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Welcome

This is an archival copy of my digital garden whose current on-line version
can be consulted at

https://github.com/khinsen/science-in-the-digital-era

This archival copy corresponds to commit 0515b59b1de9d21a54334c79c8bc640e35b826f4,
which was published on 2022-08-31.

This digital garden contains essays, thoughts, random ideas, and references
that relate to the practice of scientific research in the digital era, characterized
by computers (personal, high-performance, cloud, . . . ), software, the Internet,
global collaborations, social networks, and more. They represent exclusively
my personal views and in particular not those of my employer.

There are many empty pages in this collection, and you may wonder why.

One reason is that this digital garden is work in progress. When I work on a
page, I often insert links to pages that I intend to write, but haven’t written
yet. So you see an empty page. If you come back later, you may find some
real content there. So. . . come back often.

The second reason is that empty pages are useful link targets, due to the
backlink feature in the online version of my digital garden. At the end of
each page, you see a list of other pages that link to the current one. Empty
pages thus fulfill the role of a subject index in a traditional book: they help
you find where some topic is discussed. Unfortunately, this feature is lost in
this archival copy.

License

The pages of this digital garden are covered by a Creative Commons License
(CC BY-SA 4.0 to be precise).
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About the author

My name is Konrad Hinsen, and I have been a research scientist at CNRS in
France since 1998.

My scientific career started in statistical physics, with a thesis on colloidal
suspensions at RWTH Aachen in Germany. My thesis was based mostly on
computer simulations that ran on the Cray Y-MP at the Forschungszentrum
Jülich. The simulation programs were small Fortran codes that I wrote and
tested myself.

After my thesis I moved to computational biophysics, applying various
simulation techniques to proteins and (to a much lesser degree) DNA. I fell
into a different universe, one where most researchers are users of a small
number of simulation packages written by an equally small number of groups.
As a consequence, most scientists cannot inspect in detail, let alone modify,
the models and methods they apply in their research. While this situation
is understandable in its historical context (the models for biomolecules are
complex and the size of the simulated systems requires optimized code), I
consider it unacceptable in the long run. Models and methods are at the
heart of science and we should never allow them to be obfuscated or hidden.

This experience, together with my first encounter with computational
(ir)reproducibility around the same time (1995), was the starting point for
my second topic of research: the methodology of computational science, or,
as I prefer to frame it nowadays, computer-aided research.

My first idea was to make scientific software more accessible through the use of
high-level languages, and after I discovered the Python language, I ended up
becoming a founding member of the Matrix-SIG, which developed Numerical
Python, the predecessor of NumPy. On that basis I then developed the
Molecular Modelling Toolkit. In contrast to the popular simulation packages
of the time (1997), it was not a program with a fixed feature set, but a
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toolkit of basic algorithms that researchers could use from their own Python
scripts.

The move from Fortran to Python did indeed lower the entrance barrier to
becoming a developer, but still most biophysicists did not want to become
developers, and, more importantly, models and methods were still hidden in
computer code that had to respect constraints related to efficient executability.
It takes less time to find and read the relevant code section in MMTK than
in older software, but scientists still cannot study and work with their models
directly. And then, the lower entrance barrier of Python completely changed
to way scientists write and use software, with one big negative impact being
the fragility of the scientific Python ecosystem. Whereas the Fortran code of
my thesis still compiles and runs, many of my Python scripts of ten years
ago have become hard to use, and even harder to trust. Reproducibility has
become a major challenge, not only in the Python ecosystem.

The approaches I am currently exploring for giving scientists more control
over their models and methods are digital scientific notations and re-editable
software, within the larger goal of creating computational media for science. I
am also closely following research on similarly-minded topics, such as explain-
ability in machine learning and human-computer interaction. As Richard
Hamming famously said, the purpose of computing is insight, not numbers.
There is no point in performing massive computations if nobody knows if
their results can be trusted or how they can be interpreted scientifically.

https://www.brainyquote.com/quotes/richard_hamming_645682


Agent-based model
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Cellular automaton
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Code over data

A computation is, from a bird’s eye view, the application of code to input
data, producing output data. Usually the code is a tool to manipulate or
transform data. Computer users tend to care more about their data than
their tools. They want to write a letter, not use Microsoft Word. They want
to watch movie, not start VLC. They want to simulate the behavior of a
protein, not run GROMACS. Computing should be data-centric, for most
use cases.

Reality is quite the opposite. It’s code over data everywhere you look. Your
phone shows “apps”, meaning tools. They work on data that is handled
opaquely. You don’t really know where it is, what it represents, who can
access it. All you get is the view on the data that the app shows you.

On the desktop, it’s very similar. You probably know the name of your word
processor, but not the same of the file format it uses to store the data. You
probably cannot name other software that could use that same file format.
Contrary to phones, desktop systems let you see and manipulate the files
that contain your data, but offer your only very generic operations (copy,
delete), or running “the app” that effectively owns the data.

In the university classroom, we see the same predominance of code over data.
Whether you look at the titles of classes or textbooks, you see a lot more on
software or algorithms than on data models.

Computing is obsessed with tools, which seem more important than the
tasks they are designed to perform and the information that they process.
Computer-aided research is inheriting this obsession. More and more papers
cite software (which is good!) but don’t describe in sufficient detail what
the software does (which is bad), nor how the input and output data are
structured, making it difficult for readers to examine the work in detail,
possibly using different software.

6
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Another illustration is the use of computational notebooks in data science.
Data science is about data, but notebooks are about code. If you want to
show and explain data in a notebook, you have to write the code for this
yourself. A computational medium for data science would put the data in
the primary focus of attention, not the code that loads and processes the
data.



Computational media

Media are substrates for encoding information. They can serve many pur-
poses, the most common ones being communication, archival, or interfacing
with tools. Printed paper is a medium. An abacus is a medium. The
telephone is a medium. Television is a medium.

Digital media are media defined by software, amenable to processing with a
computer. MP3 audio files are digital media, as are Word documents, PNG
images, and many others.

Computational media are digital media that can encode computation among
other information. Spreadsheets (e.g. Excel and its many clones) are probably
the most well-known example. Game engines are another example, well known
as well though most people are probably unaware of their capacity to encode
computation.

Programming languages can be seen as a degenerate form of computational
media, which can encode computation but nothing else. I consider the
predominance of programming languages in today’s computing technology,
and in particular the widespread idea of “general purpose” programming
languages, a sign of the immaturity of this technology. It goes along with an
exaggerated focus on code over data.

Computational science suffers from this exaggerated focus as well. The
core entities of science are observations, models, and the relations between
them. Computational media for science should encode these entities, and let
scientists explore and refine them. Tools, such as computers and software,
are merely means to this end. Astronomy is about stars and galaxies, not
about telescopes. Particle physics is about elementary particles, not about
particle colliders. Biology is about living organisms, not about microscopes
or test tubes. The computational branches of these disciplines should also
be about entities in nature and the models we make of them, not about

8
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computers and software.

What could a computational medium for science look like? I’ll stick to what
I know: physics and chemistry, and in particular biophysics. My current idea
of a computational medium for these disciplines takes the shape of a Wiki,
something like Wikipedia. Some pages in this Wiki describe entities, such
as proteins. Other pages describe models for entities in nature, such as the
elastic network model for proteins. Yet other pages describe observations on
these entities, i.e. typically the outcomes of experimental studies. Below this
surface of human-readable narratives, the pages contain machine-readable
representations of everything, made explorable and refineable by suitable
tools.

Much of the technology required for such a computational medium already
exists. We have Wikis, and we have the semantic Web as a backbone for
encoding relations in a machine-readable way. The Nanopublications project
(and others!) illustrates how the semantic Web can be used to encode relations
between observations and models. We also have good digital representations
for observations, though the multitude of data formats makes them hard to
manager. What’s lacking is a suitable representation of models - that’s what
I hope to achieve with digital scientific notations.

Recommended reading:

• Beyond programming languages, by Terry Winograd. A 1979 paper
whose vision has not yet been realized.

• The computer revolution hasn’t happened yet, by Alan Kay. A recorded
talk from 1997, but it hasn’t happened in the following 25 years either.

• Software as Computational Media, by Clemens Nylandsted Klokmose
(video, recorded keynote speech at the conference LIVE’21)

• Computational science: shifting the focus from tools to models, by
yours truly.

https://en.wikipedia.org/wiki/Wikipedia
https://nanopub.org/
https://doi.org/10.1145/359131.359133
https://archive.org/details/AlanKayAtOOPSLA1997TheComputerRevolutionHasntHappenedYet
https://www.youtube.com/watch?v=I-aGF-47hqI
https://doi.org/10.12688/f1000research.3978.2


Computational notebook

An electronic document embedding a computation into a narrative.

Computational notebooks differ from literate programming in documenting
a computation, i.e. code with all required input data, whereas literate pro-
gramming documents programs, i.e. code designed to accept varying input
data. It is the focus on fully specified computations that makes it possible
to include intermediate and final results. On the other hand, this same focus
means that notebooks can only deal with the surface layer of a computation.
The library code called from that surface layer remains inaccessible to the
reader of a notebook.
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Computational
reproducibility

In the context of computer-aided research, reproducibility refers to the
possibility to re-execute a computation and check that the results are identical.
It differs from computational replicability, which is about the robustness
of results under minor changes in the software. Unfortunately, terminology
hasn’t settled yet and some authors use these two terms in exactly the
opposite way.

Computational reproducibility became a subject of debate because its prac-
tical impossibility came as a surprise. Computations are supposed to be
deterministic. 2 + 2 is 4 today, as it has been for centuries, and we have little
doubt that the result will be the same 100 years from now. Computations
done by a computer usually perform a huge number of such steps, but that
shouldn’t make a difference: 1 million deterministic steps still make for a
deterministic result. The practical experience of scientists using computers
is quite the opposite: it is the rule rather than the exception that re-running
someone else’s computation leads to a slightly different result.

This apparent mystery has a simple explanation. If you re-do a computation
twice in succession on your computer, you will get the same answer (ignoring
special cases such as random number generators or parallel computing).
If you re-do a computation a day later on the same computer, you will
also get the same answer, most of the time. In fact, if you get a different
result, then something has changed on your computer in between. Most
probably, you have updated some software, possibly without being aware of
it. And when you re-do someone else’s computation on your computer, you
are actually transferring a small component of one software system into a
different software environment - yours. In other words, when a reproduction

12
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attempt for a computation yields a different result, the by far most frequent
explanation is that the computations were subtly different.

So how can it happen that two people who are convinced of doing the same
computation are actually doing different ones? The two main culprits are the
complexity and the opacity of today’s software stacks. What you think of as
“the software” you are running is really just the tip of the iceberg. Between
that code and the processor that is doing the work inside your computer,
there are many layers of software that have an impact on the results you will
get. Obtaining a full description of those layers is very difficult to impossible
on most of today’s computing platforms. Transferring all of them to another
machine is even more difficult, and often impossible.

A case study
An interesting case study from chemistry was published in 2019 by Neupane
et al.. It starts from a 2014 publication of a computational protocol for
obtaining molecular structures from chemical shifts measured by NMR (don’t
worry if you don’t understand what this means). The supplementary material
for that publication contains two Python scripts that are essential parts of
the protocol. What Neupane et al. discovered is that these scripts access
the data files they process in a way that tacitly assumes a behavior specific
to the Windows operating system. When run under Linux, the scripts can
read the data files in a wrong order, depending on circumstances that are
outside of the scripts’ control. As Neupane et al. note:

This simple glitch in the original script calls into question the
conclusions of a significant number of papers on a wide range of
topics in a way that cannot be easily resolved from published
information because the operating system is rarely mentioned.

Yes, your operating system is part of the software that you are running. As
are, in the case of this specific example, the Python interpreter, the Python
libraries it depends on, and a much larger number of nearly invisible libraries
that Python itself depends on. All of these software components are regularly
updated by their authors, with the goal of fixing bugs, adding features, or
improving performance. This explains why the software environment on your
computer changes all the time, and why two different computers are highly
unlikely to have the same software environment.

The two Python scripts that are the focus of this case study have been fixed

https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.1038/nprot.2014.042


COMPUTATIONAL REPRODUCIBILITY 14

in the meantime, but I suspect that many scientists still have and use the
original ones.

Is there a way out?
Yes. Computational reproducibility is, in principle, a solved problem. There
are well-understood techniques to document a software assembly completely
and precisely, in such a way that it can be transferred to a different computer.
Not just any computer though, it has to be sufficiently similar to the original
one, and in particular use the same type of processor (which, in a way, is also
part of your software stack). Better yet, there are freely available tools that
manage software (and computations) reproducibly for you: Nix and Guix. A
key insight behind these two tools is that every computation on a modern
computing system is actually a staged computation, with reproducibility of
the last stage (the one we most care about) requires the reproducibility of
all prior stages.

This isn’t the end of the story though. The existence of support tools that
guarantee computational reproducibility is only the first step. In terms of
user-friendliness, these tools still leave a lot to be desired. And most research
software has not yet been integrated into their management scheme, and
for some software this is nearly impossible. In particular, only Open Source
software can be managed reproducibly, because controlled compilation of the
source code is a crucial step. And that also means that the only operating
system that can be supported is Linux.

A few years ago, a frequently discussed question was “is computational
reproducibility possible?”. Today it is clear that the answer is “yes”. Now
the question is how much reproducibility is worth to researchers. Enough to
support the development of Nix and Guix? Enough to invest into learning how
to use them? Enough to abandon proprietary software, including the popular
operating systems Windows and macOS? Time will tell. Computational
reproducibility is no longer a technical issue, it’s a social one.

Further reading: - Is reproducibility practical? by Ludovic Courtès

https://hpc.guix.info/blog/2022/07/is-reproducibility-practical/
https://people.bordeaux.inria.fr/lcourtes/
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Computer-aided research

Scientific research in which computers and software are essential parts of
the research workflow. The term computational science is usually reserved
for research in which computation is the dominant tool. Computer-aided
research is a much wider category, including most of today’s experimental
research that relies on computational data processing in various stages of
the overall workflow.
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Data science

According to Wikipedia,

Data science is an interdisciplinary field that uses scientific meth-
ods, processes, algorithms and systems to extract knowledge and
insights from noisy, structured and unstructured data, and apply
knowledge and actionable insights from data across a broad range
of application domains.

This sounds very modern, but it’s really only the label that is recent. Re-
searchers such as Apollonius, Hipparchus, and Ptolemy, practiced data
science about 2000 years ago.

The focus of interest of these early researchers was a topic that had kept
humanity busy for quite a while already, all over the world: the motion
of heavenly bodies. The main motivation was making predictions for the
near future. The configuration of the stars and planets was widely believed
to have an impact on human affairs (a belief we call astrology today), so
knowing them in advance was of obvious interest. They had astronomical
observations at their disposal, but numbers alone are not sufficient to make
predictions. You also need a model for extrapolating the numbers to the
future.

The tool that Apollonius, Hipparchus, Ptolemy, and probably others, de-
veloped and improved to near perfection was epicycles: a model for the
orbit of a heavenly body consisting of a superposition of circles, with each
circle’s center moving along a bigger circle’s circumference. Epicycles are
similar in spirit to Fourier series. Any periodic orbit can be described as a
superposition of circular motions. Given enough data, one can fit an epicycle
model and make predictions. But since the epicycle model does not contain
any physics, it doesn’t come with any safeguards against mistakes. Epicycles
can equally well describe real and completely unrealistic orbits, and therefore
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the quality of the data is very important.

Today’s data science works much the same. Very general models, such as
neural networks, are fitted to large datasets via machine learning techniques,
and then used to make predictions. Again the models contain very few
assumptions about underlying laws of nature. They are by design very
general (see e.g this visual proof that neural networks can compute any
function) in order to capture any kind of regularity in the input datasets. As
for epicycles, data quality is important, which is why data scientist invest a
significant effort into cleaning up the raw data they work on.

Aside from the obvious technological aspects and the associated change of
scale in the size of datasets, the main improvement of today’s data science
on epicyle models for orbits is even more generality. Early astronomers had
periodicity baked into their models from the start. Neural networks (and
other models used in data science) could predict the motion of heavenly
bodies with even less theoretical input. However, it is important to realize
that every model imposes some a priori assumptions, even if, as in the case
of neural networks, these assumptions are not fully understood and therefore
not formalized. Seen in this light, the improvement of modern data science
over epicycles is gradual rather than fundamental. It is also interesting to
note that neural network research has (re-)discovered the benefits of more
specialized models, as e.g. in convolutional neural networks.

Adopting an historical perspective, data science turns out to mark the
beginning of scientific disciplines rather than their refinement. It permits the
very first step from raw observations to a description of regularities in the
form of empirical models. Connecting these regularities to more fundamental
principles that are already known, or even discovering new fundamental
principles as in the case of Newton’s laws for celestial mechanics, can only
happen afterwards, via the construction of explanatory models.

http://neuralnetworksanddeeplearning.com/chap4.html
https://en.wikipedia.org/wiki/Convolutional_neural_network


Digital Garden

A digital garden is a small ecosystem of interrelated documents that its
curator tends to with regular updates and revisions. It differs from a blog,
which is a stream of finished-then-published documents. A digital garden can
be considered a special case of a Wiki that is curated by a single person or a
small team, in contrast to open-to-all collaborative works such as Wikipedia.

Recommended reading on digital gardens: - The Garden and the Stream: A
Technopastoral by Mike Caulfield - A Brief History & Ethos of the Digital
Garden by Maggie Appleton
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Digital scientific notation

A scientific notation is a convention for encoding scientific information using
symbols. The best known example is mathematical notation. The goal of a
scientific notation is to represent scientific knowledge in a way that humans
can easily comprehend and manipulate. While in principle a mathematical
equation could be replaced by an equivalent statement in plain language,
the more concise equation is faster to read (assuming a trained reader) and
allows manipulation by formal rules (such as “add the same term to both
sides”).

A digital scientific notation is a scientific notation that can be processed by
both humans and computers. A machine readable notation is necessarily a
formal language and thus has a well-defined unambiguous syntax in addition
to some useful level of well-defined semantics.

There are many formal languages designed for representing scientific infor-
mation. An example is the Systems Biology Markup Language (SBML).
Most of them do not qualify as digital scientific notations, because they are
designed to be used by software but not for communication between humans.

There are also formal languages that are designed to be read and written
by humans, in addition to computers. Programming languages are the most
prominent examples. In scientific computing, programming languages are
routinely used to represent scientific knowledge as program code. In particu-
lar, computational notebooks embed code written in high-level programming
languages such as Python or R into a narrative, much like mathematical
notation is used in traditional scientific publications. However, programming
languages fill the role of scientific notations rather poorly, in particular
because they cannot express anything other than executable algorithms.

Digital scientific notations are not computational tools, but parts of the
communication interfaces between scientists and their computational tools.

21
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In particular, they permit scientists engaged in computer-aided research to
discuss computational models and methods in a way that ensures conformity
between the human narratives and the computations.

Further reading: - Scientific notations for the digital era (on arXiv) and a com-
ment on it by Mark Buchanan in Nature Physics - Scientific communication
in the digital age (in Physics Today)

http://www.nature.com/doifinder/10.1038/nphys3815
http://www.nature.com/doifinder/10.1038/nphys3815
http://dx.doi.org/10.1063/PT.3.3181
http://dx.doi.org/10.1063/PT.3.3181
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Elastic network model
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Empirical model

The first type of scientific model that people construct when figuring out a
new phenomenon is the empirical or descriptive model. Its role is to capture
observed regularities, and to separate them from noise, the latter being
small deviations from the regular behavior that are, at least provisionally,
attributed to imprecisions in the observations, or to perturbations to be
left for later study. Whenever you fit a straight line to a set of points, for
example, you are constructing an empirical model that captures the linear
relation between two observables. Empirical models almost always have
parameters that must be fitted to observations. Once the parameters have
been fitted, the model can be used to predict future observations, which is a
great way to test its generality. Usually, empirical models are constructed
from generic building blocks: polynomials and sine waves for constructing
mathematical functions, circles, spheres, and triangles for geometric figures,
etc.

The use of empirical models goes back a few thousand years. As I have
described in in a blog post, the astronomers of antiquity who constructed
a model for the observed motion of the Sun and the planets used the same
principles that we still use today. Their generic building blocks were circles,
combined in the form of epicycles. The very latest variant of empirical
models is machine learning models, popular in data science, where the generic
building blocks are, for example, artificial neurons. Impressive success stories
of these models have led some enthusiasts to proclaim the end of theory, but
empirical models of any kind and size are really the beginning, not the end,
of constructing scientific theories around explanatory models

The main problem with empirical models is that they are not that powerful.
They can predict future observations from past observations, but that’s all.
In particular, they cannot answer what-if questions, i.e. make predictions
for systems that have never been observed in the past. The epicycles of
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Ptolemy’s model describing the motion celestial bodies cannot answer the
question how the orbit of Mars would be changed by the impact of a huge
asteroid, for example.

Today’s machine learning models are no different. A major recent success
story is AlphaFold predicting protein structures from their sequences. This
is indeed a huge step forward, as it opens the door to completely new ways
of studying the folding mechanisms of proteins. It has also already become a
powerful tool in structural biology. But it is not, as DeepMind’s blog post
claims, “a solution to a 50-year-old grand challenge in biology”. We still do
not know what the fundamental mechanisms of protein folding are, nor how
they play together for each specific protein structure. And that means that
we cannot answer what-if questions such as “How do changes in a protein’s
environment influence its fold?”, because the only variation in its inputs that
AlphaFold has been trained on is the protein’s amino acid sequence.

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology


Empty page

There are many empty pages in this collection, and you may wonder why.

One reason is that this digital garden is work in progress. When I work on a
page, I often insert links to pages that I intend to write, but haven’t written
yet. So you see an empty page. If you come back later, you may find some
real content there. So. . . come back often.

The second reason is that empty pages are useful link targets, due to the
backlink feature in my digital garden. At the end of each page, you see a
list of other pages that link to the current one. Empty pages thus fulfill the
role of a subject index in a traditional book: they help you find where some
topic is discussed.
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Epistemic opacity

Epistemic opacity is philosophers’ jargon for describing processes and mecha-
nisms that are much easier to use than to understand. If you do use such a
process, you don’t really know what you are doing.

Consider a somewhat complex computation, but one which is still doable
by hand. Computing the correlation of two 100-point discrete signals, for
example. Now consider the following ways of getting to the result:

1. You do the computation by hand, yourself.
2. You ask one of your students to do the computation for you (assuming

you are an academic, of course!)
3. You write a computer program do to the computation, then run it.
4. You run a computer program written by someone else.

From top to bottom, epistemic opacity increases, making a huge jump
between number 3 and 4. If you do everything yourself, by hand, you will
likely insert checks to catch mistake, because you know that everybody makes
mistakes in lengthy computations. Probably you also make a drawing of the
result as you go on computing points. And since you have some intuitive
notion (assuming you are familiar with correlation functions of course) of
what the result will look like. The computation is under control.

Delegating the job to a student makes it less transparent, but you can still
ask the student questions, and look at the student’s worksheet. And since
the student learned the methods from you, the worksheet has a chance of
making sense to you.

Writing a program for the job is similar. You write, proof-read, and most of
all test the program, performing checks similar in spirit (though different in
details) from the checks in the manual computation. But it’s much easier to
be superficial about testing: you will get a result even if you don’t.

28



EPISTEMIC OPACITY 29

Running someone else’s program is a very different story. You can do that
even if you don’t know what a correlation function is! The program is an
opaque machine into which you stuff data and then take new data out at
the other end. If you do understand the program’s task, you will still spot
significant mistakes in the result. But in the manual computation, you
would also spot mistakes in the intermediate results, which in the automatic
computation never become visible.

This is an important and not sufficiently discussed problem with reusable
scientific software. It’s of course efficient, in the sense of productivity, to
re-use someone else’s software to get a job done. But it severely limits
your understanding of the result, and your capacity to verify that the result
corresponds to the scientific method you wish to implement.



Experimental reproducibility
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Explanatory model

In contrast to empirical models, explanatory models describe the underly-
ing mechanisms that determine the values of observed quantities, rather
than extrapolating the quantities themselves. They describe the systems
being studied at a more fundamental level, allowing for a wide range of
generalizations.

A simple explanatory model is given by the Lotka-Volterra equations, also
called predator-prey equations. This is a model for the time evolution of the
populations of two species in a preditor-prey relation. An example is shown in
this plot (Lamiot, CC BY-SA 4.0 https://creativecommons.org/licenses/by-
sa/4.0, via Wikimedia Commons):

An empirical model would capture the oscillations of the two curves and their
correlations, for example by describing the populations as superpositions of
sine waves. The Lotka-Volterra equations instead describe the interactions
between the population numbers: predators and prey are born and die,
but in addition predators eat prey, which reduces the number of prey in
proportion to the number of predators, and contributes to a future increase
in the number of predators because they can better feed their young. With
that type of description, one can ask what-if questions: What if hunters
shoot lots of predators? What if prey are hit by a famine, i.e. a decrease
in their own source of food? In fact, the significant deviations from regular
periodic change in the above plot suggests that such influences from the
environment (everything not explicitly represented in the model) are quite
important in practice.

One of the biggest success stories in the history of science is the shift from
the empirical models for celestial mechanics (Ptolemy’s geocentric epicycles,
Kepler’s heliocentric ellipses) to Issac Newton’s explanatory differential
equations. Newton’s laws of motion and gravitation fully explained Kepler’s
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elliptical orbits and improved on them. More importantly, they showed
that the fundamental laws of physics are the same on Earth and in space,
a fact that may seem obvious to us today but wasn’t in the 17th century.
Finally, Newton’s laws have permitted the elaboration of a rich theory, today
called “classical mechanics”, that provides several alternative forms of the
basic equations (in particular Lagrangian and Hamiltonian mechanics), plus
derived principles such as the conservation of energy. As for what-if questions,
Newton’s laws have made it possible to send artefacts to the moon and to
the other planets of the solar system, something which would have been
unimaginable on the basis of Ptolemy’s epicycles.

In the past, almost all explanatory models took the form of mathematical
equations, and in particular differential equations. This is likely to change
in the digital era. Agent-based models are an example of “digital native”
explanatory models. There is, however, a formal characteristic that is shared
by all explanatory models that I am aware of, and that distinguishes them
from empirical models: they take the form of specifications.

https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Agent-based_model


Force field

See Wikipedia
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Formal system

Wikipedia defines a formal system as:

A formal system is an abstract structure used for inferring theo-
rems from axioms according to a set of rules.

This is a rather narrow definition in the context of mathematics. I use the
term in a wider sense as any abstract structure used for deducing outputs
from given inputs using precise rules. For example, I consider Newton’s laws
of motion a formal system for computing the trajectories of point masses
from their initial positions and a description of their interactions. In this
wider sense, formal systems are the symbolic equivalent of machines, and
computers have turned this metaphor into a physical reality. Indeed, every
computer program implements the rules of some formal system.

Formal systems are usually constructed with a specific intended meaning
for its rules, inputs, and outputs. However, the meaning comes from the
embedding context, e.g. the scientific model in which the formal system is
used. A formal system by itself is just symbols and rules for manipulating
them. It is up to the user of the formal system to verify that the rules conform
to their intended meanings. Stated in the jargon of computer programming:
it is up to the user to verify that a program does what it is expected to do.

This sets a limit to the usefulness of large formal systems in scientific models:
a formal system (and in particular a computer program or a trained neural
network) that is so complex that examining and verifying it becomes infeasible
has a rather limited utility in science. While it can be used to make testable
predictions, it remains at the level of an empirical model. To become the
foundation of more powerful explanatory models, formal systems must be
verifiable to the point that we can be reasonably certain to know their limits
of validity. Unfortunately, today’s software technology makes it easier to
build large and complex formal systems (programs) than small and simple
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ones that scientists can explore in detail and thus understand.



Formal vs. informal

This page is empty
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Formalization

Formalization is a process in which concepts and their relations are made
more precise by the introduction of formal systems. It can be seen a specific
technique of conceptual engineering.

Formalization is widely applied in the construction of scientific models, but
its importance varies widely between scientific disciplines. The most heavily
formalized discipline is physics, to the point that one could almost define
physics as the study of nature using formalized models. Other disciplines
are less attached to formalization, but more formalized models are generally
considered superior to less formalized models, and in particular the special
case of quantification is almost universally seen as desirable in science today.

The prestige associated with formalized models creates the risk of premature
formalization, i.e. the introduction of formal systems that do not faithfully
implement the original informal model and/or the available observations,
but leave a superficial impression of precision.

Even though formal systems are often presented as the central part of a
scientific model, in particular in physics textbooks, the model is always more
than its formal system(s). At the very least, each model has an informal part
that describes how the formal expressions relate to observations. Newton’s
laws of motion, for example, require a definition of concepts such as time and
force in terms of observable properties to make a complete scientific model.

In the past, formalization was limited to simple formal systems that could
be constructed and verified by humans without machine support. This was
a laborious task that typically involved entire communities for many years.
Formal systems in scientific models thus tended to be few, simple, and well
examined. In the digital era, formalization happens, often without much
thought, whenever a scientist writes a program to predict or process observa-
tions. Since computer programs are notoriously difficult to understand, if

38

https://en.wikipedia.org/wiki/Conceptual_engineering
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion


FORMALIZATION 39

only due to the complexity of today’s software stacks, we see the opposite
phenomenon of numerous complex formal systems that are only superficially
examined and verified.

Can we have both the level of verification and transparency of the good old
days and today’s ease of constructing new formal systems using computers?
I believe we can. The two key ingredients that I see are:

1. Notations for formal systems that are much more lightweight than
software source code, and integrate well with the narratives that define
the informal aspects of scientific models. I call them Digital scientific
notations.

2. Support tools for managing the formalization process, both at the level
of individual scientists focusing on a single aspect, and at the level of
research communities working towards consensual models. My ideas
for this part remain vague, but I suspect that computational media for
science will be an important ingredient. And maybe also static type
systems.



Git
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Glamorous Toolkit

See the Glamorous Toolkit Web site.
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Guix

See the Guix Web site
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Implementation details

This digital garden is a TiddlyWiki extended with the Markdown and Krystal
plugins.

The pages are written as Markdown files (plus optional metadata), which
I write and edit using GNU Emacs. They are stored in a repository on
GitHub, which also contains a Python script and a bash script that generate
the TiddlyWiki by adding the pages to a template file (which is also in the
repository).
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https://julialang.org/
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Leibniz

A research project aiming at developing a digital scientific notation for
computational physics and chemistry. Such a notation should be suitable as
well for other domains using predominantly mathematical models, but my
focus is on the domains that I know best.

Leibniz is named after Gottfried Wilhelm Leibniz, who made important
contributions to science, mathematics, formal logic, and computation, topics
that are all relevant to this project. He invented a widely used notation for
calculus, laid the foundation of equational logic by his definition of equality,
and anticipated formal logic with his “calculus ratiocinator”.

An embeddable specification language
A first iteration of Leibniz focused on developing a formal language for
embedding specifications and algorithms into a narrative written principally
for human readers. It is the subject of a publication and of a (recorded)
presentation at RacketCon 2020. The latter is the best introduction to
Leibniz at this time. You can then move on to studying a pedagogical
example and other, more technical examples.

The focus on a formal language embeddable into a narrative motivated
the choice of the Racket ecosystem and in particular its documentation
language Scribble. Leibniz is implemented as an extension to Scribble. It
is an algebraic specification language, based on equational logic and term
rewriting. Its design is strongly inspired by Maude and its predecessors
from the OBJ family. The first iteration of Leibniz is in fact equivalent
to a subset of Maude (providing only Maude’s functional modules), but
with a very different syntax in view of its intended use. A nice feature of
algebraic specifications is that they consist of small elements whose order

45

https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Leibniz%27s_notation
https://en.wikipedia.org/wiki/Leibniz%27s_notation
https://en.wikipedia.org/wiki/Equality_(mathematics)
https://en.wikipedia.org/wiki/Calculus_ratiocinator
https://github.com/khinsen/leibniz
https://doi.org/10.7717/peerj-cs.158
https://youtu.be/YbznItQpALo?t=2104
https://con.racket-lang.org/2020/
https://khinsen.net/leibniz-examples/examples/leibniz-by-example.html
https://khinsen.net/leibniz-examples/examples/leibniz-by-example.html
https://khinsen.net/leibniz-examples/
https://racket-lang.org/
https://docs.racket-lang.org/scribble/
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Equational_logic
https://en.wikipedia.org/wiki/Rewriting#Term_rewriting_systems
https://en.wikipedia.org/wiki/Rewriting#Term_rewriting_systems
https://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://cseweb.ucsd.edu/~goguen/sys/obj.html


LEIBNIZ 46

rarely matters. This makes it easier to insert these elements into the flow of
a narrative, much like mathematical notation.

The goal I have set myself for a usable version of Leibniz is the possibility
to write a readable specification for a molecular mechanics force field such
as the AMBER family. The first iteration is clearly not good enough for
that. Most of all, it lacks built-in support for collections, such as “all atoms
in a molecule”. You can define collections such as lists explicitly, of course,
as it is done in Maude. Another mathematical concept that is not easy to
represent in Maude or Leibniz 1 is the function. Maude is an intentionally
minimalistic language, which I think a digital scientific notation should not
be. This sets the agenda for the next iteration: improving expressiveness.

An interactive authoring system
At this stage of the project, the edit-compile-run/view cycle of Racket and
Scribble became more and more cumbersome. Modifying and debugging
both the implementation of a new language and test code written in this
language at the same time led to feedback loop of unacceptable duration,
due to the two nested edit-compile-run cycles of Racket and Leibniz itself.
I had just discovered, through fortuitous circumstances, the Pharo live
programming system, which is a descendant of Smalltalk. Implementing
the second iteration of Leibniz in Pharo looked like a good opportunity to
evaluate live programming in general, and Pharo in particular, for a project
that could benefit a lot from this improved interactivity.

Shortly after starting the second iteration, Glamorous Toolkit, a new user
interface and development environment for Pharo focusing on moldable
development was made available for adventurous explorers (it has since
advanced to beta status). I rapidly adopted it for my work on Leibniz (and
other projects), because moldable development turned out to be a very good
fit for my work. Another major step was the introduction of Lepiter, a
computational notebook on steroids integrated into Glamorous Toolkit. It
turned the implementation of an interactive authoring system for Leibniz
from a over-ambitious idea into something that looked doable. My current
prototype (shown in this demo) has a lot of rough edges, but it is good
enough for me to experiment with language features.

Another promising discovery that became an experimental feature of Leibniz
is e-graphs and their use in equality saturation, inspired by the Metatheory
package for Julia. For Leibniz, a modification will be required to make it

https://ambermd.org/AmberModels.php
https://github.com/khinsen/leibniz-pharo
https://lepiter.io/feenk/introducing-lepiter--knowledge-management--e2p6apqsz5npq7m4xte0kkywn/
https://www.youtube.com/watch?v=f10NpsMmbis
https://en.wikipedia.org/wiki/E-graph
https://blog.sigplan.org/2021/04/06/equality-saturation-with-egg/
https://docs.juliahub.com/Metatheory/Hi8Kc/0.3.2/egraphs/
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useful since Leibniz has both symmetric equality axioms and asymmetric
rewrite rules, whereas e-graphs handle only symmetric equivalence relations.

Expressiveness has significantly improved in the second iteration. Sorts
can now be composite terms, which allows for sorts such as “an array of 5
non-negative integers”. Array terms are a language features, though only
one-dimensional arrays are fully implemented for now.



Links to the future

Link rot is a well-known problem on the Web. We have all been frustrated
when clicking on links that just don’t work any more. Most often, the server
that the link points to has disappeared, or its contents have been reorganized.

This site contains links that show the opposite behavior: they may not work
now, but they will work in the future. These “links to the future” are the
links labelled “archive copy” at the end of each page.

How does this work? The two main ingredients to the answer are content-
addressable storage and the Software Heritage archive.

All the pages on this site are backed by a Git repository hosted on GitHub.
The “permanent links” at the bottom of each page point to this repository.
It keeps a complete history for each page, which ensures that the permanent
links indeed point to the same version of the page that you are looking at,
forever.

That’s for some reasonable definition of “forever”, of course, given that
nothing is eternal in our universe. The more precise promise made for these
links, by GitHub, is that they will either point to the correct version of the
page, or fail to resolve. If I delete my repository, for example, the links
will fail to resolve from then on. Also if GitHub closes down, or removes
my repository for whatever reason, for example because it decides that its
contents are in violation of its rules. Note that the promise is made by
GitHub the company. If GitHub gets hacked, or bought by some evil entity,
it is conceivable that my permanent links will work but resolve to something
else in some unlikely but not impossible future.

The Software Heritage archive adds another layer of promises of longevity.
Again these are promises made by Software Heritage the organization, which
may well disappear one day, or get hacked. But assuming its continued
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existence and well-being, Software Heritage promises that links into its
archive, based on their permanent identifiers, will forever resolve to the exact
same file contents. This is possible because the identifiers are derived from
the contents of the file, by computing a cryptographic hash. Unless two files
have the same hash (this is known as a hash collision, and it’s not impossible
but highly improbable by accident and very costly to provoke intentionally),
the link cannot point to anything else than the original file.

Software Heritage archives all of the public repositories on GitHub, scanning
the site from time to time to add new versions and new repositories. This
means I don’t have to do anything to get my site archived. But it’s not
instantaneous, so whenever I publish a new version, the archival links won’t
work for a while, because Software Heritage hasn’t incorporated the new
version yet.

This leaves one final question: how can I know the link to the Software
Heritage archive before it actually works? Well, that’s the nice part of
content-addressable storage: since the identifier is computed from the file, I
can compute it myself, from my own copy of the file, knowing that Software
Heritage will obtain the same hash when it does its computation later. That
computation is most easily delegated to Git, the magic incantation being git
hash-object <file>. And that means that links to the future are actually
very easy to implement.

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
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Literate programming

An approach to program design and documentation that embeds software
source code into an explanatory narrative, structuring the code to follow the
narrative for convenience of a human reader.
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Machine learning
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Model

This term has many different but similar meanings in various domains of
science and engineering. In the digital era, it is not uncommon to work at the
intersection of multiple disciplines that use the term somewhat differently.

The most relevant uses of “model” in this context are:

• Scientific models
• Models in formal logic
• Model-driven engineering in software development
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Moldable development

Quoting the Moldable Development Web site:

Moldable development is a way of programming through which
you construct custom tools for each problem.

This implies erasing the boundary between development tools and code under
development. Instead of writing a piece of software to perform some task, you
extend a software environment by tools for working in some problem domain.
The added tools do not just perform tasks, but also provide feedback and
insight concerning the problem domain to the user of the software system.

In computational science, this is a big step towards shifting the focus from
tools and tasks to problems, models, and methods, something I have been
advocating since 2015.

Today’s reference environment in supporting moldable development is the
Glamorous Toolkit, which is based on Pharo but also supports other languages
to varying degrees.
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Molecular mechanics

A technique of molecular simulation, based on the idea of treating atoms as
classical point masses.

See Wikipedia for more information.
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Nix

See the Nix Web site.
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Open Science
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Open Source
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Pharo

An Open Source dialect of the Smalltalk programming system. See the Pharo
Web site for more information.
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Programming language

This page is empty

63



Programming system
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Quantification

Quantification is a specific kind of formalization, and probably the kind
most prominent in science. Quantification in scientific models goes hand
in hand with measurement in observations. Together, quantification and
measurement are often presented as the hallmark of science, as the turning
point at which the exploration of a phenomenon becomes scientific (see
e.g. the Wikipedia page).

Being a special kind of formalization, quantification can also happen pre-
maturely, and in fact it often does. An example that academics are well
familiar with is bibliometry. The informal concept of impact, applied to a
study or to the publication(s) resulting from it, is easy to grasp and apply
in evident situations. I doubt anyone would question my claim that Albert
Einstein’s 1905 paper introducing special relativity had more impact on our
collective scientific knowledge than my 1998 paper on elastic network models
for proteins (which is probably the highest-impact publication I have so
far). Formalizing this concept to the point of making impact a measurable
magnitude is, however, a highly non-trivial matter. Such a magnitude allows
to compare any paper to any other paper, impact-wise, which is not an
obvious operation. Was Einstein’s paper on relativity more or less impactful
than his contemporary paper on Brownian motion? That’s not a question
I’d be willing to answer. I have read and understood both papers and am
quite familiar with the theories that were later developed on the basis of
these two works. Both papers had a very high impact, but in very different
respects and in different sub-fields of physics. How could I compare them?

The mismatch here is that, in mathematical terms, the concept of impact has
only partial order (you can rank some works relative to each other, but not
all), whereas numbers have total order (for any pair of non-equal numbers,
one is larger than the other). Numbers also have other properties that are
not obviously valid for scientific impact. For example, the average of a set
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of numbers is well-defined, but the same cannot be said about the average
impact of Albert Einstein’s publications.

Bibliometry took the approach of “any number is better than no number”,
putting the label “impact” on an easily measurable quantity for which some
relation to impact can be justified: the number of citations to a paper in
the later scientific literature. This principle of “better any number than no
number” is perhaps the most frequent cause of premature quantification.
It allows moving on with building superficially precise models and theories
that however fail to describe the phenomenon that they were supposed to
describe.



Reproducibility crisis

Starting around 2010, more and more cases were reported of scientific findings
published in peer-reviewed articles that other scientists were unable to re-
produce. Sometimes they reached different results or conclusions, sometimes
they had to give up because of missing information. This sudden increase
in results known to be irreproducible is often called the reproducibility or
replication crisis.

The sudden explosion of the number of these cases is probably just a domino
effect: the more people discuss the issue, the more others are inclined to
check for reproducibility, and thus discover failure. But the reproducibility
failures are real and cast a shadow of doubt on the reliability of today’s
scientific research.

Much has been written about this crisis, and in particular many hypotheses
for its causes have been proposed. The Wikipedia article provides a good
entry point. In the following, I will limit myself to the computational aspects
that I haven’t seen discussed elsewhere so far.

First of all, there are different forms of (ir)reproducibility that’s worth
distinguishing. The three main categories are:

1. Experimental reproducibility: repeating an experiment as described
in the literature, and checking if the observations are similar enough,
according to the state of the art.

2. Statistical reproducibility: re-doing a statistical inference based on
fresh input data, usually obtained from a different sample, and checking
for similarity of the inferred results.

3. Computational reproducibility: re-running a computer program, using
the same code and input data, and checking for identical results.

I haven’t seen a single case of experimental irreproducibility cited in the
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context of the crisis. In fact, I can remember only a single widely discussed
case of experimental irreproducibility in my whole scientific career: the 1989
cold fusion study by Fleischmann and Pons (see Wikipedia for details). And
yet, in theoretical discussions about the importance of reproducibility in
science, people talk almost exclusively about experimental reproducibility,
probably because it is the historically earliest aspect of reproducibility.

Both statistical and computational reproducibility, which together cover all
the cases I have seen cited in the context of the crisis, are phenomena of
the digital age. This is rather obvious for computational reproducibility.
Statistics has been around for much longer, and even today’s most commonly
used statistical techniques are about 100 years old. But before computers,
doing statistics was extremely laborious. It was done sparingly, for important
questions only, and usually by people with solid training in the techniques.
Nowadays, it takes little training to load a dataset into a statistical software
package and click a few menu items to perform an analysis.

It is in particular not required to understand the domain of applicability
of the methods, nor the correct interpretation of the results. It should be
obvious that this is a recipe for frequent mistakes. In theory such mistakes
should be caught in peer review, but this requires authors to publish all
their data and reviewers to take the time to carefully re-do and check the
computations. That is starting to happen, but remains exceptional.

A more subtle problem is that, even if you understand the statistical tech-
niques behind a study very well, you cannot be sure that the software used by
the authors implements them correctly. Most such software is designed to be
a black-box tool. Even if the source code is available (Open source software),
and can thus be studied in principle, it is usually not written with readability
and verifiability in mind, but for efficient execution by the computer. This
is true of course of nearly all of today’s scientific software, which is why I
am interested in re-editable software and why I work on digital scientific
notations.

In philosophy of science jargon, these issues illustrate the epistemic opacity of
computations. In more down-to-earth terms, when scientists use computers
to apply scientific models and methods, they don’t really know what they are
doing. If you don’t know what you are doing, you cannot document it either.
And insufficiently documented work is a major cause of irreproducibility.

While I have focused on software so far, the data that are being analyzed
can contribute to statistical irreproducibility as well. When the people

https://en.wikipedia.org/wiki/Cold_fusion
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analyzing the data were not closely involved with the data production (by
whatever means), there is a good chance that they are unaware of some
critical details that they should be aware of in order to analyze the data
correctly. The current rush to data publication, in the context of the Open
Science movement, happily ignores this issue. Therefore I expect more rather
than fewer cases of reproducibility issues related to data in the near future,
until the scientific community realizes that data are safely reusable only if
they are carefully documented.

Computational irreproducibility is just another case of epistemic opacity. It
is caused by the complexity of today’s software stacks. Scientists not only
ignore what exactly their software does, they do not even know in detail
which software they are running, and therefore they cannot reproduce the
computation on a different machine, or later in time.

Ending the reproducibility crisis will require, among many other changes in
research practices, an increasing awareness of the pitfalls of delegating work
to a machine, and of relying on software and data produced by others whose
tacit knowledge may be crucial for their proper (re)use.



Reusable vs. re-editable
components

Nearly all nontrivial information systems are assemblies of components, often
produced independently by different people. Components meant to be used
in different contexts are either designed to be reusable or re-editable.

Software libraries and datasets are the most common examples of reusable
components. They are designed to be integrated into an assembly without
any modification or adaptation.

Project templates (e.g. for use with Cookiecutter) and configuration templates
are examples of re-editable components. The integrator must study them
and then adapt them to the particularities of the system being assembled.

The term “re-editable” was coined by Donald Knuth in an interview in 2008.
He expresses a clear preference for re-editable over reusable software:

I also must confess to a strong bias against the fashion for reusable
code. To me, “re-editable code” is much, much better than an
untouchable black box or toolkit. I could go on and on about
this. If you’re totally convinced that reusable code is wonderful,
I probably won’t be able to sway you anyway, but you’ll never
convince me that reusable code isn’t mostly a menace.

The mainstream view in software engineering, and also in scientific computing,
is the opposite. The accepted ideal is a software library with thorough
documentation and an equally thorough test suite, maintained by a stable
team of competent professionals. Developers needing the functionality of
such a library use it as-is and design their own client code around it. In the
maintenance phase, they update libraries as quickly as possible. In case of
breaking changes to the interfaces, they adapt their own code.

71

https://github.com/cookiecutter/cookiecutter
https://www.informit.com/articles/article.aspx?p=1193856


REUSABLE VS. RE-EDITABLE COMPONENTS 72

Both approaches have their good and bad sides. The arguments in favor of
reusable components are mainstream and easy to find. But which are the
advantages of re-editable components? I can’t speak for Donald Knuth, who
doesn’t go into details in the interview, but I can offer my own thoughts.

A particularity of software in computer-aided research is its double role as a
tool and as an expression of scientific models and methods. Reusable software
is designed to be used as a black box, without a deep understanding of its
implementation, even when this implementation is accessible (Open Source).
It is also designed to be useful in a wide range of applications. Re-editable
software, on the other hand, is designed to be read and understood by its
users, and also more focused on the application its designer had in mind.
This makes re-editable software more valuable as a readable expression of
scientific models and methods. Moreover, it encourages or even forces its
users to read the code and understand what it does, reducing the risk of
inappropriate use of the science it embodies. Such inappropriate use is in my
opinion an important but little discussed cause of the reproducibility crisis
in science.

Comparing software to material artifacts, reusable software is analogous to
industrial products, whereas re-editable software corresponds to bespoke
artifacts made by a craftsperson. The mere fact that craftspeople still exist
after two centuries of industrialization, even though their products are usually
much more expensive, indicates that there is a value in non-standard artifacts
based on simpler designs. They are obviously better adapted to their specific
context, but they are also more repairable, and adaptable in case of evolving
needs. Re-editable software shares those advantages.

Further reading: - Reusable vs. re-editable code (preprint)

https://doi.org/10.1109/MCSE.2018.03202636
https://hal.archives-ouvertes.fr/hal-01966146


Science in the digital era

The broad topic of this collection of essays is the changes that scientific
research is undergoing as a consequence of, or in parallel to, the information
technology revolution that started in the 1960s.

One important aspect, and my main focus, is the change in how formal
systems are used in scientific models. Before computers, obtaining inferences
from formal systems was laborious, and limited the size and complexity
that formal systems could have. With automated computation, large and
complex formal systems (typically called software) are easy to create and
apply. However, it is impossible to evaluate all, or even all relevant, infer-
ences one can draw from such systems, meaning that today’s computational
models are far less understood than their ancestors, and only superficially
tested by confrontation with observations. Moreover, the current state of
software technology makes it easier to build large and complex formal systems
than small and simple ones. This is the ultimate cause of computational
irreducibility, a major ingredient of the reproducibility crisis.

Another aspect of the information technology revolution is the new forms of
organization and communication it enables for scientific research. In partic-
ular, they permit a level of transparency that was immediately recognized
as desirable, leading to the Open Science movement that is rapidly gaining
momentum.

Of course, social changes are at least as important as communication technol-
ogy in the emergence of Open Science. Many topics of research, e.g. health
or climate, are of increasing social and political relevance. The preceding
paradigm of science, which saw research as an industrial activity producing
knowledge, is no longer appropriate. In the name of productivity optimiza-
tion, it restricted participation in the process of doing science to a small
number of experts, who alone decided which topics were worthy of study,
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and who alone could judge which practical consequences should be drawn
from their findings. With trust in experts waning in parallel with trust in the
governments that employ them, this leads to phenomena such as widespread
climate change denial. Public policies can be science-based only of a much
larger part of the population can participate in the collective learning process
that we call science.

The two aspects I have outlined above create a new tension. Science cannot
become more transparent and more accessible if it uses complex software as
the main (or only) expression of its models. It is not enough for those models
to be Open Source, they also have to be understandable and explorable.
One of my personal research topics is how to encourage a return to simple
and understandable formal systems, by using specifications written in a
digital scientific notation rather than software in the construction of scientific
models.



Sciences of the artificial

A term introduced by Herbert Simon for disciplines such as mathematics
and computer science, which study neither nature nor human societies, but
abstract structures created by humans.

Further reading: - The sciences of the artificial by Herbert Simon
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https://mitpress.mit.edu/books/sciences-artificial


Scientific computing

This page is empty
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Scientific model

The construction, evaluation, and incremental improvement of models for
observable phenomena is one of the main objectives of scientific research.
From a birds’ eye view, the constantly evolving output of science is a network
of models plus metadata about these models: where they come from, which
observations they explain, which observations they don’t explain, etc.

Scientific models can be described or classified according to several criteria.
An important one is the distinction between empirical or descriptive models
on one hand and explanatory models on the other hand. An empirical
model summarizes observations and permits predictions, via interpolation or
extrapolation, along a few well-defined parametric dimensions. For example,
a mathematical function fitted to a time series permits predictions at different
time points. An explanatory model describes observations as the outcome of
a more fundamental process or mechanism. It is much more powerful than
an empirical model, because it can be transferred (extrapolated) to a much
wider set of systems, beyond varying well-defined parameters.

In the digital era, both empirical and explanatory models have acquired
specific computational variants that would have been impractical before
commodity computing. The new empirical models are those obtained by
machine learning techniques, and the new explanatory models are the models
underlying simulations. Some simulations are based on older models of the
pre-digital era which have been scaled up to larger or more complex systems.
This is the case for molecular simulation, or for weather forecasting. Other
simulations are based on new kinds of models that would lose interest if
simplified to the point of being manageable without a computer. Examples
are cellular automata or agent-based models.

Another criterion is the distinction between informal and formal models. An
informal model, which could for example be formulated in plain English,
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refers to concepts whose precise meaning depends on the context, and which
are therefore malleable. A formal model, in contrast, refers to very precise
and narrowly-defined concepts, often from mathematics and formal logic.
These aren’t distinct categories, however, and not even the extremes of a
scale, as the commonly used term “semi-formal” might suggest. Most non-
trivial scientific models are partly formalized, with the formalized aspects
embedded into a wider informal description.

Computation, as defined e.g. by Turing machines, is the pinnacle of the
development of formal reasoning so far. Its roots are an intellectual current
that started in 18th century Europe with the work of Leibniz and others
and became mainstream in the late 19th and early 20th century. At that
time, the idea that all of mathematics and then science should be formalized
was very popular (see e.g. Hilbert’s problems), but became more nuanced
after Gödel, Turing, and other showed that formal reasoning has inherent
limitations.

Nevertheless, automated formal reasoning in the form of computation became
an important technique in scientific research, and highly formalized models
are still considered the most advanced ones, particularly in physics. However,
formal models in science very frequently contain informal elements as well,
even though they are often seen as weaknesses. The most frequent informal
element is an undetermined parameter that must be fitted to observations,
thus adapting the formal model to the specific context of a specific system.

In recent years, there has been a strong counter-current advocating informal
models as superior to formal ones, though I have never seen this point of view
stated in these terms. The counter-current I am referring to is data science,
and the superiority claim is best exemplified by a 2008 article in “Wired”
entitled “The End of Theory: The Data Deluge Makes the Scientific Method
Obsolete”. And yet, the short history of data science also illustrates the
opposite move towards more formalization, for example with neural networks
that are more structured, e.g. multi-layer networks or convolutional networks.

https://en.wikipedia.org/wiki/Hilbert%27s_problems
https://www.wired.com/2008/06/pb-theory/


Scientific notations for the
digital era

Introduces the concept of a digital scientific notation and outlines desirable
characteristics for such notations.

Available (open access) at: - CoScience - arXiv

79

https://www.sjscience.org/article?id=527
https://arxiv.org/abs/1605.02960


Semantic Web

This page is empty
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Simulation

This page is empty
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Smalltalk

See Wikipedia
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Software stack

This page is empty
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Specification

This page is empty
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Staged computation

“Staged computation” is a technical term that I suspect most readers of these
pages have never seen before. And yet, it refers to a very common technique,
one that all of us are using every day. More importantly, understanding this
technique matters for understanding computational reproducibility.

A staged computation is defined as a computation that proceeds as a sequence
of multiple stages, each stage producing the code (not the input data!) of the
following stage. The last stage produced the final output. In the academic
literature, staged computation is mostly discussed in the context of code
generators or compilers. However, it’s most frequent use case is running a
compiled program. Compilation is indeed a computation, and it produces
the code (the executable binary) for the next step, which is the execution of
the compiled program.

Why does this matter for reproducibility? Consider the case of a simple
Fortran program (substitute your favorite language if you wish). You start
from the Fortran source code file, which you first compile. That’s the first
stage. Then you run the compiled binary, which is the second stage, and you
obtain a result. What you care about is the reproducibility of the complete
two-stage process: you want to make sure that the same source code file will
lead to the same results.

In an ideal world, the source code file would fully define the result, and the
intermediate binary executable would be a mere implementation detail. In
the real world, that is unfortunately not true. First of all, the Fortran lan-
guage does not fully specify the semantics of the Fortran language. Different
compilers can interpret a program differently, and yet all conform to the
language standard. This lack of semantic precision is intentional, because
if offers compiler writers more opportunities for code optimization. Other
languages, such as C or C++, made the same choice in their standards. How-
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ever, even if your language has fully specified semantics, different compilers
can lead to different results as a consequence of mistakes. Compilers are
complex pieces of software, so it’s unreasonable to expect them to be free of
bugs.

Therefore, if you want to make sure that someone else can reproduce your
results, you have to make the complete two-stage sequence reproducible. You
thus have to document the compiler you have used, and also all compilation
options. Your colleague (or your later self) trying to reproduce the result
will then obtain the exact same binary executable, and by running it the
exact same output.

Unfortunately, this isn’t the end of the story. The compiler is a binary
executable that has itself been produced by a prior compilation step. You
really have a three-stage computation. Or. . . more. The compiler used to
compile your Fortran compiler has also been compiled. Also, your program
has been silently complemented with precompiled program libraries (at the
very least the Fortran runtime library). It isn’t even obvious how many stages
your computation really has. The chain of compilers compiling compilers is
of course not infinite, but hard to trace.

This is known as the bootstrap problem and an active topic of research in
the Reproducible Builds community. It is easy to state: Given a computer
that can run binary executables, how you can add a toolchain for building
binary executables from source code without already having one? If you
want a glimpse of the complexity of this problem, have a look at the GNU
Mes project, whose goal is to provide a solution applicable to several Linux
distributions. Its basic idea is to start with simple compilers for small subsets
of real programming languages, and progressively build more complete ones.
At the very start, it is inevitable to have some hand-written binary code, but
this should be kept as small as possible to make the whole system auditable,
i.e. understandable in all detail by a person external to the development
team.

By the way, the Reproducible Builds community is not primarily about
reproducible research, but about reproducible software as a key component
for cybersecurity. If you want to make sure that the software you run is free of
malware, it is not sufficient to use Open Source software and inspect its source
code. You must also be sure that the binary executables you are running
were actually derived from the public source code, using a compiler that has
not been tampered with. This is why understanding staged computation
matters.

https://reproducible-builds.org/
https://www.gnu.org/software/mes/
https://www.gnu.org/software/mes/


STAGED COMPUTATION 87

Further reading: - Reflections on trusting trust. Ken Thompson’s 1984
Turing Award Lecture on trusting compiled software. - Staged computation:
the technique you didn’t know you were using (preprint).

https://doi.org/10.1145/358198.358210
https://dx.doi.org/10.1109/MCSE.2020.2985508
https://dx.doi.org/10.1109/MCSE.2020.2985508
https://hal.archives-ouvertes.fr/hal-02877319


Static type systems

If you follow discussions about programming languages even just a bit, you
have surely witnessed a heated debate about static type systems. I haven’t
made (nor seen) a systematic study of the question, but I’d bet that it’s
either the most popular topic, or number two after questions of syntax. And
I couldn’t stop myself from writing a few paragraphs about it here as well.

Static type systems are formal systems for reasoning about the consistent use
of data types in software source code. The other main option, dynamic type
systems, verifies the consistent use of data types during program execution.
The obvious advantage of static type checking is that it is not necessary to
run the program, which might take a long time before hitting a type error.
The main disadvantage of static type checking is that it constrains what is
allowed in a program. A type checker will only let pass what it can prove
to be correct, meaning that it rejects code that may well be OK but is not
provably OK.

What I find surprising in the frequent heated debates is that the nature of the
type system is rarely even discussed. People talk about static vs. dynamic
types as if there were only one static and one dynamic type system. Academic
computer science research does look into the details of type systems, of course,
but consumers (i.e. software developers) don’t seem to be very interested in
these details. Also, academic research seems to have restricted the search
space to type systems in the vicinity of the ML type system, for whatever
reasons (this is really not my area of expertise).

Is it reasonable to assume that there is a single best (or good enough) type
system for every kind of software? The experts seem to believe it is, but I
don’t agree. I consider type systems to be domain-specific, and I suspect that
the ML type system and its variants are simply a good choice for writing
compilers and related tools, which is what researchers in this field tend to
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do.

A few examples from my own experience with scientific software illustrate
that the ML type system is not very useful there. My first example is
dimensional analysis. It’s a formal system that has been used in physics and
engineering for much longer than we have had computers. It has turned out
to be very effective in catching mistakes. And yet, it cannot be implemented
in the popular static type systems. The F# language implements dimensional
analysis, but as a special case added to its generic ML-like type system.

My second example is linear algebra. If you implement matrix algorithms,
your only data types in a standard programming languages are float array of
float, and integer for array indices. What you really want to catch common
mistakes is something different: you want to check the compatibility of array
dimensions, and the conformity of array indices with array dimensions. Again
that’s not something you can do in an ML-like type system.

As a side note, dependent types can handle both cases, but they are not
mainstream, for good reasons.

The conclusions I draw from the these and other cases I have encountered are:
(1) type systems should be considered domain-specific, (2) they should not
be baked into a programming language, except if it is domain-specific as well,
and (3) it would probably be useful to use multiple type systems in parallel
in the same code. All that would make a type system an add-on module,
rather than a central language feature. This raises the interesting question of
interfacing code that uses different type systems. Which is of course already
an interesting question on today’s world, because large software systems are
rarely written in a single language, but most language designers have so far
ignored it, treating all code written in a different language as external, with
type checking disabled.

The closest technology I am aware of in this space is F# type providers.
They turn types, but not the whole type system, into library modules that
can interface to the outside world. Caveat: I haven’t used them, so I can’t
say how well they work in practice.

Once you consider a type system something malleable rather than rigid and
imposed, the task of constructing a type system for a specific domain is very
similar to the formalization of scientific models. A developer would start
writing dynamically typed code, and once there is a first working prototype,
think about which concepts would make good types and which properties
are most amenable to static verification. This may sound similar to gradual

https://en.wikipedia.org/wiki/Dimensional_analysis
https://fsharp.org/
https://en.wikipedia.org/wiki/Dependent_type
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/
https://en.wikipedia.org/wiki/Gradual_typing
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typing, but the latter seems to focus on the gradual transition to a single
predefined type system, rather than on an emergent one.

For scientific software, this could in fact be a good approach to formalizing
computational models. It is similar to what scientists have done in the
past. Consider the very mature field of classical mechanics. It started with
Newton’s laws of motion, but grew into a complex Web of interrelated formal
systems. Some of them (e.g. Lagrangian and Hamiltonian mechanics) are
alternatives to Newton’s formulation that serve the same purpose but are
more convenient in specific situations. But others work at the meta-level,
very much like a type system, e.g. the law of conservation of energy. Maybe
software tools such as (malleable) type checkers can help to discover similar
fundamental properties in the scientific models in the digital era.

https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Conservation_of_energy
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Tacit knowledge

This page is empty
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Wiki

Recommended reading:

• Wiki as a pattern language, by Ward Cunningham and Michael W.
Mehaffy
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https://dl.acm.org/doi/10.5555/2725669.2725707
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