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A GENERAL COMPACTNESS THEOREM IN G(S)BD

We give a new, simpler proof of a compactness result in GSBD p , p > 1, by the same authors, which is also valid in GBD (the case p = 1), and shows that bounded sequences converge a.e., after removal of a suitable sequence of piecewise innitesimal rigid motions, subject to a xed partition.

Introduction

Generalized (special) functions with bounded deformation (G(S)BD) have been introduced by G. Dal Maso [START_REF] Maso | Generalised functions of bounded deformation[END_REF] in order to properly tackle free discontinuity problems [START_REF] Giorgi | New functionals in the calculus of variations[END_REF][START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] in linearized elasticity, and in particular the minmization of the Grith functional Ω\K Ce(u) : e(u)dx + γH d-1 (K), (1.1) introduced in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] to model and approximate brittle fracture growth in linear elastic materials. In this functional, Ω ⊂ R d is a bounded d-dimensional domain (in practice d ∈ {2, 3}), u a vectorial displacement, expected to be smooth, with symmetrized gradient e(u) = (Du + Du T )/2, except across a (d -1)-dimensional fracture set K. The tensor C contains the physical constants of the problem, and denes a positive denite quadratic form on symmetric tensors, while γ > 0 is the toughness of the material. Showing existence to minimizers to this functional has been a dicult task, developed over many years. The situation mostly evolved after [START_REF] Maso | Generalised functions of bounded deformation[END_REF] introduced for the rst time a reasonable energy space for a weak form of (1.1), where K is replaced with J u , the intrinsic jump set of u [START_REF] Del Nin | Rectiability of the jump set of locally integrable functions[END_REF]. Existence results could then be proved [START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF][START_REF] Friedrich | A piecewise Korn inequality in SBD and applications to embedding and density results[END_REF][START_REF]Compactness and lower semicontinuity in GSBD[END_REF][START_REF] Conti | Existence of strong minimizers for the Grith static fracture model in dimension two[END_REF][START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Grith's energy[END_REF][START_REF] Chambolle | Existence of strong solutions to the Dirichlet problem for the Grith energy[END_REF] for weak, then strong minimizers (that is, for the original problem in (u, K)). Most of these works rely upon a rigidity result for displacements with small jumps, established in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF].

In particular, the main result in [START_REF]Compactness and lower semicontinuity in GSBD[END_REF] is a compactness result in GSBD p , the subspace of GSBD (which is dened precisely in Section 2.1) of displacements with p-integrable symmetrized gradient and jump set of nite surface. In this result, a sequence which is bounded in energy (roughly, (1.1), with the Lagrangian replaced with |e(u)| p ) will converge up to subsequences either to a GSBD p limit u(x) or to +∞ (with some appropriate semicontinuity properties). This is not really an issue for the study of (1.1), since replacing u with 0 where it is innite, we recover that the limit of a minimizing sequence is a minimizer. However, it was observed in [START_REF]A compactness result in GSBV p and applications to Γ-convergence for free discontinuity problems[END_REF][START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF] that this compactness result is not sucient for studying more general, non-homogeneous variational problems, where the Lagrangian is not minimal at 0.

In that case, one has to study more nely what happens in the innity set. Following similar (yet far more precise) results in the scalar case [START_REF]A compactness result in GSBV p and applications to Γ-convergence for free discontinuity problems[END_REF], the authors could show in [START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF] a more complete compactness result, and in particular the existence of a Caccioppoli partition where, on each set of the partition, the sequence converges to a nite limit after substraction of a suitable sequence of innitesimal rigid motions (ane functions with skew-symmetric gradients).

In addition, S. Almi and E. Tasso [START_REF] Almi | A new proof of compactness in G(S)BD[END_REF] recently extended [START_REF]Compactness and lower semicontinuity in GSBD[END_REF], with a dierent proof, to sequences merely bounded in GBD (roughly, the case p = 1 in [START_REF]Compactness and lower semicontinuity in GSBD[END_REF]), while the proof in [START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF], relying on a ne result of [START_REF] Cagnetti | Korn and Poincaré-Korn inequalities for functions with a small jump set[END_REF] valid only for p > 1, would not work in GBD.

