
HAL Id: hal-03808012
https://hal.science/hal-03808012v1

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-Gateway Demodulation in LoRa
Alexandre Guitton, Megumi Kaneko

To cite this version:
Alexandre Guitton, Megumi Kaneko. Multi-Gateway Demodulation in LoRa. GLOBECOM 2022 -
IEEE Global Communications Conference, Dec 2022, Rio de Janeiro, Brazil. �hal-03808012�

https://hal.science/hal-03808012v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Multi-Gateway Demodulation in LoRa
Alexandre Guitton∗†, Megumi Kaneko‡ IEEE Senior Member

∗ Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS,
63000 Clermont-Ferrand, France.

† Univ Lyon, INSA Lyon, Inria, CITI, F-69621 Villeurbanne, France.
‡National Institute of Informatics, 101-8430, Tokyo, Japan.
Emails: ∗alexandre.guitton@uca.fr, †megkaneko@nii.ac.jp

Abstract—LoRa is one of the most prominent low power
wide area network technologies, and enables to interconnect
thousands of devices distributed over areas of several square
kilometers. However, the limited number of demodulators
present in the hardware of LoRa gateways limits LoRa
scalability. In this paper, we argue that scalability can be
improved by having gateways collaborate, so that they attempt
to demodulate different frames. We propose several algorithms
in order to measure the benefits of random-based collaboration
and deterministic collaboration. Our simulation results show
that random-based protocols improve the baseline perfor-
mance in most setups, while deterministic protocols improve
the network performance when the number of gateways is
large, and with many demodulators per gateway.

I. INTRODUCTION

LoRa (Long Range) is a low-rate wide area network
technology based on a chirp spread spectrum modulation.
It is often used jointly with LoRaWAN, a simple MAC
protocol, in which end-devices communicate to a network
server through gateways. LoRa and LoRaWAN have been
used successfully in various applications [1], thanks to the
long communication range of LoRa (i.e., a few kilometers
in most scenarios) and to the low cost of a LoRaWAN
deployment. The main drawback of these protocols is the
low data rate they can achieve.

LoRaWAN gateways are able to demodulate simulta-
neously several LoRa signals, as long as they are sent
on different channels or with different Spreading Factors
(SF). To do so, the gateways possess an SX1301 chip [2]
which contains eight demodulator chips. Several works have
shown that the limited number of demodulators within a
gateway limits the performance of the whole network [3],
[4], [5]. In [6], we proposed two algorithms that aim to
optimize the usage of demodulators in a single gateway
environment.

In this paper, our aim is to improve the usage of de-
modulators in a multi-gateway network in order to improve
the number of successfully received frames at the network
server level. Indeed, in LoRaWAN, as long as a frame is
decoded by one gateway, it is forwarded to the network
server. Thus, our goal is to ensure that the gateways collab-
orate to avoid demodulating the same redundant frames, and
instead, to make them demodulate diverse incoming frames,
so as to maximize the total number of successfully decoded
frames. To do so, our proposed algorithms leverage the
inherent properties of LoRa frames, by adapting the gateway
collaboration method according to some SF-specific features
such as the time-on-air.

Our contributions are the following:
1) We discuss the impact of legacy demodulator allo-

cation algorithms in multi-gateway setups. We show
that deploying several gateways at the same location
brings only little performance improvement.

2) We propose a deterministic algorithm in order to deal
with frames having a large SF, as their large time-on-
air enables explicit collaborations among gateways.

3) We propose random selection-based algorithms in
order to deal with frames having a small SF, as their
small time on air hinder explicit collaborations among
gateways.

4) We compare all these algorithms in terms of the
number of decoded frames and fairness.

The remainder of this paper is organized as follows.
Section II describes the LoRa physical layer (including
the usage of demodulators in the hardware architecture of
the SX1301 component) and the existing mono-gateway
demodulation algorithms. Section III introduces the prob-
lem. Section IV first proposes our algorithm based on
explicit collaboration through control messages, and then
proposes our random selection-based algorithms. Section V
details our simulation results in various scenarios. Finally,
Section VI concludes our work.

II. LORA AND MONO-GATEWAY ALGORITHMS

In this section, we first present the LoRa modulation.
Then, we present the functioning of the hardware of existing
gateways, and the current demodulation algorithms.

A. LoRa modulation

LoRa modulation is based on symbols, also called chirps,
which are linear frequency sweeps over a given bandwidth.
Up-chirps are symbols whose frequency is increasing over
time, while down-chirps are symbols whose frequency is
decreasing over time. The duration of a symbol is controlled
by the SF, which enables to trade bit rate with robustness
and thus with communication range. It is important to note
that SFs are quasi-orthogonal: two signals sent simultane-
ously on different SFs cause only limited interference on
each other.

A LoRa frame is composed of a preamble of 12.25
symbols and a payload. The preamble is composed of 8 up-
chirps to synchronize the receiver, 2 up-chirps to identify
the network, and 2.25 down-chirps to delimit the end of
the preamble. The preamble is composed of an optional
header and of encoded data. Figure 1 shows an example of

t_detectt_start

datapreamble

t_endt_data

Fig. 1. Times of a frame transmission/reception.

TABLE I
TIME ON AIR AND DECISION TIME FOR VARIOUS PAYLOAD SIZES AND

SF.
SF Payload size Decision time

40 bytes 20 bytes 10 bytes
12 1974.27 ms 1318.91 ms 991.23 ms 270.35 ms
11 1069.06 ms 741.38 ms 577.54 ms 135.14 ms
10 534.53 ms 370.69 ms 288.77 ms 67.57 ms
9 287.74 ms 185.34 ms 144.38 ms 33.83 ms
8 154.11 ms 102.91 ms 72.19 ms 16.91 ms
7 82.18 ms 56.58 ms 41.22 ms 8.42 ms

a frame. In the following, we denote by tstart the beginning
of the transmission of the preamble of a frame, by tdetect
the detection time of the preamble, by tdata the beginning
of the transmission of the payload (which also corresponds
to the end of the preamble), and by tend the end of the
payload.

Table I shows the time-on-air of frames of various SFs
and payload size. The table also shows the time between
the detection of the preamble and the beginning of the
payload, called decision time. We assumed that it is equal to
4 symbols. This assumption is consistent with other studies:
a receiver locking time of 4 symbols is obtained in [7],
and 6 symbols are shown to be required for a successful
synchronization in [8]. Note that the large decision time
(i.e., larger than 50 ms) of large SFs suggests that the packet
arbiters of different gateways might be able to communicate
while considering which frames to demodulate. Indeed,
LoRaWAN gateways are inter-connected through a high-
speed IP backhaul.

B. Conventional demodulation algorithms

The SX1301 component is a chip used in the vast
majority of LoRaWAN gateways. This chip continuously
listens for preambles on all channels and all SFs. When
a preamble is detected, the packet arbiter of the SX1301
decides whether one of the eight demodulators should be
configured to demodulate the corresponding frame. How-
ever, the actual behavior of the packet arbiter of the SX1301
is not documented. We assume that its default behavior
follows a simple First-In First-Out (FIFO) strategy: when
a new preamble is detected, the first idle demodulator is
booked for this frame until tend. If no demodulator is idle,
then the frame is ignored.

We showed in [6] that a lightweight recursive approach
can significantly improve the performance of a single gate-
way network, and we proposed two strategies: FIFO-RR1
and FIFO-RR2, whose details are recalled next for clarity.
FIFO-RR1 (FIFO with recursive reuse, version 1) reuses
booked demodulators during the time between the detection
of the preamble and tdata, as the demodulators are not
processing the payload until tdata. Algorithm 1 corresponds
to the algorithm used when the preamble is detected, and
Algorithm 2 corresponds to the algorithm used after a frame
is demodulated. FIFO-RR2 (FIFO with recursive reuse,

Algorithm 1 Demodulator allocation for FIFO-RR1.
Require: a new preamble is detected on SF s at tdetect

if there is a demodulator d such that state[d] = IDLE
or (state[d] = BOOKED and next[d] > tend) then

next[d]← tdata
push next[d] on timeStack[d]
push the frame parameters on frameStack[d]
state[d]← BOOKED
demodulator[d]← parameters of the frame
start a timer for expiration at tdata

else
frame is ignored

end if

version 2) enables to plan a future demodulation for a busy
demodulator, as long as the new demodulation starts after
the end of the current demodulation. Algorithm 3 corre-
sponds to the algorithm used when the preamble is detected,
and Algorithm 2 is used after a frame is demodulated.

Algorithm 2 Demodulator reuse after the demodulation, for
FIFO-RR1 and FIFO-RR2.
Require: a demodulator d finishes demodulating a frame

pop timeStack[d] and frameStack[d]
if timeStack[d] is empty then

state[d]← IDLE
demodulator[d]← ∅

else
state[d]← BOOKED
next[d]← top of timeStack[d]
demodulator[d]←top of frameStack[d]
start a timer for expiration at next[d]

end if

Algorithm 3 Demodulator allocation for FIFO-RR2.
Require: a new preamble is detected on SF s at tdetect

execute Algorithm 1
if the frame was rejected by Algorithm 1 then

foreach demodulator d such that state[d] = BUSY
do

dur ←payload duration of top of frameStack[d]
tend[d]← next[d] + dur

end foreach
if there is d such that state[d] = BUSY and

tend[d] ≤ tdata and size of frameStack[d] = 1 then
insert tdata at 2nd position of timeStack[d]
insert new param. at 2nd position of

frameStack[d]
else

frame is ignored
end if

end if

III. PROBLEM FORMULATION

Let G be a set of gateways. Let F be a set of frames.
Each frame f ∈ F is sent by an end-device and is received

by a subset G′ of gateways G′ ⊂ G. The transmission of the
preamble of frame f starts at time tfstart, it is detected by
the gateways at time tdetect approximately (depending on
the propagation time and on the distance between the end-
device and each gateway), the transmission of the payload
starts at tfdata, and the overall transmission ends at tfend. For
f to be correctly demodulated by a gateway g ∈ G′, one of
the eight demodulators of g has to be continuously allocated
to frame f between [tfdata; t

f
end] (and not [tfdetect; t

f
end]).

Our goal is to maximize the number of frames that are
demodulated by at least one gateway.

Mono-gateway algorithms consider that G′ is a singleton,
and thus aim to maximize the number of frames from F
using a centralized scheduling algorithm. In order to show
the drawback of mono-gateway algorithms, let us consider
a simple scenario where a network operator intends to
deploy a second gateway in a dense network, to balance the
load between the gateways. The network operator might be
inclined to deploy the second gateway at the same location
as the first gateway, for simplified logistics. However, this
would be a very bad decision if both gateways run a mono-
gateway algorithm. Indeed, in this case, both gateways will
receive the same frames with similar reception power. The
FIFO algorithm will yield the same decisions, so they will
both decide to demodulate the same frames, and their de-
modulator capabilities will be exhausted simultaneously. In
other words, the performance of this two-gateway network
will be very close to the performance of the previous mono-
gateway network, despite consuming twice more demodu-
lating resources.

Multi-gateway algorithms aim to minimize the number of
gateways that simultaneously demodulate the same frame,
in order to minimize the total demodulator usage. To do
this, the gateways can collaborate during [tfstart; t

f
data] in

order to decide which one should demodulate a frame f .
This decision time is however short, as shown in the last
column of Table I: it varies between 8.42 ms and 270.35 ms,
depending on the SF. If the coordination between gateways
is achieved through control messages, this means that the
backhaul interconnecting the gateways should have a small
latency.

In the remainder of this paper, we study two types
of algorithms: a deterministic algorithm which focuses
on explicit control messages, thus requiring high-speed
backhauls or large SFs, and random algorithms based on
differentiation through random decisions, supporting the
other configurations.

IV. PROPOSED ALGORITHMS

We start by describing a deterministic algorithm intended
for large SFs, and then algorithms intended for small SFs.
Then, we raise a discussion on their requirements.

A. Deterministic algorithms for large SFs

Our deterministic algorithm is based on the assumption
that gateways can communicate during the short time inter-
val between the preamble detection and the payload start.
This time duration depends on the SF, and is given on the
last column of Table I. We consider two versions of this

algorithm. The CollaborationPerfect version assumes that
gateways can collaborate instantaneously (that is, in less
than 8.42 ms), which enables them to collaborate for all
SFs. The CollaborationImperfect(SFmin) version assumes
that gateways can collaborate only for frames using a SF of
at least SFmin. In both versions, when a gateway detects a
new preamble, if it has time to do so depending on the
SFmin parameter, it asks to the other gateways whether
they plan to demodulate the corresponding frame. If another
gateway plans to demodulate the frame, it is ignored by the
current gateway. Note that the first gateway to detect the
preamble always accepts it.

Notice that it is easy to know the SF from the preamble,
as the SF is given as input to the packet arbiter. However,
it is challenging to identify individual frames during the
preamble. Indeed, frames are typically identified by the
sender address, which is contained in the frame header,
located relatively deep in the payload (it is in the FHDR
field of the MAC header, which follows the PHY header).
To cope with this, we use the property given by Approxi-
mation 1.

Approximation 1 (Preamble identification): Two pream-
bles p1 and p2, detected by two gateways g1 and g2
respectively, are assumed to correspond to the same frame
transmission if and only if the following four conditions
occur: 1) p1 and p2 are on the same channel, 2) p1 and p2
are on the same SF, 3) the detection times of p1 and p2
are within δt, and 4) the measured CFO of p1 and p2 are
within δCFO.

Note that the two first conditions are necessary. The
third condition assumes that the detection time of the two
preambles does not differ too much, and requires that the
time between gateways is relatively well synchronized. That
is why we suggest to use for δt a value which depends
on the communication time between gateways. The fourth
condition uses the fact that each sender has a potential
Carrier Frequency Offset (CFO) which yields a shift in the
chirp bandwidth. The CFO is detected and corrected during
the preamble by LoRa receivers. We did not consider the
reception power of p1 and p2, as they typically significantly
differ for gateways in different locations.

The details of our proposed CollabPerfect and CollabIm-
perfect are given in Algorithm 4 with parameter SFmin when
a preamble is detected. Then, they are based on Algorithm 2
when a demodulation ends, and on Approximation 1 to
identify preambles that are already processed by other
gateways.

B. Random algorithms for small SFs

Our random algorithms are based on the assumption that
gateways do not have enough time for explicit collabo-
ration through control messages. In order to decode as
many frames as possible, our goal is to allow gateways
to randomly drop planned demodulations when their de-
modulation capacity is exhausted. In this way, when the
traffic density is high, gateways will choose random frames
to drop, which will reduce the number of frames that
are demodulated simultaneously by several gateways, and

GW4

GW1

GW2

GW3

ED1

Fig. 2. Example topology for 4 gateways and 15 end-devices (66% are
on the left-side, and 34% are on the right-side)

ideally increase the number of frames that are demodulated
by at least one gateway.

Our proposed Random1 algorithm is described in Algo-
rithm 5. Upon detecting a new preamble, it attempts to find
an idle demodulator. If none is found, it preempts a random
demodulator for the new frame based on a probability P .

Our proposed Random2 algorithm combines FIFO-RR1
and Random1 in the following way. (1) In Algorithm 1 of
FIFO-RR1, instead of choosing the first demodulator that
satisfies a given condition, a random demodulator that satis-
fies the condition is chosen. (2) If no demodulator is found
with Algorithm 1, a preemption occurs with probability P
as in Random1. When a preemption occurs, a demodulator d
is chosen randomly among demodulators having only one
planned frame, or among all demodulators otherwise. All
the frames planned for d are dropped, and the demodulator
is planned for the incoming frame.

C. Discussion

In all our proposed algorithms except Random1, as well
as in FIFO-RR1 and FIFO-RR2 from [6], we assume that:
(1) the maximum duration of a LoRa frame has to be known,
and (2) the preamble detection occurs as early as possible.

Concerning the maximum duration of a LoRa frame, most
algorithms require to know the time tend where a given
demodulator will be available again. Indeed, the length of
the frame is not known from the preamble. However, a max-
imum frame duration exists in LoRa, due to the bounded
size of the payload. If the frame happens to be shorter than
the expected duration, opportunities of demodulations might
be missed, but all algorithms would still operate correctly.
Note that it is possible to correct the frame ending time
when the demodulator extracts the payload size field from
the payload.

