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Abstract: We present a study concerning the thermospheric O/Nj variations for the period 2002 to
2020, using the measurements of global ultraviolet imager (GUVI) onboard TIMED satellite. In this
regard, monthly averaged O/N, was computed—using the five quietest days of the month—at low-
and mid-latitudes. To find the longitudinal dependence of thermospheric variations, the analysis
is further extended to different longitudinal sectors, namely Asia, Africa, and America. We found
that the latitudinal and longitudinal O/N; variations follow the solar activity. These variations,
during a high solar activity in northern winter, are found to be always much greater than southern
winter and northern summer. The latitudinal and longitudinal variations of O/Nj; at low- and
mid-latitudes in December solstice are observed to be higher than June solstice counterparts in
the northern hemisphere. We also computed the amplitudes of annual and semiannual variations
using the bandpass filters. The former variations of O/Nj for low-latitudes do not follow the solar
activity in the southern hemisphere. Moreover, these variations are stronger for mid-latitudes as
compared with low-latitude regions. Similarly, the annual variations in Asian and African sectors
of southern hemisphere do not follow the solar cycle (SC) trends. In the northern hemisphere, the
variations are stronger during a solar maximum than in the southern counterpart. The observed
semiannual variations are in-phase for both hemispheres; moreover, the corresponding amplitude
remains almost the same at low- and mid-latitudes, while the semiannual variations for low-latitudes,
and corresponding longitudinal regions, are stronger during a high solar activity. These variations,
for mid-latitudes, in African, northern Asian, and southern American sectors do not follow the
SC activity.

Keywords: O/Nj; annual variations; semiannual variations; thermospheric composition

1. Introduction

The accurate forecasting of terrestrial ionosphere is a challenging task as it is strongly
affected by the space weather and forcing from lower thermosphere [1]. In addition to other
factors, ratio of atomic oxygen and molecular nitrogen (O/N) is a significant parameter
that can influence the variability of ionospheric electron density and is the topic of present
study [2]. Rishbeth and Setty (1962) [3] were the first to use the neutral O/N; concentration
ratio for determining the loss and production rate of electrons in the F2-layer.

Anomalies are unexpected variations in the ionospheric parameters and are contrary
to the predictions of Chapman (1940). For example, here we consider seasonal, annual, and
semiannual anomalies, which are still not very well understood. The peak electron density
in F2 (NmF2) profile in the ionosphere is higher in winter and this effect is referred to as
seasonal (annual or winter) anomaly. The photodissociation of molecular oxygen—by solar
ultraviolet radiations—produces an atomic oxygen [4]. The rate of increasing electrons in
the F-region is mainly caused by the photoionization of atomic oxygen, whereas molecular
nitrogen does not contribute significantly to the observed ionization [5,6].
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During a high solar activity, the seasonal anomaly (winter maximum) in the northern
hemisphere is due to the convection from summer to winter hemisphere. Moreover, such
seasonal maxima can also be observed in the Australian-Indian ocean section of southern
hemisphere, whereas, for rest of the globe, the semiannual anomaly (equinoctial maxima)
is dominant. The variations in neutral densities, which are responsible for the equinoctial
maxima, can be affected by auroral and geomagnetic activities. The southern-side con-
vection from the northern summer to southern winter hemisphere is reduced at the solar
minimum, consequently semiannual anomaly dominates in the south Pacific and south
Atlantic regions [7]. Meier and Anderson (1983) [8] studied the characteristic emissions of
the main thermospheric elements (N3, O, and O) and absorption spectra in the case of O,
to provide information about the absolute concentrations of these elements. Strickland et al.
(1995) [9] applied a novel technique (disk problem) to develop a functional relationship
between the column densities ratios of O and Nj and FUV (far ultraviolet) airglow emission
intensities. The Feng Yun 3-D satellite also provides FUV measurements [10]. Annual,
seasonal, and semiannual variations in the total electron content (TEC) are also a direct
consequence of (i) orbitally driven photoionization of the atomic/molecular density in the
F2-layer and (ii) changes in thermospheric composition [11,12]. Rishbeth (1998) [5] ana-
lyzed the chemical composition variations of the F-region as affected by the thermospheric
wind and also discussed the annual, seasonal, and semiannual fluctuations of the F2-layer
at mid-latitudes during quiet and disturbed conditions. Burns et al. (2014) [13] investigated
the dependence of winter anomaly on SC and pointed out that the said anomaly may
be observed only during the maximum phase of a SC and can be associated with the
enhanced winter to summer difference of thermospheric O/Nj,. Luan et al. (2017) [14]
recently studied the longitudinal variations of O/N, as affected by seasonal and local
time variations. It was found that the thermospheric O/N; at higher mid-latitudes is
modulated by the Joule heating mechanism. Yue et al. (2019) [15] considered the features
of annual and semiannual variations in O/N, data using global ultraviolet imager (GUVI)
limb measurements. In a more recent study, Qian et al. (2022) [16] analyzed the seasonal
variations in O/Nj using GOLD satellite data and found that the southern hemisphere
exhibits the well-known annual and semiannual patterns, whereas the northern hemisphere
is dominated by the annual component. For a better understanding of O/Nj variations as
affected by SC, longitudinal, and hemispherical asymmetries, one needs to examine the
corresponding data over an extended period of time. Motivated by this, here we analyze
the GUVI data for the period 2002-2020 to investigate the features of O/N, variations at
low and mid-latitudes. In this regard, global O/Nj ratio and corresponding anomalies are
discussed at the corresponding latitudes as well as in different longitudinal sectors.