The purpose of this note is to give an alternative proof of the main compactness result of [START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF], which does not rely on [START_REF] Cagnetti | Korn and Poincaré-Korn inequalities for functions with a small jump set[END_REF] and is also valid in GBD, thus permitting to deal with nonhomogeneous problems also in this framework. Precisely, we show the compactness Theorem 1.1 below (the notation is made precise in Section 2.1). The proof of this result is quite simpler, in a sense, than in [START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF], yet also more interesting. It only relies on a suitable version of the approximate Poincaré-Korn inequality of [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] proven in Theorem 2.3, which asserts that the energy controls how far a function is to rigid motions (hence to nite-dimensional), combined with a multiscale construction. We hope that this scheme can be useful for other purposes. We observe for instance that, combined with the celebrated extension method of Nitsche [START_REF] Nitsche | On Korn's second inequality[END_REF], a simplied version or this proof allows to easily deduce Rellich-type theorems in BD [START_REF] Temam | Duality and relaxation in the variational problem of plasticity[END_REF][START_REF] Suquet | Sur les équations de la plasticité: existence et régularité des solutions[END_REF][START_REF] Temam | Translation of Problèmes mathématiques en plasticité[END_REF][START_REF] Kohn | Dual spaces of stresses and strains, with applications to Hencky plasticity[END_REF].

Theorem 1.1. Let Ω ⊂ R d be a bounded domain and let u k ∈ GBD(Ω) be such that

sup k∈N µ u k (Ω) < +∞. (1.2)
Then there exist a subsequence, not relabelled, a Caccioppoli partition P = (P n ) n of Ω, a sequence of piecewise rigid motions (a k ) k with

a k = n∈N a n k χ Pn , (1.3a) |a n k (x) -a n ′ k (x)| → +∞ for L d -a.e. x ∈ Ω, for all n ̸ = n ′ , (1.3b) 
and u ∈ GBD(Ω) such that

u k -a k → u L d -a.e. in Ω, (1.4a) 
H d-1 (∂ * P ∩ Ω) ≤ lim σ→+∞ lim inf k→∞ H d-1 (J σ u k ). (1.4b) 
If in addition (u k ) k is bounded in GSBD p (Ω), p > 1 (that is, (3.18) below holds), following [START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF] one obtains in addition to the last estimate:

H d-1 ((∂ * P ∪ J u ) ∩ Ω) ≤ lim inf k→∞ H d-1 (J u k ), (1.4c) 
see Remark 3.1 in Section 3.3.

The plan of the note is as follows: we rst dene properly the notions which are useful for this work (Sec. 2.1). Then, in Section 2.2 we show that a partial rigidity result of [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] is also valid in GBD, without further integrability assumption. The following section is devoted to the proof of Theorem 1.1. Thanks to the rigidity result, we build an appropriate Caccioppoli partition which will satisfy the thesis of the Theorem in Section 3.1. We end up proving the compactness ( 

M b (B; R m ) [resp., by M(B; R m )]. If m = 1, we write M b (B) for M b (B; R), M(B) for M(B; R), and M + b (B)
for the subspace of positive measures of M b (B). For every µ ∈ M b (B; R m ), its total variation is denoted by |µ|(B).

We say that v ∈ L 1 (Ω) is a function of bounded variation on Ω, and we write v ∈ BV (Ω),

if D i v ∈ M b (Ω) for i = 1, . . . , n, where Dv = (D 1 v, . . . , D n v) is its distributional derivative. A vector-valued function v : Ω → R m is in BV (Ω; R m ) if v j ∈ BV (Ω) for every j = 1, . . . , m. The space BV loc (Ω) is the space of v ∈ L 1 loc (Ω) such that D i v ∈ M(Ω) for i = 1, . . . , d.
We call innitesimal rigid motion any ane function with skew-symmetric gradient and piecewise rigid motion any function of the form j∈N a j χ Pj , where (P j ) j is a Caccioppoli partition of Ω (that is, a partition into sets of nite perimeters, with nite total perimeter) and any a j is an innitesimal rigid motion.

Fixed ξ ∈ S d-1 , we let

Π ξ := {y ∈ R d : y • ξ = 0}, B ξ y := {t ∈ R : y + tξ ∈ B} for any y ∈ R d and B ⊂ R d , (2.1)
and for every function v :

B → R d and t ∈ B ξ y , let v ξ y (t) := v(y + tξ), v ξ y (t) := v ξ y (t) • ξ. (2.2) Moreover, let Π ξ (x) := x -(x • ξ)ξ ∈ ξ ⊥ = {y ∈ R d : y • ξ = 0} for every x ∈ R d . Denition 2.1 ( GBD [11]). Let Ω ⊂ R d be a bounded open set, and let v ∈ L 0 (Ω; R d ). Then v ∈ GBD(Ω) if there exists λ v ∈ M + b (Ω)
such that one of the following equivalent conditions holds true for every ξ ∈ S d-1 :

