudinal and transverse waves in (19), (20), and (29);
the expressions of the pressure and velocity fields in the different media; as well as the
boundary conditions at the interfaces.

4. The Scattering Operators

In a two-dimensional problem (X-Z), a poroelastic material of thickness L, which is
supposed to be homogeneous and isotropic, is saturated by a viscous fluid and found to
be disturbed by a high-frequency sound wave that arrives in normal incidence on the left
boundary of the material (x = 0); the geometry of the problem is represented in the Figure 1.
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Figure 1. Geometry of the problem.

A part of the incident wave is reflected in the fluid and the other one is transmitted
through the porous medium in the shape of the three waves of Biot: the two compressional
waves and a shear wave. By pointing out the fact that the porous medium occupies the
region (0 ≤ x ≤ L), we can see that the expression of the pressure field in the region (I),
where x < 0, is the sum of the incident pi and the reflected pr fields.

p1(x, t) = pi
(

t− x
c0

)
+ pr

(
t +

x
c0

)
, x < 0,

where p1(x, t) is the total pressure field at the left of the medium. In the limit x > L,
the pressure field results from the transmission of the incident wave through the porous
material and is given by the following:

p3(x, t) = pt
(

t− x− L
c0

)
, x > L,

where pt is the pressure of the transmitted wave.
The expressions of the reflected and transmitted pressure fields can be established by

integrating the product of the scattering operators (R and T) by the incident wave, which
gives the following:

pr(x, t) =
∫ t

0
R̃(τ)pi

(
t− τ +

x
c0

)
dτ (32)

pt(x, t) =
∫ t

0
T̃(τ)pi

(
t− τ − L

c
− (x− L)

c0

)
dτ. (33)

The fact that the lower limit of the integrals of these expressions is zero indicates that
it is exactly at t = 0 that the incident wavefront hits the material for the first time.

Accordingly, p1(x, t) and p3(x, t) are expressed by the following equations:

p1(x, t) =
∫ t

0

[
δ

(
τ − x

c0

)
+
∫ τ

0
R̃
(
τ′
)
δ

(
τ − τ′ +

x
c0

)
dτ′
]

pi(t− τ)dτ

p3(x, t) =
∫ t

0

[(∫ τ

0
T̃1
(
τ′
)

pi(x, τ − τ′)dτ′
)

δ

(
t− τ

L
c1
− x− L

c0

)]
dτ

+
∫ t

0

[(∫ τ

0
T̃2
(
τ′
)

pi(x, τ − τ′)dτ′
)

δ

(
t− τ

L
c2
− x− L

c0

)]
dτ.
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T1(t) and c1 are the transmission operator and the propagation speed of the fast wave,
respectively. Similarly, T2(t) and c2 are the transmission operator and the propagation
speed of the slow wave, respectively.

To simplify the analysis, as previously achieved, we use the Laplace transform, which
is more adequate for our problem. We note that, following the definition in (15), P(x, s) is
the Laplace transform of p(x, t). The pressure fields on both sides of the medium in the
Laplace domain are given by the following:

P1(x, s) = (e−
x
c0

s
+ R(s)e

x
c0

s
)P(s), (34)

P3(x, s) = T(s)P(s)e−
x−L
c0

s, (35)

with

T(s) =
(

T1(s)e
− L

c1
s
+ T2(s)e

− L
c2

s
)

.

P1(x, s) and P3(x, s) are, respectively, the Laplace transform of the field at the left and
right of the material; P(s) is the Laplace transform of the incident field; and finally, R(s)
and T(s) are the Laplace transforms of the reflection and transmission operators.

The stress–strain equations in the porous medium are given by

σs
ij = ((P− 2N)∇.u + Q∇.U)δij + N(ui,j + uj,i),

σ
f
ij = (R∇.U + Q∇.u) = −p f δij., (36)

where σa
ij are the components of the stress tensor that act on the solid (a = s) or fluid (a = f)

phase and εij =
1
2 (uij + uji) is the skeletal strain tensor.

Since the pressure and stress fields at the boundaries of the medium are continu-
ous [39], the relations between the pressure field and the stresses in the Laplace domain at
the interfaces x = 0 and x = L are given by the following:

σs(0+, s) = −(1− φ)P1(0−, s),

σ f (0+, s) = −φP1(0−, s),

σ̃s (0+, s) = 0 (37)

σs(L−, s) = −(1− φ)P3(L+, s),

σ f (L−, s) = −φP3(L+, s),

σ̃s (L−, s) = 0

σs and σ f are the normal stresses in the skeleton and fluid, respectively, and σ̃s is the
shear stress in the skeleton; their expressions in the Laplace domain take the following form:

σs
xx (x, s) = (P− 2N)

∂2Φs(x, s)
∂x2 + Q

∂2Φ f (x, s)
∂x2 + 2N

∂2Φs(x, s)
∂x2 ,

σ
f
xx(x, s) = Q

∂2Φs(x, s)
∂x2 + R

∂2Φ f (x, s)
∂x2 ,

σ̃s(x, s) = 2N

(
∂2Φs(x, s)

∂x2 +
∂2Ψ̃s(x, s)

∂x2

)
,

where Φs Φ f and Ψ̃s are the Laplace transforms of φs, φ f , and Ψs .
Hence, using the boundary conditions in (38), the expressions of the scalar functions

Φ11(s)Φ12(s), Φ21(s), Φ22(s), Ψ̃1(s) and Ψ̃1(s) are calculated in Appendix B.
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To determine the reflection and transmission coefficients, we consider the conservation
conditions of the flow at the limits of the medium (x = 0 and x = L):

V1(0+, s) = (1− φ)Vs(L−, s) + φVf (L−, s), (38)

V3(L−, s) = (1− φ)Vs(L−, s) + φVf (L−, s).

In those expressions, V1(x, s) and V3(x, s) are, respectively, the acoustic velocity fields
in the regions x < 0 and x > L, while Vs(x, s) and Vf (x, s) are the velocities of the solid
and fluid in the porous medium, respectively.

The acoustic velocity fields are obtained by considering the field pressure of the
surrounding fluid in (34) and (35), and the Euler equation:

ρ f sVi(x, s) = −∂Pi(x, s)
∂x

, i = 1, 2, 3.

