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A GENERAL COMPACTNESS THEOREM IN G(S)BD

ANTONIN CHAMBOLLE AND VITO CRISMALE

ABsTrRACT. We give a new, simpler proof of a compactness result in GSBDP, p > 1, by the
same authors, which is also valid in GBD (the case p = 1), and shows that bounded sequences
converge a.e., after removal of a suitable sequence of piecewise infinitesimal rigid motions,
subject to a fixed partition.

1. INTRODUCTION

Generalized (special) functions with bounded deformation (G(S)BD) have been introduced
by G. Dal Maso [1I1] in order to properly tackle free discontinuity problems [12] 2] in linearized
elasticity, and in particular the minmization of the Griffith functional

Ce(u) : e(u)dr + yH*H(K), (1.1)
Q\K

introduced in [14] to model and approximate brittle fracture growth in linear elastic materials. In
this functional, Q C R? is a bounded d-dimensional domain (in practice d € {2,3}), u a vectorial
displacement, expected to be smooth, with symmetrized gradient e(u) = (Du + Du”)/2, except
across a (d — 1)-dimensional fracture set K. The tensor C contains the physical constants of
the problem, and defines a positive definite quadratic form on symmetric tensors, while v > 0
is the toughness of the material. Showing existence to minimizers to this functional has been a
difficult task, developed over many years. The situation mostly evolved after [11I] introduced for
the first time a reasonable energy space for a weak form of , where K is replaced with J,,,
the intrinsic jump set of u [13]. Existence results could then be proved [3] 15} [8 10} [6] [7] for
weak, then “strong” minimizers (that is, for the original problem in (u, K)). Most of these works
rely upon a rigidity result for displacements with small jumps, established in [3].

In particular, the main result in [§] is a compactness result in GSBDP?, the subspace of
GSBD (which is defined precisely in Section of displacements with p-integrable symmetrized
gradient and jump set of finite surface. In this result, a sequence which is bounded in energy
(roughly, (L.I), with the Lagrangian replaced with |e(u)[?) will converge up to subsequences
either to a GSBDP limit u(z) or to +oo (with some appropriate semicontinuity properties).
This is not really an issue for the study of , since replacing v with 0 where it is infinite, we
recover that the limit of a minimizing sequence is a minimizer.

However, it was observed in [16, @] that this compactness result is not sufficient for studying
more general, non-homogeneous variational problems, where the Lagrangian is not minimal at 0.
In that case, one has to study more finely what happens in the “infinity” set. Following similar
(yet far more precise) results in the scalar case [16], the authors could show in [9] a more complete
compactness result, and in particular the existence of a Caccioppoli partition where, on each set
of the partition, the sequence converges to a finite limit after substraction of a suitable sequence
of infinitesimal rigid motions (affine functions with skew-symmetric gradients).

In addition, S. Almi and E. Tasso [I] recently extended [§], with a different proof, to sequences
merely bounded in GBD (roughly, the case p =1 in [8]), while the proof in [9], relying on a fine
result of [4] valid only for p > 1, would not work in GBD.
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2 ANTONIN CHAMBOLLE AND VITO CRISMALE

The purpose of this note is to give an alternative proof of the main compactness result
of [9], which does not rely on [4] and is also valid in GBD, thus permitting to deal with non-
homogeneous problems also in this framework. Precisely, we show the compactness Theorem [1.1
below (the notation is made precise in Section . The proof of this result is quite simpler,
in a sense, than in [9], yet also more interesting. It only relies on a suitable version of the ap-
proximate Poincaré-Korn inequality of [5] proven in Theorem which asserts that the energy
controls how far a function is to rigid motions (hence to finite-dimensional), combined with a
multiscale construction. We hope that this scheme can be useful for other purposes. We observe
for instance that, combined with the celebrated extension method of Nitsche [18], a simplified
version or this proof allows to easily deduce Rellich-type theorems in BD [21], 19 20, [17].