(a) for every τ

∈ C 1 (R) with -1 2 ≤ τ ≤ 1 2 and 0 ≤ τ ′ ≤ 1, the partial derivative D ξ τ (v•ξ) = D τ (v • ξ) • ξ belongs to M b (Ω), and for every Borel set B ⊂ Ω D ξ τ (v • ξ) (B) ≤ λ v (B); (b) v ξ y ∈ BV loc (Ω ξ y ) for H d-1 -a.e. y ∈ Π ξ , and for every Borel set B ⊂ Ω Π ξ D v ξ y B ξ y \ J 1 v ξ y + H 0 B ξ y ∩ J 1 v ξ y dH d-1 (y) ≤ λ v (B),
where J 1

u ξ y := t ∈ J u ξ y : |[ u ξ y ]|(t) ≥ 1 . The function v belongs to GSBD(Ω) if v ∈ GBD(Ω) and v ξ y ∈ SBV loc (Ω ξ y ) for every ξ ∈ S d-1 and for H d-1 -a.e. y ∈ Π ξ . For v ∈ GBD(Ω), denoting by ( µ v ) ξ y (B) := |D v ξ y B \ J 1 v ξ y + H 0 B ∩ J 1 v ξ y for every B ⊂ Ω ξ y Borel (2.3) (( µ v ) ξ y ∈ M + b (Ω ξ y )
for every ξ ∈ S d-1 and H d-1 -a.e. y ∈ Π ξ ) and by

( µ v ) ξ (B) := Π ξ ( µ v ) ξ y (B ξ y ) dH d-1 (y) for every B ⊂ Ω Borel, (2.4) it holds that ( µ v ) ξ ∈ M + b (Ω), ( µ v ) ξ ≤ λ v for any λ v satisfying condition (b) of Denition 2.1 and that µ v (B) := sup k sup k i=1 ( µ v ) ξi (B i ) : (ξ i ) i ⊂ S d-1 , B 1 , . . . , B k ⊂ B, B i ∩ B j = ∅ ∀i ̸ = j (2.5)
is the smallest measure λ v that satises condition (b) of Denition 2.1.

Every v ∈ GBD(Ω) has an approximate symmetric gradient e(v) ∈ L 1 (Ω; M d×d sym ) such that for every ξ ∈ S d-1 and H d-1 -a.e. y ∈ Π ξ there holds e(v)(y + tξ)ξ • ξ = ( v ξ y ) ′ (t) for L 1 -a.e. t ∈ Ω ξ y ;
(2.6) the approximate jump set J v is still countably (H d-1 , d-1)-rectiable (cf. [11, Theorem 6.2] and [START_REF] Del Nin | Rectiability of the jump set of locally integrable functions[END_REF]) and may be reconstructed from its slices through the identity

(J ξ v ) ξ y = J v ξ y and v ± (y + tξ) • ξ = ( v ξ y ) ± (t) for t ∈ (J v ) ξ y , (2.7) 
where

J ξ v := {x ∈ J v : [v] • ξ ̸ = 0} (it holds that H d-1 (J v \ J ξ v ) = 0 for H d-1 -a.e. ξ ∈ S d-1
). For every σ > 0 we also denote

J σ v := {x ∈ J v : |[v]| < σ}.
(2.8) By (2.7), for every σ > 0, every ξ ∈ S d-1 , and

H d-1 -a.e. y ∈ Π ξ J σ v ξ y ⊂ (J σ v ) ξ y , (2.9) 
where

J σ v ξ y = {t ∈ J v ξ y : |[ v ξ y ]| < σ}.
We recall from [START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF] the following lemma on piecewise rigid motions.

Lemma 2.2. Let (P j ) j be a Caccioppoli partition and let (a h ) h be a sequence of piecewise rigid motions such that (1.3a) and (1.3b) hold. Then for

H d-1 -a.e. ξ ∈ S d-1 |(a j h -a i h )(x) • ξ| → +∞ as h → +∞ for L d -a.e.
x ∈ Ω, for all i ̸ = j.

(2.10)

Rigidity in GBD.

The following result is obtained in the footsteps of Proposition 2.1 in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF].

Let Q δ = (-δ/2, δ/2) d .
Theorem 2.3. There exist c > 0 such that for any δ > 0, u ∈ GSBD(Q δ ), there exists ω ⊂ Q δ with |ω| ≤ cδH d-1 (J 1 u ) and an innitesimal rigid motion a such that

Q δ \ω |u -a| dx ≤ cδ µ u (Q δ \ J 1 u ).
Proof. We sketch the proof, highlighting the modications with respect to [5, Proposition 2.1].

