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Abstract9

The monitoring of flood and wetland dynamics at global scale is hampered by several limitations, including10

a reduced data availability in tropical areas due to the presence of clouds affecting visible and infrared imagery,11

or low spatial and/or temporal resolutions affecting passive and active microwave Earth Observation (EO) data.12

As a consequence, surface water extent estimates and their temporal variations remain challenging especially13

in equatorial river basins. Global Navigation Satellite System Reflectometry (GNSS-R) L-band signals recorded14

onboard Cyclone GNSS (CYGNSS) mission, composed of 8 Low Elevation Orbit (LEO) satellites, provide infor-15

mation on surface properties at high temporal resolution from 2017 up to now. CYGNSS bistatic observations16

were analyzed for detecting permanent water and seasonal floodplains over the full coverage of the mission,17

from 40°S to 40°N. We computed CYGNSS reflectivity associated to the coherent component of the received18

power, that was gridded at 0.1° spatial resolution with a 7-day time sampling afterwards. Several statistical19

metrics were derived from CYGNSS reflectivity, including the weighted mean and standard deviation, the me-20

dian and the 90th percentile (respectively Γmean, Γstd, Γmedian and Γ90%) in each pixel. These parameters were21

clustered using the K-means algorithm with an implementation of the Dynamic TimeWarping (DTW) similarity22

measure. They were compared to static inundation maps, and to dynamic estimations of surface water extent23

both at the global and regional scales, using the Global Inundation Extent from Multi-Satellites (GIEMS) and24

MODIS-based products. The difference between Γ90% and Γmedian shows the best sensitivity to the presence25

of water. The river streams and lakes are correctly detected, and a strong seasonality is identified in CYGNSS26

reflectivity over the largest floodplains, with the exception of the Cuvette Centrale of Congo which is covered27

by dense vegetation. This seasonal reflectivity signal correlates well with inundation maps: Pearson’s corre-28

lation coefficient between Γmedian and surface water extent from both GIEMS and MODIS is over 0.8 in the29

largest floodplains. The spatial patterns of reflectivity are consistent with static inundation maps: at the time30

of maximum flooding extent, a spatial correlation coefficient around 0.75 with Γmedian is obtained for several31

basins. We also evaluated the dependence of CYGNSS-derived clusters and reflectivity on the dominant land32

cover type and on the density of Above Groud Biomass (AGB) in the pixel. On the one hand, misclassifications33

of flooded pixels were observed over vegetated regions, probably due to uncertainties related to the attenuation34

by the vegetation in both CYGNSS and reference datasets. On the other hand, flooded pixels with a mean AGB35
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up to ∼300 Mg/ha were correctly detected with the clustering. High reflectivity values are also observed over36

rocky soils in arid regions and create false alarms. Finally, strong winds on large lakes cause surface roughness,37

and lower reflectivity values are observed in this case which weaken the detection of open water. While these38

constraints are to be taken in account and corrected in a future model, a pan-tropical mapping of surface water39

extent dynamics using CYGNSS can be envisaged.40

Keywords: GNSS-Reflectometry, CYGNSS, coherent reflectivity, flood dynamics, surface water extent41

1. Introduction42

Wetland ecosystems and floodplains play a key role for the management of water and natural resources43

and for climate change, although they cover only 8% of the land surfaces (Davidson et al., 2018). They temper44

the water cycles through the regulation of river discharges and the mitigation of floods (Bullock & Acreman,45

2003; Acreman & Holden, 2013). They are particularly sensitive to climate change, while contributing a lot to46

the world’s greenhouse gases emissions through the global biogeochemical cycles. According to estimations in47

the literature, wetlands are the source of 20-25% of the world’s methane emissions (Bartlett & Harriss, 1993;48

Whalen, 2005; Bergamaschi et al., 2007; Bloom et al., 2010; Ringeval et al., 2010; Melton et al., 2013; Nisbet49

et al., 2014; Saunois et al., 2020), and they store 16 to 33% of the soil carbon pool (Maltby & Immirzi, 1993; Page50

et al., 2011; Mitsch et al., 2013). Beyond the natural biogeochemical cycles, the anthropogenic activity strongly51

impacts wetlands, and exerts feedback loops along with climate change through the variations of the carbon52

stocks and methane emissions. Moreover, wetlands are known to be major reserves of biodiversity (Mitra et al.,53

2005; Junk et al., 2006; Webb et al., 2010). The temporal and spatial variations in inundation extent also affect54

the propagation of infectious diseases (Kouadio et al., 2012; Suk et al., 2020). All these effects affect the millions55

of people living worldwide in wetlands and relying on a healthy wetland ecosystem (Maltby & Acreman, 2011).56

Besides, unprecented floods and droughts increase the vulnerability in many regions of the world in spite of57

the improvement of risk management policies (Kreibich et al., 2022). For these aforementioned factors, a better58

monitoring from regional to global scales of the flood extent and dynamics is needed.59

Inundation mapping usually depends on remote sensing due to the lack of in-situ data and the difficulties to60

perform measurements in remote regions. Long time-series of inundation extent at 30 m spatial resolution were61

obtained with the processing of Landsat multispectral images (Pekel et al., 2016), but at the expense of a low62

temporal resolution. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument was also used63

to produce a delineation of flooded area with a 8-day temporal resolution, but with a lower spatial resolution64

from 250 m to 1 km (Chen et al., 2013; Di Vittorio & Georgakakos, 2018). Nevertheless, while these products65

provide reliable information on open water bodies, they suffer from limitations due to the presence of clouds in66

equatorial areas, and are unable to detect water under dense canopies such as the inundated forests present in67

the Amazon and the Congo basins.68

Microwave remote sensing is less affected by these limitations in both passive and active domains. The69
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presence of freshwater is responsible for: i) a decrease in the brightness temperature, in passive mode, affecting70

more sensibly the horizontal than the vertical polarization (Choudhury, 1991; Sippel et al., 1994; Prigent et al.,71

2001), ii) in active mode, low backscattering over open water and high backscattering in presence of water under72

vegetation owing to the double-bounce effect for side-looking radar such as Synthetic Aperture Radar (SAR)73

(Richards et al., 1987), and iii) also in active mode, high backscattering over open water and wetlands for nadir-74

looking radar altimeters (Frappart et al., 2021), except over large lakes where surface roughness (e.g. waves75

on windy days) can cause a strong scattering. L-band in particular is able to penetrate deeper the vegetation76

cover than the higher frequency microwave bands. It allows the detection of water under the vegetation even77

in equatorial basins, in both passive (Parrens et al., 2017) and active (Hess et al., 2003; Betbeder et al., 2014)78

domains. Nevertheless, major drawbacks limit the use of microwave observations for flood monitoring. First,79

passive microwave observations have a coarse spatial resolution, generally lower than 25 km, which limits their80

use for flood monitoring in spite of their quasi-daily temporal repeat. For example, the Soil Moisture and Ocean81

Salinity (SMOS, Kerr et al. (2001)) and the Soil Moisture Active Passive (SMAP, Entekhabi et al. (2010)) missions82

measure the brightness temperatures at L-band, with a nominal spatial resolution of several tens of kilometers83

and a revisit period of 2-3 days. Then, the use of Synthetic Aperture Radar (SAR) active microwave images was84

also limited by a low temporal sampling before the launch of Sentinel-1, the difficulty to identify the signature85

of water in complex environments, and the limited availability of L-band images at global scale. Finally, the use86

of radar altimetry for flood mapping is limited by its acquisition mode along the satellite tracks that does not87

offer a global coverage of land surfaces and by its low temporal resolutions ranging from 10 to 35 days. As a88

consequence, most of the studies were limited to regional mapping of the flood dynamics (Hamilton et al., 2004;89

Kuenzer et al., 2013; Parrens et al., 2017). The combination ofmulti-satellite information allows to overcome some90

of these limitations. The Global Inundation Extent Multi-Satellite (GIEMS) product combines information from91

passive microwave, radar scatterometers, and visible / near-infrared images to account for vegetation effect in92

the flood detection. It has been providing a continuous monitoring of the wetland dynamics globally, at monthly93

time scale and ∼0.25° spatial resolution since 1992 (Prigent et al., 2007, 2020).94

Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R) onboard satellite platforms can be a95

great help to improve the spatial and temporal resolutions of wetlands dynamics mapping. It uses the L-band (f96

= 1.575GHz for L1) GNSS signals scattered by the Earth’s surface, and collected by a receiver as amultistaticmea-97

surement technique (Martin-Neira, 1993; Zavorotny et al., 2014). In-situ and airborne GNSS-R measurements98

have shown sensitivity to various oceanic and land geophysical parameters (Ruffini et al., 2004; Cardellach et al.,99

2011; Egido et al., 2014). Over the last years, satellite missions carrying GNSS-R receivers have been launched100

and emerge as new tools for global applications.101

The UK TechDemoSat-1 (TDS-1) mission was a proof of concept of spaceborne GNSS-R measurements. It102

successfully allowed it to retrieve either oceanic parameters such as sea level and wind speed (Foti et al., 2015;103

Clarizia et al., 2016), or land geophysical parameters such as soil moisture and vegetation (Camps et al., 2016;104
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Chew et al., 2016). It was followed by the launch of the NASA Cyclone GNSS (CYGNSS) mission, whose 8 Low105

EarthOrbit (LEO)micro-satellites are designed tomonitor the formation of tropical cyclones throughwind speed106

retrieval (Ruf et al., 2016). CYGNSS observations are also collected over land over the pan-tropical area (±38°107

latitude). The design of the mission suits the study of land parameters with a fine spatiotemporal resolution, as108

each of the 8 satellites records simultaneously 4 observations at a sampling rate of 1 Hz (2 Hz after July 2019).109

CYGNSS observations are sensitive to the properties of the reflecting surface, including surface roughness, soil110

moisture (SM), vegetation water content (VWC) and biomass density (Carreno-Luengo et al., 2019). One of the111

major applications over land of this dataset is soil moisture retrieval with a good accuracy (Root Mean Square112

Error ranging from 0.04 to 0.07 cm3/cm3) (Chew & Small, 2018; Kim & Lakshmi, 2018; Al-Khaldi et al., 2019;113

Clarizia et al., 2019; Eroglu et al., 2019; Senyurek et al., 2020). It has also been demonstrated that CYGNSS114

can be used to increase both the spatial and temporal sampling of existing SM products derived from passive115

microwave sensors (e.g., SMAP, SMOS), that suffer from a lower spatiotemporal resolution (Yan et al., 2020).116

CYGNSS reflectivity, based on the Delay Doppler Map (DDM) Peak power and metadata used for the cal-117

ibration of the signal, was also used for identifying flood signatures in the spaceborne GNSS-R observations.118

In particular, the reflectivity maps show the changes in inundation extent following hurricanes, typhoons or119

extreme rain events (Chew et al., 2018; Morris et al., 2019; Wan et al., 2019; Ghasemigoudarzi et al., 2020; Ra-120

jabi et al., 2020). The methodologies mostly consist in an empirical thresholding of the CYGNSS reflectivity121

or Signal-to-Noise Ratio (SNR), except Ghasemigoudarzi et al. (2020) which used the Random Under-Sampling122

Boosted (RUSBoost) classification algorithm to identify flooded and non-flooded CYGNSS data. Gerlein-Safdi123

& Ruf (2019) used CYGNSS to produce annual water masks in the Congo basin, with a 0.1° spatial resolution,124

using a spatial comparison of one pixel’s value with its neighbors and the random walker segmentation method.125