Theorem 1.1. Let Q C R? be a bounded domain and let u, € GBD(Q) be such that
SUD iy, () < +00. (1.2)
keN

Then there ezist a subsequence, not relabelled, a Caccioppoli partition P = (P,),, of 0, a sequence
of piecewise rigid motions (ay)y with

ap = Zaﬁxpn, (1.3a)

neN
lag (z) — aZl (x)] = +oo  for L%-a.e. x € Q, for alln #n/, (1.3b)
and uw € GBD(RY) such that
up —ap —u L%a.e. in Q, (1.4a)
d—1 /9% : I d—1/ yo
HTH(O"PNQ) < O'EI-EOO hkrggolf HT(Tg,)- (1.4b)

If in addition (ug)y is bounded in GSBDP(Q2), p > 1 (that is, (3.18)) below holds), following [9]
one obtains in addition to the last estimate:

HITL (0P U J,)NQ) < lim inf HI (), (1.4c)

see Remark 3.7 in Section 3.3l

The plan of the note is as follows: we first define properly the notions which are useful for this
work (Sec. 2.I). Then, in Section we show that a partial rigidity result of [5] is also valid in
GBD, without further integrability assumption. The following section is devoted to the proof of
Theorem Thanks to the rigidity result, we build an appropriate Caccioppoli partition which
will satisfy the thesis of the Theorem in Section We end up proving the compactness

(Sec. and the lower-semicontinuity (L.4b) (Sec. [3.3).

2. PRELIMINARIES

2.1. Notation. Given 2 C R? open, we use the notation L°(2;R™) for the space of L%
measurable functions v: @ — R, endowed with the topology of convergence in measure. For
any locally compact subset B C R?, (i.e. any point in B has a neighborhood contained in a
compact subset of B), the space of bounded R™-valued Radon measures on B [respectively, the
space of R™-valued Radon measures on B] is denoted by My(B;R™) [resp., by M(B;R™)]. If
m = 1, we write My(B) for My(B;R), M(B) for M(B;R), and M, (B) for the subspace of
positive measures of M;(B). For every p € My(B;R™), its total variation is denoted by |u|(B).

We say that v € L1(Q) is a function of bounded variation on ), and we write v € BV (Q),
if Dyjv € Mp(Q) for ¢ = 1,...,n, where Dv = (Dyv,...,D,v) is its distributional derivative. A
vector-valued function v: Q@ — R™ is in BV (Q;R™) if v; € BV(RQ) for every j =1,...,m. The
space BVio(9) is the space of v € L, () such that D;v € M(Q) for i =1,...,d.
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We call infinitesimal rigid motion any affine function with skew-symmetric gradient and piece-
wise rigid motion any function of the form .y a;xp,. where (P;); is a Caccioppoli partition
of Q (that is, a partition into sets of finite perimeters, with finite total perimeter) and any a; is
an infinitesimal rigid motion.

Fixed ¢ € S971, we let

¢ = {y e R%: y - £ =0}, Bg ={teR:y+té € B} foranyyecR?and BcR? (2.1)
and for every function v: B — R? and t € Bg, let
13 — € N 3
vy (t) == v(y +t), v, (t) == vy (1) - €. (2.2)
Moreover, let TI¢(z) := z — (z - £)¢ € &+ = {y € R?: y - £ = 0} for every z € R%.

Definition 2.1 (“GBD” [11]). Let Q C R? be a bounded open set, and let v € L°(£; R?). Then
v € GBD(Q) if there exists A\, € M () such that one of the following equivalent conditions
holds true for every & € S 1:

(a) forevery 7 € C*'(R) with —3 <7 < J and 0 < 7/ < 1, the partial derivative D¢ (7(v-€)) =
D(7(v-€)) - € belongs to M, (£2), and for every Borel set B C Q
D¢ (T(v-€))[(B) < Au(B);
(b) 05 € BVioe(§2) for H* '-a.e. y € II%, and for every Borel set B C

/HE (IDEI(BS \ 72) +HO(BE 1 7)) d (y) < A(B).

where J, := {t € Jos ¢ |11 (1) > 1}.
The function v belongs to GSBD(R2) if v € GBD(Q)) and @5 € SBVlOC(Qi) for every ¢ € S9!
and for H% l-a.e. y € II¢.
For v € GBD(f?), denoting by
(ﬁv)g(B) = \Dﬁ§|(B \ Jal;j) +H(BN Jvlg) for every B C Qi Borel (2.3)
((Tiw)§ € M (Q5) for every & € S*! and H% '-a.e. y € II¢) and by
(1i,)*(B) = /H£ (ﬁv)g(Bg) dHI1(y) for every B C Q Borel, (2.4)

it holds that (7i,)* € M (), (fi,)* < A, for any A, satisfying condition (b) of Definition
and that
k
o (B) = supsup { S (7)(B.): ()i €S Bu,... By C BB0 B =0Vi#j}  (25)
k i=1
is the smallest measure A, that satisfies condition (b) of Definition
Every v € GBD(Q) has an approzimate symmetric gradient e(v) € L' (€; M%) such that for
every £ € S and H% '-a.e. y € II¢ there holds

e(v)(y +t)E- €= (05)(t) for L'-ae. t € Q; (2.6)

the approzimate jump set J, is still countably (H9~1, d—1)-rectifiable (cf. [L1, Theorem 6.2] and
[13]) and may be reconstructed from its slices through the identity