The expressions of Vs and Vf are found using the following expressions:

Vs(x, s) = s(∇Φs +∇∧Ψs), (39)

Vf (x, s) = s(∇Φ f +∇∧Ψ f ).

Using the boundary conditions in (38) and the expressions for the fluid and solid
velocity fields, Vs(x, s)), Vf (x, s), V1(x, s), and V3(x, s) , we obtain the expressions for the
transmission and reflection coefficients in the Laplace domain:

R(s) =
s2(F2

5 (s)− F2
4 (s)

)
+ 1

(sF4(s)− 1)2 − s2F2
5 (s)

, (40)

T(s) =
−2sF5(s)

(sF4(s)− 1)2 − s2F2
5 (s)

, (41)

where

F4(s) = F1(s) cosh
(

l
√

λ1(s)
)
+ F2(s) cosh

(
l
√

λ2(s)
)
+ F3(s) cosh

(
l
√

λ3(s)
)

,

F5(s) = F1(s) + F2(s) + F3(s),

Fi(s) = ρ f c0[1 + φ(Vi(s)− 1)]
√

λ1(s)
2Ψ”

i (s)

sinh(l
√

λi(s))Ψ”(s)
,

Vi(s) = Ai +
Bi√

s
, . . . . . . i = 1, 2,

λi(s) = Cis2 + Dis
3
2 + Gis, . . . . . . i = 1, 2

V3(s) = A3 +
B3√

s
,

λ3(s) = C3s2 + D3s
3
2 + G3s.

The coefficients Ψ”
1(s) Ψ”

2(s) Ψ”
3(s) and Ψ”(s) are given by

Ψ”
1(s) = φZ2(s)− (1− φ)Z4(s),

Ψ”
2(s) = (1− φ)Z3(s)− φZ1(s),

Ψ”
3(s) = (1− φ)Z8(s)− φZ9(s),

Ψ”(s) = 2(Z1(s)Z4(s)− Z2(s)Z3(s)).
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The coefficients Zi(s) are given by

Z1(s) = (V1Q + P)λ1(s), Z2(s) = (V2Q + P)λ2(s),

Z3(s) = (V1R + Q)λ1(s), Z4 = (V2R + Q)λ2(s),

Z5(s) = 2Nλ1(s), Z6(s) = 2Nλ2(s), Z7 = 2Nλ3(s),

Z8(s) =
Z6(s)Z3(s)− Z5(s)Z4(s)

Z7(s)
,

Z9(s) =
Z6(s)Z1(s)− Z5(s)Z2(s)

Z7(s)
.

The scattering operators are obtained in the Laplace domain. The purpose of our
work is to determine these operators in the time domain, but using the inverse Laplace
transform to go directly to the time domain is a very difficult task to perform because of
the complexity of these operators. For this reason, modifications and simplifications are
applied (Appendix C) to the relations in (40) and (41), which allows us to find the time
equivalent of the reflection and transmission operators:

R(t) = r(t) + R̃(t), (42)

where

r(t) =
1 + U
1−U

δ(t) +
2a

1−U

[
− 1√

πt
+ a exp(a2t)Er f c(a

√
t)
]

, (43)

and

R̃(t) =
4

(1−U)2 [x1G1(t, 2L) + x2G2(t, 2L) + x3G3(t, 2L)]

+
4

(1−U)2 [P1(t) ∗ G1(t, 2L) + P2(t) ∗ G2(t, 2L) + P3(t) ∗ G3(t, 2L)]. (44)

T(t) = − 4
(1−U)2 [x1G1(t, L) + x2G2(t, L) + x3G3(t, L)]

− 4
(1−U)2 [P1(t) ∗ G1(t, L) + P2(t) ∗ G2(t, L) + P3(t) ∗ G3(t, L)]. (45)

The expressions of Pi(t) and Gi(t, L) are given by

Pi(t) =
yi − 2ax√

πt
+ 2a2(yi − axi)

√
t
π

+
[

a2xi(3 + 2a2t)− 2ayi(1 + a2t)
]

× exp(a2t)Erfc(a
√

t), i = 1, 2, 3 (46)

Gi(t, jL) = L−1
[

exp
(
−jL

√
λ1(s)

)]
, i = 1, 2, 3, j = 1, 2 (47)

Gi(t), i = 1, 2, 3, are the Green functions of compressional (first and second species)
and shear waves, respectively; they describe the propagation of each of these waves inside
the porous medium, and their expressions are given in Appendix D.

Gi(t), i = 1, 2, 3, are the Green functions of the longitudinal (fast and slow) and
transverse waves, respectively. They describe the propagation of each of these waves inside
the porous medium, and their expressions are given in Appendix D.

Knowing the strong attenuation that the acoustic wave undergoes in a porous media
saturated by a viscous fluid makes multiple reflections negligible; thus, we take only the
first reflections at the interfaces x = 0 and x = L in the expressions of the operators
in (42) and (45).
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The first term of the second member of Equation (43) corresponds to the instantaneous
reflection of the wave by the first interface x = 0. The reflected wave does not have time to
propagate in the medium, which gives it the advantage of not being dispersive but only
attenuated by the term 1+U

1−U .
The second term of r(t) expresses the attenuation and dispersion process since it

depends on the fractional derivative operator, which takes into account the viscousfluid–
structure interaction effects during the wave propagation. This memory term expresses the
phenomenon of relaxation of the wave reflected by the first interface.

The term of the second member of Equation (45) corresponds to the reflection by the
second interface x = L. This term depends on the Green function of the longitudinal and
transverse waves that describe the propagation and dispersion of these waves inside the
porous material just as R̃(t) the temporal expression of the transmission operator in (45)
depends on the Green functions of the three Biot waves, highlighting the contribution of
each of these waves to the total transmitted wave.

From the temporal expressions of the scattering operators obtained in (42) and (45), the
effect of the shear wave plus the effect of the compressional waves (fast and slow) on the
porous medium’s response to an external load can be examined. It is also possible to study
the influence of the characteristic parameters of the porous medium on the amplitudes and
speed of these waves.

5. Numerical Validation

In order to test the validity of our analytical development and to show the influence
that the shear waves can have on the response of bone-type porous materials, we proceed
to compare transmitted signals obtained during this study, the shear waves being taken
into account, and the transmitted signals, where only the longitudinal waves are observed
because the shear waves are very weak in normal incidence; however, whether or not they
are taken into account is visible on the longitudinal waveforms, as shown in the following
study. The characteristics of the bone samples used in this study were taken from work
carried out previously by Fellah [67] and are shown in Table 1.

Table 1. Biot’s model parameters of cancellous bone sample (S1).

Parameters L φ α∞ Λ ρs Ks Kb N
(mm) (µm) Kg/m3 (GPa) (GPa) (GPa)

Bone (S1) 0.7 0.85 1.3 8 1960 2.45 1 6.7

The transmitted signals are computed by performing the convolution product of the
transmission operator given by (45) with the incident signal, as in the relation in (33).

5.1. Porosity Variation

The two waves observed in the numerical simulations (Figure 2) correspond to the
slow and fast longitudinal waves. The shear wave is not noticeable because of its low
amplitude at normal incidence; however, its effect is visible on the velocities and amplitudes
of the longitudinal waves. This is the subject of the following sensitivity study.
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Figure 2. Comparison between simulated transmitted signals by considering or not considering the
transverse effects for two values of the porosity: φ = 0.85 and φ = 0.2.

The transmitted signals are simulated by taking or not taking into account the trans-
verse wave for two distinct porosities: φ = 0.2 and φ = 0.85. Figure 2 depicts the impact of
the shear wave on different values of the porosity. When the porosity value is equal to 0.2,
the shear effect is not felt in the slow longitudinal wave, and its amplitude and speed do
not change, unlike the amplitude and speed of the fast wave. For the value of the porosity
of 0.85, we notice that, whether the shear wave is considered is much more important than
in the previous case (when the porosity was equal to 0.2) for the amplitudes of the fast and
slow longitudinal waves. We can therefore conclude at this stage that the effect of shear
is more visible as the value of porosity is high and at the level of the amplitudes of both
longitudinal waves. The velocities of the longitudinal waves do not seem to be affected by
whether or not shear is taken into account.

5.2. Tortuosity Variation

Figure 3 represents a comparison of the simulated transmitted signals when only
the effect of longitudinal waves is considered (black dotted line) and when the effect of
the transverse waves is combined with that of the longitudinal waves (red line) for two
different values of the tortuosity α∞ = 1 and α∞ = 1.3.
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Figure 3. Comparison between simulated transmitted signals by considering or not considering the
transverse effects for two values of tortuosity α∞ = 1 and α∞ = 1.3.

Readers can notice that the amplitudes of the two compressional waves (the fast
and slow) are different for the two values of tortuosity, even though it is more apparent
for α∞ = 1.3 than it is for α∞ = 1. The velocities of both compressional waves remain
unchanged, regardless of whether the effect of the transverse waves is included or not.

Tortuosity is an important parameter to describe the inertial effects, which occur
between the fluid and solid parts of a porous material because it provides information
on the geometry of the pores of the porous medium, which are rarely straight and have
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variable sections. Like porosity variations, tortuosity variations cause changes in the fast
and slow waves and their velocities.

Comparing the figures for two values of the tortuosity, we notice that an increase in
the tortuosity induces an increase in the amplitude of the fast wave and a decrease in the
amplitude of the slow-wave. A temporal shift of the two Biot waves occurs (decrease in
the velocities), which is more distinct on the slow wave than it is on the fast wave as the
tortuosity increases.

5.3. Variation of the Viscous Characteristic Length Λ

The effect of whether transverse waves are considered along with longitudinal waves
on the transmitted signals for two different viscous characteristic lengths is illustrated
in Figure 4. In the comparison of the simulated transmitted signals, the effect of shear
can be observed on the amplitudes of both the fast and slow waves. This effect leads to
an increase in the amplitudes of the fast and slow waves regardless of the value of the
viscous characteristic length. The speeds of the fast and slow waves remain unchanged in
all cases. The comparison between the figures corresponding to two values of the viscous
characteristic length provides information on the effect of the viscous characteristic length
on the transmitted signals. This parameter was first introduced by Johnson et al. [33]
in 1987 and is considered to be a geometrical parameter indicative of small pore sizes; it
represents the thickness where viscous effects are important.
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Figure 4. Comparison Please add a space between number and unit. between simulated transmit-
ted signals by considering or not considering the transverse effects for two values of the viscous
characteristic length Λ = 5 µm and Λ = 9 µm.

Through our comparison, we can see that, by increasing the viscous characteristic
length from 5 µm to 9 µm, the amplitude of the slow wave increases while the velocities
of the slow and fast waves as well as the amplitude of the fast wave remain practically
the same.

The viscous characteristic length plays a less important role than the tortuosity, since
the variation in its value barely affects the transmitted signals whether the shear wave is
considered or not.

5.4. Solid Density ρs Variation

The difference between the transmitted signals when shear effects are considered and
not considered along with longitudinal waves for two distinct values of the solid density
ρs = 1000 kg/m3 and ρs = 2400 kg/m3 is given in Figure 5. Unlike for the previous case of
the effect of the viscous characteristic length, we notice that the only significant difference
is for the amplitudes of the fast waves that increase when the shear waves are considered
for both values of the solid density; the slow waves are practically the same for both signals
in Figure 5. It is worth mentioning that, for a high value of the density ρs = 2400 kg/m3,
the fast wave with shear taken into account arrives faster than the one with shear not taken
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into account, which means that its speed is greater without than with shear taken into
account, which is not observed for the slow wave.
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Figure 5. Comparison between simulated transmitted signals by considering or not considering the
transverse effects for two values of the solid density ρs = 1000 kg/m3 and ρs = 2400 kg/m3.

We can also notice from these figures that the fast waves (amplitude and speed) are
sensitive to the variation of the solid density; indeed, a decrease in the amplitudes of the
fast waves as well as a decrease in their speed appear when the solid density goes from
1000 (kg/m3) to 2400 (kg/m3).

5.5. Bulk Modulus of the Elastic Solid Ks Variation

The simulated transmitted signals with and without considering the effect of trans-
verse waves in addition to longitudinal waves are compared in Figure 6 for two values
of the bulk modulus of the elastic solid Ks. We notice that the effect of the shear wave is
visible mainly on the amplitude of the fast wave for the value of Ks = 2.45 GPa, and the
amplitude of the slow wave varies but in a lesser way. For the value of Ks = 10 GPa, it is
the amplitude of the slow wave that is most sensitive to the incorporation of shear in the
model, with the change in the amplitude of the fast wave being, however, smaller for this
value of Ks. Shear affects the amplitudes of the fast and slow waves differently depending
on the values of Ks.
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Figure 6. Comparison between simulated transmitted signals by considering or not considering the
transverse effects (TE) for two values of the bulk modulus of the porous skeletal frame Ks = 2.45 (GPa)
and Ks = 10 (GPa).

The speed of the fast wave also seems to be sensitive to the shear; in fact, when
decreasing the value of Ks, the fast wave arrives delayed when the shear is not taken into
account. In other words, taking into account the shear increases the speed of the fast wave,
which makes it arrive faster in comparison with the fast wave obtained without shear. This
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phenomenon is not observable for the speed of the fast wave when Ks = 10 GPa or for the
speeds of the slow waves, regardless of the value of Ks.

5.6. Bulk Modulus of the Porous Skeletal Frame Kb Variation

The sensitivity study of the bulk modulus of the porous skeletal frame Kb taking or not
taking into account the shear shows quite interesting results compared with the previous
cases (see Figure 7). For example, we notice as an example that, for the high value of
Kb = 3.6 GPa, the amplitudes of the slow and fast waves are very affected by whether shear
is considered. The amplitude of the slow wave in this case can be doubled when the shear
is taken into account, while the amplitude of the slow wave decreases sharply. For the
value of Kb = 1.1 GPa, the variation in the slow wave amplitude is very small while that of
the fast wave is much larger. We also notice generally that the velocities of the waves do
not practically change with the taking into account of the shear, except for that of the fast
wave for Kb = 1.1 GPa, where we see that taking shear into account of the shear decreases
the velocity of the fast wave, which slows down compared with the case where the shear is
taken into account.
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Figure 7. Comparison between simulated transmitted signals by considering or not considering the
transverse effects (TE) for two values of the bulk modulus of the porous skeletal frame Kb = 1.1 (GPa)
and Kb = 3.6 (GPa).

5.7. The Shear Modulus N Variation

The simulated transmitted signals including and excluding the effect of the shear wave
in addition to the longitudinal waves for two values of the shear modulus are shown in
Figure 8. The comparison between the two signals for each value of N allows us to say that
the inclusion of the shear wave in the model affects the fast wave more than the slow wave
and more particularly for large values of N (N = 8.9 GPa). However, the effect of shear is
more visible on the speed of the fast wave for low values of N (N = 5.8 GPa). However,
the slow wave velocities remain unchanged whether shear is considered or not.
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Figure 8. Comparison between simulated transmitted signals by considering or not the transverse
effects (TE) for two values of the bulk modulus of the porous skeletal frame N = 5.8 (GPa) and
N = 8.9 (GPa).
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6. Discussion and Conclusions

This study allows us to examine the influence of the shear wave in the modeling
of ultrasound propagation in porous media. This effect is studied by comparing the
transmitted waveforms by varying each physical parameter of the porous material (porosity,
tortuosity, viscous characteristic length, density of the solid, bulk modulus of the elastic
solid, bulk modulus of the porous skeletal frame, and shear modulus). The amplitudes and
velocities of the transmitted longitudinal waves (slow and fast) are observed and compared
in order to see the impact of taking into account the shear wave in the model. In our
previous work [19,62], we did not take into account the shear wave at normal incidence, but
recent studies [62,67] have shown that the shear wave must be taken into account because
of the viscous exchanges between fluid and structure. At normal incidence, the shear wave
is not as visible as the fast and slow longitudinal waves because its amplitude is very low;
however, its effect is felt in the amplitudes and speeds of longitudinal waves, and this effect
varies depending on the values of the physical parameters of the porous medium, as shown
in this study.

The originality of our approach is that it makes it possible not only to model in the
time domain acoustic propagation in a porous medium using fractional calculus but also
to obtain analytical solutions to the response (reflection and transmission operators) of
the porous medium to an acoustic excitation (incident wave). This analytical solution in
the time domain expressed by the Green functions of longitudinal (fast and slow) and
transverse waves using fractional calculation is the strong point (original) of our work.
Indeed, the the existing studies do not provide analytical solutions but only propose
numerical solutions.

The study of the sensitivity of the physical parameters of the longitudinal waves by
taking or not taking into account the shear wave in the model allows us to see and quantify
the importance of the shear wave in the modeling and its impact on the longitudinal
waves. It appears that the variation in the the values of some parameters such as the bulk
modulus of the porous skeletal frame reflects a significant change in the amplitude of the
fast and slow longitudinal waves. The velocity of the fast wave is also modified, contrary
to that of the fast wave, which is unchanged, and thus independent of whether shear is
taken into account. The variation in other parameters (such as porosity, tortuosity, viscous
characteristic length, solid density, and shear modulus) modifies the amplitude of the fast
wave more than that of the slow wave. Practically for all the parameters, their variation
has no impact on the speed of the slow wave, only on that of the fast wave.

The results of this study clearly show that the inclusion of the shear wave in the model
has a considerable impact on the amplitude of the slow and fast waves as well as on the
speed of the fast wave. The fractional calculus have proven to be very useful in obtaining
the analytical solutions in the time domain. We can then conclude that the shear wave at
normal incidence should no longer be ignored as it was the case in the previous studies
and that it is necessary to consider the shear effects, as this will have consequences for
the acoustic and mechanical characterization of porous materials by solving the inverse
problems using experimental data of transient waves.
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Appendix A. The Eigenvalues and Eigenvectors of the Matrix M

The matrix M is given in the Laplace domain by the following:

M =

(
(R
′
ρ11 −Q

′
ρ12)s2 + As

3
2 (R′ + Q′) (R

′
ρ12 −Q

′
ρ22)s2 − As

3
2 (R′ + Q′)

(P
′
ρ12 −Q

′
ρ11)s2 − As

3
2 (P′ + Q′) (P

′
ρ22 −Q

′
ρ12)s2 + As

3
2 (P′ + Q′)

)
,

with (
R′ −Q′

−Q′ P′

)
=

(
P Q
Q R

)−1

=

(
R

PR−Q2 − Q
PR−Q2

− Q
PR−Q2

P
PR−Q2

)
,

and

A =
2φα∞ρ f

Λ

(
η

ρ f

) 1
2

.

The eigenvalues of the matrix M are written as follows:

λ1,2(s) =
−tr(M)± 2

√
tr(M)2 − 4 det(M)

2
,

where Tra(M) and Det(M) are, respectively, the trace and determinant of this same matrix:

Tra(M) = (R
′
ρ11 − 2Q

′
ρ12 + P

′
ρ22)s2 + As

3
2 (R′ + 2Q′ + P′),

Det(M) = (P′R′ −Q′2)
[(

ρ11ρ12 − ρ2
12

)
s4 + As

7
2 (ρ11 + ρ22 − 2ρ12)

]
.

Posing

τ1 = R
′
ρ11 − 2Q

′
ρ12 + P

′
ρ22,

τ2 = A(R′ + 2Q′ + P′),

τ3 = (P′R′ −Q′2)
(

ρ11ρ12 − ρ2
12

)
,

τ4 = (P′R′ −Q′2)(ρ11 + ρ22 − 2ρ12)A,

and

Ci =
1
2

(
τ1 + (−1)i

√
(τ2

1 − 4τ3

)
,

Di =
1
2

τ2 + (−1)i τ1τ2 − 2τ4√
(τ2

1 − 4τ3

,

Gi = (−1)i 1
4

 τ2
2√

(τ2
1 − 4τ3

− (τ1τ2 − 2τ4)
2

2(τ2
1 − 4τ3)

3
2

,

we obtain the expressions of the eigenvalues:

λi(s) = Cis2 + Dis
3
2 + Gis, i = 1, 2.

The expressions of the components V1,2 of the eigenvectors are given by

V1,2(s) =
λ1,2(s)−

[(
(R
′
ρ11 −Q

′
ρ12)s2 + As

3
2 (R′ + Q′)

)]
(R′ρ12 −Q′ρ22)s2 − As

3
2 (R′ + Q′)

.
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By posing

τ5 = (R
′
ρ11 −Q

′
ρ12),

τ6 = A(R′ + Q′),

τ7 = (R
′
ρ12 −Q

′
ρ22),

Ai =
τ1 − 2τ5 + (−1)i

√
(τ2

1 − 4τ3

2τ7
,

Bi =
1

4τ2
7

[(
τ2 − 2τ6 + (−1)i (τ1τ2 − 2τ4)

(τ2
1 − 4τ3)

3
2

)
2τ7 +

(
τ1 − 2τ5 − (τ2

1 − 4τ3)
1
2 2τ6

)]
, i = 1, 2

we obtain
Vi(s) = Ai +

Bi√
s

, i = 1, 2. (A1)

Appendix B. Scalar Functions

The components of the stress tensor σs
ij that act on the solid (a = s) or fluid (a = f )

phase are given by

σs
ij =

(
(P− 2N)

−→∇.−→u + Q
−→∇.
−→
U
)

δij + N(ui,j + uj,i),

σ
f
ij =

(
R
−→∇.
−→
U + Q

−→∇.−→u
)
= −p f δij.

The stress–strain relationship for the fluid in the Laplace domain is in the follow-
ing form:

σ̃
f
xx(x, s) =

(
R
−→∇.
−→
U + Q

−→∇.−→u
)

,

with

u(x, s) = ∇Φs(x, s), (A2)

U(x, s) = ∇Φ f (x, s),

σ
f
xx(x, s) = R

∂2Φs(x, s)
∂x2 + Q

∂2Φ f (x, s)
∂x2 ,

where

Φs(x, s) = Φ1(x, s) + Φ2(x, s),

Φ f (x, s) = V1(s)Φ1(x, s) + V2(s)Φ2(x, s),

and we find

σ
f
xx(x, s) = (V1(s)R + Q)

∂2Φ1(x, s)
∂x2 + (V2(s)R + Q)

∂2Φ2(x, s)
∂x2 .

By replacing Φ1(x, s) and Φ2(x, s) by their expressions in (19) and (20), we find

σ
f
xx(x, s) = Z3(s)(Φ11 + Φ12) cosh(x

√
λ1(s))

−Z3(Φ11 −Φ12) sinh(x
√

λ1) + Z4(Φ21 + Φ22) cosh(x
√

λ2)− Z4(Φ21 −Φ22) sinh(x
√

λ2)
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with:

Z3(s) = (V1R + Q)λ1(s),

Z4(s) = (V2R + Q)λ2(s),

The stress–strain relation for the solid in the Laplace domain is in the following form:

σs
xx(x, s) = (P− 2N)

−→∇.−→u (x, s) + Q
−→∇.
−→
U (x, s) + 2N

∂u(x, s)
∂x

,

where the solid displacement vectors are given by

u(x, s) = ∇Φs(x, s), (A3)

U(x, s) = ∇Φ f (x, s).

The normal component of the stress tensor acting on the solid part becomes
the following:

σs
xx(x, s) = (P− 2N)

−→∇.−→u (x, s) + Q
−→∇.
−→
U (x, s) + 2N

∂u(x, s)
∂x

,

σs
xx (x, s) = P

∂2Φs(x, s)
∂x2 + Q

∂2Φ f (x, s)
∂x2 .

Considering the expressions for Φ1(x, s) and Φ2(x, s), we obtain the following:

σs
xx(x, s) = Z1(s)(Φ11 + Φ12) cosh(x

√
λ1(s))− Z1(s)(Φ11 −Φ12) sinh(x

√
λ1(s))

+Z2(s)(Φ21 + Φ22) cosh(x
√

λ2(s))− Z2(s)(Φ21 −Φ22) sinh(x
√

λ2(s)) ,

with

Z1(s) = (V1(s)Q + P)λ1(s),

Z2(s) = (V2(s)Q + P)λ2(s).

For shear wave, the stress–strain relationship is written as follows:

σ̃s(x, s) = N(ui,j + uj,i)

σ̃s(x, s) = 2N
∂u(x, s)

∂x
,

Using the fact that the displacement vector of the solid is

u = ∇Φs +∇∧Ψs,

the shear stress becomes

τxx (x, s) =
[

Z5(s)(Φ11 + Φ12) cosh(x
√

λ1(s))− Z5(s)(Φ11 −Φ12) sinh(x
√

λ1)

+Z6(s)(Φ21 + Φ22) cosh(x
√

λ2(s))− Z6(s)(Φ21 −Φ22) sinh(x
√

λ2(s))

+Z7(s)(Ψ1 + Ψ2) cosh(x
√

χ(s))− Z7(s)(Ψ1 −Ψ2) sinh(x
√

χ(s))
]

,

with
Z5 = 2Nλ1, Z6 = 2Nλ2, Z6 = 2Nχ.
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The continuity conditions for solid and fluid stresses at x = 0 and x = L are as follows:

σs
xx(0

+, s) = −(1− φ)P1(0−, s), (A4)

σ
f
xx(0+, s) = −φP1(0−, s),

τxx (0+, s) = 0.

σs
xx(L−, s) = −(1− φ)P3(L+, s), (A5)

σ
f
xx(L−, s) = −φP3(L+, s),

τxx (L−, s) = 0.

By using the expressions of the constraints and those of the pressure fields in (34)
and (35), we obtain

Φ11(s) = P(s)
Ψ”

1
Ψ”

[
(1 + R(s)

(
1 +

cosh(l
√

λ1(s))
sinh(l

√
λ1(s))

)
− T(s)

sinh(l
√

λ1(s))

]
,

Φ12(s) = P(s)
Ψ”

1
Ψ”

[
(1 + R(s)

(
1− cosh(l

√
λ1(s))

sinh(l
√

λ1(s))

)
+

T(s)
sinh(l

√
λ1(s))

]
,

Φ21(s) = P(s)
Ψ”

2
Ψ”

[
(1 + R(s)

(
1 +

cosh(l
√

λ2(s))
sinh(l

√
λ2(s))

)
− T(s)

sinh(l
√

λ2(s))

]
, (A6)

Φ11(s) = P(s)
Ψ”

2
Ψ”

[
(1 + R(s)

(
1− cosh(l

√
λ2(s))

sinh(l
√

λ2(s))

)
+

T(s)
sinh(l

√
λ2(s))

]
,

Ψ1(s) = P(s)
Ψ”

3
Ψ”

[
(1 + R(s)

(
1 +

cosh(l
√

χ(s))
sinh(l

√
χ(s))

)
− T(s)

sinh(l
√

χ(s))

]
,

Ψ2(s) = P(s)
Ψ”

3
Ψ”

[
(1 + R(s)

(
1− cosh(l

√
χ(s))

sinh(l
√

χ(s))

)
+

T(s)
sinh(l

√
χ(s))

]
,

with

Ψ”
1(s) = φZ2(s)− (1− φ)Z4(s), (A7)

Ψ”
2(s) = (1− φ)Z3(s)− φZ1(s),

Ψ”
3(s) = (1− φ)Z8(s)− φZ9(s),

Z8(s) =
Z5(s)Z4(s)− Z6(s)Z3(s)

Z7(s)
, Z8(s) =

Z6(s)Z1(s)− Z5(s)Z2(s)
Z7(s)

,

Ψ”(s) = 2(Z1(s)Z4(s)− Z2(s)Z3(s)).

Appendix C. The Scattering Operators in the Time Domain

The expressions for the scattering operators in the Laplace domain are given by
the following:

R(s) =
s2(F2

5 (s)− F2
4 (s)

)
+ 1

(sF4(s)− 1)2 − s2F2
5 (s)

, (A8)

T(s) =
−2sF5(s)

(sF4(s)− 1)2 − s2F2
5 (s)

. (A9)
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These expressions can be decomposed into simple elements:

R(s) = −1 +
1

(1− s(F4(s)− F5(s))
+

1
(1− s(F4(s) + F5(s))

, (A10)

T(s) =
1

(1− s(F4(s)− F5(s))
− 1

(1− s(F4(s) + F5(s))
. (A11)

Using the expressions of F4(s) and F5(s) given by (42), the calculus of (F4(s) + F5(s))
as well as that of (F4(s)− F5(s)) gives the following:

F4(s) + F5(s) = 2ρ f c0

[
[1 + φ(V1(s)− 1)]

√
λ1(s)

Ψ”
1(s)

Ψ”(s)
coth

(
l
2

√
λ1(s)

)

+[1 + φ(V2(s)− 1)]
√

λ2(s)
Ψ”

2(s)
Ψ”(s)

coth
(

l
2

√
λ2(s)

)
+[1 + φ(V3(s)− 1)]

√
λ3(s)

Ψ”
3(s)

Ψ”(s)
coth

(
l
2

√
λ3(s)

)]
,

F4(s)− F5(s) = 2ρ f c0

[
[1 + φ(V1(s)− 1)]

√
λ1(s)

Ψ”
1(s)

Ψ”(s)
tanh

(
l
2

√
λ1(s)

)

+[1 + φ(V2(s)− 1)]
√

λ2(s)
Ψ”

2(s)
Ψ”(s)

tanh
(

l
2

√
λ2(s)

)
+[1 + φ(V3(s)− 1)]

√
λ3(s)

Ψ”
3(s)

Ψ”(s)
tanh

(
l
2

√
λ3(s)

)]
.

Posing

X(s) = 2ρ f c0[1 + φ(V1(s)− 1)]
√

λ1(s)
Ψ”

1(s)
Ψ”(s)

,

Y(s) = 2ρ f c0[1 + φ(V2(s)− 1)]
√

λ2(s)
Ψ”

2(s)
Ψ”(s)

,

Z(s) = 2ρ f c0[1 + φ(V3(s)− 1)]
√

λ3(s)
Ψ”

3(s)
Ψ”(s)

,

and

tanh
(

l
2

√
λi(s)

)
= 1− 2e−l

√
λi(s)

1 + e−l
√

λi(s)
, (A12)

coth
(

l
2

√
λi(s)

)
= 1 +

2e−l
√

λi(s)

1− e−l
√

λi(s)
,

we obtain

R(s) = −1 +
1

1− X(s)−Y(s)− Z(s) + 2X(s)W1(s)
1+W1(s)

+ 2Y(s)W2(s)
1+W2(s)

+ 2Z(s)W3(s)
1+W3(s)

+
1

1− X(s)−Y(s)− Z(s)− 2X(s)W1(s)
1−W1(s)

− 2Y(s)W2(s)
1−W2(s)

− 2Z(s)W3(s)
1−W3(s)

.
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T(s) =
1

1− X(s)−Y(s)− Z(s) + 2X(s)W1(s)
1+W1(s)

+ 2Y(s)W2(s)
1+W2(s)

+ 2Z(s)W3(s)
1+W3(s)

− 1

1− X(s)−Y(s)− Z(s)− 2X(s)W1(s)
1−W1(s)

− 2Y(s)W2(s)
1−W2(s)

− 2Z(s)W3(s)
1−W3(s)

.

where
Wi(s) = e−l

√
λi(s), i = 1, 2, 3. (A13)

e−l
√

λi(s) are assumed to be very small for large values of s because of the high-frequency
condition assumed in our study, which allows us to use the following development:

R(s) = −1 +
1

1− X(s)−Y(s)− Z(s) ∑
n≥0

2n

(1− X(s)−Y(s)− Z(s))n[(
X(s)W1(s)
1−W1(s)

+
Y(s)W2(s)
1−W2(s)

+
Z(s)W3(s)
1−W3(s)

)n

+(−1)n
(

X(s)W1(s)
1 + W1(s)

+
Y(s)W2(s)
1 + W2(s)

+
Z(s)W3(s)
1 + W3(s)

)n]
,

T(s) =
1

1− X(s)−Y(s)− Z(s) ∑
n≥0

2n

(1− X(s)−Y(s)− Z(s))n[
−
(

X(s)W1(s)
1−W1(s)

+
Y(s)W2(s)
1−W2(s)

+
Z(s)W3(s)
1−W3(s)

)n

+(−1)n
(

X(s)W1(s)
1 + W1(s)

+
Y(s)W2(s)
1 + W2(s)

+
Z(s)W3(s)
1 + W3(s)

)n]
.

By considering only the small powers of Wi(s),we obtain the following approximations:

R(s) = −1 +
2

(1− X(s)−Y(s)− Z(s))

+
4X(s)W2

1 (s)
(1− X(s)−Y(s)− Z(s))2

(
1−W2

1 (s)
) + 4Y(s)W2

2 (s)
(1− X(s)−Y(s)− Z(s))2

(
1−W2

2 (s)
)

+
4Z(s)W2

3 (s)

(1− X(s)−Y(s)− Z(s))2(1−W2
3 (s)

) .

T(s) = − 4X(s)W1(s)

(1− X(s)−Y(s)− Z(s))2(1−W2
1 (s)

)
− 4Y(s)W2(s)

(1− X(s)−Y(s)− Z(s))2(1−W2
2 (s)

)
− 4Z(s)W3(s)

(1− X(s)−Y(s)− Z(s))2(1−W2
3 (s)

) .

For large values of s, we obtain the expressions of the reflection and transmission
operators in the Laplace domain:
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R(s) = −1 +
2

(1− X(s)−Y(s)− Z(s))

+
4X(s)W2

1 (s)
(1− X(s)−Y(s)− Z(s))2 +

4Y(s)W2
2 (s)

(1− X(s)−Y(s)− Z(s))2

+
4Z(s)W2

3 (s)

(1− X(s)−Y(s)− Z(s))2 . (A14)

T(s) = − 4X(s)W1(s)
(1− X(s)−Y(s)− Z(s))2 −

4Y(s)W2(s)
(1− X(s)−Y(s)− Z(s))2

− 4Z(s)W3(s)

(1− X(s)−Y(s)− Z(s))2 .

To obtain the Laplace inverse transform for these operators, it would be easier to
explicitly define X(s), Y(s) and Z(s). Knowing that√

λ1(s)
Ψ”

1(s)
Ψ”(s)

=
φ(P + Q)−Q + V2(s)(φ(P + Q)− R)

2(Q2 − PR)(V1(s)−V2(s))
1√

λ1(s)
,

√
λ2(s)

Ψ”
2(s)

Ψ”(s)
=

φ(P + Q)−Q + V1(s)(φ(P + Q)− R)
2(Q2 − PR)(V2(s)−V1(s))

1√
λ2(s)

,

√
λ3(s)

Ψ”
3(s)

Ψ”(s)
=

φ(P + Q)− R
2(Q2 − PR)

1√
λ3(s)

,

we find

X(s)
ρ f c0

=
[1 + φ(V1(s)− 1)][φ(P + Q)−Q + V2(s)(φ(P + Q)− R)]

(Q2 − PR)(V1(s)−V2(s))
s√

λ1(s)
.

By replacing Vi(s) with their expressions,

X(s)
ρ f c0

=[
1 + φ(A1 − 1) + φB1√

s

][
φ(P + Q)−Q + A2(φ(P + Q)− R) + B1√

s (φ(P + Q)− R)
]

(Q2 − PR)(A1 − A2 +
B1−B2√

s )

s√
λ1(s)

. (A15)

Using the high-frequency approximation,

s√
λ1(s)

=
1√
C1

(
1− 1

2
D1

C1

1√
s

)
,

we obtain

X(s)
ρ f c0

=
1√

C1(Q2 − PR)(A1 − A2)

[
α1γ2 +

1√
s

[
φγ2B1 + α1β2 − α1γ2

(
B1 − B2

A1 − A2
+

1
2

D1

C1

)]]
.

The same steps for Y(s) and Z(s) lead us to the following relations,

Y(s)
ρ f c0

=
1√

C2(Q2 − PR)(A1 − A2)

[
α2γ1 +

1√
s

[
φγ2B2 + α2β1 − α2γ1

(
B2 − B1

A2 − A1
+

1
2

D2

C2

)]]
,

Z(s)
ρ f c0

=
1√

C3(Q2 − PR)

[
α3β3 +

1√
s

[
B3β3φ− 1

2
D3

C3
α3β3

]]
,
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with the following notations:

α1 = 1 + φ(A1 − 1), α2 = 1 + φ(A2 − 1), α3 = 1 + φ(A3 − 1),

β1 = B1(φ(P + Q)− R), β2 = B2(φ(P + Q)− R), β3 = (φ(Q + R)− R),

γ1 = φ(P + Q)−Q + A1(φ(P + Q)− R), γ2 = φ(P + Q)−Q + A2(φ(P + Q)− R),

and by posing

X = x1 +
y1√

s
, Y = x2 +

y2√
s

, Z = x3 +
y3√

s
, (A16)

where

x1 =
α1γ2ρ f c0√

C1(Q2 − PR)(A1 − A2)
, x1 =

α2γ1ρ f c0√
C2(Q2 − PR)(A1 − A2)

, x3 =
α3β3ρ f c0√

C3(Q2 − PR)
,

y1 =
ρ f c0√

C1(Q2 − PR)(A1 − A2)

[
φγ2B2 + α2β1 − α2γ1

(
B2 − B1

A2 − A1
+

1
2

D2

C2

)]
,

y2 =
ρ f c0√

C2(Q2 − PR)(A1 − A2)

[
φγ2B2 + α2β1 − α2γ1

(
B2 − B1

A2 − A1
+

1
2

D2

C2

)]
,

y3 =
ρ f c0√

C3(Q2 − PR)

[
B3β3φ− 1

2
D3

C3
α3β3

]
.

Then, by putting
U = x1 + x2 + x3, V = y1 + y2 + y3,

we obtain
1

1− X−Y− Z
=

1
1−U − V√

s

=
1

1−U

(
1− a√

s + a

)
,

with
a =

V
(U − 1)

.

This gives us

X(s)
(1− X(s)−Y(s)− Z(s))2 =

1
(1−U)2

[
x1 −

2ax1√
s + a

+
a2x1

(
√

s + a)2 +
y1√

s
− 2ay1√

s(
√

s + a)
+

a2y1√
s(
√

s + a)2

]

Y(s)
(1− X(s)−Y(s)− Z(s))2 =

1
(1−U)2

[
x2 −

2ax1√
s + a

+
a2x2

(
√

s + a)2 +
y2√

s
− 2ay2√

s(
√

s + a)
+

a2y2√
s(
√

s + a)2

]

Z(s)
(1− X(s)−Y(s)− Z(s))2 =

1
(1−U)2

[
x3 −

2ax3√
s + a

+
a2x3

(
√

s + a)2 +
y3√

s
− 2ay3√

s(
√

s + a)
+

a2y3√
s(
√

s + a)2

]
.
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Using the inverse Laplace transforms,

L−1
[

1√
s + a

]
=

1√
πt
− a exp(a2t)Erfc(a

√
t),

L−1
[

1
(
√

s + a)2

]
= −2a

√
t
π

+ (1 + 2a2t) exp(a2t)Erfc(a
√

t),

L−1
[

1√
s

]
=

1√
πt

, L−1
[

1√
s(
√

s + a)

]
= exp(a2t)Erfc(a

√
t),

L−1
[

1√
s(
√

s + a)2

]
= 2a

√
t
π
− 2at exp(a2t)Erfc(a

√
t),

we find the reflection and transmission operators in the time domain:

R(t) = r(t) + R̃(t),

where

r(t) =
1 + U
1−U

δ(t) +
2a

1−U

[
− 1√

πt
+ a exp(a2t)Erfc(a

√
t)
]

,

and

R̃(t) =
4

(1−U)2 [x1G1(t, 2L) + x2G2(t, 2L) + x3G3(t, 2L)]

+
4

(1−U)2 [P1(t) ∗ G1(t, 2L) + P2(t) ∗ G2(t, 2L) + P3(t) ∗ G3(t, 2L)]. (A17)

T(t) = − 4
(1−U)2 [x1G1(t, L) + x2G2(t, L) + x3G3(t, L)]

− 4
(1−U)2 [P1(t) ∗ G1(t, L) + P2(t) ∗ G2(t, L) + P3(t) ∗ G3(t, L)], (A18)

with

Pi(t) =
yi − 2ax√

πt
+ 2a2(yi − axi)

√
t
π

+
[

a2xi(3 + 2a2t)− 2ayi(1 + a2t)
]

exp(a2t)Erfc(a
√

t), i = 1, 2, 3, (A19)

and

Gi(t, L) = L−1
[

exp
(
−jL

√
λ1(s)

)]
, i = 1, 2, 3, j = 1, 2. (A20)

Appendix D. Green Functions of Longitudinal and Transverse Waves

The following relations are used for the Green functions Gi(t, K) of the porous material
for the fast wave (i = 1), the slow (i = 2), and the rotational (i = 3) waves.

e−K
√

λi(s) = e −k
√

Ci

√
s2 + bis

√
s + eis

bi =
Di
Ci

, ei =
Gi
Ci

,4i = (b2
i − 4ei)

Gi(t, K) = L−1(e−K
√

λi(z)) = 0 if 0 ≤ t ≤ K ≤ √ci

= Ξi(t) +4i
∫ t−k

√
ci

0 hi(t, ζ)dζ if t ≥ K ≥ √ci, i = 1, 2, 3 with
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Ξi(t) =
bi

4
√

π

K
√

Ci

(t− K
√

Ci)2/3 exp

(
−

b2
i K2Ci

16(t− K
√

Ci

)
,

where hi(τ, ζ) has the following form,

hi(τ, ζ) = − 1
4π3/2

1√
(τ − ζ)2 − K2ci

1
ζ3/2

∫ 1

−1
exp

(
−Xi(µ, τ, ζ)

2

)
× (Xi(µ, τ, ζ)− 1)

× µdµ√
1− µ2

a

and where

Xi(µ, τ, ζ) =

(
4iµ

√
(τ − ζ)2 − K2Ci + bi(τ − ζ)2

)2
/8ζ.
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