Then, Gerlein-Safdi et al. (2021) used the same approach temporally, for comparing the monthly mean of a pixel126

with the average value of its time series. They produced monthly water masks at 0.01° spatial resolution over the127

Pantanal and Sudd wetlands. Finally, Jensen et al. (2018) studied the relationship between CYGNSS reflectivity,128

floods and vegetation in tropical wetlands in the hydrographic basin of the Amazon. Based on this analysis,129

Rodriguez-Alvarez et al. (2019) classified the open water and flooded vegetation over the same study area. Note130

that all these studies were performed at the regional scale. At larger scale, CYGNSS reflectivity and coherence131

over flooded areas vary temporally and spatially due to vegetation cover, due to the changes in roughness af-132

fecting soil and water surfaces (Chew & Small, 2020), and to the bistatic geometry of the acquisition Loria et al.133

(2020).134

Recent improvements have been made in the detection of surface water using several indicators of the co-135

herence of CYGNSS observations. In particular, the raw Intermediate Frequency (IF) data occasionally collected136

were analyzed in several studies (Li et al., 2021, 2022a; Collett et al., 2022). They are unprocessed signal samples137

which contain phase information at a high sampling rate, before the incoherent averaging at 1-2 Hz used to138

derive Level-1 DDM products. Li et al. (2021) calculated the complex DDM and derived a coherent coefficient139
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(CoC) for BeiDou-3 raw IF. They found that a high CoC is highly linked with the presence of water bodies.140

Li et al. (2022a) proposed a multi-GNSS complex waveform product with a high sampling rate (1000 Hz), that141

enables the detection of surface water at ∼100 m spatial resolution along the reflection track. And Collett et al.142

(2022) showed that the coherence of CYGNSS raw IF samples highly relies on the standing surface water, and143

if no water body is found in the footprint, coherence is found for saturated soils (SM ≥ 0.45cm3/cm3) with144

low large-scale roughness. An entropy-based metric was also proposed by Russo et al. (2022) to characterize the145

coherence of CYGNSS raw IF. It was very sensitive to open water and floods in forested areas along Yucatan146

Lake and the Mississippi River (Chapman et al., 2022). An operational and continuous generation of raw IF data147

at different frequencies and polarizations is planned for the future European Space Agency (ESA) GNSS-R mis-148

sion, HydroGNSS, of which the detection of surface water is one of the main science objectives (Unwin et al.,149

2021). But currently, the availability of raw IF data is low compared to CYGNSS Level-1 data, and they are more150

an object of investigation rather than an operational solution for the monitoring of flood dynamics. For this151

reason, Al-Khaldi et al. (2021b) gave an estimation of the coherence based on the shape of CYGNSS Level-1152

DDM. Some pan-tropical water masks were further proposed in Al-Khaldi et al. (2021a) using the aggregation of153

CYGNSS observations with varying spatio-temporal resolution: 1 km/1 year, 3 km/3 months, and 6 km/2 weeks.154

At 1-km spatial resolution, the mask is annual at best but the permanent water bodies are well delineated, in-155

cluding small tributaries of the Amazon and Congo rivers. On the contrary, lower spatial resolution allows a156

much higher temporal sampling and the detection of flood events.157

In this study, we focus on CYGNSS reflectivity to map flood dynamics with a 0.1° spatial resolution and158

a 7-day temporal resolution. The CYGNSS reflectivity time series are classified using a K-means clustering159

technique with Dynamic Time Warping (DTW) similarity measurement (Müller, 2007), to delineate the flooded160

areas. Results are compared to reference static and dynamic maps of inundations at global and regional scales,161

among other ancillary datasets. Section 2 presents the datasets, Section 3 the methodology of this study, while162

Section 4 and Section 5 show the results and a discussion about the main conclusions of this paper.163

2. CYGNSS and reference datasets164

2.1. CYGNSS165

The CYGNSS mission is composed of 8 LEO micro-satellites covering the pan-tropical area (±38° latitude).166

Each satellite carries onboard a Delay Doppler Mapping Instrument (DDMI), which is composed of a GPS re-167

ceiver, nadir-looking antennas for collecting GNSS signals, and a zenith-looking antenna for geolocation pur-168

pose. The DDMI records simultaneously 4 reflected signals integrated over a second (0.5 s after July, 2019), so169

the CYGNSS mission provides 32 (64, respectively) observations per second in the area of coverage.The temporal170

sampling is high, with a median and mean revisit time over a 25 km pixel of 3 hours and 7 hours, respectively171

(Ruf et al., 2016). With higher spatial resolution, the revisit time increases. Still, substantial improvements in172

terms of temporal resolution are expected using CYGNSS when compared to monostatic radars.173
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Due to the bistatic configuration of the measurements between an emitting Global Positioning System (GPS)174

satellite and a receiving CYGNSS observatory, the sampling of CYGNSS observations over the Earth’s surface is175

pseudo-random. The L-band signals (f = 1.575 GHz for GPS L1) are emitted by GNSS satellites and received by176

each of the 8 CYGNSS micro-satellites, with an incidence angle ranging from 0° to ∼70° and following a Gaus-177

sian distribution centered on ∼30°. Over the ocean, the reflected GPS signals are dominated by the incoherent178

component due to an important surface roughness. The spatial resolution is there degraded and wind speed can179

be estimated with a 25 km spatial resolution and a sub-daily mean revisit time (Clarizia & Ruf, 2016). However,180

the reflected signals over land can be dominated by the coherent component, in case of the presence of water181

bodies or areas characterized by a high surface moisture content in the glistening zone, with low surface rough-182

ness at the scale of the GPS L1 wavelength (19.03 cm). The spatial resolution depends, in that case, on the size183

of the first Fresnel zone which is larger than ∼0.6 km × 0.6 km (the minimum area in the case of a 0° incidence184

angle) (Eroglu et al., 2019; Rodriguez-Alvarez et al., 2019). The finest theoretical spatial resolution for a CYGNSS185

observation over flooded regions is therefore∼0.6 km× 6.6 km, with an elongation effect due to the integration186

of the reflected signals over 1 second (0.5 s, respectively) for observations before (after) July, 2019. Yet, CYGNSS187

observations are sensitive to the presence of a small fraction of water in the glistening zone, whose contribution188

dominates the total response of the reflecting surface. The maps of reflectivity over river basins, such as the189

Amazon, show a strong scattering over small tributaries, down to a few hundred meters.190

The CYGNSS observables used in this study come from CYGNSS Level 1 science data record files (CYGNSS,191

2020). They contain the 17x11 Delay Doppler Maps (DDMs) of raw bins and analog scattered power, along192

with all the parameters used for data processing, i.e. the geometry of the acquisition and data flags. We used193

the version 3.0 of L1 data over one year, from August 1st, 2018 to July 31st, 2019. The observations before194

July, 2019 are sampled at 1 Hz (2 Hz after), so we assume a ∼0.6 km × 6.6 km spatial resolution although the195

along-track resolution is twice higher for the last month of data. The daily files (one for each CYGNSS satel-196

lite) are distributed in the Physical Oceanography Distributed Active Archive Center (PODAAC: https://podaac-197

opendap.jpl.nasa.gov/opendap/hyrax/allData/cygnss/L1/v3.0/). The CYGNSS DDM of scattered analog power198

are used in this study, along with quality flags and metadata from the L1 files. The description of the prepro-199

cessing and analysis of CYGNSS dataset can be found in Section 3 (methodology).200

2.2. Other sources of data201

Other data sources were used to analyze and validate the results presented below. They consist in static and202

dynamic inundation maps available at regional and global scales, land cover thematic map and Above Ground203

Biomass (AGB).204

2.2.1. Static inundation maps205

Two different datasets were considered for a delineation of flooded areas: the Level 3 Global Lakes and206

Wetlands Database (GLWD-3) at 30” resolution (Lehner & Döll, 2004), and the wetlands maps at 15” ( 500 m207

6



at the Equator) from Tootchi et al. (2019). Note that these two datasets do not provide any temporal variations208

and are thus static. After some analyzes, the latter was selected because it provides maps of both the Regularly209

Flooded Wetlands (RFWs, overlapping open water with several inundation datasets) and the Composite Water210

(CWs) which associates RFWs with Groundwater modelling (GDWs). It is of interest to compare RFWs to CWs211

maps, because CYGNSS may be sensitive to the groundwater-driven wetlands that represent a considerable212

source of floods. The CW-WTD product is used as it provides both RFWs areas, and a groundwater wetlands213

map derived from a direct water table depth (WTD) modeling (Fan et al., 2013).214

The RFWs in Tootchi et al. (2019) were derived merging 3 inundation datasets, namely the open water and215

flooded areas extracted from the ESA-CCI Land Cover (see Section 2.2.3), the mean annual maximum water216

extent from GIEMS-D15 (Fluet-Chouinard et al., 2015), and the maximum surface water from the Joint Research217

Center (JRC) product (Pekel et al., 2016). It assumes that every single product has observation gaps and should be218

complemented by the use of other ones. It is particularly the case between the high-resolution JRC maps based219

on Landsat, and GIEMS-D15 which downscales the coarse 0.25° estimations from GIEMS at 15" resolution. The220

JRC product is unable to detect water under dense vegetation cover, while GIEMS-D15 is able to detect the221

floods in tropical or boreal forests. However, GIEMS-D15 is dominant when compared to other products. It222

represents 55% of the total RFWs areas, and only 10% of its extent is confirmed by either CCI land cover or JRC223

surface water. As a consequence, the uncertainties of GIEMS are directly propagated in the RFWs dataset. In224

particular, a recurrent overestimation of Surface Water Extent (SWE) in GIEMS has been found in the Ganges225

irrigated paddy fields, in the Sahel wetlands, and in coastal areas, due to a confusion between the signals from226

surface water and wet soils. Also, as the original spatial resolution of GIEMS is 0.25°, the sensitivity to small227

river streams in several regions, including the Amazon and Congo basins, is found to be low in both GIEMS-D15228

and Tootchi’s RFWs dataset.229

2.2.2. Dynamic inundation maps230

Few global products exist that provide temporal variations of inundation extent at the global scale. To com-231

pare with CYGNSS data, we used the Global Inundation Extent fromMulti-Satellite version 2 (GIEMS-2) dataset232

(Prigent et al., 2020). It contains a global estimation of monthly flooded area in a 0.25° grid since 1992. In this233

study, we have used the new global maps for years 2018 and 2019, matching the times of our CYGNSS dataset.234

A more precise comparison is performed regionally between CYGNSS observables and multispectral-based235

flood maps derived from the gridded atmospherically corrected surface reflectances from MODIS, acquired in236

seven spectral bands from visible/ near infrared (NIR) to shortwave infrared (SWIR). The surface reflectances237

contained in the MOD09A1 product (8-day binned level 3, version 6) have a spatial resolution of 500 m and238

a temporal resolution of 8 days. Flood extent maps were generated using the threshold method proposed in239

Frappart et al. (2018) and Normandin et al. (2018). It is a simplified version of the multi-threshold approach240

developed by Sakamoto et al. (2007). In this approach, a MODIS pixel is considered fully or partially covered241

with water if: i) the value of its Enhanced Vegetation Index (EVI) (Huete et al., 1997) is lower or equal to 0.05242
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and the value of its land surface water index (LSWI) (Xiao et al., 2005) is negative or equal to zero, or ii) its EVI243

value is lower than 0.3 and the difference between EVI and LSWI is lower than 0.05. This method was used to244

produce inundation maps in the Lower Mekong Basin (LMB) in Asia, the Inner Niger Delta (IND) in Africa, and245

La Plata basin in South America during the study period.246

2.2.3. CCI Land Cover247

The characteristics of CYGNSS reflectivity highly rely on the type of Land Cover (LC) present in the glisten-248

ing zone (Carreno-Luengo et al., 2019; Chew & Small, 2020). To analyze the capability of CYGNSS to provide249

reliable information on the presence of water over land depending on the LC type, we used global LC maps from250

the European Space Agency’s (ESA) Climate Change Initiative (CCI) at 300 m resolution (ESA (2017), available251

at https://www.esa-landcover-cci.org/). These maps are obtained from 1992 to 2015 using various imagery data,252

including the Medium Resolution Imaging Spectrometer (MERIS) and Project for On-Board Autonomy – Veg-253

etation (PROBA-V), and applying the GlobCover unsupervised classifier (Defourny et al., 2007). More recent254

maps have been produced and validated by the Copernicus Climate Change Service (C3S), so we used the 2019255

map which corresponds the best to our CYGNSS time series. Additionally, we aggregated the initial 38 LC types256

defined following the United Nations Land Cover Classification System (UN-LCCS) (Di Gregorio, 2016) into 10257

general land cover classes, which is summarized in Table 1. Croplands, forests and herbaceous are separated258

into dry and flooded regions to study the changes in CYGNSS reflectivity associated to the presence of water.259

Table 1: List of the 10 aggregated land cover classes, and the associated class numbers in the CCI LC classification system.