As in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF], we may assume by a rescaling argument δ = 1 (and write Q for Q 1 ), and that

H d-1 (J 1 u ) ≤ 1 32d 3 , otherwise it is enough to take ω = Q, a = 0, c = 32d 3 . We dene the function T : R d × S d-1 × R → R by T (x, ξ, t) := 1 if x ∈ Q, x + tξ ∈ Q and x + [0, t]ξ ∩ J 1 u ̸ = ∅, 0 otherwise. (2.11)
By denition of distributional derivative it holds that

ξ • u(x + tξ) -u(x) = x•ξ+t x•ξ D u ξ y (s) ds, y := Π ξ (x) (2.12) and D u ξ y ≤ ( µ u ) ξ y on [x • ξ, x • ξ + t] if T (x,
ξ, t) = 0 and x, x + tξ ∈ Q (recall (2.9)) at least for a.e. x ∈ Q and t ∈ R. We remark that (2.11) is the analogue of [5, denition (2.6)] when replacing J u with J 1 u , and that (2.12) is the analogue of [5, equation (2.5)]. Therefore, exactly as in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF], one obtains that

R d R T (x, ξ, t) dt dx ≤ 4dH d-1 (J 1 u ) for any ξ ∈ S d-1
and that there exists t * ∈ (1/2, 1) (xed for the rest of the proof ) and q 1 ⊂ q with L d (q 1 )/L d (q) > 3/4 such that, dening

z i (z 0 ) := z 0 + t * e i for all i = 1, . . . , d, E z0 := d i=1 [z 0 , z i (z 0 )] ∪ 1≤i<j≤d [z i (z 0 ), z j (z 0 )] (2.13a) it holds for z 0 ∈ q 1 : E z0 ∩ J 1 u = ∅, E z0 ⊂ Q. (2.13b)
For t * xed above and any z 0 ∈ q let us consider

F (z 0 ) := 0≤i<j≤n |D u ξi,j yi,j (z0) |([z i (z 0 ) • ξ i,j , z j (z 0 ) • ξ i,j ]), ξ i,j := z i (z 0 ) -z j (z 0 ) |z i (z 0 ) -z j (z 0 )| , y i,j (z 0 ) := Π ξi,j (z i (z 0 )) = z i (z 0 ) -(z i (z 0 ) • ξ i,j )ξ i,j .
We notice that ξ i,j = ei-ej √ 2

if i ̸ = 0, while ξ i,j = e j if i = 0. Fixed i ̸ = j, we integrate for z 0 ∈ q as z 0 = Π ξi,j (z 0 ) ranges in ξ ⊥ i,j and z ′ 0 = z 0 • ξ i,j ranges in q ξi,j Π ξ i,j (z0)

, using Fubini's Theorem.

Moreover, if Π ξi,j (z 0 ) is xed to a value z 0 ∈ Π ξi,j , also y i,j (z 0 ) is xed and equal to

z 0 := Π ξi,j (z 0 ) + t * Π ξi,j (e i ) = z 0 + t * Π ξi,j (e i ),
so that in such a case

[z i (z 0 ) • ξ i,j , z j (z 0 ) • ξ i,j ] ⊂ z 0 + Rξ i,j ∩ Q and |D u ξi,j yi,j (z0) |([z i (z 0 ) • ξ i,j , z j (z 0 ) • ξ i,j ]) ≤ ( µ u ) ξi,j z0 ((Q \ J 1 u ) ξi,j z0 )
regardless of the value of z ′ 0 = z 0 • ξ i,j (satisfying z 0 + z ′ 0 ξ i,j ∈ q since we integrate over z 0 ∈ q). It follows that (notice that L 1 ({s ∈ R :

z 0 + z ′ 0 ξ i,j ∈ Q}) ≤ √ 2) q |D u ξi,j yi,j (z0) |([z i (z 0 ) • ξ i,j ,z j (z 0 ) • ξ i,j ]) dz 0 = z0=Π ξ i,j z 0 ∈ξ ⊥ i,j dH d-1 ( z 0 ) ( z0+Rξi,j )∩q |D u ξi,j yi,j (z0) |([z i (z 0 ) • ξ i,j , z j (z 0 ) • ξ i,j ]) dz ′ 0 ≤ √ 2 z0∈ξ ⊥ i,j ( µ u ) ξi,j z0 ((Q \ J 1 u ) ξi,j z0 ) dH d-1 ( z 0 ) ≤ √ 2( µ u ) ξi,j (Q \ J 1 u ).
(2.14)

Summing (2.14) over 0 ≤ i < j ≤ d, we get q F (z 0 ) dz 0 ≤ √ 2(d + 1) 2 µ u (Q \ J 1 u ).
and there exists q 2 ⊂ q with L d (q 2 )/L d (q) > 3/4 such that for every z 0 ∈ q 2

F (z 0 ) ≤ 4 √ 2(d + 1) 2 µ u (Q \ J 1 u ). (2.15)
This is the analogue of [5, condition (2.8)]. At this stage, following [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF], it holds that for any z 0 satisfying (2.13b) and (2.15) the ane map a :

R d → R d such that a(z i (z 0 )) = u(z i (z 0 )) for all i = 0, . . . , d satises |e(a)| ≤ c µ u (Q \ J 1 u ).
(2.16)

Arguing exactly as in Step 3 of the proof of Proposition 2.1 in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] we nd a set q 3 ⊂ q with L d (q 3 )/L d (q) > 3/4 such that if z 0 ∈ q 3 then (2.12) holds for any

[z i (z 0 ), y] for y ∈ Q \ ω, where ω = n i=0 ω (i) , ω (i) := {y ∈ Q : y = z i + tξ with T (z i , ξ, t) = 1}.
(2.17)

With (2.12) and the fact that for any y there are d points in {z 0 , . . . , z d } such that the simplex generated by those and y has volume at least t * /(d + 1)!, (2.17) implies that

|w(y)| ≤c n i=0 |D w ξi,y xi,y(z0) |([z i (z 0 ) • ξ i,y , y • ξ i,y ]) for all y ∈ Q \ ω, where w := u -a, ξ i,y := y -z i (z 0 ) |y -z i (z 0 )| , x i,y (z 0 ) := Π ξi,y (z i (z 0 )) (2.18)
Let us consider the quantity

H(z 0 ) := n i=0 H i (z 0 ), H i (z 0 ) := Q\ω |D w ξi,y xi,y(z0) |([z i (z 0 ) • ξ i,y , y • ξ i,y ]) dy.
(2.19)

In the following we prove that there exists q 4 ⊂ q 3 with L d (q 4 )/L d (q 3 ) > 3/4 such that H(z 0 ) is controlled by µ u (Q \ J 1 u ) times a constant c depending only on d, for every z 0 ∈ q 4 . Together with (2.16) and (2.18) this will conclude the proof.

By Fubini's Theorem, we have that for every i = 0, . . . , d

q3 H i (z 0 ) dz 0 = Q\ω q3 |D w ξi,y xi,y(z0) |([z i (z 0 ) • ξ i,y , y • ξ i,y ]) dz 0 dy.
For xed y ∈ Q \ ω we argue similarly to what done to prove (2.14), namely we integrate for z 0 ∈ q 3 as z 0 = Π ξi,y (z 0 ) ranges in ξ ⊥ i,y and z ′ 0 = z 0 •ξ i,y ranges in (q 3 ) ξi,y z0 , using Fubini's Theorem.

Then, given z 0 , we have that x i,y (z 0 ) = z 0 + t * Π ξi,y (e i ) =: z 0 and that

|D w ξi,y xi,y(z0) |([z i (z 0 ) • ξ i,y , y • ξ i,y ]) ≤ ( µ w ) ξi,y z0 ((Q \ J 1 u ) ξi,y z0 ), regardless of the value of z ′ 0 . Therefore q3 |D w ξi,y xi,y(z0) |([z i (z 0 ) • ξ i,y , y • ξ i,y ]) dz 0 ≤ √ 2 ξ ⊥ i,y ( µ w ) ξi,y z0 ((Q \ J 1 u ) ξi,y z0 ) dH d-1 ( z 0 ) ≤ √ 2( µ w ) ξi,y (Q \ J 1 u ) = √ 2( µ u ) ξi,y (Q \ J 1 u ) (2.20)
where the equality above follows from the fact that a is an innitesimal rigid motion. Summing (2.20) over i (and arguing as done for (2.15)) we get that q3

H(z 0 ) dz 0 ≤ c µ u (Q \ J 1 u ),
thus we nd q 4 ⊂ q 3 with L d (q 4 )/L d (q 3 ) > 3/4 and H(z 0 ) ≤ c µ u (Q \ J 1 u ) for every z 0 ∈ q 4 ; we conclude the proof by picking z 0 in q 1 ∩ q 2 ∩ q 4 (which has positive measure) and integrating (2.18) over y ∈ Q \ ω. □

Proof of the compactness theorem

In this section we prove Theorem 1.1. In Subsection 3.1 we construct a suitable partition P = (P n ) n of Ω and a sequence piecewise rigid functions (a k ) k satisfying (1.3); in the next two subsections we prove the existence of u ∈ GBD(Ω) satisfying (1.4a) and the lower semicontinuity condition (1.4b) on the surface measure of ∂ * P, respectively.

3.1. Construction of a partition. For δ > 0, let

Q δ = {z + (-δ/2, δ/2] d : z ∈ δZ d , z + (-δ/2, δ/2) d ⊂ Ω}. Let η > 0, small, and dene B δ (u k ) = {Q ∈ Q δ : H d-1 (J 1 u k ∩ Q) > ηδ d-1 }, G δ (u k ) = Q δ \ B δ (u k ).
By construction, one has

Q∈B δ (u k ) Q ≤ δ η H d-1 (J 1 u k ). (3.1) 
We x a rst value δ 0 > 0, small enough so that G δ0 (u k ) ̸ = ∅ for all k ≥ 1, and for j ≥ 0, denote δ j = δ 0 2 -j . Upon extracting a subsequence, we may assume that B δ0 (u k ) is not depending on k. By a diagonal argument, we may (and will) assume even that for any j ≥ 0, B δj (u k ) does not depend on k if k is large enough (depending on j). We denote then B δj (and G δj ) the corresponding limiting sets, dropping the dependence in u k .

Thanks to Theorem 2.3, for any j ≥ 0 and each

Q ∈ Q δj , there is ω Q k ⊂ Q and a Q k , an
innitesimal rigid motion, such that

Q\ω Q k |u k -a Q k |dx ≤ cδ j µ u k (Q \ J 1 u k ) (3.2) and |ω Q k | ≤ cδ j H d-1 (J 1 u k ∩ Q). In particular: Q ∈ G δj (u k ) ⇒ |ω Q k | ≤ cη|Q|. (3.3)
Considering the nite family of sequences of innitesimal rigid motions

(a Q k -a Q ′ k ) k , {Q, Q ′ } ⊂ G δ0 (
which does not depend on k), we may assume, upon extracting a subsequence, that either

|a Q k (x) -a Q ′ k (x)| → ∞ a.e., or sup k sup |x|≤1 |a Q k (x) -a Q ′ k (x)| < +∞. By a diagonal argument, similarly, for j ≥ 1, considering (a Q k -a Q ′ k ) k , {Q, Q ′ } ∈ G δj (u k )
, which for k large enough is G δj , not depending on k, we may assume the same.

We let for j ≥ 0

B j = Ω \ Q∈Q δ j Q ∪ l≥j Q∈B δ l
Q.

Thanks to (3.1), it holds that

|B j | ≤ Ω \ Q∈Q δ j Q + 2δ j η sup k µ u k (Ω), (3.4) 
so that lim j |B j | = 0; moreover (B j ) j is decreasing, that is B j+1 ⊆ B j for all j ≥ 0. We dene a partition (P j n ) Nj n=1 of Ω \ B j as follows: the sequences (a Q k ), Q ∈ G δj , for k large enough so that G δj (u k ) = G δj , can be grouped in equivalent classes for the relationship a

Q k ∼ a Q ′ k when sup k sup |x|≤1 |a Q k (x) -a Q ′ k (x)| < +∞. Then, we say that Q ∼ Q ′ whenever a Q k ∼ a Q ′ k .
We dene, for each equivalence class C n in G δj , n = 1, . . . , N j , the set

P j n = Q∈Cn Q \ B j . Observe that for any j ≥ 1, if Q ∈ G δj , Q ′ ∈ G δj+1 with Q ′ ⊂ Q (and
k is large enough), then one has:

Q ′ \(ω Q k ∪ω Q ′ k ) |a Q k -a Q ′ k |dx ≤ cδ µ u k (Q \ J 1 u k ),
so that, provided η > 0 was chosen small enough (to ensure for instance that |ω It follows that: for any smaller scales l, l ′ ≥ j, and any Q ∈ G δ l , Q ′ ∈ G δ l ′ with both Q \ B j and Q ′ \ B j of positive measure and contained in the same component P j n , one nds that

