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Abstract: The first fluorescent ferrociphenol derivative (P797) has been synthesized via McMurry
cross-coupling followed by copper-catalyzed [3 + 2] azide-alkyne cycloaddition of the fluorescent
group coumarin. Cyclic voltammograms of P797 exhibit either a monoelectronic oxidation wave
ascribed to the ferrocene Fe(II) → Fe(III) conversion or a three-electron oxidation process in the
presence of a base, leading to a Fe(III) quinone methide adduct. This general sequence is consistent
with those previously described for non-fluorescent ferrociphenols. Furthermore, the fluorescence
properties of P797 and its oxidized intermediates appear to strongly depend on the redox state of the
ferrocene group. Indeed, electrochemical generation of Fe(III) (ferrocenium) states markedly increases
the fluorescence emission intensity. In contrast, the emission of the Fe(II) (ferrocene) states is partially
quenched by photoinduced electron transfer (PET) from the Fe(II) donor to the coumarin acceptor
and by concentration-dependent self-quenching. Owing to its switchable fluorescence properties,
complex P797 could represent an innovative and useful tool to study the biodistribution and the
redox state of ferrocifens in cancer cells.

Keywords: ferrocene; coumarin; fluorescence switching; PET; redox state

1. Introduction

Fluorescence optical imaging is a broadly used technique for monitoring and tracking
molecules which has found applications in drug delivery [1] and in vivo tumor imag-
ing [2] to name a few. Fluorescent probes based on organic dyes such as BODIPY [3,4]
or polymers [5] have become instrumental in biology to visualize a large variety of
(bio)molecules [6,7] and metal ions [8]. The capacity to associate a fluorescent probe
to a specific redox state is also very interesting, as fluorescence emission can be switched
on and off as a function of the oxidizing environment [9]. For instance, molecules featuring
this property are extremely useful for studying the metabolism of cells in which reactive
oxygen and nitrogen species (ROS and RNS) are overproduced [10].

Fluorescent probes comprising a redox-active ferrocene entity are particularly at-
tractive because of (i) the reversible redox change between the Fe(II) and Fe(III) states
that occurs at biologically meaningful potential and (ii) the known ability of ferrocene
to quench fluorescence [11]. Intramolecular fluorescence extinction generally involves a
photoinduced electron transfer (PET) mechanism where electron transfer proceeds from
a donor group (here ferrocene) to the fluorophore excited state acting as an acceptor [12].
Furthermore, PET is aborted upon oxidation of ferrocene to its ferricenium form, resulting
in fluorescence emission enhancement. In this respect, several ferrocene–naphthoquinone
dyads were designed to study the factors influencing the ET process [13]. In addition,
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ferrocene–naphthalimide–piperazine triads have been shown to allow simultaneous pH
and redox sensing [14]. Recently, Thakur et al. successfully designed ferrocene–coumarin
platforms as PET-based chemosensors of Fe3+ and Cu2+ cations [15,16]. In the field of
anticancer metallodrugs, Mokhir et al. have introduced several ROS-sensitive, ferrocene–
fluorophore conjugates whose fluorescence emission is partially quenched by PET, whereas
their oxidation results in an increased fluorescence emission either in vitro or in cancer cells
due to PET release [17–19].

Ferrocifens, i.e., complexes connecting a tamoxifen skeleton to a ferrocenyl group, have
been extensively explored in the last two decades for their potent anticancer properties [20].
Their metabolism in oxidative environments such as those met in cancer cells relies on a
complex oxidation sequence that has already been explored for several members of this
family, essentially ferrociphenols [21,22], ferrocenyl anilines [23,24], and ferrocenophanic
suberamides [25]. Characterization of the corresponding intermediates and their lifetimes
owes much to the concepts developed by Anny Jutand and Christian Amatore on the electro-
chemical determination of mechanisms met in organometallic chemistry [26,27]. Christian
Amatore’s contribution to the electrochemistry study of ferrocifentype organometallics
is seminal [21] and enables the characterization of their oxidative pathways. The work
presented here is a tribute to his major contributions in this field.

Some of us recently uncovered the redox switchable properties of ferrocene–rhodamine
dyads [28], as well as the selective electrochemical bleaching of the fluorescence emitted by
NBD-tagged lipids and peptides [29,30] (NBD = 7-nitrobenz-2-oxa-1,3-diazole). Here, we
report the synthesis of P797 (Chart 1), the first fluorescent member of the ferrocifen family
for which a coumarin fluorophore was connected to the ferrociphenol skeleton via a spacer
arm of 4-carbon alkyl chain (Chart 1). The electrochemical and fluorescent properties of
P797 in the Fe(II) and Fe(III) states were explored, enabling to unambiguously establish its
oxidation sequence in the absence or presence of a base.
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2. Results and Discussion
2.1. Synthesis of Ferrociphenol Coumarin Dyads

McMurry coupling between the alkynyl ketone 1b and 4,4′-dihydroxybenzophenone
afforded the alkynyl ferrociphenol 2b in 27% yield. Complex P797 was finally obtained in
68% yield by copper-catalyzed [3 + 2] azide-alkyne cycloaddition between 2b and 3-azido-
7-hydroxycoumarin 4 (Scheme 1). P794, a complex with a shorter three-carbon alkyl chain
was also prepared by the same reaction sequence. Attempts to synthesize a derivative
with a two-carbon spacer arm were unsuccessful because of rapid decomposition of the
alkynyl intermediate.
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Scheme 1. Synthesis of ferrociphenol coumarin dyads P794 and P797.

2.2. Fluorescence Properties of P794 and P797

UV-visible and fluorescence spectra of the two newly synthesized complexes P794 and
P797 are displayed in Figure 1.
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Figure 1. UV-vis absorption (insets) and fluorescence emission spectra of P797 ((A) left graph) and
P794 ((B) right graph) at 1 × 10−5 mol.dm−3 in acetonitrile + TBABF4 at 0.1 mol.dm−3. Excitation
wavelength (λex) = 350 nm for fluorescence spectra.

As shown in the inset, the two complexes have similar UV-vis spectra, with maximum
absorption at 337 and 425 nm. For the same excitation wavelength (350 nm), the fluorescence
intensity of P797 is twice that of P794. This significant difference in fluorescence emission
most likely arises from a quenching process which is more efficient in P794. As discussed
below, fluorescence is affected by a photoinduced electron transfer (PET) from the Fe(II) to
the coumarin, a mechanism which rate and efficiency are known to depend on the structure
and distance between the donor (Fe(II) in our work) and the acceptor (coumarin). Electron
transfers are fundamental in redox chemistry and photochemistry and their rates depend
on the reaction coordinate between the donor and the acceptor [31], a feature which has
been illustrated using self-assembled monolayers (SAMs) of various chain length separating a
porphyrin photosensitizer and a ferrocene group [32]. Since P797 exhibits a higher fluorescence
intensity, we decided to carry out the following experiments with P797 only.
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2.3. Electrochemical Behavior of P797 in Acetonitrile in the Absence and Presence of Imidazole
Used as a Base

The cyclic voltammograms of P797 are presented in Figure 2. As shown in Figure 2A,
P797 oxidizes along a reversible process that takes place at 0.40 V/SCE, followed by an
irreversible peak at 0.85 V/SCE. The reversible oxidation at 0.40 V is ascribed to the
Fe(II) → Fe(III) conversion in the ferrocenyl moiety, as already reported for ferrociphe-
nols [33–38]. The sluggish irreversible peak at 0.85 V most likely represents the direct
oxidation of a phenol group [35].
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Figure 2. Cyclic voltammograms (CVs) of P797 (1 mmol.dm−3). (A) CVs of P797 in acetonitrile (solid
line); in acetonitrile + TBABF4 0.1 mol.dm−3 (dotted line) at a Pt disk electrode (diam 0.5 mm). Scan rate:
0.1 V.s−1; (B) CVs of P797 (1 mmol.dm−3) at different scan rates: 0.1 V.s−1 (a), 0.2 V.s−1 (b), 0.5 V.s−1 (c),
1 V.s−1 (d). Inset: variation of the oxidation peak current with the square root of the scan rate.

Focusing on the Fe(II)→ Fe(III) reversible oxidation wave, the peak current intensities
appear to increase with the square root of the scan rate (inset in Figure 2B), as expected for
a diffusion-controlled faradaic wave. Coumarin-functionalized compounds are known to
undergo strong adsorption on metal and glassy carbon electrodes [39–41], thus deforming
the shape of voltammetric signals and even fully passivating the electrode surface. As
shown in Figure 2B, the voltammograms remain diffusion-controlled within the scan rates
explored, showing that passivation is negligible in our conditions. The diffusion coefficient
(DP797) estimated from peak current intensity—scan rate dependence described by the
Randles–Ševčík equation [42] is DP797 = 2.4 × 10−6 ± 0.3 × 10−6 cm2.s−1.