The remainder of the article is organized as follows: Section 2 describes the data
analysis technique employed in this work; Sections 3 and 4 are devoted to results and their
description, respectively; and finally, important findings are concluded in Section 5.

2. Data Set and Methodology

The TIMED satellite was launched on 06 December 2001 by NASA. It orbits around the
Earth at an altitude of 625 km with an inclination of 74° and carries four instruments, namely
GUVI, SEE, SABER, and TIDI. The GUVI is based on imaging spectroscopy which measures
the spectral intensity of FUV airglow in the UV range of 110 nm to 180 nm for five selectable
bands. The thermospheric O/Nj ratio can be obtained from the respective intensity ratio of
excited photoelectron OI 135.6 nm emission band to N, LBHS (Lyma-Birge-Hopfield short)
emission band [9,17,18]. The O/N; data is managed by Johns Hopkins University Applied
Physics Laboratory (JHUAPL) and can be accessed in IDLSave format via web-link http://
guvitimed jhuapl.edu/data_fetch_13_on2_idlsave, accessed on 10 March 2022. The monthly
average value of ) O/Nj; over each mid- and low-latitudes region can be evaluated as

(@) 1 m/0\"
<1\12>1] B %r1z1<l\h>1]’ (1)
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where i and j represent the lower and upper limits of latitudinal region, respectively.
The index i (j) is 0(30) for low-latitudes and 30(60) for mid-latitudes (Table 1). Here, the
dummy index n ranges from 1 to ny, (=5) and represents the five geomagnetically quietest
days of the month as provided by world data center for geomagnetism, Kyoto Japan
(https:/ /wdc.kugi.kyoto-u.acjp/qddays/) (accessed on 10 March 2022).

Table 1. Geographic coordinates of low- and mid-latitudes regions.

Region Northern Hemisphere Southern Hemisphere
Low-Latitudes 0 to 30° —30°to 0
Mid-Latitudes 30° to 60° —60° to —30°

The monthly averaged O/N, in different longitudes is computed by choosing
Equation (1) at the longitudinal limits of 60° to 150°, 30° to 60° and 30° to —120° for
Asian, African, and American regions, respectively, as depicted in Table 2. As the O/N
measurements by TIMED are not made at fixed local solar time, they have contributions
from the local time variations. To minimize the impact of such perturbations in the seasonal
analysis, we follow Yue et al. (2019) [15] who have proposed that the GUVI data should be
binned bimonthly (January—February, March-April, May-June, July-August, September—
October, and November—-December), which essentially covers a yaw cycle approximately
centered on the spacecraft yaw occurrence.

Table 2. Geographic coordinates of low- and mid-latitudes longitudinal regions.

Region Low-Latitudes Mid-Latitudes
North South North South
Asia 60° to 150° 60° to 150° 60° to 150° 60° to 150°
0 to 30° —30°to 0 30° to 60° —60° to —30°
Afri —30° to 60° —30° to 60° —30° to 60° —30° to 60°
« 0 to 30° —30° to 0 30° to 60° —60° to —30°
America —30° to —120° —30° to —120° —30° to —120° —30° to —120°
0 to 30° —30° to —60° 30° to 60° —60° to —30°

The annual variations in O/Nj have a period of 12 months, whereas semiannual
variations correspond to oscillations with a 6-month periodicity. A finite impulse response
band-pass filter has been employed to separate such variations. The upper and lower
frequency bound for annual (semiannual) variations were 1/10.8 (1/6.5) months and
1/13.2 (1/5.4) months, respectively [19]. The data considered in this work include different
phases of SC 23, complete SC 24, and an increasing phase of SC 25. Years corresponding to
different phases of the considered SCs are depicted in Table 3.

Table 3. Years corresponding to different phases of the considered SCs.

Years Phase

2002 Maximum phase of SC 23
2003-2005 Declining phase of SC 23
2006-2009 Deep solar minimum between SC 23 and 24
2010-2011 Rising phase of SC 24
2012-2014 Maximum phase of SC 24
2015-2017 Declining phase of 24

2018-2019 Minimum phase of SC 25
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3. Results
3.1. Low- and Mid-Latitudinal Variations

Figure 1a,b show the monthly averaged O/N, variations from January 2002 to De-
cember 2020 at the low- and mid-latitudes, respectively. During the SC 23 (2002-2008),
the maximum (minimum) value in 2003 for northern low- latitudes (NLL) was 0.9 (0.52),
which occurred in March (June) with a percentage difference of 42.2%. The maximum
value of the said ratio during the SC 24 (2009-2020) for NLL was 0.8415 in November 2014.
During the same year, the minimum value was found to be 0.4368 in June. The percentage
difference between the maximum and minimum in the northern hemisphere was 48.1%.
Similarly, the maximum value for southern low-latitudes (SLL) was 0.87 in March, and
the minimum value was 0.54 in April of 2003, with a percentage difference of 38%. The
highest value of monthly mean O/Nj for SLL, for the SC 24, was 0.7756 in May 2015, and
the corresponding minimum value was 0.454 which occurred in June 2015. The percentage
difference between these two values in SLL during 2015 was 41.5%. In NLL, the month of
March exhibited the highest values of O/N; for the years 2008-2009, 2015-2018, 2020, and
2019. Furthermore, the O/Nj ratio in November had the maximum value for the remaining
years. January 2008, August 2009, June 2010-2019, and July 2020 had the lowest O/Nj
variations in NLL. The months of March for 2008, 2009, 2014, 2017, 2018, and 2020, April
2010-2011, and May of the remaining years had the largest values in SLL. Figure 1a also
depicts that January 2008, February for 2009 and 2011, December for 2010, 2012, 2013, and
June 2014-2020 exhibited the lowest (O/N,) variations in SLL.

(a)12 T T T T T T T T T T T T T T T T T
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Figure 1. (a) Monthly averaged O/Nj variations in both hemispheres for low-latitudes. (b) Monthly
mean O/Nj variations in both hemispheres for mid-latitudes. (c) Solar index F10.7 variations during
the SC 24.

In Figure 1b the highest O/N, variations for northern mid-latitudes (NML) were
0.998 (March) with the lowest variations of 0.31 (January) during 2002 for the SC 23,
having a percentage difference of 69. The maximum (minimum) monthly averaged O/N,
ratio, during 2008-2020 in NML, was 1.107 (0.3274) in November (June) 2014, having a
percentage difference of 70.4%. The maxima during 2002-2008 for southern mid-latitudes
(SML) was 0.93 in May 2002, and the minimum value was 0.24 in June, having a percentage
difference of 74. The highest (lowest) value, during the SC 24 in SML, was 0.9384 (0.0.34)
in May (December) 2015, with a percentage difference of 63.8%. November 2008-2020
exhibited the highest variations in NML. August 2008-2009, July 2019-2020, and June of
the remaining years had the lowest variations in NML. Similarly, in SML the maximum
ratios appeared in May 2008-2020, and the lowest values occurred in February 2008-2009,
December of the years 2015, 2016, 2017, and 2020, and in June of the remaining years.
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Figure 1c shows the solar index F10.7 variations during the SCs 23 and 24; we note that
the most (magnetically) disturbed years of the considered SCs were 2002 and 2012-2014,
respectively. Our analysis of O/Nj; ratio depicts that the maximum value of O/Nj; in
low- and mid-latitudes throughout the SCs 23 and 24 occurred in 2002-2003 and 2014-
2015 for the northern and southern hemispheres, respectively. These O/N; variations
were stronger in mid-latitudes than in low-latitudes sectors for both hemispheres. In this
regard, the variations in the northern hemisphere were found to be stronger than the
southern counterpart.

Figure 2 presents the annual variations at low- (top) and mid- (bottom) latitudes
from 2002 to 2020. On each panel, red (blue) curve corresponds to the northern (southern)
hemisphere. It can be observed that the maxima (minima) of annual variations occurred
during the months of December-January (May-June) for the northern low- and mid-
latitudes, whereas, for the southern counterpart, corresponding maxima and minima
occured during May and June, respectively. Hence, annual variations as presented in
the Figure 2 corresponded to the winter anomaly because the maxima (minima) occurred
during the local winter (summer) months. The amplitude of annual variations at low-
latitudes was higher in northern hemisphere and did not vary much with the SC. The
mid-latitudes depicted a positive correlation between amplitude of annual variations and
the SC. Furthermore, note that the two maxima correspond to the maximum phase of the
respective SCs.

0.4 :

—

(a

NLL
SLL

-0.2 - —

Annual Variations
o

| | 1 1 | 1 | 1 1 | 1 | 1 1 1 | 1 |
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Year (2000)

G

NML
SML

Annual Variations

“02 03 04 05 06 o7 08 09 10 11 1z 13 14 15 16 17 18 19 20
Year (2000)

Figure 2. (a) Annual variations of mean O/Nj ratio in both hemispheres for low-latitudes. (b) Annual
variations of monthly mean O/Nj ratio in both hemispheres for mid-latitudes.

Figure 3 is analogous to Figure 2 but presents semiannual variations, which exhibited
several common features of such variations, e.g., they are hemispherically symmetric with
equinoctial maxima at low- and mid-latitudes. The amplitude of semiannual variations
remained almost the same at low- and mid-latitudes for both hemispheres. During the
years 2003-2004, the amplitude of the semiannual component was highest at low- and
mid-latitudes. This corresponded to years of highest solar activity (as indicated by F10.7
index of Figure 1), whereas, during the years 2016-2019, the semiannual variations depicted
the minimum values.
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Figure 3. (a) Semiannual variations of averaged O/Nj ratio in both hemispheres for low- latitudes.
(b) Semiannual variations of mean O/Nj ratio in both hemispheres for mid-latitudes.

3.2. Longitudinal Variations in Both Hemispheres for Low- and Mid-Latitude
3.2.1. Longitudinal Variations in Both Hemispheres for Low-Latitude

Figure 4 presents the thermospheric composition ratio (O/N>) in three longitudinal
sectors, Asia, Africa, and America, from top to bottom, respectively, from 2002 to 2020.
The abbreviations used here are AsNLLL (Asia northern low-latitude longitude), AsSLLL
(Asia southern low-latitude longitude), AfNLLL (Africa northern low-latitude longitude),
AfSLLL (Africa southern low-latitude longitude), AMNLLL (America northern low-latitude
longitude), and AmSLLL (Africa southern low-latitude longitude). The maximum values
of O/Nj in the Asian regions of the northern hemisphere were 0.92 (0.8718) in March 2003
(November 2014) and the respective minimum values were 0.48 (0.4352) in June 2003 (2014),
with percentage differences of 47.8% (50%) for the SC 23 (24). Similarly, for the southern
hemisphere, the peak value in the Asian sector was 0.91 as observed in March 2003, and
the lowest value was 0.54 in June 2003 for the SC 23, having a percentage difference of
40.7%. The maximum monthly averaged variations in ASNLLL occurred in October 2019,
March of years 2008, 2015, 2016, 2018, and 2020, and in November for the remaining years.
The minimum variations appeared in January 2008, August 2009, and in June 2010-2020.
The maximum variations in AsSLLL occurred in November 2010-2011, May 2013, October
2019, February 2020, and March of the remaining years. Additionally, the lowest variations
appeared in October 2008-2009, August 2011, and in June of all other years.

Figure 4b describes the variations of (O/Nj) in the low-latitudes of the African
sector of both hemispheres. The highest composition ratio, for the SC 23 in the northern
hemisphere, was 1.04 (September) and the lowest value was 0.47 (July), with a percentage
difference of 55%. The maximum mean value during 2009-2020 in the northern African
regions was 0.828 in November 2014, and the minimum value during the same year
was 0.4225 in June, having a percentage difference of 49%. The maximum (minimum)
variations for 2002-2007 in AfSLLL were 0.89 (0.57) in March (June) of 2003, with an
observed difference of 36%. The highest (lowest) mean variation, during the SC 24in
the southern African sector, was 0.8001 (0.4252) in March (June) 2015, with a percentage
difference of 47%. The larger variations for AfNLLL appeared in March of years 2008,
2009, 2015-2018, and 2020, October 2019, and November for the remaining years. The
minimum variations were observed in January 2008, August 2009, June 2010-2019, and
July 2020. Similarly, the highest variations of O/Nj; in AfSLLL were found to be in April
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2010-2012, May of the years 2013, 2016, 2019, and March of the remaining years. The
minimum variations occurred in January 2008, February 2009, August 2011, December
2012-2013, and in June of the remaining years.

03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

AfNLLL
1= AfSLLL

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

AmNLLL
AmSLLL

Al

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Year (2000)

Figure 4. Similar to Figure 1a but for (a) Asian, (b) African, and (c) American regions.

Figure 4c shows the monthly averaged variations of O/Nj; in American regions which
exhibited highest variations of 0.88 (0.827) on the northern side in March 2003 (November
2014), and the corresponding lowest variations in (O/N;) were found to be 0.56 (0.4522)
in June 2003 (2014) with observed percentage differences of 36% (45%) for the SC 23 (24).
Similarly, the peak value in AmSLLL during the SC 23 was 0.83 in April 2003, and the
lowest value was 0.44 in December 2003. The difference between these values was 47%.
During 2009-2020, the highest variation in southern America’s regions was 0.8306 in May
2015, and the minimum variation was 0.4494 in December 2015 with a percentage difference
of 46%. The maximum mean variations of the O/Nj ratio in AmNLLL appeared in March
of the years 2008, 2009, 2010, and 2015-2018, in October 2019-2020, and in November for
the rest of the years. The minimum variations occurred in January 2008, August 2009, and
in June 2010-2020. Similarly, the highest O/N, variations in AmSLLL occurred in April of
2008 2010, and 2011, and in May for the remaining years. The minimum average variations
were observed in January 2008, February of the years 2009 and 2011, October 2010, June
2016-2017, and December of the remaining years. We further note that the variations in the
Asian region were slightly greater than the African and American counterparts.

Figure 5 describes the annual variations in the Asian, African, and American low-
latitudes sectors from 2002 to 2020. On each panel, red (blue) curve corresponds to the
northern (southern) region. This figure reveals several interesting facts about the longitudi-
nal variations of annual component, e.g., the said variations were completely out of phase
in American low-latitudes, with a maxima occurring in the local winter season, i.e., the
winter anomaly in this region. Furthermore, the northern low-latitudes sectors of Asia and
Africa also exhibited the winter anomaly, whereas the southern counterparts of the said
regions showed the phase changes of annual oscillations with the SC. During the years
of solar maximum (minimum), there were regular annual variations (winter anomaly) in
the southern low-latitudes of Asia and Africa. In this regard, the amplitude of annual
variations and hemispheric asymmetry was at a maximum in Asia, followed by Africa and
America, respectively.
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Figure 5. Similar to Figure 2a for (a) Asian, (b) African, and (c) American regions.

Figure 6 describes the semiannual variations for the Asian, African, and American
sectors from 2002 to 2020. The semiannual variations exhibited almost similar trend in the
three longitudinal sectors. The northern low-latitudes, in the African and American regions,
showed slightly higher amplitude as compared with the southern counterparts. The
maximum (minimum) amplitude of the semiannual variations occurred during the years
2004-2005 (2019-2020). Moreover, these semiannual variations remain hemispherically
symmetric at all the longitudes.

0.2
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Figure 6. Similar to Figure 3a but for sectors of (a) Asia, (b) Africa, and (c) America.

3.2.2. Longitudinal Variations in Both Hemispheres for Mid-Latitudes

Figure 7 shows mid-latitudinal longitudinal variations of O/Nj in both hemispheres.
In Figure 7a, the monthly averaged O/N, variations corresponded to the Asian sector for
the SCs 23 and 24, respectively, for which the maximum was found to be 1.19 (1.117) in
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December 2003 (November 2011), and the observed minimum variation was 0.28 (0.2145)
in June 2003 (2014) for the northern hemisphere (AsNMLL). The percentage difference
between maximum and minimum values for the SCs 23 and 24 was found to be 76.5%
and 75.9%, respectively. Similarly, the highest (lowest) variations during 2002-2007 in the
southern region (AsSMLL) were 0.96 (0.15) in April (February) of 2002, having a difference
of 84%. The maximum value of O/N, for the SC 24 was 0.938 in May 2015 and the
lowest value was 0.2145 in June for AsSMLL, having a percentage difference of 76%. In
AsNMLL, November had a maximum value of O/Nj for the entire cycle, and the minimum
variations were observed in August 20082010, July of 20192020, April 2017-2018, and
June of the remaining years. Similarly, in AsSSMLL, March of 2008 and 2017, April of 2009
and 2020, August 2018, September 2019, and May of the remaining years had the highest
concentration ratios. December of 20162017 and June for the rest of years had the lowest
ratio in AsSMLL.
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Figure 7. Similar to Figure 1b for (a) Asian, (b) African, and (c) American regions.

Figure 7b shows the monthly averaged concentration ratio in African regions for both
hemispheres. The percentage difference between the peak value of 1.3 (December 2005),
and the lowest value of 0.19 (August 2005) in the northern African regions (AfNMLL) was
85%. The maximum (minimum) mean ratio during 2009-2020 was 1.106 (0.293), which
occurred in November (June) 2014 for AINMLL, having a percentage difference of 73%.
Similarly, the percentage difference between the maximum value 0.9 (May 2002) and the
minimum value of 0.15 (February 2002) during 2002-2007 for the southern African sector
(AfSMLL) was 83%. In AfSMLL, the corresponding maximum value was found to be
0.9621 in May, and the minimum value was 0.4271 in December 2014 for the SC 24, with
a percentage difference of 55.6%. November had a maximum value of O/Nj for the
entire cycle, and the lowest variations appeared in August 2008, July 2020, and in June
2009-2019 for AfNMLL. Similarly, April 2009 and May of the remaining years had the
highest variations, and January 2020, February of 2009 and 2011, October of 2008 and
2010, and December of the remaining years had the lowest ratios in AfSMLL. The mid-
latitudes longitudinal variations in the American sector are presented in Figure 7a. The
maximum O/Nj variations from 2002-2008 in the northern American sector (AmNMLL)
was 1.02 (November 2002), and the minimum variation was 0.3 (February 2002). Their
percentage difference was 70.6%. The highest monthly mean O/N, value in AmMNMLL,
during SC 24 was 1.134 in November, and the lowest value was 0.3532 in June 2014, having
a percentage difference of 69%. During the SCs 23 and 24, the highest (lowest) variations in
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the southern America regions (AmSMLL) were found to be 0.92 (0.13) and 0.945 (0.2974)
which occurred, respectively, in May (February) 2002 and May (December) 2015, having
percentage differences of 86% and 68.5%. The O/Nj ratio in November was highest in the
northern American sectors for the entire cycle. August of 2008 and 2009, July 2020, and
June for the rest of the years depicted the lowest O/Nj ratio in AmMNMLL. Similarly, the
monthly mean O/Nj ratio in May was at a maximum during the entire cycle, and January
2019-2020, October 2010, February 2008-2013, October 2010 and 2016, and December of the
years 2014-2015 and 2017-2018 had the minimum O/Nj ratio in southern America region.

Figure 8, from top to bottom, presents the annual variations at mid-latitudes of Asia,
Africa, and America, respectively, from 2002 to 2020. The intensity of annual variations
increased with the phase of the respective SC, i.e., it exhibited two maxima at all longitudes
corresponding to maximum phase of the corresponding cycles. The amplitude of annual
variations was found to be relatively high at northern mid-latitudes as compared with
southern counterpart, whereas this difference was at a maximum for Africa, followed
by Asia and America, in that order. During the years 2019-2020, the amplitude of said
oscillations reached a minimum value at all longitudes.

04 05 06 07 [11:3 09 10 11 12 13 14 15 16 17 18 19 20
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AmNMLL
AmSMLL
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Figure 8. Similar to Figure 2b but for the sectors of (a) Asia, (b) Africa, and (c) America.

Figure 9 describes the semiannual variations at mid-latitudes for the Asian, African,
and American sectors for both hemispheres. These variations in the AsSMLL, except in
AsNMLL, followed the solar activity. In this regard, the observed southern side variations
were stronger than the northern counterpart. The semiannual variations for AfSMLL
followed the solar activity but were least affected. In AfNMLL, it did not follow the SC
trend, and the semiannual variations in AmMNMLL were stronger and were least affected
by the solar activity.



Atmosphere 2022, 13, 1645

110f15

a) oz

Semi annual Var
o

,H'H’wm

AsNMLL
AsSMLL

li HH o g
\/\f\f\!}ﬁ‘ﬁ_\.ﬁ‘\f\f\,./\f\f‘ /) _‘.‘\”w"‘l'l"‘l‘l\l\/

07 08 09 10 11 12 13 14 15 16 17 18 19 20
Year (2000)

(b) o

Semi annual Var

AFNMLL

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Year (2000)

(© .

Semi annual Var

AmNMLL
AmSMLL

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Year (2000)

Figure 9. Similar to Figure 3b but for (a) Asian region, (b) African sector, and (c¢) American region.

4. Discussion

The magnitude of monthly-averaged O/N, variations at low- and mid-latitudes
(Figure 1) as well as in different longitudinal sectors (Figures 4 and 7) are seen to follow
the SC. This effect is stronger—due to vertical winds acting on the respective gradient of
O/Ny—under the solar maximum conditions that are mainly caused by higher vertical tem-
perature gradients [20]. Globally, the O/Nj ratio is higher in the northern hemisphere than
in the southern counterpart and is more prominent for mid-latitudes than the low-latitudes
regions. For mid-latitudes, there is a hemispheric asymmetry (percentage difference be-
tween the O/Nj ratio of corresponding months in both hemispheres) of O/Nj ratio, with
a maximum effect observed in November 2014 (December 2003) where it reaches 52.3%
(63%) for the SC 24 (23) (Figure 1). This asymmetry has the maximum effect in America
(60%) followed by Asia (50%) and Africa (49%). This observed asymmetry in America,
Asia, and Africa for the SC 23 is found to be 68.4%, 66.6 %, and 57% in December 2003,
respectively. The seasonal asymmetry is due to the variability of O/N; over a SC [21,22].
The meridional wind from the summer side to winter is disrupted by the EIA (equato-
rial ionosphere anomaly) because of solar heating [23]. In the summer hemisphere, this
EIA-related heating reduces the summer-to-winter side pressure gradient; however, it
raises pressure gradients in the winter hemisphere. Consequently, the summer-to-winter
wind is restrained as it approaches the EIA in the summer hemisphere but accelerates
after passing through the EIA at mid-latitudes in the winter hemisphere. As equator-pole
pressure gradients decrease at high latitudes, the meridional wind converges—by Joule
heating—in auroral zones and creates an opposite pressure gradient. Large values of O/N,
are observed in sub-auroral latitudes in the winter hemisphere due to convergence and
downwelling. Near the December solstice, the EIA impact is stronger than at the June
solstice. The ionospheric annual asymmetry causes the December/June variations: during
the December solstice, there is a much larger electron density than the corresponding
values in June. As a result, in the winter hemisphere, meridional wind convergence and
downwelling at sub-auroral latitudes are greater in January (than July); consequently, it
leads to a higher O/Nj in the January winter hemisphere (northern hemisphere) than in
the July winter hemisphere (southern hemisphere). Thus, this results in the hemispheric
asymmetry of the summer—winter seasonal fluctuations of thermospheric concentration
and causes the ionospheric winter anomaly [6,22]. Globally, O/N, peaks in sub-auroral
latitudes and exhibits small values near the magnetic poles during the local winters in
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both hemispheres. From the solar minimum to high solar activity, the O/N; sub-auroral
improvements move increasingly poleward in both hemispheres, while overall latitudinal
width becomes narrower. The magnitude of O/N, sub-auroral maxima rises at all longi-
tudes from low solar activity to solar maximum. Moreover, the O/Nj in localized winter
is higher near pole longitudes for latitudes below the sub-auroral region (in geographic
coordinates). At higher mid-latitudes, near-pole longitudes have a greater O/Nj, ratio
than far-from-pole counterparts [6,14,23]. Here we note that this trend is opposite to the
one observed in lower latitudes of both hemispheres. Li et al. (2022) [24] also reported a
similar SC dependence of O/Nj variations through a model simulations. They suggested
that the chemical processes play critical roles in increasing thermospheric O/Nj; from low
to high solar activity levels. The changes in O/N, with solar activity are dominated by
the enrichment of O and loss of N in the lower and upper thermospheres, respectively.
Furthermore, the changes in chemical processes could result in a stronger vertical advection
of O/Njy, which, however, is not sufficient to cause a greater hemispheric asymmetry of
the concentration ratio at higher solar activity. Instead, the solar activity dependence of
the O/N; hemispheric asymmetry is mainly attributed to the changes in thermospheric
summer-to-winter circulation from low to high solar activities.