Class numbering Class name CCI Land Cover classes associated
LC1 Open water 210
LC2 Cropland non irrigated 10, 11, 12, 30
LC3 Cropland irrigated 20
LC4 Non flooded forest 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90
LC5 Flooded forest 160, 170
LC6 Dry shrubs, herbaceous 40, 100, 110, 120, 121, 122, 130
LC7 Flooded shrubs, herbaceous 180
LC8 Bare soils 140, 150, 151, 152, 153, 200, 201, 202
LC9 Snow, ice 220
LC10 Urban 190

2.2.4. Above Ground Biomass260

Dense vegetation layers can attenuate and even extinct the coherent component of GNSS-R signals (Loria261

et al., 2020), and the corresponding decrease of CYGNSS reflectivity was also modeled with respect to the Above262

Ground Biomass (AGB) of the reflecting surface (Carreno-Luengo et al., 2020). We therefore analysed the distri-263

bution of areas detected as flooded and non-flooded using CYGNSS reflectivity, depending on the mean Above264

Ground Biomass (AGB) in the pixel. We used the global GlobBiomass AGB maps (Santoro, 2018) which are265

given at 1 ha (approximately 3.2 arcsec) spatial resolution for the reference year 2010. It was derived from a set266

of observations including the L-band backscatter from ALOS-PALSAR and multiple C-band observations from267

Advanced Synthetic Aperture Radar (ASAR) onboard Envisat, with lidar-based metrics from Ice Cloud and Land268
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Elevation Satellite (ICESat), and Landsat reflectances at several bands (Santoro et al., 2021). The study inde-269

pendently estimated the Growing Stock Volume (GSV) for the backscatters of ALOS-PALSAR and ASAR, which270

are combined to obtain a more robust dataset and then invert AGB. The AGB maps reproduced well the known271

spatial patterns with high level of detail. Over the tropics, the comparison with a database of field measurements272

highlighted a systematic underestimation of AGB in the densest forests. This is due to the low dynamic range273

of backscatter observations over regions with AGB higher than 250 Mg/ha, and to the unavailability of ASAR274

GSV estimates which causes the AGB inversion to only rely on ALOS-PALSAR backscatter.275

2.2.5. Resampling of the ancillary datasets276

All the ancillary datasets have higher spatial resolutions than our 0.1° CYGNSS grid, ranging from ∼5100 m277

to 1 km at the equator. To compare with CYGNSS observables, these data were upscaled into a matching 0.1°278

grid. For CCI LC, the percentage of each LC class in every pixel was computed. The mean AGB was extracted279

from GlobBiomass 1 ha spatial resolution dataset. For static and dynamic inundation maps, we calculated the280

open water and flood extent as a percentage of the pixel surface. A notable exception is GIEMS-2, whose spatial281

resolution is 0.25°. To compare at the global scale GIEMS vs CYGNSS, we also computed CYGNSS-derived282

parameters at 0.25° spatial resolution.283

2.2.6. Water levels in 2018-2019284

We have used water levels derived from radar altimetry as a proxy to estimate the severity of floods in285

the different river basins further analyzed, during the time span of our study (August 2018 - July 2019). We286

downloaded the time series of water levels from the Hydroweb database (Crétaux et al., 2011; Hydroweb) at287

several specific locations which are described in the caption of Table 2. We extracted the yearly maximal water288

heights since 2016 (launch of Sentinel-3A). We then computed the anomaly of 2018-2019 peak water height289

compared to the average annual maximum, which are listed in Table 2. The relative anomaly represents the290

anomaly normalized by the average amplitude of seasonal variations, and is also shown. We notice high water291

levels in the Mekong River (2.96 m over the average, with a relative anomaly of 36.5%), and in South America:292

0.76 - 0.77 m for the Orinoco and Madeira rivers, with a relative anomaly of 11.1 - 11.5%. This could be due to293

a weak El Niño in 2018-2019 that may also have affected the Yangtze basin (not shown here). The Parana has294

a relative anomaly of 42.2% mainly due to a strong decrease of water heights and inundation extent after the295

severe droughts of the summer 2019, posterior to the time span of our study. For the other basins, the Congo,296

Ganges and Brahmaputra rivers show low negative anomalies of 0.19 m to 0.39 m (-2.3% to -14.3%), while the297

Niger shows a positive anomaly of 0.54 m (+7.2%), likely linked to high floods in the Inner Niger Delta. We298

can also mention the very long-lasting 2019 spring floods along the Mississippi River, that have already been299

analyzed in several CYGNSS-related studies (Li et al., 2021; Chapman et al., 2022).300
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Table 2: Anomalies of the 2018-2019 peak water height compare to the average yearly maximum, at the locations listed hereafter. The
Orinoco River, downstream the Llanos de Orinoco; the Amazon River close to its estuary, and the Madeira River (one of the biggest
tributaries of the Amazon), downstream the confluence between the Beni, Madre de Dios and Mamore rivers; the Parana River, after its
confluence with Rio Salado; the Congo River, after its confluence with the Ubangui; the Niger River, downstream the Inner Niger Delta
(IND); the Ganges and Brahmaputra rivers just before their confluence; and finally, the Mekong River at the outlet of Tonle Sap.

River Orinoco Amazon Madeira Parana Congo Niger Ganges Brahm. Mekong
Peak anomaly (m) 0.77 -0.03 0.76 1.24 -0.39 0.54 -0.19 -0.3 2.96
Rel. anomaly (%) 11.5 -0.4 11.1 42.2 -14.3 7.2 -2.3 -5.6 36.5

3. Methods301

3.1. Preprocessing of the CYGNSS dataset302

An overview of the processing chain of CYGNSS data developed in this study is presented in Figure 1. First,303

the peak of each CYGNSS DDM in the daily L1 files (see Section 2.1) is extracted and the entire 17x11 L1 DDM is304

removed, as a further processing would be very time-consuming. The CYGNSS overland flag is used to remove all305

reflections over the oceans, and some other quality flags are applied: S-band powered up, Large spacecraft attitude306

error, Black-body DDM, DDM is test pattern, Low confidence GPS EIRP estimate. This set of flags was used in307

previous studies to ensure a correct filtering with the removal of the least samples possible (Chew & Small, 2018;308

Eroglu et al., 2019). We also tried to apply more constraining masks using all the flags combined in the CYGNSS309

overall quality flag with the logical exception of the overland flag (Clarizia et al., 2019; Rodriguez-Alvarez et al.,310

2019). However, this latter approach removed amajor part of CYGNSS observations over land (Eroglu et al., 2019),311

and decreased the performance of land geophysical parameter retrieval with a high spatiotemporal resolution.312

The CYGNSS L1 algorithms performed an estimation of the specular point location based on a mean sea sur-313

face model, which is close to the geoid (Gleason et al., 2019). This can affect the DDMs over land as topography314

is not taken into account. Before the end of 2017, data collected over 600 m were of poor quality, which lead315

several authors to apply an elevation cutoff (Eroglu et al., 2019; Rodriguez-Alvarez et al., 2019; Yan et al., 2020).316

Further versions of the L1 calibration procedures for land reflections include the topography to estimate more317

accurately the specular point location (Gleason et al., 2020). For the time span of our study, CYGNSS DDM are318

of good quality over a large variety of terrains and elevation ranges, including almost all the wetlands and water319

bodies in CYGNSS coverage. Notable exceptions are the Tibetan plateau in the Himalayas, and the Altiplano320

in South America (Gleason et al., 2020). Still, the position of the peak power in CYGNSS DDMs is sometimes321

shifted due to several factors, including the topography around the specular point. In this study, we filtered the322

observations when the peak of the 17x11 DDM is located in the three first and last delay rows as previously323

reported (Yan et al., 2020). This corresponds to a quality control affecting a small part (∼4%) of the full dataset.324

3.2. CYGNSS reflectivity325

The computation of the reflectivity is mostly preferred to the use of the Signal-to-Noise Ratio (SNR) when326

analyzing CYGNSS data, as it combines information on the DDM peak power along with other CYGNSS meta-327

data useful for the calibration of the signal. The GNSS signals scattered by open water, floodplains and in general328

smooth land and ice surfaces are considered to be dominated by the coherent component (Carreno-Luengo et al.,329
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Figure 1: Overview of the processing chain for the analysis and the clustering of CYGNSS observations.