(J5)5 = Joe and v (y +1€)- &= (05)"(t) for t € ()5 (2.7)

Y Yy
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where J§ := {z € J,: [v] - € # 0} (it holds that HI=1(J, \ JS) = 0 for Hi L-ae. £ € ST1). For
every o > 0 we also denote

J7={x e J,: |[v]| <o} (2.8)
By (2.7), for every o > 0, every £ € S9!, and H t-ae. y € Il¢
J% (7, (2.9)

where JZ = {t € J¢: [05]] < o}

,

We recall from [9] the following lemma on piecewise rigid motions.

Lemma 2.2. Let (P;); be a Caccioppoli partition and let (an)n be a sequence of piecewise rigid

motions such that (1.3a) and (1.3b) hold. Then for H' '-a.e. & € SI—1

|(ai —ai)(x) €] = +oo ash — +oo  for L%a.e. x €Q, for all i # ;. (2.10)
2.2. Rigidity in GBD. The following result is obtained in the footsteps of Proposition 2.1 in [3].
Let Qs = (—6/2,6/2)%.

Theorem 2.3. There exist ¢ > 0 such that for any 6 > 0, u € GSBD(Qs), there ezists w C Qs
with |w| < cOHI"Y(J}) and an infinitesimal rigid motion a such that

/ |ufa|dx§céﬁu(Q5\J}L).
Qs\w

Proof. We sketch the proof, highlighting the modifications with respect to [5, Proposition 2.1].
As in [B], we may assume by a rescaling argument 6 = 1 (and write Q for @), and that
HIL(JL) < 325, otherwise it is enough to take w = Q, a = 0, ¢ = 32d®. We define the function

u

T:R? xS 1 xR — R by

1 ifreQ,z+téc dx+[0,t]en Tt £0,
T(z,€,t) = ifreQ vtiteqandrt0.4en, # (2.11)
0 otherwise.
By definition of distributional derivative it holds that
z-E+t
& (u(x +t8) —u(z)) = / Dﬂg(s) ds, y:=1I%(z) (2.12)
z-§

and D@, < ()5 on [z - &z - &+ t] if T(x,&,t) = 0 and z, z + € € Q (recall (2.9)) at least
for a.e. ¥ € Q and t € R. We remark that is the analogue of [5] definition (2.6)] when
replacing J,, with J!, and that is the analogue of [5, equation (2.5)]. Therefore, exactly
as in [5], one obtains that

/ / T(z, ¢ t)dtde < 4dHY(J))  for any € € ST71
R4 JR

and that there exists ¢, € (1/2,1) (fixed for the rest of the proof) and ¢1 C ¢ with £%(q1)/L£%(q) >
3/4 such that, defining

zi(20) == 20 + tye; foralli=1,...,d, E,, = ( [20, zi(20)] U U [2:(20), zj(zo)]>

i=1 1<i<j<d

d
1=

(2.13a)
it holds

for 20 € q1: E.,NJ} =0, E., CQ. (2.13b)
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For t, fixed above and any z; € ¢ let us consider

F(zo) = > D7 . (z:(20) - €3, 25(20) - €0]),

0<i<j<n

) =) e o) — aita) — (ss(s0) - £V
6 = oy =] Yoo 20) = T (i) = 2iC0) = (z1(20) €660

We notice that & ; = <= eJ if i # 0, while & ; = e; if ¢ = 0. Fixed ¢ # j, we integrate for zg € ¢
&

, I3 (0)’
Moreover, if TI5"i (zg) is fixed to a value Zp € II%+, also y; ;(20) is fixed and equal to

as Zp = 1% (z) ranges in §ij and 2z = zp - & ; ranges in ¢ using Fubini’s Theorem.

AO = