N

N
N

HAL

open science

A Benchmark for Ontologies Merging Assessment

Mariem Mahfoudh, Germain Forestier, Michel Hassenforder

» To cite this version:

Mariem Mahfoudh, Germain Forestier, Michel Hassenforder. A Benchmark for Ontologies Merging
Assessment. International Conference on Knowledge Science, Engineering and Management (KSEM),

Oct 2016, Passau, Germany. pp.555 - 566, 10.1007/978-3-319-47650-6_44 . hal-03807686

HAL Id: hal-03807686
https://hal.science/hal-03807686
Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03807686
https://hal.archives-ouvertes.fr

A Benchmark for Ontologies
Merging Assessment

Mariem Mahfoudh'!, Germain Forestier?, and Michel Hassenforder?

! CNRS, LORIA, UMR 7503
615 rue du Jardin Botanique, 54506 Vandceuvre-les-Nancy, France
mariem.mahfoudh@loria.fr
2 MIPS EA 2332, Université de Haute Alsace
12 rue des Freres Lumiere 68093 Mulhouse, France
germain.forestier@uha.fr, michel.hassenforder@uha.fr

Abstract. In the last years, ontology modeling became popular and
thousands of ontologies covering multiple fields of application are now
available. However, as multiple ontologies might be available on the same
or related domain, there is an urgent need for tools to compare, match,
merge and assess ontologies. Ontology matching, which consists in align-
ing ontology, has been widely studied and benchmarks exist to evaluate
the different matching methods. However, somewhat surprisingly, there
are no significant benchmarks for merging ontologies, proving input on-
tologies and the resulting merged ontology. To fill this gap, we propose
a benchmark for ontologies merging, which contains different ontologies
types, for instance: taxonomies, lightweight ontologies, heavyweight on-
tologies and multilingual ontologies. We also show how the GROM tool
(Graph Rewriting for Ontology Merging) can address the merging pro-
cess and we evaluate it based on coverage, redundancy and coherence
metrics. We performed experiments and show that the tool obtained
good results in terms of redundancy and coherence.

Keywords: ontologies merging, benchmark, graph rewriting, GROM
tool

1 Introduction

In the two last decades, ontologies have become widely used in several domains
such as semantic web, medicine, e-commerce and natural language processing.
With this multitude of ontologies that represent and cover sometimes the same
domain, there is a growing need to merge these ontologies [1].

Merging ontologies have the goal of ”creating a mew ontology from two or
more existing ontologies with overlapping parts, which can be either virtual or
physical” [2]. It starts with the identification of the overlapping part (the simi-
larities) between the ontologies entities and based on this result, it merges them
and creates a new one [3]. Merging ontologies is a challenging issue that depends
on several factors. Among them, the most important are: 1) the quality of ini-
tials ontologies (consistent or inconsistent), 2) the quality of ontology alignment

This is the author’s version of an article published at KSEM 2010. The final authenticated version
is available online at: http://dx.doi.org/10.1007/978-3-319-47650-6_44

http://dx.doi.org/10.1007/978-3-319-47650-6_44

2 M.Mahfoudh and al.

(the identification of the similarities could recognize syntactic and/or semantic
and/or structural correspondences between the ontologies ?), and 3) the merg-
ing strategy and the quality of its results. To evaluate the merging process and
compare the tools proposed by the community, it is important to: 1) check the
consistency of the initials ontologies (it could be done with a reasoner such as
Pellet, Hermit, etc.) ; 2) evaluate the ontologies alignment ; 3) evaluate the
merging result.

To evaluate ontologies alignment, researchers can use existing proposed bench-
marks. This research field has now reached a significant maturity and there are
specialized conferences that propose important benchmarks. As an example, the
Ontology Matching® conference presents more than 20 datasets and publishes
annually the results of their alignment. However, somewhat surprisingly, there
are no significant benchmarks for merging ontologies [1,3]. To the best of our
knowledge, the only work is the one of Raunich and Rahm [1]. It presents some
taxonomies and the result of their merging using the ATOM (Automatic Target-
driven Ontology Merging) tool [3]. This work has two main limitations. The first
one is that it studies only taxonomies. Therefore, it can not test and evaluate the
heavyweight ontologies (no property, no axioms contradiction, etc.). The second
limit is that the benchmark is not published and therefore cannot be used.

We propose in this paper a benchmark for ontologies merging, which contains
both lightweight and heavyweight ontologies. We show how our tool GROM
(Graph Rewriting for Ontology Merging) [4] can address the merging process
and we evaluate it based on coverage, redundancy and coherence metrics. All
the ontologies, the result of their alignment and of their merging are available
on the web for download.

The paper is structured as follows: Section 2 introduces the background of the
work. It presents the merging process and the typed graphs grammars formalism.
Section 3 defines our formalism and discusses how to use it to merge ontologies
and resolve their inconsistencies. Section 4 presents a benchmark for ontologies
merging and evaluates the GROM tool. Finally, a conclusion summarizes the
presented work.

2 Background

2.1 Ontologies merging

Ontologies are living objects that represent knowledge with an explicit and for-
mal way [5]. They conceptualize a given domain by their concepts (classes, prop-
erties, individuals, axioms, etc.) in order to offer mechanisms of reasoning and
inference. Given two or more ontologies, ontologies merging aims at producing
a new ontology with their overlapping parts [2]. This process can be symmetric
or asymmetric. Symmetric solutions aim at completely integrating all input on-
tologies with the same priority. Asymmetric approaches, by contrast, take one of

3 http://www.ontologymatching.org

http://www.ontologymatching.org

A Benchmark for Ontologies Merging Assessment

the ontologies as the source and merge the other as a target. In this type of ap-
proach, the concepts of the source ontology are preserved and only the concepts
of the target ontology, that not alter the consistency, are added [3].

Several approaches have been proposed in the literature, we briefly present
in this section the approaches that are implemented with a proposed tool. The
Table 1 summarizes these approaches according to: 1) the merging strategy (sym-
metric or asymmetric), 2) the ontology specification (OWL (Web Ontology Lan-
guage), RDFS (Resource Description Framework Schema), Frame, etc.), 3) the
tool, and 4) their specificities and the inconsistencies resolution (conflicts man-
agement). Note that because of the no-existence of the benchmark for merging
ontologies, the researchers do not present details evaluation for their tools.

Approach|Merge Specifica- | Tool Specificity and conflicts manage-
strategy |tion ment
Stumme et|Symmetric |Frame FCA- |- Semi-automatic approach
al. [6] Merge |- Approach based on the formal con-
cept analysis (FCA)
- No conflicts management
Noy et al.|Symmetric |Frame Prompt |- Semi-automatic approach
[7] - Conflicts detection
& - User intervention for the conflicts
Asymmetric resolution
Kotis et al.|Symmetric HCONE|- Semi-automatic approach
[8] - Approach based on the Latent se-
- mantic analysis (LSA)
- No conflicts management
Li et al. [9]|Symmetric |OWL MOMIS |- Automatic approach
- Management of some conflicts
(structural and semantic)
Raunich et|Asymmetricl OWL Tax-|ATOM |- Automatic approach
al. [3] onomy - Delete the redundancy
- Management of some structural con-
flicts

Table 1: Summary of some ontologies merging approaches.

2.2 Quality measures for ontology merging

Measuring the quality of ontology merging finds its origins in the field of concep-
tual schemas. Indeed, to evaluate the quality of an integrated schema, Duchateau
et al. [10] proposed two measures: minimality and completeness. The minimality
checks that no redundant concept appears in the integrated schemas. The com-
pleteness represents the percentage of concepts presented in the data sources
that are covered by the integrated schemas. It is calculated as follows:

_ ‘Sitool N Sieacp|

(1)

where Si.;, is the integrated schema proposed by an expert and the Siq is
the integrated schema generated by a tool.

Comp(Sitool ; Siexp) Si
exp

4 M.Mahfoudh and al.

Rahm et al. [1] proposed the same metrics to evaluate the quality of the
merging ontologies result and they called them: coverage (for the completeness)
and redundancy (for the minimality). The coverage is then related to the degree
of information preservation. It measures the share of input concepts preserved
in the result and it depends on the type of approach symmetric or asymmetric
one. With symmetric approaches (full merge) the coverage is equal to 1: all
the concepts are preserved. For the asymmetric approaches, the concepts of the
target ontology are preserved but only the concepts non-redundant of the source
ontology are preserved (i.e. all the redundant concepts are removed).

Besides the coverage and the redundancy metrics, it is also important to
check the coherence of the ontologies merging result. This metric checks if the
ontology result is coherent or contains some conflicts. To ensure theses three
metrics, we have used the typed graph grammar formalism for our approach of
merging ontologies.

2.3 Typed Graph Grammars

Typed Graph Grammars (T'GG) are a mathematical formalism that permits to
represent and manage graphs. They are used in several fields of computer science
such as software systems modelling and formal language theory [11]. Recently,
they started to be used in the ontology field, in particular for the modular
ontologies formalization [12] and consistent ontologies evolution [13,14]. A typed
graph grammar is defined by TGG = (G, TG, P) where:

— (G is a start graph also called host graph.

— TG is a type graph that represents the elements type of the graph G.

— P is a set of production rules also called graph rewriting rules which are
defined by a pair of graphs patterns (LH.S, RHS) where: 1) LHS (Left Hand
Side) represents the preconditions of the rewriting rule and describes the
structure that has to be found in G ; 2) RHS (Right Hand Side) represents
the postconditions of the rule and must replaces LHS in G (see Figure 1).

A rewriting rule can be extended with a set of negative application conditions
(NACs). A NAC is another graph pattern such as: ”if there exist a morphism
from NAC to the host graph G, then, the rule cannot be applied”. In this way,
a graph transformation defines how a graph G can be transformed to a new
graph G’. More precisely, there must exist a morphism that replaces LHS by
RHS to obtain G’. To apply this replacement, different graph transformations
approaches are proposed [15]. In this work, we use the algebraic approach [16]
based on the pushout concept [17]. Given three objects (in our case graphs) Gy,
G2 and G35 and two morphisms f : G; — G2 and g : G; — Gj3, the pushout
of G2 and G5 consists of: 1) an object G4 and two morphisms [/ : Go — G4
and ¢’ : G5 — G4 where [’ o f = ¢’ 0 g; 2) for any morphisms f” : Go — X
and ¢” : G3 — X such that fo f” = go g”, there is a unique morphism
k : Gy — X such that f"ok = f” and ¢’ o k = ¢". Algebraic approaches
are divided into two categories: the Single PushOut, SPO [18] and the Double

A Benchmark for Ontologies Merging Assessment 5

substitute by

v

Fig. 1: The principle of graph transformation.

PushOut, DPO [19]. The DPO approach consists of two pushouts and requires
an additional condition called the ”dangling condition”. This condition states
that the transformation is applicable only if it does not lead to ”dangling edges”,
i.e. an edge without a source or a target node. Indeed, in the SPO approach, one
pushout is required and the dangling edges are removed which permits to write
a wide variety of transformations not allowed by the DPO approach. Thus, in
this work, we only consider the SPO approach. Applying a rewriting rule to an
initial graph (G) with the SPO method consists in the following steps:

1. find a matching of LHS in G, i.e. find a morphism m : LHS — G.
2. delete the sub-graph m(LHS) — m(LHS N RHS) from G.
3. add the sub-graph m(RHS) — m(LHS N RHS) to G to get G'.