Concerning the preamble detection, most algorithms re-
quire to know the time where the payload starts. This
is usually done by assuming that the preamble is always
detected 4 symbols after the beginning of the preamble.
If the preamble detection is delayed, the payload can start
earlier than expected. In this case, the packet arbiter would
detect the start of the payload (thanks to the start of frame
delimiter, at the end of the preamble), and would notify
the demodulator. The demodulator would have to decide
whether finishing the potential current demodulation and
missing the new demodulation that is starting, or cancelling

Algorithm 4 Demodulator allocation for CollaborationPer-
fect(SFmin=7) and CollaborationImperf (SFmin >7)
Require: a new preamble p is detected on SF s at tdetect

if there is d such that state[d] = IDLE or (state[d] =
BOOKED and next[d] > tend) then

if s <SFmin or no other gateway processes p then
next[d]← tdata
push next[d] on timeStack[d]
push the frame parameters on frameStack[d]
state[d]← BOOKED
demodulator[d]← parameters of the frame
start a timer for expiration at tdata

end if
else

foreach demodulator d such that state[d] = BUSY
do

dur ←payload duration of top of frameStack[d]
tend[d]← next[d] + dur

end foreach
if there is d such that state[d] = BUSY and

tend[d] ≤ tdata and size of frameStack[d] = 1 and
(s <SFmin or no other gateway is processing the frame)
then

insert tdata at 2nd position of timeStack[d]
insert new param. at 2nd position of

frameStack[d]
else

frame is ignored
end if

end if

Algorithm 5 Demodulator allocation for our Random1(P)
algorithm
Require: a new preamble is detected on SF s at tdetect

if there is d such that state[d] = IDLE then
plan the frame for demodulation with d

else
if random number r ∈ [0; 1] is such that r ≤ P then

d←a random demodulator
replace the demodulation for d with the new frame

end if
end if

the potential current demodulation and starting with the
new one. While both decisions reduce the performance of
the algorithms, the algorithms still operate. Moreover, we
believe that this phenomenon appears rarely in practice.
Indeed, the high robustness of LoRa chirps enables to detect
preamble chirps quickly even if the channel is noisy. Recall
that LoRa is able to decode frames with small SNRs (down
to -7.5 dB for SF=7 and to -20 dB for SF=12).

V. SIMULATION RESULTS

In order to compare the performance of all these algo-
rithms, we used a simulator developed in Java. The area is
a square of 8km×8km. Gateways are deployed in a regular
manner: if there is a single gateway, it is located at the
center of the area, otherwise, they are deployed regularly

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 2 3 4

N
u

m
b
er

 o
f

d
ec

o
d
ed

 f
ra

m
es

Number of gateways

Default
FIFO−RR2

CollPerf
CollImperf(9)

CollImperf(10)
Random1
Random2

Max

(a) n=50, d=2

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

1 2 3 4

N
u

m
b
er

 o
f

d
ec

o
d
ed

 f
ra

m
es

Number of gateways

(b) n=50, d=6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

1 2 3 4

N
u

m
b
er

 o
f

d
ec

o
d
ed

 f
ra

m
es

Number of gateways

(c) n=200, d=2

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

1 2 3 4

N
u

m
b
er

 o
f

d
ec

o
d
ed

 f
ra

m
es

Number of gateways

(d) n=200, d=6

Fig. 3. Number of decoded frames for the algorithms, with perfect preamble identification. (a) 50 nodes and 2 demodulators per gateway, (b) 50 nodes
and 6 demodulators per gateway, (c) 200 nodes and 2 demodulators per gateway, and (d) 200 nodes and 6 demodulators per gateway.

TABLE II
MAIN SIMULATION PARAMETERS

Area size 8000m×8000m Duty cycle 50%
Path loss exponent 2.32 (std of 7.8) Transmit power 14 dBm

Payload size 20 bytes Capture threshold 6 dB

over a circle of 4km-radius, as shown on Figure 2. Nodes
are deployed with a hot-spot model: they have a 66%
probability to be on the left-side and a 34% probability
to be on the right-side. Simulations were also conducted
with a homogeneous deployment of nodes, with similar
results, but are not shown here due to lack of space. The
detailed parameters are given in Table II. The path loss
model follows the parameters of [9]. Nodes transmit on the
same channel with a duty cycle of 50%, using the smallest
SF possible based on the reception sensitivity of the closest
gateway. Nodes always have frames to transmit. They are
captured if their SINR is larger than 6 dB. Unless stated
otherwise, we assume a perfect preamble identification.
Each simulation lasts for 1000 s, and each simulation point
is averaged over 100 repetitions.

We use two metrics: the number of decoded frames and
the fairness. The number of decoded frames is the total
number of frames received by at least one gateway. The
fairness is defined as (

∑12
s=7 p(s))

2/(
∑12

s=7 p(s)
2), where

p(s) is the percentage of frames decoded for SF s. Note
that we used here the percentage of frames per SF in order
to obtain a normalized fairness. Indeed, there might be a
large variability in the number of frames for the various
SFs in our simulation.

In the following figures, we compare several algorithms.
The algorithms in light grey are the existing algorithms:
LoRa is in solid, and FIFO-RR2 is in dashed. The algo-
rithms in blue are the proposed deterministic algorithms:
CollPerfect is in solid, and two CollImperfect instances are
dashed: one with SFmin=9 and the other with SFmin=10.

The algorithms in green are the proposed random algo-
rithms: Random1 is in solid, and Random2 is in dashed.
Finally, the algorithm in dark grey assumes an infinite
number of demodulators per gateway.

Figure 3 shows the number of decoded frames with
perfect preamble identification, as a function of the number
of gateways, for n nodes and d demodulators per gateway,
with (a) n = 50 and d = 2, (b) n = 50 and d = 6, (c)
n = 200 and d = 2, and (d) n = 200 and d = 6. It can be
seen that FIFO-RR2 improves LoRa only when the number
of demodulators is large. The performance of proposed
CollPerf and CollImperf method improves as the number
of gateways increases, which is an expected behavior for
such collaborative algorithms. Their performance exceeds
that of LoRa when the number of demodulators is large.
Moreover, it can be seen that the performance degradation
between CollPerf and CollImperf(10) is small, which makes
CollImperf(10) a good candidate in practice. The perfor-
mance of random algorithms is always better than LoRa:
their performance is typically very high when the number
of demodulators is low, and decreases with the number of
demodulators.

Figure 4 shows the fairness with perfect preamble iden-
tification, as a function of the number of gateways, for 200
nodes and d demodulators per gateway,with (a) d = 2, and
(b) d = 6. Only three algorithms are displayed: the De-
fault algorithm, CollImperf(10) (which is the collaborative
algorithm with the most realistic parameter), and Random2
(which is the random algorithm with the best performance).
The fairness reduces with the number of gateways, for all
algorithms. Indeed, when the number of gateways is large,
most nodes are close to at least one gateway, and therefore
most nodes use a small SF. As the algorithms accept a large
number of short frames (of SF7), the relative impact of
the ignored frames of SF12 increases. This shows that it
is difficult to increase the throughput while increasing the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4

F
ai

rn
es

s

Number of gateways

Default
CollImperf(10)

Random2

(a) n = 200, d=2

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 1 2 3 4

F
ai

rn
es

s

Number of gateways

Default
CollImperf(10)

Random2

(b) n = 200, d=6
Fig. 4. Fairness for three algorithms, with perfect preamble identification and 200 nodes. (a) 2 demodulators per gateway, and (b) 6 demodulators per
gateway.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 3 4

N
u

m
b
er

 o
f

d
ec

o
d
ed

 f
ra

m
es

Number of gateways

Max
CollPerf−oracle

CollPerf−approx
CollImperf(10)−oracle

CollImperf(10)−approx

Fig. 5. Impact of Approximation 1 on the algorithms, for 200 nodes and
6 demodulators per gateway.

fairness, as throughput is typically increased by accepting
more short frames, while fairness is typically increased by
accepting more long frames (since they are less frequent).
Random2 has the best fairness, especially when the number
of demodulators is low.