Q k ∪ ω Q ′ k | ≤ |Q ′ |/2, which is guaranteed if η < 2 -d /(4c), cf. (3.3)), sup k sup |x|≤1 |a Q k (x) -a Q ′ k (x)| < +∞. Hence given Q ∈ Q δ l , Q ′ ∈ Q δ l ′ , for l ′ ≥ l ≥ j, and such that Q ′ ⊂ Q and |Q ′ \ B j | > 0, one obtains by induction, sup k sup |x|≤1 |a Q k (x) -a Q ′ k ( 
sup k sup |x|≤1 |a Q k (x) -a Q ′ k (x)| < +∞. Indeed, there are Q, Q′ ∈ G δj with Q ⊂ Q, Q ′ ⊂ Q′ and Q ∼ Q′ .
In particular this shows that for j ′ ≥ j and n ∈ {1, . . . , N j }, there is n ′ ∈ {1, . . . , N j ′ } such that P j n ⊂ P j ′ n ′ . We may always number the sets (P j n ) n , j ≥ 1, according to the numbering of (P j-1 n ) n , so that in fact P j n ⊂ P j ′ n for any j ′ ≥ j and any n ∈ {1, . . . , N j }. As a consequence, we may dene, for 1 ≤ n < 1 + sup j N j ∈ N ∪ {+∞}, the set P n = j P j n (where the union starts at the rst j such that n ≤ N j ). These sets partition Ω \ j B j , hence, up to a Lebesgue-negligible set, Ω.

For each n, we choose an arbitrary Q ∈ G δj , at some arbitrary scale j ≥ 0, with |Q \ B j | > 0 and Q \ B j ⊂ P n , and we associate to P n the subsequence (a Q k ) k , hence denoted (a n k ) k . It follows that for any other such cube Q at any other scale j, one has sup

k sup |x|≤1 |a n k (x) -a Q k (x)| < +∞, while lim k |a n ′ k (x) -a Q k (x)| = +∞ a.e. if n ′ ̸ = n.
3.2. Compactness. We introduce the smooth, one-Lipschitz truncations t σ (x) := σ tanh(x/σ),

for σ > 0. We also let v k = n a n k χ Pn . Note that at the scale j ≥ 0, one has that

v k | Ω\Bj = n a n k χ Pn\Bj = Nj n=1 a n k χ P j n ,
showing that v k | Ω\Bj is built up of N j innitesimal rigid motions.

For each scale j ≥ 0 let

w j k = Q∈G δ j (u k ) a Q k χ Q -v k (1 -χ Bj ).
By construction, sup k sup x∈Ω\Bj |w j k (x)| < +∞ and since v k | Ω\Bj is built up of a bounded number of ane maps, the sequence of functions (w j k ) k is nite-dimensional, and we may extract a subsequence such that it converges to some limit w j . By a diagonal argument, we may assume this is true for all j ≥ 0.

For e ∈ R d , |e| = 1, σ > 0, we consider the sequences of functions u e,σ k := t σ (e • (u k -v k )).

We let ω j k := Q∈G δ j (u k ) ω Q k , then |ω j k | ≤ cδ j H d-1 (J |e • (u k -w j k )|dx

≤ ση j + Q∈G δ j (u k ) Q\ω Q k |u k -a Q k |dx ≤ ση j + Cδ j (3.5) 
where we have let η j = |B j | + cδ j sup k H d-1 (J 1 u k ), and C = c sup k µ u k (Ω \ J 1 u k ) < +∞, and used (3.2). Using that w j k -w j l → 0 as k, l → ∞ in L 1 (Ω), we nd that: lim sup k,l→∞ Ω |u e,σ k -u e,σ l |dx ≤ 2(ση j + Cδ j ).

Sending j → +∞ we nd that lim sup k,l→∞ Ω |u e,σ k -u e,σ l |dx = 0, that is, (u e,σ k ) k are Cauchy sequences and converge to some limit u e,σ in L 1 (Ω).

since a k is a piecewise rigid motion constant on every P j , j ∈ N, where P = (P j ) j . Integrating over Π ξ and recalling (2.5) we have that µ ũk (B) ≤ µ u k (B) + H d-1 (∂ * P ∩ B) for every B ⊂ Ω Borel.

Since ũk pointwise converges L d -a.e. to u, there is an increasing function ψ 0 : R + → R + with lim s→+∞ ψ 0 (s) = +∞ such that ∥ψ 0 (ũ k )∥ L 1 (Ω) is uniformly bounded w.r.t. k ∈ N (see e.g. [START_REF]A compactness result in GSBV p and applications to Γ-convergence for free discontinuity problems[END_REF]Lemma 2.1]). Then we may apply [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Corollary 11.2] to deduce that u ∈ GBD(Ω). 

  x)| < +∞ (as all the intermediate cubes are all good at their respective scale).

  This concludes the proof of Theorem 1.1.

Remark 3 . 1 .