3 Merging ontologies with typed graph grammars

3.1 Ontologies as typed graphs grammars

In order to represent the ontologies and the ontology changes with the typed
graph grammars (see Figure 2), we use the TGGOnto (Typed Graph Grammars
for Ontologies) model [13,14]:

TGGOnto = {TGo,Go, Ro}, where:

TGo is a type graph that represents the meta-model of an ontology, Go is a
host graph that represents an ontology and Ro is a set of rewriting rules that
formalize the ontology changes. In our work, we consider the OWL ontologies.
Therefore, the type graph (T'Go) represents the OWL meta-model. Thus, the
vertices types of TGo are:

Vr = {Class(C), Property(P), Object Property(OP),-
DataProperty(DP), Individual(I), DataType(D), Restriction(R)}.

6 M.Mahfoudh and al.

The edge types correspond to properties used to relate different entities. For
example, subClassO f is used to link nodes of the type Class.

Er = {subClassOf, equivalentT o, range, domain, ...}.

An ontology change (C'H) is formalized by rewriting rules and executed as graphs
transformation using SPO algebraic method [14].

CH=r; € Ro=(NACs,LHS,RHS,CHDs), where:

— NAC's are graph patterns that define the conditions should not be satisfied
to apply the change ;

— LHS is a graph pattern that defines the preconditions that should be satis-
fied to apply an ontology change ;

— RHS is a graph pattern that defines the change to apply in the ontology ;

— CHDs are derived changes added to the principal change (CH) for keeping
the consistency of the modified ontology.

Formalization
Ontology change

Rewrting rules

Appply ontology
change with SPO

New version of
the graph G

Typed
graph (G)

Formalization
Ontology

Fig. 2: The coupling between ontologies and typed graph grammars

3.2 GROM approach

To merge ontologies, we use the automatic and asymmetric approach GROM
(Graph Rewriting for Ontologies Merging) which consists in three main steps
that are briefly described below (for more details, we invite readers to refer to
our previous work [4]).

1. Similarity search that identifies the correspondences between the ontologies
entities based on syntactic, structural and semantic similarities. Given two on-
tologies (01 and O3), we distinguish: 1) C'N, the set of commons nodes between
01 and Os ; 2) EN, the set of the syntactically equivalent nodes ; 3) SN, the
set of the synonyms nodes and 4) IsaN, the set of the nodes that share a sub-
sumption relation.

A Benchmark for Ontologies Merging Assessment 7

2. Ontologies merging that represents ontologies with TGGOnto = {TGo,Go, Ro}
model and merges them based on the result of the similarity search step. The
merging process consists in applying a set of consecutive rewriting rules with
the SPO algebraic method in order to create a consistent global ontology (see
Algorithm 1).

Inputs: two ontologies O1, Oo
a set of correspondences: CN, EN, SN, IsaN
Outputs: a global ontology GO

for N ¢ EN do
| O} + SPO_RenameEntity (O1, EN{O1}, EN{O2});
end

CN + CNUEN{O};
CO < Create the common ontology;
GO + SPO_MergeGraph (07, CO, Oy);

/* Adapt the global ontology */
for N € SN do

| GO « SPO_AddEquivalentEntity (GO, SN{O1}, SN{O2});

end

for N € IsaN do

| GO + SPO_AddSubClass (GO, IsaN{O1}, IsaN{O2});

end

Algorithm 1: Merging ontologies algorithm.

3. Global ontology adaptation step enriches the global ontology with the synonym
(SN) and the subsumption (I'saN) relations identified in the step 1 (similarity
search). As example, the rewriting rule of AddEquivalentClasses(C1,C3) on-
tology change is presented in the Figure 3.

AddEquivalentClasses
NAC1 NAC2 LHS RHS
2:Class 2:Class 2:Class
2:Class
name="C," name="C," name="C,"
name="C,"
equivalentTo disjointWith equivalentTo

1:Class 1:Class 1:Class 1:Class

name="C," name="C," name="C, name="C,"

Fig. 3: Rewriting rule for the AddEquivalentClasses change.

8 M.Mahfoudh and al.

The Rewriting rule (Figure 3) preserves the ontology consistency thanks to
the NACs. NAC1 ensures the no redundancy. It prohibits the adding of existing
knowledge. N AC2 ensure that no contradictory axiom is added to the ontology
by the application of the AddEquivalentClasses ontology change.

4 Experimental results

4.1 Test scenarios

We presented here two examples of ontologies (lightweight and heavyweight) to
show and discuss the conflicts that can be found in the merging process.

Taxonomies case (Cars ontologies example [1]): The Figure 4 shows an ex-
ample of two taxonomies that represent the vehicle domain. They share com-
mons concepts (? Automobile”, "BMW”, ?Fiat”) and subsumption relations (isA
(?”German_Car”, ”European_Car”), isA (”Italian_Car”, ”European_Car”) and
isA ("Mercedes”, ” German_Car”)). Merging these taxonomies can cause the fol-
lowing conflicts and situations:

— Data redundancy. Considering that the ontologies share common concepts,
their merge result can contain redundant elements, for example (” Automo-
bile”, ” Automobile”), (" Audi”, ” Audi”), etc.

— Sharing subsumption relations. The ontologies could share subsomption rela-

tions, for example: isA(” German_Car”, ” European_Car”) and isA (" Ttalian_Car”,

”European_Car”).
— Existence of cycles. Adding the subsumption relations could provide cycles.

For example, if we merge the ontologies we can obtain the cycle: isA(” German_Ca-

Y

r”, "European_Car”), isA(” German_Car”, ” Automobile”), isA(”European-
Car”, ” Automobile”).

Automobile
Automobile L European_Car

German_Car BMW

r: BMW Jaguar

Audi Marcedes

Italian_Car Fiat

L Fiat Renault
(a) Ontology O1 (b) Ontology O2

Fig. 4: European Cars ontologies [1].

A Benchmark for Ontologies Merging Assessment

OWL ontologies case (CCAlps ontologies example [14]): Figure 5 presents ex-
tracts from the EventCCAlps and CompanyCCAlps ontologies developed in the
frame of the FEuropean project CCAlps.
Merge OWL ontologies can cause the following situations and conflicts:

— Data redundancy. The concepts that have names syntactical close could be
considered as redundant knowledge, for example: ”hasPlace” and "has_place”.
— Synonyms concepts. The ontologies could share synonyms relations, for ex-
ample: ”Individual” and ” Person”. It is important in this case, to link theses
concepts by synonyms relations on the global ontology.
— Axioms contradiction. Merging OWL ontologies could cause several axioms
contradictions relating to the disjunction, the equivalence, the restrictions,
the subclass axiom, etc.

Class

domain [oy e etProperty

name="Participant'

hasRes\c:un M

name="participateTo"

SomeValuesFrom

description="subClassof'

rafige

OhjectProperty

Class

name="hasTag"

iange

" |name="Event'

Class
ObjectPropery Class : name="Tag'
name="hasPlace" name="Location" ¥
range Fange fange
r
Class OhjectProperty OhjectProperty

name="Emplacement’

TmemberOf

Individual
name="Lombardy"
[

objectProperjAssertion
inObjProp="..#hasPlace"

name="has_Location"

nama="has_Tag"

omain dopin
Y

Class

Class

[name="BigCompany’

name="Company"

subClassr

sub

subClagsOf

sOf

Class

name="

"SmallCompany’

Class
name="Tag" meMberof
subGlassOf subClassOf
Individual
supClassOf name="s_start"
Class Class Class

name="Meeting"

name="Conference"

name="BestComp"

(a) Extract from EOCCAlps
ontology (O1)

Fig. 5: CCAlps ontologies [14].