Next, we evaluate the impact of imperfect preamble
identification. In order to do so, we implemented in each
node a random CFO within [−25%; 25%], and we set
δCFO = 5%. We assumed that the detection time of
a preamble is within [4ts; 5ts], where ts is the symbol
duration, and we set δt = ts/4. Then, we compared the
performance of CollPerfect and CollImperfect(10) without a
perfect preamble identification, and with this imperfect im-
plementation of Approximation 1. We run the simulation for
200 nodes and 6 demodulators per gateway. Note that with
the imperfect identification, it is possible for two gateways
to incorrectly assume that two preambles correspond to
different frames although they correspond to the same frame
(false negative), or to incorrectly assume that two preambles
correspond to the same frame although they do not (false
positive). In the former case, they might both decode the
frame, which reduces the number of decoded frames. In
the latter case, a gateway might ignore the new frame as it
believes the other gateway is already demodulating it, which
also reduces the number of decoded frames.

Figure 5 shows the impact of Approximation 1 on the
number of decoded frames by CollPerfect and CollImper-
fect(10), as a function of the number of gateways, for 200
nodes and 6 demodulators per gateway. For both algorithms,
there is a small gap between the performance of the
algorithm with the oracle (i.e., with perfect identification),
and the performance of the more realistic setup without the
approximation. Although this gap increases with the number
of gateways, up to 7.38% for CollPerfect and 5.53% for
CollImperfect(10), it remains very limited, thereby validat-
ing the proposed approaches under practical conditions.

VI. CONCLUSIONS

The limited number of demodulators in LoRa gateways
is known to impact the performance of single-gateway
networks. In this paper, we have proposed the first multi-
gateway demodulator allocation algorithms. These algo-
rithms aim at improving the scalability by reducing the
number of gateways that demodulate the same frames.
A deterministic algorithm is tailored to the case where
gateways have enough time to exchange preamble infor-
mation through control messages, while random algorithms
focus on the case where the SF is so small that gateways
have to make decisions without explicit collaboration. Our
simulation results show that all the proposed algorithms can
improve the performance of LoRa: deterministic algorithms
show better performance when the number of gateways
and demodulators is high, while random algorithms always
have good performance, but shine when the number of
demodulators is small and the number of gateways is large.
Based on these initial findings, we will extend the proposed
methods by designing integrated approaches of random
selection and distributed optimization.

REFERENCES

[1] L. Kolobe, B. Sigweni, and C. K. Lebekwe, “Systematic literature
survey: applications of lora communications,” International Journal
of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, pp.
3176–3183, 2020.

[2] Semtech, “SX1301 - digital baseband chip LoRaWAN macro gate-
ways,” Wireless & Sensing Products, datasheet version 2.4, 06 2017.

[3] R. B. Sorensen, N. Razmi, J. J. Nielsen, and P. Popovski, “Analysis
of LoRaWAN uplink with multiple demodulating paths and capture
effect,” in IEEE ICC (International Conference on Communications,
2019.

[4] P. K. Dalela, S. Sachdev, and V. Tyagi, “LoRaWAN network capacity
for practical network planning in india,” in URSI AP-RASC (Asia-
Pacific Radio Science Conference), 2019.

[5] D. Magrin, M. Capuzzo, and A. Zanella, “A thorough study of
LoRaWAN performance under different parameter settings,” IEEE
Internet of Things Journal, vol. 7, no. 1, pp. 116–127, 01 2020.

[6] A. Guitton and M. Kaneko, “Improving LoRa scalability by a recursive
reuse of demodulators,” in IEEE Globecom, 2020.

[7] A. Rahmadhani and F. Kuipers, “When LoRaWAN frames collide,”
in WiNTECH (International Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization), 2018.

[8] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa
scalability: a simulation model based on interference measurements,”
Sensors, vol. 17, no. 6, p. 1193, 2017.

[9] J. Petajajarvi, M. Pettissalo, K. Mikhaylov, T. Hänninen, and
A. Roivainen, “On the coverage of LPWANs: Range evaluation and
channel attenuation model for LoRa technology,” in ITST (Interna-
tional Conference on ITS Telecommunications), 12 2015.