2019; Li et al., 2017; Rodriguez-Alvarez et al., 2019). The power ratio (PR) defined in Al-Khaldi et al. (2021a,b) also330

highlights high coherent returns with a low diffuse scattering over inland water bodies. In our study, CYGNSS331

reflectivity is hence determined using the coherent scattering equation (De Roo & Ulaby, 1994; Gleason et al.,332

2020):333

Γ(θ) =

(
4π

λ

)2
PDDM (Rr +Rt)

2

GrGtPt
(1)

where PDDM is the peak of the DDM analog power, Rr and Rt are the receiver and the transmitter ranges334

(distance from the receiver and the transmitter to the specular point), Gr is the receiver antenna gain, PtGt is335

the GPS Equivalent Isotopically Radiated Power (EIRP), and λ is the GPS L1 signal wavelength (i.e. λ = λL1 =336

0.1903 m). PDDM is computed using the 17 delay x 11 Doppler DDMs, while the other variables come from337

CYGNSS Level 1 metadata. In Equation (1), the reflectivity depends on the incidence angle (θ) of CYGNSS338

observations. In Figure 2, the curves of the mean reflectivity vs. θ are shown without correction (red curve), with339

a correction based on cos(θ) (in blue), and with a correction based on cos2(θ) (in green). With no correction,340

the reflectivity decreases while increasing the incidence angle. With the cos(θ) correction, the reflectivity is341

∼constant in all the incidence range, except for θ > 68° (these values are finally filtered out). With the latter342

correction in cos2(θ), the reflectivity increases exponentially with an increasing θ. These corrections based on343

cos(θ) or cos2(θ) are commonly used in correcting the influence of the incidence angle on SAR backscatter344

(Ulaby et al., 1982; Kellndorfer et al., 1998). As a consequence, the reflectivity corrected from the incidence angle345

Γ is:346

Γ = Γ(θ = 0°) =
Γ(θ)

cos(θ)
(2)
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Figure 2: Mean reflectivity vs. the incidence angle for CYGNSS observations without correction for θ, with a correction based on cos(θ),
and with a correction based on cos2(θ)

Once CYGNSS reflectivity was computed, these unevenly distributed values were gridded at 0.1° spatial347

resolution (∼11 km at the equator). Several tests were performed to evaluate the best compromise between348

spatial and temporal resolutions. For themapping of variables exhibiting a high temporal variability, such as SM,349

a daily time step is preferable and the best spatial resolution associated is 0.25°. For studying flood dynamics, we350

prefered to ensure a higher spatial resolution to reduce the confusion between flooded and non-flooded areas.351

With a 0.1° grid, a 7-day time sampling can be reached. This observation is consistent with Al-Khaldi et al.352

(2021a), who mapped CYGNSS PR at 2 weeks/6 km, 3 months/3 km or 1 year/1 km. Moreover, our grid is based353

on a maximum of 32 observations per second (1 Hz sampling of each CYGNSS track). For data after July 2019354

the sampling is 2 Hz, so the spatial resolution at weekly time scale could be improved. Finally, an alternative355

0.25° grid was also computed to compare CYGNSS reflectivity with the flooded extent from GIEMS-2.356

Due to the pseudo-random configuration of CYGNSS bistatic observations, somemissing values were present357

in most of the pixels at specific time steps. A 30-day moving window was applied during the gridding step to358

fill these gaps. Figure 3 shows that this process increased the average number of samples per pixel, while the359

orbits of CYGNSS satellites ensure more observations at the extreme latitudes, and fewer ones in the equatorial360

regions. A 30-day Gaussian window with a standard deviation σ = 7 days was used to weight the observations.361

The weighted mean and standard deviation values of reflectivity per pixel were calculated, which are further362

expressed asΓmean andΓstd in linear units. Other statistical parameters were used to describe the distribution of363

Figure 3: Number of observations per pixel in 7 days, from 2019-01-02 to 2019-01-08. (a) Count without the moving window, (b) count with
a moving window and 1-month Gaussian weighting
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Figure 4: Parameters derived from CYGNSS reflectivity over western and central Africa, with the Congo, Niger and Chad hydrographic
basins, at time step 2018-09-05. (a) Γmean, (b) Γstd, (c) ΓMAD , (d) Γmedian, (e) Γ90%, (f) Γ90%−50%

CYGNSS reflectivity values in each pixel: the median (Γmedian), the 90th percentile (Γ90%), the median absolute364

deviation (MAD, ΓMAD), and the difference between Γ90% and Γmedian (Γ90%−50% = Γ90% − Γmedian). They365

were extracted at each time step of the 0.1° grid.366

A subset of these variables is shown in Figure 4 over western and central Africa, including a major part of367

the Congo, Chad and Niger basins, for the first week of September when the Sahel region is affected by floods.368

The reflectivity derived from CYGNSS observations is usually high over flooded regions and rivers, which are369

smooth reflecting surfaces. All the observables show high values over large wetlands, such as the Inner Niger370

Delta (IND) and the floodplains around Lake Chad. Over smaller water bodies, the 0.1° pixels are composed of371

a fraction of water with non-inundated areas dominating around. As a consequence, Γmedian is low as it comes372

from an observation over soils non-covered with water, while Γ90% corresponds to the highest reflectivity values373

associated to water bodies. For this reason, the detection of rivers is lower using Γmedian and ΓMAD than with374

other variables, as it is observed along the streams of the Congo and Niger rivers and their tributaries. The375

interest of Γmedian and ΓMAD is their robustness to noise, when compared to Γmean and Γstd, respectively.376

Finally, the Γ90%−50% parameter is relevant, because it discriminates well the river streams (high Γ90% and low377

Γmedian), the large water bodies and floodplains (high Γ90% and high Γmedian), and the non-flooded areas (low378

Γ90% and low Γmedian).379

Themaps of Γ90% and Γ90%−50% in the full coverage of CYGNSSmission are shown in Figure 5. The Amazon,380

Parana, Congo and Niger Rivers and their tributaries, as well as other smaller streams in the pan-tropical area,381

are clearly delineated for both parameters. High reflectivity values are also obtained over the major floodplains382

in South America, Africa or Southeast Asia. Finally, a strong specular scattering is observed in the arid regions383

over bare soils, such as in the Sahara, the Arabian Peninsula, and Australia (see Section 5.4, discussion). Due384

to the homogeneity of the land cover in these areas, high values are obtained for both Γ90% and Γmedian. As a385

consequence, the difference Γ90%−50% is low, which improves the separation between water bodies, floodplains386
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Figure 5: Values at time step 2018-09-05 of CYGNSS-derived parameters: (a) Γ90%, (b) Γ90%−50%

and bare soils. For all the aforementioned factors, Γ90%−50% and Γ90% were used along with Γmedian for further387

analysis in this paper.388

3.3. Clustering389

We clustered the CYGNSS-derived parameters Γmean, Γstd, Γmedian, ΓMAD , Γ90% and Γ90%−50% using the390

unsupervised K-means technique (Macqueen, 1967). Starting from an initial set of centroids, it assigns all the391

points to the closest cluster center and then calculates the mean value of each cluster. This defines a new set392

of centroids, and the algorithm iterates until convergence. The K-means++ method is used to select the initial393

cluster centers, as it performs better and provides a good stability of the final solutions (Arthur & Vassilvitskii,394

2007). The first centroïd is chosen randomly at this step. Then, the other centroids are iteratively determined395

between all the dataset points, with a probability equal to the inverse distance between a point and the closest396

centroïd, the weights being adjusted every iteration. This ensures a stable distribution of the cluster centers that397

is representative of the dataset.398

In this study, we aim to detect inundated areas whatever their seasonality, with a time-series based approach.399

This is not possible using the K-means clustering with Euclidean distance, which makes the algorithm extremely400

sensitive to shifting and distortion in time. To overcome this limitation of the default K-means algorithm, we401

used the Dynamic Time Warping (DTW) similarity measure (Berndt & Clifford, 1994; Müller, 2007) which is402

implemented in the python package tslearn (Tavenard et al., 2020).403

Given two time series X = (x1, x2, . . . , xN ), N ∈ N and Y = (y1, y2, . . . , yM ),M ∈ N, the optimization404

problem associated with DTW is formulated as follow:405
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DTW (X,Y ) = minπ

√ ∑
(i,j)∈π

d(xi, yj) (3)

where π = [π0, π1, . . . , πK ] with πk = (ik, jk) is called a warping path, and d(·, ·) is a distance metric (by406

default the Euclidean distance is used). The warping path must satisfy the following conditions:407

(i) Boundary condition: π0 = (1, 1) and πK = (N,M)408

(ii) Monotonicity condition: ik ≤ ik+1 and jk ≤ jk+1,∀k ∈ [1,K − 1]409

(iii) Step size condition: ik+1 − ik ≤ 1 and jk+1 − jk ≤ 1,∀k ∈ [1,K − 1]410

The minimization of all the potential warping paths according to the distance metric d(·, ·) results in the411

optimal warping path, which is here expressed asDTW (X,Y ). The optimal warping path is computed between412

the K-means cluster centers and every pixel at each iteration of the algorithm, and permits a shift and a distortion413

in time between the time series. This makes the DTW similarity measure well suited for our study. When applied414

to the detection of inundations, it allows to identify similarities in flood patterns from distinct regions of the415

world, with differences in phase and intensity. One limitation in our case is the boundary condition (i), because416

we only use one year of CYGNSS data to detect floods with a yearly seasonal cycle. Thus, we implemented417

in our methodology a padding of the CYGNSS dataset over 3 consecutive years to limit the boundary effects.418

The evaluation of a 3 to 5-year dataset of CYGNSS observations would be optimal. However, the choice of a419

padding was driven by constraints on our computation capacities. It assumes a constant seasonality, which420

seems reasonable. The methodology could still be extended to the full 5-year dataset of CYGNSS in the future.421

The choice of an optimal number of centroids in the K-means algorithm can be discussed. Due to the impor-422

tant computational resources needed by the DTW similarity measure, we were not able to calculate any metric423

as the Calinski-Harabasz score (Calinski & Harabasz, 1974) and the Silhouette score (Rousseeuw, 1987) with424

this version of the algorithm. We finally adopted an empirical approach for the determination of the optimal425

number of clusters, and we tested our methodology with a number of classes ranging from 2 to 8. The results are426

evaluated graphically with the maps and time series of labelled pixels, and numerically with confusion matri-427

ces between CYGNSS clusters and flood reference classes based on Tootchi et al. (2019). We also evaluated the428

capability of each of the 6 CYGNSS-based parameters presented in Figure 4 to detect floods and water bodies,429

either individually or associated to each-other. The most interesting results are obtained using Γ90%−50%, which430

associates the information of Γmedian and Γ90% into a unique variable. We therefore only present the results431

based on this parameter, although all the configurations were evaluated.432

3.4. Sensitivity to the choice of initial centroids433

Although the use of K-means++ algorithm produced stabler results than a pure random selection of the434

initial centroids, some differences were observed between successive versions of the clustering. We computed435
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30 times the K-means++ / DTW algorithm with 4 clusters and the Γ90%−50% parameter (the best configuration,436

see Section 4), to perform a sensitivity analysis. We extracted the inertia (sum of distances of samples to their437

closest cluster centers) at each iteration. We also calculated the percentage of correspondence between the438

labelled pixels from every pair of distinct clustering results. If the correspondence reaches 100%, the two versions439

are exactly the same. Table 3 presents some statistical parameters for both the inertia and the correspondence,440

which are the mean, median, min, max and std values. As can be seen, the inertia covers a very low dynamic441

range from 0.1005 to 0.1055 with a standard deviation of 10−3, indicating that the algorithm converges toward442

similar solutions, whatever the choice of the initial centroids by the K-means++ method. The dynamic range443

of the correspondence is higher (∼ 80 − 99%), with a median value of 94.57% and a standard deviation of444

4.07%, respectively. The results are usually quite stable, in the range of 92%-99%, with the exception of few ones.445

Graphically, the different solutions found in 30 iterations also look very consistent.446

Table 3: Sensitivity of the clustering result to the choice of initial centroids by the K-means++ algorithm. We calculated the inertia of
each clustering, and the correspondence between every pair of distinct clustering results. We present here the mean, median, minimum,
maximum and standard deviation values of both parameters.

Result mean median min max std
Inertia 0.1027 0.1026 0.1005 0.1055 0.0010

Correspondence (%) 93.76 94.64 80.26 98.78 4.01

We finally achieved a second round of the K-means / DTW clustering, which was based on the results of447

the sensitivity analysis. There, the 4 initial centroids were obtained by averaging the cluster centers of the 30448

outputs obtained with K-means++ initialization. This step permits to obtain a robust classification that does not449

vary through the random choice of the initial centroïds, but is still based on unsupervised techniques. All the450

clustering results presented in the following section are computed that way.451

4. Results452

4.1. Clustering of CYGNSS reflectivity453

We clustered the CYGNSS Γ90%−50% parameter with a number of classes k ranging from 2 to 8, in order454

to empirically determine the optimal number of clusters. For all the configurations, we plotted the maps of455

labelled pixels and we calculated a confusion matrix between the CYGNSS clusters and a reference set of water456

and inundation classes derived from RFWs maps (Tootchi et al., 2019). The definition of the reference classes457

is detailed in Table 4. Open water is grouped into a single class with a threshold at 10% corresponding to the458

empirical breaking point of permanent water (class A) vs. dry land (class E). Other classes, i.e. high floods (class459

B, maximum surface water extent SWE≥ 80%), medium floods (class C, 40%≤ SW < 80%) and low floods (class460

D, 5% ≤ SW < 40%), correspond to different levels of maximum inundation extent per pixel.461

For a low number of clusters (i.e., k = 2 or k = 3), the clustering problem was highly simplified as the462

separation of flooded vs. dry areas, according to the average values of Γ90%−50% related to the intensity of463

inundation. The results with k = 4 are more interesting, as the additional cluster represents the pixels in464
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Table 4: Definition of the reference classes of open water and floods with the RFWs dataset (Tootchi et al., 2019).

Reference class Name / interpretation Open water % Seasonal water %
A Permanent water ≥ 10% -
B High floods < 10% ≥ 80%
C Medium floods < 10% ≥ 40% and < 80%
D Low floods < 10% ≥ 5% and < 40%
E Non flooded areas < 10% < 5%

floodplains with a strong seasonal cycle during the year. Finally, the results with k ≥ 5 show an increasing465

confusion between one or several clusters associated to both seasonal flood patterns and permanent water. The466

choice of k = 4 as the optimal configuration was based on both statistical outputs (confusion matrices), and467

graphical interpretation of the clustering results.468

We present the confusion matrix and the results of the clustering with Γ90%−50% and k = 4 in Table 5 and469

Figure 6, respectively. The output clusters are referred as C1, C2, C3 and C4 from the lowest to the highest470

average Γ90%−50% values. The map of labelled pixels is shown in Figure 6.a, while Figure 6.b-j represent the471

average time series of Γ90%−50% and Γ90% for the pixels classified in C3 and C4, over 9 large river basins.472

The cluster C4 (in blue in Figure 6) exhibits high values for both Γ90%−50% and Γ90% over the entire time473

series, associated to a seasonality in phase with variations of inundation extent. The pixels in C4 are located474

on lakes, river streams such as the Amazon, Parana, Niger and Congo Rivers, and also some large floodplains475

with permanent water or high SM throughout the year. This cluster represents only 4.4% of the total labelled476

pixels, but includes 58.8% of the reference class A (open water), 32.7% of class B (high floods) and 19.0% of class477

C (medium floods), according to the results in Table 5 (percentage values in red).478

Table 5: Confusion matrix between reference classes A to E defined in Table 4 and CYGNSS clusters C1-4 shown in Figure 6. For each cell in
the table, the proportion of pixels in this cell vs. the total number of pixels from the reference class (column Total) is shown in red, and the
proportion vs. the total number of pixels from the CYGNSS cluster (line All) is shown in blue. As an example, the box A / C1 contains 9.6%
of the total pixels in reference class A, and 0.2% of all the pixels in CYGNSS cluster C1.

C1 C2 C3 C4 Total
A 804 (9.6%, 0.2%) 650 (7.8%, 0.4%) 1993 (23.8%, 3.3%) 4911 (58.8%, 15.5%) 8358 (1.2%)
B 2150 (9.5%, 0.4%) 3861 (17.1%, 2.6%) 9150 (40.6%, 15.2%) 7353 (32.7%, 23.3%) 22514 (3.1%)
C 8037 (21.9%, 1.7%) 10620 (28.9%, 7.1%) 11121 (30.3%, 18.4%) 6980 (19.0%, 22.1%) 36758 (5.1%)
D 41226 (43.3%, 8.5%) 28782 (30.2%, 19.2%) 16963 (17.8%, 28.1%) 8211 (8.6%, 26.0%) 95182 (13.2%)
E 430066 (76.7%, 89.2%) 105628 (18.8%, 70.6%) 21092 (3.8%, 35.0%) 4160 (0.7%, 13.2%) 560946 (77.5%)
All 482283 (66.6%) 149541 (20.7%) 60319 (8.3%) 31615 (4.4%) 723758

Then, the cluster C3 in dark green shows variations from low to high values of Γ90%−50% and Γ90%, with479

a seasonal trend particularly visible in Γ90%. The pixels in C3 are located on the major floodplains in the pan-480

tropical area: the Llanos de Orinoco, Llanos de Mojos, Rio Branco, Pantanal and Parana floodplains in South481

America, the Inner Niger Delta (IND), Lake Chad and along the Nile in Africa, the Ganges-Brahmaputra, Indus,482

Irrawaddy, Yangtze and Mekong basins in Asia. The seasonality in C3 exhibits maximum values of Γ90%−50%483

and Γ90% during summer in the Orinoco (Figure 6.b), Niger (Figure 6.e), Lake Chad (Figure 6.f) and Ganges-484

Brahmaputra (Figure 6.h) basins, all located in the northern hemisphere. On the contrary, in the Amazon (Fig-485

ure 6.c, across the equator) and Parana (Figure 6.d, in the southern hemisphere) basins, the maximum values486
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Figure 6: Clustering of∆Γ = Γ90%−50% with 4 clusters. (a)Map of the labelled CYGNSS pixels using the K-means / DTW algorithm with
k = 4. (b-j) Average time series of Γ90%−50% and Γ90% for clusters C3 and C4 in 9 large river basins: (b)Orinoco, (c) Amazon, (d) Parana
/ La Plata, (e) Niger, (f) Lake Chad, (g) Congo, (h) Ganges-Brahmaputra, (i) Mekong, and (j) Yangtze. The boundaries of all the 9 basins
are superposed with the map of labelled clusters in (a), with the two first letters of the basin name allowing its identification.

in C3 for Γ90%−50% and Γ90% are obtained during spring. This validates the use of the DTW similarity mea-487

surement to cluster Γ90%−50% time series, for the extraction of flooded areas with distinct temporal cycles. For488

statistical results, C3 represents 8.3% of the total labelled pixels, and includes 23.8% of the reference class A,489

40.6% of class B, 30.3% of class C, and 17.8% of class D (low floods) according to Table 5 (values in red). If we490

merge the two clusters C3 and C4, their combination represent only 12.7% of the world pixels, but 82.6% and491

73.3% of the reference classes A and B, respectively. Thus, the identification of open water and flood signatures492

in CYGNSS reflectivity is highly reliable.493

The cluster C2 has medium values of Γ90%−50% (not shown) corresponding to either water bodies and pixels494

with a fraction of water but not totally flooded (28.9% and 30.2% of classes C and D, respectively), or non-flooded495

regions from the reference class E. In Figure 6.a, it is possible to locate C2 mainly over bare soils in arid regions496

such as the Sahara, the Arabian Peninsula and Australia. Finally, the cluster C1 is dominant (66.6% of the labelled497
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pixels), and is interpreted as non-flooded areas although it includes about 9.5% of the pixels from both reference498

classes A and B.499

In fact, some confusions are identified in the clustering despite a strong sensitivity to the presence of wa-500

ter. First, the pixels from reference class E which are theoretically non-inundated, represent 13.2% and 35.0%501

respectively (values in blue in Table 5) of the clusters C4 and C3, exhibiting the highest Γ90%−50% values. Then,502

the cluster C2 is a mix of pixels located over flooded and non-flooded regions. This is mainly due to a strong503

specular scattering over rocky bare soils (see the Section 5.4, discussion for more details). And lastly, while the504

open water and high floods (classes A and B) are well detected, it is not the case for the medium and low floods505

(classes C and D). They are associated to a mixing of wetlands and dry areas, and are quite equally divided into506

the 4 CYGNSS clusters. All these misclassifications can be related to: i) the influence of other factors such as507

the vegetation, SM, elevation, topography and small-scale roughness in the GNSS-R signals over land, ii) the508

heterogeneity of land cover and flood occurrence inside a CYGNSS pixel at 0.1° spatial resolution, and iii) errors509

in the definition of the reference classes, either due to the choice of our thresholds or to the high uncertainties510

associated to the RFWs product from Tootchi et al. (2019) itself (see Section 2.2.1 for more details).511

4.2. Comparison with ancillary datasets512

We have used CCI Land Cover maps and Tootchi’s RFWs dataset described in Section 2 to investigate how513

the land cover changes and the occurrence of water influence CYGNSS-derived clusters. In Figure 7, these514

parameters are analyzed over three complementary study areas: the northern part of South America, between515

20°S and 10°N, encompassing the Amazon, Orinoco, Tocantins and São Francisco river basins, as well as the516

Pantanal floodplains, the Titicaca and Poopó lakes (Figure 7.a1-5); Western and Central Africa around the gulf517

of Guinea, between 5°S and 20°N, including the Niger River Basin, Lake Chad and the Cuvette Centrale of518

Congo (Figure 7.b1-5); the Indian subcontinent including the Ganges-Brahmaputra and the Irrawaddy basins519

(Figure 7.c1-5). These regions include all types of land cover present in the pan-tropical area, e.g. equatorial520

forests, floodplains under canopy layers or with herbaceous covers, croplands irrigated or not, savannas, bare521

soils, high mountain ranges.522

There is a good correspondence between the DTW clusters C3 and C4 in Figure 7.a1-c1 corresponding to523

areas with high values of Γ90% and Γ90%−50%, and the reference map of water extent derived from Tootchi524

et al. (2019) in Figure 7.a2-c2. The delineation of permanent water bodies and in particular the streams of the525

Amazon, Congo and Niger Rivers as well as their tributaries is clear, mainly in cluster C4. The most extensive526

floodplains are also detected in C3 and C4. In South America, we identify the Llanos in the Northeast Orinoco527

Basin (around 7°N and 70°W), Llanos de Mojos in the Southwest Amazon Basin (15°S and 65°W), the Rio Branco528

floodplain in the northern Amazon Basin (0° and 63°W), and the Pantanal floodplains (18°S and 58°W). In Africa,529

the IND (15°N and 5°W) and the floodplains around Lake Chad (10°N and 15°E) are well detected, but the Cuvette530

Centrale of Congo (0° and 17°E) is not. In the Indian subcontinent, a strong seasonal signal is obtained andmainly531

associated to C3 over the irrigated croplands (land cover class LC3 in cyan) along the Ganges plain. The Ganges-532
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Figure 7: Comparison of CYGNSS-derived parameters with ancillary datasets over the northern part of South America (a1-3), Western and
Central Africa with the Gulf of Guinea (b1-3), and the Indian subcontinent (c1-3). (a1, b1, c1) CYGNSS clusters, (a2, b2, c2) Percentage
of water from Tootchi’s RFWs maps (Tootchi et al., 2019), (a3, b3, c3) CCI Land Cover with the 10 aggregated classes defined in Table 1

Brahmaputra delta, the Irrawaddy River and their tributaries are also well delineated. The interesting point is533

that CYGNSS reflectivity maps show a good ability for monitoring heavy seasonal floods, almost regardless of534

the LC types. Yet, the densest canopies cause a strong attenuation or a diffusion of the L-band signal. Over535

the Cuvette Centrale of Congo (bottom right in Figure 7.b1-3), we notice that CYGNSS likely underestimates536

the presence of floods nearby the streams of the Congo and Ubangi Rivers, if we refer to the RFWs dataset.537

Also, several lakes and wet areas in the Tibetan plateau in the upper right corner of Figure 7.c1-3 are not even538

detected using CYGNSS. The estimation of the specular point location is of poor confidence over the Tibetan539

plateau, which is about 5000 m high (Gleason et al., 2020), thus CYGNSS DDMs are not centered on the specular540

point and likely contain only thermal noise and diffuse scattering from surrounding areas.541

The same datasets are analyzed in Figure 8 but on smaller regions, with a focus on some significant water542

bodies. Figure 8.a1-5 is centered on Lake Titicaca (3812 m high), Figure 8.b1-5 on Lake Victoria (1133 m high),543

Figure 8.c1-5 on the LowerMekong Basin including Tonle Sap, the largest lake of south east Asia, and Figure 8.d1-544

5 on LakeChad (both at low elevation). Several indicationsmust be highlighted in Figure 8 . First, all water bodies545

are detected using CYGNSS, and mostly classified in C3 or C4 by the DTW clustering. These classes include a546

part of Lake Titicaca, Lake Poopó and the Salar de Uyuni located on the Altiplano at high elevation. Although547

the estimation of specular point location in this region has low confidence, a strong returned power is often548

observed with coherent reflection conditions. Then, it appears that the Tonle Sap and Lake Chad are classified549

in C4, while the surrounding floodplains are mostly classified in C3. This shows an example of the separation550

of permanent water vs. seasonal floods using CYGNSS. The Delta of Mekong mainly belongs to C4, likely due551
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Figure 8: Comparison of CYGNSS-derived parameters with ancillary datasets over small subsets centered on water bodies. (a1-3) Portion of
the Andes centered on Lake Titicaca, (b1-3) Lake Victoria, (c1-3) Delta of Mekong with the Tonle Sap, and (d1-3) Lake Chad and a portion
of Sahel. The same datasets are used than in Figure 7

to continuous flooding or wet conditions in the paddy fields (Kuenzer et al., 2013). Thirdly, in Lake Victoria and552

Lake Titicaca, a spatial heterogeneity is observed with higher reflectivity (associated to C3 and C4) observed553

closer to the banks. This is attributed to the effect of the winds on large lakes and was previously reported in554

the literature, especially over Lake Victoria (Al-Khaldi et al., 2021b). The roughness of water surfaces due to the555

wind waves can nullify the coherent scattering assumption, and lead to a decrease of surface reflectivity (Chew556

& Small, 2020).557

The CYGNSS reflectivity also depends on the dominant type of land cover inside a pixel. Figure 9 presents558

the distribution of CYGNSS clusters into the aggregated LC classes defined in Table 1, either as the total number559

of pixels (Figure 9.a) or the percentage (Figure 9.b) in each class. Only pixels with a dominant type of LC covering560

at least 80% of the pixel are considered to avoid an influence of LCmixing. First, we notice a strong dominance at561

the global scale of non-flooded LC types (bare soils, dry shrubs and herbaceous, non-flooded forests, croplands562

non irrigated), with fewer pixels affected by permanent or seasonal water. These dry classes are composed563

quasi-exclusively of the CYGNSS clusters C1 and C2, with the lowest reflectivity values, and include also a part564

of C3, with high seasonal variations of Γ90% and other CYGNSS-derived parameters. Then, we make several565

assessments over flooded areas. The flooded forests aremostly composed of C1 and C2, while the flooded shrubs566

and herbaceous are mainly composed of C3 and C4, with higher Γ90% and Γ90%−50% values and seasonality567

(Figure 6). In densely forested areas, the L-band reflected signals recorded by CYGNSS can be either strongly568

attenuated on their way to or from the reflecting surface, or scattered by the top of the canopy. In both cases, the569

ability of CYGNSS to detect inundations below the canopy is affected. The irrigated croplands, mainly located570
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Figure 9: Repartition of the CYGNSS clusters into the main Land Cover types (see Table 1 for the aggregation of CCI LC classes). (a)Number
of pixels from each cluster, (b) Percentage of pixels from each cluster.

in the paddy fields in Southeast Asia, are dominated by the pixels with a strong seasonal signal in C3. On the571

other hand, the croplands non-irrigated are dominated by the dry pixels in C1. Both also contribute in the572

cluster C2, highlighting a mixing between these two classes and some misclassifications in Table 5. Non-flooded573

croplands and herbaceous covers affected by large seasonal rainfall present high SM values, responsible for a574

high CYGNSS reflectivity. Finally, open water bodies are divided between low and high reflectivity clusters. This575

should be linked to: i) the attenuation or scattering of the signals in equatorial forests and the non-detection of576

small streams, and ii) lower returned signal power on large windy lakes as shown in Figure 8.577

4.3. Comparison against flood products at regional and global scales578

In this subsection, we analyze the correlations between CYGNSS-derived parameters and flood reference579

products. Because the spatial resolution of GIEMS is 0.25°, CYGNSS has also been gridded and clustered into580

an equivalent 0.25° grid for further analysis. We only present the results for Γmedian which show the best cor-581

relations, as Γ90% is sometimes saturated with a fraction of water inside the pixel. The relationship between582

CYGNSS reflectivity and the fraction of water in the footprint is not linear (Chew & Small, 2020). Thus, we583

evaluated both Pearson’s linear and Spearman’s rank correlations. The latter evaluates whether the two vari-584

ables are linked with a monotonic function, and should perform better for non-linear relationships. In fact, the585

results are slightly better using Spearman’s R, in particular for the regional comparisons against MODIS dataset586

(Section 4.3.2). Spearman’s temporal correlations between Γmedian and the dynamic inundation maps at global587

and regional scales are therefore presented in Section 4.3.1 and Section 4.3.2, and in Figure 10-11. Finally, the588

spatial correlations against RFWs static inundation maps are presented in Section 4.3.3.589
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4.3.1. Global comparison of CYGNSS and GIEMS590

Figure 10 presents the Spearman’s correlation coefficients in every pixel between CYGNSS Γmedian and591

GIEMS Surface Water Extent (SWE) at 0.25° (Figure 10.a). A strong correlation (R > 0.8) is obtained in most of592

the major floodplains located in CYGNSS’s spatial coverage, where the seasonality drives both signals due to the593

high temporal variations of SWE. It is the case in Southeast Asia and India, characterized by the annual monsoon594

events and irrigated paddy fields in the Ganges-Brahmaputra, Irrawaddy, Mekong and Yangtze basins. In South595

America also, the seasonal rainfalls cause large floods in Llanos de Orinoco, in the Amazon basin (including596

Llanos de Mojos and the Branco River), or in La Plata basin (including the Pantanal wetlands). On the contrary,597

poor results are obtained along some of the Amazon and Congo tributaries, in the upstream parts of these basins.598

This can be attributed to either the vegetation effect on Γmedian, or to a lower seasonality in both signals due to a599

continuous, high SWE, leadingmechanically to a lower correlation. Low or even sometimes negative correlations600

are also observed in some coastal areas. The surface water estimations from GIEMS can be contaminated by601

the ocean contribution, although it is expected to be filtered out. Finally, negative correlations are also observed602

over some land areas (Figure 10). We had a closer look at two specific targets in East Asia. These regions mostly603

comprise non irrigated croplands and herbaceous land cover, and they showed both a seasonal SWE cycle with604

low amplitude in GIEMS, and a low signal in CYGNSS with episodic variations. GIEMS likely overestimates605

SWE in these areas during the wet season, while CYGNSS peaks may be a response to SM or short duration606

floods following intense precipitation.607

Figure 10.b presents the average of CYGNSS vs. GIEMS Spearman correlations over the same river basins608

than in Figure 6, for C3, C4 and all CYGNSS clusters. Cluster C3 in orange and C4 in red show an average609

correlation over 0.6 for most of the basins. The results in the Orinoco, Ganges, Niger, Lake Chad, Amazon and610

Parana basins are globally consistent because the water cycle is driven by seasonal floods and irrigation. Two611

main exceptions are the Congo and Mekong basins where the seasonal variations of reflectivity are very weak612

(below 0.1). The low correlations observed can be due to either a constant or random signal in both GIEMS613

and CYGNSS observables. In the Congo basin, the vegetation attenuates CYGNSS signals and provokes a lower614

detection of inundations below the canopy, and alternating rainfalls in the northern and southern hemispheres615

produce bimodal variations of inundation extent. In the Mekong basin, a continuous flooding or irrigation616

in paddy fields, including several parts of the Delta of Mekong (Kuenzer et al., 2013), certainly reduces the617

seasonality of the signals.618

4.3.2. Regional comparison619

The comparison with GIEMS SWE gives an indication of the correlation between CYGNSS reflectivity and620

flood dynamics at the global scale, but at the regional scale GIEMS is less adequate. First, it is gridded at 0.25° of621

spatial resolution, thus the information can be degraded when compared to CYGNSS 0.1° grid. Also, we gridded622

CYGNSS into at 0.25° for comparing against GIEMS, which is not the optimal spatial resolution of this product.623

Moreover, CYGNSS at 0.1° provides information about the flood dynamics up to a 7-day temporal resolution, and624
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Figure 10: Spearman correlations between CYGNSS Γmedian at 0.25° spatial resolution and GIEMS-2 from August 2018 to July 2019. (a)
Map of correlations over the flooded areas in GIEMS (maximal SWE > 20%), (b) Barplot of average correlations for CYGNSS clusters C3, C4
and all clusters in 9 river basins.

up to a daily time-scale at 0.25°, while GIEMS has a monthly time sampling. It also has uncertainties, especially625

in densely forested regions, where it is unclear whether flood signatures can be fully identified in the brightness626

temperatures at K-band from SSM/I. Finally, the large estimations of seasonal SWE in GIEMS, particularly in627

the Sahel region and the Indian subcontinent, may be overestimated due to the confusion between standing628

water and saturated soils during rainfall periods. For all these reasons, we also performed a regional comparison629

between CYGNSS Γmedian and the SWE derived from MODIS-based regional dynamic flood maps at 500 m630

spatial and 8-day temporal resolutions (see Section 2.2).631

Figure 11 presents the results of this comparison over 3 regions: La Plata basin including the Parana, Uruguay632

and Paraguay rivers (Figure 11.a1-2), the Inner Niger Delta (IND) (Figure 11.b1-2), and the Lower Mekong Basin633

(LMB) including Tonle Sap and the Delta of Mekong (Figure 11.c1-2). Table 2 show that these regions have634

experienced above-average water level peaks during the study period, which are usually correlated with larger635

inundated areas. For every region, both maps of maximum flooded extent (as the percentage of water inside the636

pixel) and Spearman’s correlation coefficients between the time series of SWE and Γmedian are shown. Only637

the correlations on pixels with a maximum flooded extent above 20% are presented. Over La Plata basin, we638

obtain medium (R > 0.4) to high (R > 0.8) values in the major flooded areas along the streams of the Parana and639

Paraguay rivers. In particular, the correlations are high in the Pantanal wetlands (∼58°W, 20°S), in the Paraguay640

River and its confluence with the Parana River, and in wetlands close the Salado River in the region of Santa Fé641

(∼61°W, 29°S). The values are lower (R ∼ 0.5) in the major part of the Parana flooded savannas. This could be642

due to continuous high reflectivity in this region affected by permanent floods or very high SM content. Low643

correlation values are obtained along the streams of the Uruguay and the upper Parana rivers, as well as in644

mountainous regions along the Andes.645

The correlations over the LMB are heterogeneous, with high values over the floodplains and irrigated crop-646
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Figure 11: Correlation between CYGNSS Γmedian and SWE derived from MODIS over 3 flooded regions. (a1-2) show the maximum water
extent in the year and the pixel-by-pixel correlations between water extent and Γmedian over La Plata basin, (b1-2) are the equivalent plots
over the Inner Niger Delta (IND), and (c1-2) are the equivalent plots over the southern Mekong basin (including the Delta of Mekong and
Tonle Sap).

lands near the Tonle Sap and along the stream of the Mekong River. On the contrary, low and even negative647

correlations are obtained over the Tonle Sap itself, in some parts of the Delta and in isolated pixels. Figure 12648

present the time series of SWE and Γmedian in 4 neighboring pixels located near the Tonle Sap. The two left649

panel pixels (Figure 12.a and Figure 12.c) show a very high seasonality for both parameters, with a water extent650

varying from 0 to 100% during the year. It likely corresponds to seasonal floodplains, and the correlations calcu-651

lated between the time series are around 0.9. On the contrary, the pixels plotted in Figure 12.b and Figure 12.d652

show limited variations in water extent throughout the year, with values systematically over 90% and 50%, re-653

spectively. They are mainly covered by permanent water from Tonle Sap. There, the variations of Γmedian are654

not correlated with variations in the inundation extent. Moreover, in all the pixels, we observe high fluctuations655

of Γmedian with an amplitude reaching ∼ 0.4 and a period of one to several months. These fluctuations mostly656

occur when a large fraction of water is present inside the pixel. It could be linked to variations of water rough-657

ness over Tonle Sap, the greatest lake in southeast Asia. Moreover, similar time series of Γmedian with high658

amplitude fluctuations were found to be located close to the banks of Lake Victoria, where the direction and659

speed of winds can cause an alternation between coherent and incoherent scattering regimes. Unfortunately,660

we were not able to find wind speed data close enough to Tonle Sap to compare with Γmedian time series. The661

understanding of this phenomena could help further work on retrieving SWE using CYGNSS reflectivity or co-662

herency. Other pixels in the Delta of Mekong show low correlation values, but large parts of this area are flooded663

or wet throughout the year (Kuenzer et al., 2013).664
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Figure 12: Time series of CYGNSS Γmedian (in red) and SWE from MODIS (in blue) with their correlation, for four pixels near the Tonle
Sap in the Mekong basin.

Finally, the results over the IND show a very good consistency between the time series of SWE and Γmedian.665

The correlations are greater than 0.8 in most of the pixels. It indicates a strong correspondence between the666

dynamics of floods andCYGNSS reflectivity in this region. It is certainly due to two reasons: i) the low vegetation667

cover cause lower uncertainties in bothCYGNSS observations and the reference inundationmaps, and ii) a strong668

seasonality is observed in the precipitation and flooding events, so Γmedian is low during the dry season unlike669

other floodplains in the LMB and the Parana.670

4.3.3. Spatial correlations at the regional scale671

Spatial correlation coefficients were also calculated between Γmedian and the SWE derived from static RFWs672

maps (Tootchi et al., 2019), at the time of themaximum flooded extent during the year. They are estimated for the673

9 river basins presented in Figure 6 and Figure 10, and values are reported in Table 6. The spatial correlations in674

the Orinoco, Amazon, Parana, Ganges-Brahmaputra and Yangtze basins are high, ranging between 0.74 and 0.77,675

showing a good correspondence between the reference maps and CYGNSS reflectivity at the flood maximum676

extent. On the contrary, spatial correlations are lower in the other basins and especially in the Sahel region (0.52677

for Niger, 0.51 for Lake Chad). This highlights the contribution of multiple factors in the scattering of GNSS678

signals over these areas, and maybe uncertainties in the RFWs dataset. While the temporal correlations indicate679

whether the variations of SWE are linked with an increase in CYGNSS reflectivity, the spatial correlations are680

particularly sensitive to a saturation of both the reference and CYGNSS signals during the wet season. High SM681

can provoke high CYGNSS reflectivity, and also an overestimation of the fraction of water estimated in GIEMS,682

whose uncertainty is further propagated in the RFWs dataset (see Section 2.2.1for more details).683
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Table 6: Spatial correlations between CYGNSS Γmedian and the percentage of water derived from RFWs static inundation maps (Tootchi
et al., 2019), in 9 river basins inside the area of coverage. The values of Γmedian are extracted at the time of the maximum flooded extent.

River basin Orinoco Amazon Parana Niger Chad Congo Ganges Mekong Yangtze
Spatial R 0.76 0.77 0.75 0.52 0.51 0.58 0.75 0.66 0.74

5. Discussion684

The objective of this study was to assess the potential of CYGNSS reflectivity for a pan-tropical mapping685

of flood dynamics. Based on the results presented in Section 4, we discuss several points to pave the way to a686

CYGNSS-based inundation product. To begin with, we take a broader view on the interests and limitations of our687

methodology, as well as the uncertainties in the reference datasets considered. We then discuss the attenuation688

of GNSS-R signals by the vegetation, especially over tropical forests, and the feasibility of flood detection under689

dense canopies using CYGNSS reflectivity. We also point out the misleading role of high forward scattering in690

the specular direction in arid areas, due to changes in morphology, i.e. roughness for CYGNSS, but also lithology691

(sand vs. rock, see Section 5.4).692

5.1. Results of the K-means Clustering693

We have used the K-means clustering algorithm with a Dynamic Time Warping similarity measure to per-694

form the clustering of CYGNSS reflectivity time series. Other common unsupervised classification algorithms695

were tested such as Agglomerative Clustering or Birch, but the best results were obtained with K-means. The696

implementation of a DTW similarity measure instead of a simple Euclidean distance makes it more robust to697

shifts in phase and distortion in time between time series of reflectivity. Promising results were obtained and698

analyzed in this study, but the empirical approach led us to discuss our choices in the implementation of the699

methodology.700

First, the optimal number of clusters needed to be determined. We were not able to calculate any criteria701

like the Calinski-Harabasz and the Silhouette scores with the implementation of the DTW similarity measure.702

We also tested our methodology with a common Euclidean distance in the K-means approach, which gave us an703

optimal number of 2 clusters with both the Calinski-Harabasz and the Silhouette scores. This is a highly simpli-704

fied version of the phenomena as dry land vs. flooded areas, and does not give information on the seasonality705

of floodplains. Thus, we empirically determined the optimal number of clusters, which was found to be k = 4706

(Figure 6 and Table 5). The two clusters with highest reflectivity are mostly associated to the occurrence of water,707

one with permanent or long-lasting floods, the second with high seasonal variations. A third cluster is composed708

of a mix of wetlands and bare soils with medium reflectivity, and can be especially sensitive to an increase of709

CYGNSS reflectivity over non-flooded areas due to high SM content. The last cluster is mainly associated to dry710

soils, never flooded throughout the year. We also tried the clustering with several combinations of parameters711

from Figure 4: 1) Γmean only, 2) Γmedian only, 3) Γ90% only, 4) Γ90%−50% only, 5) Γmedian and Γ90%, 6) Γmean712

and Γstd, 7) Γmean, Γstd, Γ90% and Γmedian. All the confusion matrices and the plots (similar to Table 5 and713
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Figure 6, respectively) were evaluated for each version of the clustering, leading to the determination of the best714

scenario.715

To ensure the stability of our clustering, we performed a sensitivity analysis on 30 iterations of the K-means++716

/ DTW clustering. It was shown that the 30 results are quite stables, especially in terms of inertia (see Table 3).717

However, the random (although weighted) choice of the initial 4 centroids by the K-means++ algorithm leads718

to differences in the final results. In 25 results out of 30, very small differences are observed in the output719

labels, especially for clusters C3 and C4 associated to water bodies (see Figure 6). The last 5 versions show720

lower agreement with each-other. The correspondence (i.e. percentage of pixels similarly labelled between two721

versions of the clustering) has a minimum of 80.26%, and a median of 94.64% (Table 3). As a consequence, we722

adapted our methodology to guarantee the reproducibility of the clustering. The mean time series of cluster723

centers C1 to C4 were computed from the 30 random DTW outputs, and selected as user-defined centroids for724

a new K-means / DTW clustering. This final version was analyzed in Section 4.725

Finally, the DTWwas implemented to manage shifts in time between the flooding events in different regions726

of the world. However, it has a limitation due to the boundary condition. The DTW algorithm starts with the727

first index and finishes with the last index of each time series that are compared. As a consequence, the values728

of Γ90%−50% and other CYGNSS parameters at the boundaries of the time series play a determinant role for the729

clustering. We use only one year of CYGNSS observations because of the high computational capacities required730

to process and analyze this dataset, and due to the experimental nature of our methodology whose interest731

needed to be proven before a global application to the 5-year CYGNSS dataset. To avoid the boundary effect,732

we implemented a padding of the 1-year time series of our parameters to create artificially a 3-year dataset. The733

results prove that this technique does not affect the ability of the K-means / DTW clustering to extract a seasonal734

flood signal from both the wetlands in the northern (e.g. Orinoco, Rio Branco, Ganges, Yangtze, Mekong) and735

southern (e.g. Llanos de Mojos, Pantanal, Parana) hemispheres.736

5.2. Reference inundation maps737

The reference datasets used in this study are also sources of uncertainties. The static inundation maps from738

Tootchi et al. (2019) were used as a delineation of permanent water bodies and regularly flooded areas. We first739

tried to use the composite wetlands (CWs) maps as it contains both the regularly flooded wetlands (RFWs) and740

the groundwater-driven wetlands (GDWs). It seemed logical to us that GDWs also play a role in the scattering of741

GNSS signals, as they are an important source of SM in saturated soils. However, we noticed a strong saturation742

of the CWs maps in several river basins. As an example, the entire Amazon basin and a great part of Sahel were743

listed as partially or totally affected by floods, which is largely exaggerated. Also, spatial correlation coefficients744

calculated with CYGNSS Γmedian show higher values with RFWs maps both at the global and regional scales.745

For the Amazon basin, the spatial correlation is 0.77 between Γmean and the SWE from RFWs maps (Table 6),746

and is 0.48 with CWs maps. As a consequence, we decided to use the RFWs maps for comparison with CYGNSS747

datasets. Additionally, the thresholding of RFWs variables into the 5 reference classes defined in (Table 4) is748
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debatable. The open water class (A) corresponds to pixels covered with, at least, 10% of open water. When749

plotting Γmean as a function of open water extent, the Γmean values are saturated above this threshold. On the750

contrary, the function of Γmean vs. inundation extent is linear, with no saturation of the signal when increasing751

the fraction of flooded areas in the pixel. The separation of reference classes B, C and D is then arbitrary, with752

thresholds corresponding to high, medium or low inundation extent in the pixel.753

The uncertainties of GIEMS are mainly associated to its low spatial resolution (0.25°), leading to a low sen-754

sitivity to small water bodies. It is also influenced by dense vegetation covers, and high seasonal SM content755

confounded with surface water in several regions (Sahel, Indian subcontinent). These are sources of uncertainty756

for our analysis because even Tootchi’s RFWs dataset is based on GIEMS-D15 (Fluet-Chouinard et al., 2015),757

derived from GIEMS itself. Still, the comparison of CYGNSS vs. GIEMS and MODIS estimated SWE looks con-758

sistent at the regional scale, although the spatial resolutions are different (0.25° for the first, 0.1° for the latter).759