4.2 Benchmark and results

Class

name="MediumCampany"

(b) Extract from
COCCAIlps ontology (O2)

To evaluate the ontologies merging process and test the GROM tool, we are based
on the benchmark below, which is available for download in the supplementary
material attached with this paper:

— Cars ontologies [1] are taxonomies which are composed of classes and sub-
sumption relations (already described in Section 4.1, Figure 4). They are

4 http://mariem-mahfoudh.info/ksem2016

http://mariem-mahfoudh.info/ksem2016

10

M.Mahfoudh and al.

mainly included in the benchmark, for testing the hierarchical properties
and for checking if a tool of ontologies merging can remove the cycles.
CCAlps ontologies [13] are heavyweight OWL ontologies (described in Sec-
tion 4.1, Figure 5). These ontologies represent restrictions, properties, ax-
ioms, etc. and offer a good case study to check if an approach can manage
or not the contradictory axioms and preserve or not the consistency of the
global ontology.

Lebensmittel (Google, web) [20] are multilingual ontologies that cover the
food domain. Google.Lebensmittel.owl is represented in the English lan-
guage and it is composed of 59 classes, 1306 individuals and 58 subClass
axioms. Web.Lebensmittel.owl is represented in the German language and
it is composed of 53 classes, 1566 individuals and 52 subClass axioms. The
two ontologies have 15 synonyms classes that describe the same concepts but
in two different languages.

Freizeit (dmoz, Google) are multilingual ontologies that represent leisure.
Google.Freizeit.owl is represented in the English language and it is com-
posed of 71 classes. Web.Freizeit.owl is represented in the German lan-
guage and it is composed of 76 classes. The two ontologies have 67 synonyms
classes.

Conference (ekaw, iasted, cmt, confof) ontologies [21] describe the confer-
ences organization. They are datasets published by the OEAI (Ontology
alignment evaluation initiative) to provide benchmark for the ontology align-
ment. We use the same ontologies to provide benchmark for the ontology
merging.

The Table 2 presents the set of ontologies that form the proposed bench-

mark and their result merge by GROM approach. It specifies: 1) the number of
concepts of each ontology (nbC), 2) their similarities (the set of commons nodes

(CN), the set of synonyms nodes (SN), the set of nodes that share isa relations
(IsaN) and the set of nodes that are syntactically close (EN)), 3) the number of

concepts of the merge result, 4) the number of redundant concepts in the merge
result, 5) the number of inconsistencies and 6) the value of coverage (Cov).

The Table 2 shows that all the output ontologies (the results of the process

merging) don’t contain any redundancy. Furthermore, GROM tool manages the

inconsistencies and produces consistent ontologies.

Ontologies |nbC Similarities |Merge |Redun- |Inconsis- [Cov |Used
dancy tencies in
Cars 7.6 |6 13 0 0 1.00 |[1]
#CN=3,
#IsaN =3
CCAlps 12..8 |4 18 0 0 0.9 [4]
(Event, #CN=1,
Company) #EN=1,
#SN=1,
#IsaN=1

A Benchmark for Ontologies Merging Assessment 11

Lebensmittel|53 .. 59 |15 112 0 0 1.00 [[20]
(Google, #SN=15
web)
Freizeit 71.. 67 |67 71 0 0 051 [[20]
(dmoz, #EN=67
Google)
Conference (107 ..[10 280 0 1° 0.97 |[[21]
(ekaw, 182 #CN=5,
iasted) #EN=3,

#SN=2
Conference |29 .. 389 58 0 0 0.86 |[21]
(cmt, con- #CN=9
fOf)

Table 2: Merging result of some ontologies with GROM tool.

5 Conclusion

In this paper, we presented a benchmark for ontologies merging that covers dif-
ferent ontologies types: taxonomies, lightweight ontologies, heavyweight ontolo-
gies and multilingual ontologies. We have ensured that the benchmark presents
different pathological cases for merging process (data redundancy, existence of
cycles, axioms contradiction, etc.) in order to assess the performance of ontolo-
gies merging tools. We also presented our tool, GROM (Graph Rewriting for
Ontology Merging) and we described how it can automatically merge ontologies.
Thanks to the graph grammar formalism, in particular the NAC (Negative Ap-
plication conditions), GROM preserves the ontology consistency and removes the
redundancies. To evaluate the merging process, we have used the coverage, the
redundancy and the coherence metrics. The evaluation has shown that GROM
obtained good results in terms of redundancy and coherence. All the ontologies
are provided for download. In the near future, we plan to expand this benchmark
with the results of other researchers in order to compare the different results of
the related work and test the performance of the ontologies merging tools.