The annual variations at low- (Figure 2a) and mid-latitudes (Figure 2b) as well as
in different longitudinal sectors such as Asia, Africa, and America (Figures 5 and 8) are
stronger in the northern hemisphere. The corresponding maxima occur in the northern
hemisphere in November/December (winter) and minima in May/June (summer), which
corresponds to the winter (or seasonal) anomaly. The annual variations which correspond
to winter anomaly in the northern hemisphere vary linearly with the SC; however, in
the southern side, it follows the SC only in the American sector. At mid-latitudes, the
annual variations are stronger as compared with the low-latitudes in the northern hemi-
sphere; however, this difference is less significant in the southern counterpart. The strong
annual component in the northern hemisphere is due to the intense winter anomaly in
this region. The intensity of winter anomaly in the northern hemisphere is high enough
to reverse the regular variations, and a maxima (minima) is observed in the local winter
(summer) [13,20,23]. Yu et. al. (2004) [25] observed that the annual variations of NmF2
have significant local features. On a global basis, the amplitude of these variations is higher
(lower) in the northern (southern) hemisphere and quite small in the low-latitudinal regions.
The annual variations are larger in the high mid-latitudinal regions than in low-latitudes.
At near-pole stations, NmF2 and O/N; have substantial annual component with a promi-
nent winter anomaly; hence, O/Nj fluctuations may be primarily responsible for NmF2
variations in this region. The higher amplitude of annual variations at mid-latitudes and
in the northern hemisphere is also found in the earlier studies by Yue et al. (2019) [14]
and Qian et al. (2022) [16]. The wind-driven advection is the main process that causes
the departure of thermospheric neutral species from diffusive equilibrium [26-28]. The
thermospheric circulation can result in the accumulation of lighter (atomic helium and
atomic oxygen) and heavier (molecular nitrogen and atomic argon) species in winter and
summer, respectively [5,28]. Specifically, the up-welling in the summer hemisphere pushes
the nitrogen-rich air upward and the downwelling in the winter thermosphere brings the
atomic oxygen rich air downward [5,26]. Consequently, O/N; would become greater in
winter than in summer. However, this wind-driven effect is intensified at mid-latitudes as
compared with the low counterpart. This leads to higher amplitude of annual variations as
observed at mid-latitudes.

The semiannual variations show equinoctial maxima in March/September and
April/October, except for NML where the maximum/minimum variations appear in
the months of May/November for most of the years. These variations are stronger during
the SC 23. Figure 6 describes the low-latitudes semiannual variations in the Asian, African,
and American sectors; here we observed equinoctial maxima for all the three regions from
2002-2020. These variations are weightier during SC 23. For corresponding mid-latitudinal
sections, the semiannual variations are prominent in AsSSMLL and AmNMLL during the
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high solar activity. In African sectors, the equinoctial maxima appear for majority of the
years, but the amplitude of fluctuations is very small. In the early phase of the SC, the
said variations show an anomalous behavior. Correlating with solar activity, the semi-
annual variations in Africa, AsSNMLL, and AmSMLL depict unusual behavior (Figure 9).
In near-pole regions, semiannual fluctuations are minimal, while in far-pole and tropical
sectors, they are extremely high. Furthermore, the semiannual variations are generally
at their highest in March/September and April/October [29,30]. According to the CTIPe
model results, the semiannual variations are thought to be a property of the mid-latitudes’
ionosphere. Both the northern and southern hemispheres exhibit this behavior although
this effect is substantially higher in the southern hemisphere as caused by stronger magnetic
offset [31].

5. Conclusions

e To conclude, we studied the thermospheric O/N; from 2002 to 2020 over low- and
mid-latitudes. The analysis is further extended to four longitudinal sectors. Main
findings of present work are summarized as follows:

e  The O/Nj variations at low- and mid-latitudes, as well as at different longitudinal
sectors, clearly follow the SC trends.

e  The O/Nj ratios in the northern hemisphere are stronger than the southern counterpart
throughout the cycle, i.e., the maxima in every year are always greater for the northern
hemisphere, except for some years of the SC 23.

e  We also note that the amplitude of annual variations at mid-latitudes is higher than at
low-latitudes. This fact is also observed for different longitudinal sectors.

e  The mean O/Nj; and their annual variations depict that in the northern hemisphere,
December always has greater variations than June; in brief, we can say that the
winter O/Nj ratio is greater than summer for low- as well as mid-latitudes in the
northern hemisphere. Also, the annual variations in the northern hemisphere and in
the southern mid-latitudes of American regions follow the solar activity.

e  The annual variations for the southern hemisphere show that, on a broad scale, the
May/June months have a higher O/Nj, ratio than November/December for mid-
latitudes and corresponding longitudinal regions. We further note that the mean
O/Nj ratio in December is not always greater than June for the southern hemisphere.

e  The annual variations (winter anomalies) are clearly observed for northern low- and
mid-latitudes in both hemispheres. Moreover, these variations are stronger in the
northern hemisphere.

e The semiannual variations or equinoctial maxima are evident for low-latitudes in
both hemispheres and for mid-latitudes of the southern hemisphere, except for the
mid-latitudes southern American sector.

e  Semiannual variations are in-phase for both hemispheres and their amplitude remains
essentially the same at low- and mid-latitudes.
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