 31 Let us consider a sequence (u k ) k such thatΩ |e(u k )| p dx + H d-1 (J u k ) ≤ M, p > 1 (3.18)for M > 0 independent of k ∈ N. Applying Theorem 1.1 we obtain the compactness part of [9, Theorem 1.1] (that is [9, (1.5b)] for u ∈ GBD(Ω)) without using the Korn-type inequality in[START_REF] Cagnetti | Korn and Poincaré-Korn inequalities for functions with a small jump set[END_REF]. Combining this with the last part of the proof ([9, Steps 2-3 in proof of Theorem 1.1]) we obtain [9, Theorem 1.1], and in particular (1.4c). Nevertheless, the result in[START_REF] Cagnetti | Korn and Poincaré-Korn inequalities for functions with a small jump set[END_REF] is crucial for [9, Theorem 1.2].

  Notation. Given Ω ⊂ R d open, we use the notation L 0 (Ω; R m ) for the space of L dmeasurable functions v : Ω → R m , endowed with the topology of convergence in measure. For any locally compact subset B ⊂ R d , (i.e. any point in B has a neighborhood contained in a compact subset of B), the space of bounded R m -valued Radon measures on B [respectively, the space of R m -valued Radon measures on B] is denoted by
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  1 u k ). Thus:

Ω |u e,σ k -t σ (e • w j k )|dx ≤ σ B j ∪ ω j k + Ω\(Bj ∪ω j k )

We show now that the limit u e,σ is t σ (e • u) for some well-dened measurable function u. Let us consider a subsequence such that u e,1 k → u e,1 a.e. In that case: • either |u e,1 (x)| = 1, which happens if and only if lim k→∞ |e • (u k (x) -v k (x))| = +∞, and in particular for any σ > 0, |u e,σ (x)| = σ; • or, by continuity, e • (u k (x) -v k (x)) → tanh -1 (u e,1 (x)), and we also have that u e,σ (x) = t σ (tanh -1 (u e,1 (x))) for any σ > 0.

Let A = {x : |u e,1 (x)| = 1} = {x : |u e,σ (x)| = σ}: then, for j ≥ 0,

On the other hand thanks to (3.5):

Dividing by σ and letting σ → ∞, we deduce:

so that |A| = 0. It follows that tanh -1 u e,1 is nite a.e.

To sum up, we have shown that for any e with |e| = 1, there is a measurable function u e such that t σ (e • (u k -v k )) → t σ (u e ) in L 1 (Ω) for any σ > 0. It is then obvious to check that u e = e • u for some measurable vector-valued function u, and, up to a subsequence, to deduce that u k -v k → u a.e. in Ω. 

it holds that

Following exactly [9, Step 2 in Section 3] for σ > 1 xed (using (3.7) in place of [9, estimate (3.11)]), we get that all the [9, (3.12)-(3.18)] hold for J v replaced by J σ v and I ξ y replaced by I σ,ξ y .

In particular, for H d-1 -a.e. ξ ∈ S d-1 and H d-1 -a.e. y ∈ Π ξ , along a suitable subsequence (•) j depending on σ, ξ, ε ∈ (0, σ -2 ) xed as in [9, (3.13)], and y, it holds that

)

(3.12)

by (3.10) we may assume, up to a further subsequence, that H 0 J σ ( uj ) ξ y = N y ∈ N for every j and so that there are N y ≤ N y cluster points in the limit, denoted by t 1 , . . . , t Ny .

Therefore we have that K ∩ J σ 

in fact, assuming by contradiction that there exists l ∈ {1, . . . , M y } and i

there are two corresponding sequences of innitesimal rigid motions (a i1 j ) j , (a i2 j ) j for which

with L 1 (P i1 ) ξ y ∩ (t l , t l+1 ) , L 1 (P i2 ) ξ y ∩ (t l , t l+1 ) > 0; this gives (with (3.13) and since a i j are innitesimal rigid motions and u ξ y : Ω ξ y → R) that ( a i1 j -a i2 j ) ξ y is constant in Ω ξ y and uniformly bounded w.r.t. j, in contradiction with (3.9). Therefore, (3.14) is proven. Integrating (3.14) over y ∈ Π ξ and using Fatou's lemma with (3.10), (3.11) we deduce that

for every σ > 1 and H d-1 -a.e. ξ ∈ S d-1 (in view of the choice of the subsequences, see [START_REF]Equilibrium congurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]). This implies that P is a Caccioppoli partition. Moreover, integrating over ξ ∈ S d-1 we get that

H σ ε,ξ dH d-1 (ξ)

for a universal constant C > 0 and every σ > 1, ε ∈ (0, σ -2 ). Letting ε → 0, in view of (3.12) and the arbitrariness of σ > 1 we conclude (1.4b).

Let us now conrm that u ∈ GBD(Ω).