References

1. Raunich, S., Rahm, E.: Towards a benchmark for ontology merging. In: Move to
Meaningful Internet Systems: OTM 2012 Workshops, Springer (2012) 124-133

2. Klein, M.: Combining and relating ontologies: an analysis of problems and solu-
tions. In: IJCAI-2001, Workshop on ontologies and information sharing. (2001)
53-62

3. Raunich, S., Rahm, E.: Target-driven merging of taxonomies with atom. Informa-
tion Systems 42 (2014) 1-14

5 The detected inconsistency is from iasted ontology.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M.Mahfoudh and al.

Mahfoudh, M., Thiry, L., Forestier, G., Hassenforder, M.: Algebraic graph trans-
formations for merging ontologies. In: Model and Data Engineering. Springer
(2014) 154-168

Gandon, F.: Ontologies in Computer Science. In: Management and Design: Ad-
vanced Tools and Models. (2010)

Stumme, G., Maedche, A.: Fca-merge: Bottom-up merging of ontologies. In:
Seventeenth International Joint Conference on Artificial Intelligence. (2001) 225—
230

Noy, N.F., Musen, M.A.: Algorithm and tool for automated ontology merging and
alignment. In: 17th National Conference on Artificial Intelligence, AAAT Press/The
MIT Press (2000) 450-455

Kotis, K., Vouros, G.A.: The hcone approach to ontology merging. In: The Se-
mantic Web: Research and Applications. Springer (2004) 137-151

Li, G., Luo, Z., Shao, J.: Multi-mapping based ontology merging system design.
In: 2nd International Conference on Advanced Computer Control, IEEE (2010)
5-11

Duchateau, F., Bellahsene, Z.: Measuring the quality of an integrated schema. In:
Conceptual Modeling—-ER. Springer (2010) 261-273

Ehrig, H., Montanari, U., Rozenberg, G., Schneider, H.J.: Graph Transformations
in Computer Science. Geschéftsstelle Schloss Dagstuhl (1996)

d’Aquin, M., Doran, P., Motta, E., Tamma, V.A.: Towards a parametric ontology
modularization framework based on graph transformation. In: WoMO. (2007)
Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Consistent ontologies
evolution using graph grammars. In: Knowledge Science, Engineering and Man-
agement (KSEM). Springer (2013) 64-75

Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Algebraic graph trans-
formations for formalizing ontology changes and evolving ontologies. Knowledge-
Based Systems 73 (2015) 212-226

Rozenberg, G.: Handbook of graph grammars and computing by graph transfor-
mation. Volume 1. World Scientific (1999)

Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic ap-
proach. In: Switching and Automata Theory, pages=167-180, year=1973, orga-
nization=IEEE

Barr, M., Wells, C.: Category theory for computing science. Volume 10. Prentice
Hall New York (1990)

Lowe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109(1) (1993) 181-224

Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey).
In: Graph-Grammars and Their Application to Computer Science and Biology,
Springer (1979) 1-69

Peukert, E., Massmann, S., Koenig, K.: Comparing similarity combination methods
for schema matching. In: GI Jahrestagung (1), Citeseer (2010) 692-701

OAEL Ontology alignment evaluation initiative. http://oaei.
ontologymatching.org/2016/conference (2016)

http://oaei.ontologymatching.org/2016/conference
http://oaei.ontologymatching.org/2016/conference

	Lecture Notes in Computer Science
	Introduction
	Background
	Ontologies merging
	Quality measures for ontology merging
	Typed Graph Grammars

	Merging ontologies with typed graph grammars
	Ontologies as typed graphs grammars
	GROM approach

	Experimental results
	Test scenarios
	Benchmark and results

	Conclusion