5.3. Reflectivity over vegetated areas760

The detection of floods under equatorial forests remains difficult even with the use of microwave signals. It is761

a limitation of GIEMS (Prigent et al., 2020) for example. The use of CYGNSS data is promising because: i) L-band762

GNSS signals penetrate deeper the canopy than shorter wavelengths/higher frequencies in the microwave do-763

main, ii) it provides information at a higher spatiotemporal resolution than the passive microwave sensors. Sev-764

eral studies took advantage of these characteristics. Rodriguez-Alvarez et al. (2019) classified CYGNSS corrected765

Signal-to-Noise Ratio (SNR) as flooded vegetation (FV), open water and dry land. This study was performed in a766

small subset of the Amazon basin and showed a detection of FV around 70%. Then, Carreno-Luengo et al. (2020)767

studied the relationship between CYGNSS observables, including the reflectivity Γ, and AGB over subsets of768

the Congo and Amazon basins. A polynomial fit was used to characterize the vegetation attenuation at several769

incidence angles, and to further derive CYGNSS-based maps of AGB over equatorial forests. These maps were770

consistent with reference datasets up to ∼ 350 Mg/ha. Also, Li et al. (2021) derived the coherency of Beidou-3771

raw IF tracks over flooded areas along the Mississippi River, in densely vegetated areas. High coherency, which772

is linked to the presence of water below the canopy, was obtained for AGB up to 200-300 Mg/ha. And finally, the773

PR defined in Al-Khaldi et al. (2021a,b) as a coherency proxy has shown low sensitivity to vegetation, allowing774

the detection of small river streams obscured by trees.775

In Figure 6.a and Figure 7, the streams of the Congo and Amazon rivers and their tributaries are well de-776

lineated. We can still question whether CYGNSS is able to monitor nearby floodplains under vegetation cover.777

Figure 13 presents the distribution of AGB in CYGNSS clusters C1 to C4, for both flooded and non-flooded778

pixels. All pixels with an occurrence of water greater than 0% in the 0.1° regridded RFWs dataset are considered779

as flooded, which likely overestimates the inundated areas. Only pixels in South America are considered in this780

figure, to obtain a balance between flooded and dry pixels, and between high and low AGB values. The dynamic781

range of AGB is approximately 0-300 Mg/ha and shows two peaks for all clusters. The first one, between 0 and782

50 Mg/ha, corresponds both to dry pixels with few vegetation, and to large floodplains with herbaceous-type783

29



land cover, as in the Llanos de Orinoco, Llanos de Mojos, and the Pantanal wetlands (see Figure 7 for dominant784

land cover types in South America). The second one, between 200 and 300 Mg/ha, corresponds to dense forests785

mainly located in the Amazon basin. These forests are either dry (cluster C1), wet or flooded (clusters C2 to C4).786

In particular, flooded pixels in C3 and C4 mostly represent the large floodplains and open water (see Figure 6,787

Figure 7 and Table 5), with low AGB. However, the fourth decile (i.e. the top 25% of AGB values) in flooded pixels788

from C3 and C4 ranges from ∼150 Mg/ha to ∼300 Mg/ha. The results in Figure 13 show that the K-means /789

DTW clustering based on CYGNSS reflectivity is able to detect either flooded areas below the canopy or narrow790

river streams surrounded by vegetation, in pixels with dense forests and average AGB as high as 250-300 Mg/ha.791

Some sources of uncertainties can be related to: i) signals from wet, saturated soils without standing water, ii)792

errors in the definition of flooded areas using RFWs dataset, and iii) the attenuation of GNSS-R signals by the793

vegetation, especially at high incidence angle, leading to a potential extinction of the coherent component on794

which we base our analysis (Al-Khaldi et al., 2021a; Loria et al., 2020). The results presented in Figure 9 show a795

lower detection of the inundations under forest land cover types, when compared to an herbaceous cover.796

Figure 13: Distribution of the AGB for flooded and non-flooded pixels over South America in the 4 CYGNSS clusters. The dashed lines
represent the quartiles of the distributions. Flooded pixels are defined with a fraction of water greater than 0% in the 0.1° regridded RFWs
dataset.

5.4. Reflectivity over bare soils797

In Figure 5 and Figure 6.a, we notice the heterogeneity of Γ90%, Γ90%−50% and CYGNSS clusters over arid798

regions, where bare soils is the dominant land cover type. In particular, reflections over deserts in the Sahara799

and the Arabica Peninsula have a high dynamic range, with Γ90% values ranging from 0 to ∼0.4. As the time800

series of Γ90% and Γ90%−50% are almost constant in the year due to a very low moisture, these areas can be801

interpreted as open water bodies, in particular when the reflected signals over the latter are attenuated as for802

wind conditions over lakes (see Figure 8). An important forward scattering of GNSS-R signals has already been803

observed in the literature, and mainly linked to areas of low small-scale roughness. In particular, the water804

mask given by Al-Khaldi et al. (2021a) also had false alarms over desert regions characterized by (almost) flat805

surfaces, based on their PR coherencymetric. They handled the problemwith a filtering of the locations showing806

a recurrent coherence, and a 0% occurrence of water in the mask from Pekel et al. (2016). This type of filtering807

30



could be easily applied to our reflectivity dataset, and is a requirement for a further inversion of a fractional808

water extent product.809

The state of the art beyond the scope of CYGNSS-related studies shows that anomalies in the radar signals810

over arid regions are well known for several active and passive sensors, and can be related to the geological811

and lithologic properties. Prigent et al. (2015) analyzed the multiangle backscattering at Ku-band from Tropical812

Rainfall Measurement Mission / Precipitation Radar (TRMM / PR) and QuikSCAT in the inter-tropical zone813

covered by CYGNSS. They showed that sand dunes have lower backscattering coefficients when compared to814

rock deserts, because of an important volume scattering in dry sand and a relatively low large-scale roughness.815

Similar effects were also observed at C-band using ASCAT (Fatras et al., 2015) . This phenomenon increases with816

an increasing incidence angle. Similarly, the microwave emissivities over arid regions show higher values for817

sand dunes due to the contribution of both the surface and deeper soils to microwave emissions (Jiménez et al.,818

2010). GNSS-R forward scattering is likely subjected to the same phenomena, as the spatial agreement between819

Γ90% and Γ90%−50% maps and TRMM / PR-based maps of backscattering coefficients in Prigent et al. (2015) is820

good.821

5.5. Guidelines for a CYGNSS-based dynamic product of SWE822

This study shows that both permanent water and seasonal floodplains can be monitored using CYGNSS823

reflectivity. In particular, the 0.1° spatial resolution and 7-day temporal resolution grid merges by time and loca-824

tion the bistatic observations, and offers the possibility to compute time series of several statistical parameters825

(see Section 3). In particular, Γ90% is very sensitive to the presence of a fraction of water, and Γ90%−50% can be826

used to extract pixels with recurrence or occurrence of water. Also, the comparison of Γmean with the fraction827

of water in the pixel, either from static or dynamic estimations, shows an interesting linear trend. This linearity828

could be further exploited to produce a CYGNSS-based SWE product, covering the pan-tropical area.829

For this, the confounding effects of several geophysical parameters need to be removed. False alarms over830

deserts can be avoided with a simple filtering as in Al-Khaldi et al. (2021a). Then, a correction of reflectivity831

for the vegetation attenuation must be implemented, which is usually performed using the incidence angle and832

ancillary L-band Vegetation Optical Depth (L-VOD) data provided by radiometers such as SMOS (Wigneron833

et al., 2021) or SMAP (Konings et al., 2017; Li et al., 2022b). Also, GIEMS-2 (Prigent et al., 2020), assumes the834

linearity of SWE retrieval under given vegetation conditions, and the dataset is therefore binned depending on835

the values of vegetation parameters. Based on this idea, CYGNSS dataset could be binned with either NDVI,836

AGB or VOD to improve the linearity of Γmean vs. SWE relations. The effect of small-scale and large scale837

roughness on the performances of future SWE product could be important to study. Water roughness over large838

lakes is a limitation due to a dominant incoherent scattering regime, so it must also be taken in account. As we839

focus on dynamic estimations of SWE in floodplains, recurrent open water bodies could be filtered out as they840

are well delineated using other remote sensing sensors. Finally, the confounding effect of SM can lead to an841

overestimation of flooded areas in regions affected by large seasonal rainfall. Further investigations could use842
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the coherence proxy defined in Al-Khaldi et al. (2021a,b), in helping to filter out the pixels with strong reflectivity843

that is associated to very wet soils with no surface water.844

6. Conclusion845

We have analyzed CYGNSS land surface reflectivity to evaluate its potential for a global mapping of flood846

dynamics. A 0.1° spatial resolution and weekly time sampling of CYGNSS reflectivity was found to be the847

most suitable compromise between high spatial and temporal resolutions. We have used a K-means clustering848

technique with DTW similarity measure to separate: i) the low, constant reflectivity signals from dry land, ii)849

the high signals from open water and long-lasting inundations, and iii) the seasonal signals associated to large850

floodplains. Static and dynamic inundation maps along with other ancillary datasets were used to analyze the851

clustering results. The largest water bodies, floodplains and irrigated croplands areas are detected. Various852

sources of misclassification are identified. The flooded areas are mostly detected in absence of vegetation or853

under herbaceous cover, but less accurately under forests. The concordance between CYGNSS parameters and854

the static inundation maps is not good in the Cuvette Centrale of Congo in particular. The detection of water855

bodies is also weakened under windy conditions over large lakes, as it was already reported by several studies.856

In the deserts, a low reflectivity is observed on sand dunes where the penetration of microwave signals is high,857

and a high reflectivity is observed on flat, rocky regions where a specular scattering was found to create false858

alarms. However, CYGNSS clusters and parameters make possible to identify the main floodplains and open859

water areas, including samples in areas with AGB as high as ∼300 Mg/ha along the streams of Amazon and860

Congo rivers. The spatial correlations between Γmedian and static inundation maps were calculated at the time861

of the maximum SWE. They show high values (R ranging from 0.74 to 0.77) in 5 large river basins and lower862

values in Congo, Lake Chad and Niger, highlighting the contribution of multiple known factors (vegetation,863

soil moisture, small and large scales roughness, type of soil, SWE) in the GNSS-R forward-scattered signals.864

Temporal correlations were also calculated between Γmedian and SWE from either GIEMS or regional MODIS-865

based inundation maps. Regional comparisons over the IND, Parana and Mekong basins perform well and are866

consistent with global comparison using GIEMS. High values (R > 0.8) are obtained on the principal floodplains867

in the CYGNSS coverage, with once again the exception of the Cuvette Centrale of Congo. Lower correlations868

are obtained in the Amazon and Congo tributaries, either due to an attenuation of GNSS-R signals by vegetation869

canopies, or to the uncertainties of reference datasets in these areas.870

Finally, our results show that a global mapping of inundation dynamics using CYGNSS reflectivity is possible,871

as some open water and flood patterns were clearly identified in the K-means / DTW clustering results. We tried872

to list the several sources of misclassification to identify contributing factors in CYGNSS reflectivity either at873

the global or regional scale. We look forward to producing a dynamic mapping of floods using CYGNSS, with874

ancillary and reference datasets helping to characterize the relation between CYGNSS reflectivity and SWE.875
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