The base-promoted oxidation of ferrociphenol compounds has been explored previ-
ously [21] and mostly features the ferrocene-mediated oxidation of the phenol to a quinone
methide. In our detailed mechanistic study of ferrociphenols [35], the overall oxidation
sequence featured a bielectronic ferrocene-promoted oxidation of ferrociphenol A to its
quinone methide D, which may undergo an additional monoelectronic oxidation to yield E
(Scheme 2). The electrochemical one-electron oxidation converts A into B. The addition
of a base triggers a second monoelectronic oxidation featuring an intermediate C(sp3)-
centered radical C which undergoes proton coupled electron transfer (PCET) to yield the
stable quinone methide D. Finally, D may undergo an additional 1-electron oxidation to
produce E. This latter D→ E monoelectronic reversible oxidation wave is overlapped in
the irreversible bielectronic wave corresponding to the overall conversion of A to D.
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Accordingly, it was interesting to study the electrochemical behavior of the newly
prepared coumarin-functionalized ferrociphenol P797 in the presence of a base. Its CVs in
the absence and presence of a tenfold excess of imidazole as a base are presented in Figure 3
(red curve). The cyclic voltammograms shown in Figure 3 show the same characteristic evo-
lution in the presence of imidazole as the one described for all the ferrociphenol series [38],
suggesting that the base-dependent oxidative sequence depicted in Scheme 2 also applies to
P797. As observed in Figure 3, the presence of imidazole triggers a two-electron oxidation
sequence at 0.39 V/SCE most likely leading to the formation of a quinone methide interme-
diate which oxidizes in a reversible wave at 0.49 V/SCE (overlapping the bielectronic wave).
Ultimately, the electrochemical oxidation of P797 may involve three electrons (Scheme 2),
the third electron most likely accounting for the oxidation of the quinone methide D to
its ferrocenium analog E in Scheme 2, demonstrating that the presence of the coumarin
fluorophore does not affect the electrochemical properties of the complex.
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Figure 3. CVs of P797 (1 mmol.dm−3) in acetonitrile + TBABF4 0.1 mol.dm−3 at a Pt disk electrode
(diam 0.5 mm). Scan rate: 0.1 V.s−1. Black curve: in the absence of imidazole. Red curve: in the
presence of a tenfold molar excess (10 mmol.dm−3) of imidazole.
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In fact, quinone methides (QMs) such as D are reactive species and their production
in cancer cells has been identified as playing an important role in the cytotoxicity of
ferrocifens [43]. Moreover, cancer cells are known to overproduce ROS and RNS [44],
making the exploration of the oxidized states biologically relevant.

2.4. Electrochemical Preparation of P797 Oxidized States

We intended to explore the fluorescence properties of the oxidized states of P797.
For this purpose, we chose to generate oxidized intermediates from the electrochemical
oxidation of P797 in a divided cell, the anodic compartment being fitted with a gold grid
electrode. The stepwise electrochemical generation of the successive intermediates met
along the oxidative metabolism of ferrociphenols has been described extensively by us [35].
We encourage the reader to obtain further information on the electrolyses in that reference
as well as in Section 3.2. The same apparatus, cells and procedures are used in this work
to generate the oxidized states of P797. The reversibility of the monoelectronic oxidation
observed in Figure 2B allows the quantitative conversion of P797 to its ferrocenium analog
(A→ B in Scheme 2). Stationary voltammograms have been recorded at a 25 µm diameter
Pt ultramicroelectrode before and after 1 Faraday/mole oxidation of P797 in order to ensure
that P797 has been converted to its oxidized Fe(III). A typical evolution of the stationary
voltammograms is presented in Figure 4.
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Figure 4. Stationary voltammograms of P797 (0.5 mmol.dm−3) in acetonitrile + TBABF4 0.1 mol.dm−3

at a 25 µm Pt disk ultramicroelectrode. Scan rate: 0.05 V.s−1. Black curve: anodic scan of P797 before
electrolysis. Red curve: cathodic scan recorded after a 0.92 Faraday/mole electrolysis at a gold grid
anode polarized at 0.7 V/SCE.

Since the cathodic red scan in Figure 4 is recorded from an initial potential value
corresponding to the open circuit potential (OCP, i.e., the zero-current Nernstian equilib-
rium potential of the solution obtained after the 1 Faraday/mol oxidation of P797), one can
observe an abrupt intensity change accounting for the strictly cathodic wave displayed. The
comparable current intensities of the anodic (black curve, before electrolysis) and cathodic
(red curve, after electrolysis) scans in Figure 4 reflect the reversible nature of the oxidation
wave observed in the CVs in Figure 2. However, the cathodic plateau current continuously
decreases with time over 30 min, revealing an instability of the Fe(III) redox state in our
conditions. Accordingly, the electrochemical divided cell was placed in ice for preparative
electrolysis in order to slow down the degradation of the electrogenerated Fe(III) states.
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2.5. Fluorescence Properties of P797 in Its Reduced and Oxidized Forms

P797 in its oxidized state (Fe(III)) was electrogenerated as described above and its
fluorescence properties were compared to those in its reduced state. The solution of
oxidized compound was analyzed within 15 min after its preparation, in order to minimize
degradation. The fluorescence and UV-vis spectra of reduced and oxidized P797 are
presented in Figure 5.
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Figure 5. Uv-vis absorption (inset) and fluorescence emission spectra of P797 at 10−5 mol.dm−3 in
acetonitrile + TBABF4 0.1 mol.dm−3. Black curve: before electrolysis (Species A in Scheme 2). Red
curve: after a 1 Faraday/mole oxidation at 0.7 V/SCE (Species B in Scheme 2). Excitation wavelength
λex = 350 nm for the fluorescence spectra.

As shown in Figure 5, oxidized P797 (species B, red curve) exhibits (i) slightly shifted
absorption spectrum (from 337 nm for P797 to 350 nm for its oxidized form) and (ii) a two-fold
enhancement of the fluorescence intensity compared to the original reduced compound. This
difference between the reduced and oxidized species A and B is in line with the occurrence
of a photo-induced electron transfer (PET) between the coumarin fluorophore and the metal
center in A, that should result in fluorescence quenching. However, PET is only partial since
species A is fluorescent upon excitation at 350 nm. Conversely, the PET mechanism no longer
applies for the oxidized intermediate B, resulting in higher fluorescence.

We have then checked whether fluorescence self-quenching could take place on both
redox states of P797. The corresponding fluorescence intensity–concentration dependence
is presented in Figure 6.

Self-quenching of P797 in its reduced form (black marks) becomes significant at concentra-
tions higher than 15 µmol.dm−3, with a maximum fluorescence intensity at ca. 50 µmol.dm−3

(Figure 6). Its oxidized derivative (red marks) exhibits a similar dependence with concen-
tration, although its fluorescence yield remains higher. Accordingly, we have recorded the
fluorescence spectra of P797 at 10 µmol.dm−3 in order to minimize its self-quenching.
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Figure 6. Integrated fluorescence intensity of P797 in its reduced (black marks, A) and oxidized (red
marks, B) forms as a function of its concentration in acetonitrile+ TBABF4 0.1 mol.dm−3.

2.6. Determination of the Quantum Yields of P797 in Its Reduced and Oxidized Form

We have then undertaken an estimation of the quantum yields of the reduced and
oxidized forms of P797 by comparing their fluorescence emission with a known standard
(9,10-diphenylanthracene; DPA) that exhibits fluorescence upon excitation at the same wave-
length (ΦXexc = 350 nm). The quantum yield was estimated from the emission/absorption
gradients obtained from the absorbance at 350 nm and fluorescence intensity (integrated
over the full spectrum) [45–47]. Using the same spectrophotometers and fluorimeters for
the sample and the standard, the quantum yield ΦXx of fluorescence of a given compound
x is given by equation the following Equation (1):

ΦX = Φstd
Grad(x)

Grad(std)

(
ηx
ηstd

)2
(1)

Equation (1). Gradient(x) [Grad(x)] and gradient standard [Grad(std)] are the slopes of
the curve plotting integrated fluorescence against absorbance at λex of compound x under
study or the standard, respectively. Values ηx and ηstd are the refractive indexes of the
solvents used for the compound and the standard (Φstd = 1.00 in our conditions [40].

The values of Grad(x) and Grad (std) associated with P797 are the slopes of the curves
presented in Figure 7.

From the linear variations observed in Figure 7, the fluorescence quantum yield of the
reduced and oxidized states of P797 can be estimated to ΦP797 = 0.06 (reduced state) and
ΦP797+ = 0.135 (oxidized state). The value of the ΦP797/ΦP797+ ratio is consistent with the
fluorescence intensity differences observed in Figures 4 and 6.
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2.7. Fluorescence Properties of P797 in the Presence of Imidazole

We next investigated the fluorescence properties of P797 electrolyzed in the presence
of imidazole (as a base). The corresponding spectra are presented in Figure 8.
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Figure 8. Fluorescence emission spectra of a 1:10 mixture of P797 and imidazole before and after electrol-
ysis ([P797] = 5.10−6 mol.dm−3, [Imidazole] = 5.10−5 mol.dm−3 in acetonitrile + TBABF4 0.1 mol.dm−3).
Black curve: before electrolysis (Species A in Scheme 2). Red curve: after a 3 Faraday/mole oxidation at
0.6 V/SCE (Species E in Scheme 2). Inset: CVs recorded before electrolysis. Black curve: no imidazole
added. Green curve: addition of a tenfold excess of imidazole (the vertical blue dashed line shows the
potential applied for the electrolysis): Excitation wavelength λex = 350 nm.
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The oxidation of P797 in the presence of imidazole engages three electrons, as verified
from the integration of the current with time (0.7 C passed at 0.6 V vs. SCE for a theoretical
charge of 0.72 C for a three-electron process). Since the duration of the electrolysis (900 s) is
roughly a hundred times that of the time window required to record a cyclic voltammogram
at 0.1 V.s−1, one can expect the three-electron oxidation of P797 to be complete under
electrolysis conditions. Note that intermediate C is instable (in other words C is a transient
species) in the presence of both imidazole and oxidizing conditions. As a result, the major
species present after electrolysis should be the ferrocenium cation E, obtained along the full
three-electron oxidation sequence shown in Scheme 2. The fluorescence spectra in Figure 8
may therefore be assigned, respectively, to precursor A (black curve, before electrolysis) and
product E (red curve, after electrolysis) as the major fluorescent species. Here, again, the
oxidized Fe(III) product E (a quinone methide) exhibits an increased fluorescence emission
upon excitation at 350 nm compared to the original Fe(II) precursor P797. The PET invoked
to explain the higher fluorescence emission of the oxidized state of P797 (ferrocenium cation
B—Figures 4 and 5) should also take place in the redox couple D/E of its quinone methide.

We eventually carried out an additional experiment where imidazole was added to
the electrochemically generated one-electron oxidation product of P797 (intermediate B
in Scheme 2). In fact, if B converts to radical C upon addition of a base, the fluorescence
emission should be affected, considering that intermediate C is formed along the base-
triggered intramolecular electron transfer between the phenol and the ferrocenium Fe(III)
“antenna”. The formation of C is likely considering that the addition of imidazole on B is
not accompanied by an electrolysis, so that only chemical evolution is possible from the B +
imidazole solution. The corresponding fluorescence spectra are shown in Figure 9.
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Figure 9. Fluorescence emission spectra of P797 at 5 × 10−6 mol.dm−3 in acetonitrile + TBABF4

0.1 mol.dm−3. [Imidazole] = 5 × 10−5 mol.dm−3. Black curve: before electrolysis (Species A in
Scheme 2). Red curve after 1 Faraday/mole oxidation at 0.7 V/SCE (Species B in Scheme 2). Green
curve: after addition of a tenfold excess of imidazole as a base on the previous (red curve) solution
(Species C in Scheme 2). Excitation wavelength λex = 350 nm.

One can observe in Figure 9 that the one-electron oxidation of P797 is accompanied by
an increase in fluorescence, as already commented in Figure 5. The addition of imidazole
to the solution of oxidized compound, i.e., on intermediate B in Scheme 2, results in a
dramatic decrease in fluorescence intensity (red to green trace). This fluorescence quenching
completely agrees with the formation of a formal Fe(II) redox state, depicted as intermediate
C in the oxidation sequence. On the one hand, monitoring fluorescence along the oxidation
sequence strengthens the mechanism established previously from stepwise electrochemical
and electron spin resonance experiments [35]. On the other hand, the large differences in
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fluorescence intensity observed in Figure 9 between P797 (precursor A, black curve) and
intermediate C (green curve) may account for a radical-centered fluorescence quenching
mechanism for intermediate C, as quenching of fluorescence by radicals has long been
known [48]. This brings another brick to the oxidative mechanistic scheme of coumarin-
functionalized ferrocifens.

3. Materials and Methods
3.1. Synthesis of Coumarin-Functionalized Ferrociphenols P794 and P797

All 1H and 13C-NMR spectra were acquired on Bruker 300 and 400 MHz spectrometers,
in acetone-d6 as the solvent. The 1H and 13C NMR spectra of 2a and 2b intermediates and
of the final 3a and 3b compounds (i.e P794 and P797) are provided in the supplementary
Material. High resolution mass spectra (HRMS) were performed at the MS3 platform of
Sorbonne Université. Thin layer chromatography was performed on silica gel 60 GF254.
Purification by column chromatography was performed on the Puriflash 430 system (In-
terchim) using pre-packed silica gel cartridges (Grace). Ketones 1a (n = 3) and 1b (n = 4)
were synthesized from ferrocene and 5-hexynoic acid or 6-heptynoic acid, respectively, as
described by Plazuk and Zakrzewski [49]. 3-azido-7-hydroxycoumarin 4 was prepared
according to a published procedure [50]. Other reagents were obtained from commercial
suppliers and used as received.

3.1.1. Synthesis of 2a and 2b via a McMurry Coupling

Titanium chloride was added dropwise to a suspension of zinc powder in dry THF
at 10–20 ◦C. The mixture was heated at reflux for 2 h. A second solution was prepared by
dissolving the two ketones in dry THF. This latter solution was added dropwise to the first
solution and then the reflux was continued for 2 h. After cooling to room temperature,
the mixture was stirred with water and dichloromethane. The mixture was acidified with
dilute hydrochloric acid until the dark color disappeared and was then decanted. The
aqueous layer was extracted with dichloromethane and the combination of organic layers
was dried on magnesium sulfate. After concentration under reduced pressure, the crude
product was flash chromatographed on silica gel column with an ethyl acetate/cyclohexane
(1:2) mixture as eluent to afford the alkynes.

2-Ferrocenyl-1,1-bis-(4-hydroxyphenyl)-hept-1-en-6-yne (2a)

2a was prepared using 1a (2.345 g, 8.37 mmol), 4,4′-dihydroxybenzophenone (3.586 g,
16.7 mmol), zinc (3.283 g, 50.2 mmol), titanium(IV) chloride (6.352 g, 3.68 mL, 33.5 mmol)
to afford 2a as an orange solid with a yield 63%. 1H NMR (acetone-d6): δ 1.60–1.75 (m, 2H,
CH2), 2.02–2.14 (m, 2H, CH2), 2.35 (t, J = 2.6 Hz, 1H, alkyne), 2.72–2.83 (m, 2H, CH2), 3.99
(t, J = 1.9 Hz, 2H, C5H4), 4.08 (t, J = 1.9 Hz, 2H, C5H4), 4.14 (s, 5H, Cp), 6.71 (d, J = 8.7 Hz,
2H, C6H4), 6.82 (d, J = 8.7 Hz, 2H, C6H4), 6.88 (d, J = 8.7 Hz, 2H, C6H4), 7.07 (d, J = 8.7 Hz,
2H, C6H4), 8.22 (s, 1H, OH), 8.25 (s, 1H, OH). 13C NMR (acetone-d6): δ 19.0 (CH2), 29.8
(CH2), 34.8 (CH2), 68.6 (2CH C5H4), 69.8 (5CH Cp), 70.0 (2CH C5H4), 70.1 (C alkyne), 85.0
(CH alkyne), 88.5 (C C5H4), 115.8 (2CH C6H4), 115.9 (2CH C6H4), 131.3 (2CH C6H4), 131.8
(2CH C6H4), 134.5 (C), 137.0 (C), 137.4 (C), 139.7 (C), 156.6 (C), 156.7 (C). IR (KBr, ν cm−1):
3408 (OH), 2259 (triple bond). MS (CI, NH3) m/z: 463 [M + H]+. HRMS (ESI, C29H26FeO2:
[M]+.) calcd: 462.12767, found: 462.12763.

2-Ferrocenyl-1,1-bis-(4-hydroxyphenyl)-oct-1-en-7-yne (2b)

2b was prepared using 1b (5.3 g, 18.02 mmol), 4,4′-dihydroxybenzophenone (3.86 g,
18 mmol), zinc (7.067 g, 108.1 mmol), titanium(IV) chloride (13.672 g, 7.92 mL, 72.1 mmol)
to afford 2b as an orange solid with a yield 27%. 1H NMR (acetone-d6): δ 1.36–1.50 (m,
2H, CH2), 1.53–1.70 (m, 4H, CH2), 2.27 (t, J = 2.7 Hz, 1H, CH alkyne), 2.59–2.71 (m, 2H,
CH2), 3.94 (t, J = 1.9 Hz, 2H, C5H4), 4.06 (t, J = 1.9 Hz, 2H, C5H4), 4.12 (s, 5H, Cp), 6.70 (d,
J = 8.6 Hz, 2H, C6H4), 6.81 (d, J = 8.6 Hz, 2H, C6H4), 6.87 (d, J = 8.6 Hz, 2H, C6H4), 7.06
(d, J = 8.6 Hz, 2H, C6H4), 8.16 (s, 1H, OH), 8.20 (s, 1H, OH). 13C NMR (acetone-d6): δ 18.5
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(CH2), 29.5 (CH2), 30.2 (CH2), 34.9 (CH2), 68.6 (2CH C5H4), 69.9 (5CH Cp), 70.1 (2CH C5H4
+ C alkyne), 85.0 (CH alkyne), 88.5 (C C5H4), 115.8 (2CH C6H4), 115.9 (2CH C6H4), 131.3
(2CH C6H4), 131.8 (2CH C6H4), 135.1 (C), 137.2 (C), 137.5 (C), 139.4 (C), 156.6 (C), 156.7 (C).

3.1.2. Synthesis of Ferrocifen Coumarin Dyads 3a and 3b via a Click Coupling Procedure

2a or 2b (0.54 mmol) was dissolved in ethanol (8 mL) then diluted with H2O (6 mL).
3-azido-7-hydroxycoumarin 4, CuSO4.5H2O (0.068 g in 1 mL H2O, 0.27 mmol) and sodium
ascorbate (0.107 g in 1 mL H2O, 0.54 mmol) were added and the reaction mixture was stirred
at room temperature in the dark for 18 h. EtOAc (50 mL) and H2O (40 mL) were added
and the aqueous solution was extracted with EtOAc (3 × 50 mL). The organic layers were
combined and dried over Na2SO4. After concentration under reduced pressure, the crude
product was flash chromatographed on silica gel column with a ethyl acetate/cyclohexane
(1:2) mixture as eluent to afford the coumarin derivatives 3a,b.

7-Hydroxy-3-(4-[35]-[1,2,3]triazol-1-yl)-chromen-2-one (3a, P794) (0.24 g, 81% Yield,
Orange Solid)

1H NMR (acetone-d6): δ 1.85–2.00 (m, 2H, CH2), 2.66–2.78 (m, 4H, CH2), 3.93 (t,
J = 1.9 Hz, 2H, C5H4), 4.04 (t, J = 1.9 Hz, 2H, C5H4), 4.09 (s, 5H, Cp), 6.70 (d, J = 8.4 Hz,
2H, C6H4), 6.78 (d, J = 8.4 Hz, 2H, C6H4), 6.87 (d, J = 8.4 Hz, 2H, C6H4), 2.86–2.93 (m, 1H,
coumarin), 6.95–7.04 (m, 1H, coumarin), 7.04 (d, J = 8.4 Hz, 2H, C6H4), 7.77 (d, J = 8.1 Hz,
1H, coumarin), 8.08 (s, 1H, aromatic), 8.16–8.94 (s broad, 2H, OH), 8.49 (s, 1H, aromatic).
13C NMR (acetone-d6): δ 26.2 (CH2), 31.2 (CH2), 35.0 (CH2), 68.6 (2CH C5H4), 69.9 (5CH
Cp), 70.0 (2CH C5H4), 88.5 (C C5H4), 103.3 (CH), 112.1 (C), 115.0 (CH), 115.8 (2CH C6H4),
115.9 (2CH C6H4), 121.3 (C), 123.0 (CH), 131.3 (2CH C6H4), 131.6 (CH), 131.8 (2CH C6H4),
135.0 (C), 135.4 (CH), 137.1 (C), 137.4 (C), 139.5 (C), 148.3 (C), 155.9 (C), 156.6 (C), 156.7
(C), 157.1 (C), 162.9 (CO). HRMS (ESI, C38H31FeN3O5: [M]+.) calcd: 665.16076, found:
665.16092.

7-Hydroxy-3-(4-[15,33,36]-[1,2,3]triazol-1-yl)-chromen-2-one (3b, P797). (0.25 g, 68% Yield,
Orange Solid)

1H NMR (acetone-d6): δ 1.53–1.75 (m, 4H, CH2-CH2), 2.61–2.75 (m, 4H, CH2), 3.92
(t, J = 1.9 Hz, 2H, C5H4), 4.04 (t, J = 1.9 Hz, 2H, C5H4), 4.11 (s, 5H, Cp), 6.70 (d, J = 8.5
Hz, 2H, C6H4), 6.80 (d, J = 8.5 Hz, 2H, C6H4), 6.86 (d, J = 8.5 Hz, 2H, C6H4), 2.86–2.92 (m,
1H, coumarin), 6.99 (d, J = 8.4 Hz, 1H, coumarin), 7.06 (d, J = 8.5 Hz, 2H, C6H4), 7.76 (d,
J = 8.5 Hz, 1H, coumarin), 7.95–8.43 (s broad, 2H, OH), 8.24 (s, 1H, aromatic), 8.48 (s, 1H,
aromatic). 13C NMR (acetone-d6): δ 25.9 (CH2), 30.2 (CH2), 30.6 (CH2), 35.2 (CH2), 68.6
(2CH C5H4), 69.9 (5CH Cp), 70.1 (2CH C5H4), 88.5 (C C5H4), 103.3 (CH), 112.1 (C), 115.1
(CH), 115.8 (2CH C6H4), 115.9 (2CH C6H4), 121.3 (C), 122.9 (CH), 131.3 (2CH C6H4), 131.6
(CH), 131.8 (2CH C6H4), 135.2 (CH + C), 137.2 (C), 137.5 (C), 139.3 (C), 148.5 (C), 155.8
(C), 156.6 (C), 156.7 (C), 157.1 (C), 162.9 (CO). HRMS (ESI, C39H33FeN3O5: [M]+.) calcd:
679.17641, found: 679.17650.

3.2. Electrochemical and Fluorescence Studies

Cyclic voltammetry and electrolyses were performed in acetonitrile where tetrabuty-
lammonium tetrafluoroborate (TBABF4) 0.1 M was introduced as supporting electrolyte. An
Autolab PGSTAT 20 potentiostat (Metrohm, Switzerland) was used with a three-electrode
electrochemical cell, cyclic voltammograms were recorded at a 0.5 mm home-made Pt
working electrode (Goodfellow). Saturated calomel electrode (SCE, Radiometer) was used
as reference electrode, and a platinum wire (Goodfellow) as counter electrode. The refer-
ence electrode was separated from the bulk solution by a fritted-glass bridge filled with
the solution of supporting electrolyte (0.1 M TBABF4 in MeCN). CV experiments were
recorded after at least 10 min of argon purging, at room temperature.

Electrolyses were performed in a divided 2 × 5 mL cell where the compartments are
separated by a porosity 4 sintered glass. P797 was introduced in the anodic compartment
with the same electrolyte (MeCN with 0.1 M TBABF4), see reference [32] for further details
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regarding the electrochemical cells and setup. Aliquots (20 µL) of the solutions introduced
or electrolyzed in the anodic compartment were transferred to a quartz UV-Vis 2 mL cuvette
to record the absorption and fluorescence spectra. Perkin Elmer Lambda 45 spectrometer
was used in absorption measurements and JASCO FP-8300 fluorometer in fluorescence
measurements, from 2 mL solutions placed in quartz cuvettes.

4. Conclusions

Finally, the fluorescence emission of the model coumarin-functionalized ferrociphenol
P797 appears to strongly depend on the oxidation state of its ferrocene group. The higher
fluorescence yield exhibited by the Fe(III) intermediates suggests the occurrence of a fluo-
rescence quenching mechanism on its reduced Fe(II) analogs, most likely through photoin-
duced electron transfer from Fe(II) to the coumarin. We have shown that a carbon-centered
radical intermediate in the oxidation sequence also enables a quenching of fluorescence. Un-
der oxidative stress, a cancer cell overproducing reactive oxygen or nitrogen species would
provide both the oxidizing and pH-buffered environment prone to convert a molecule
such as P797 to its three-electron oxidized ferrocenium quinone methide. The resulting
fluorescence is expected to increase and this property opens avenues in the imaging of such
ferrociphenols and more generally on ferrocene-functionalized coumarins in cell cultures.
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3a and 3b: Figure S1: 1H and 13C NMR spectra of 2a; Figure S2: 1H and 13C NMR spectra of 2b;
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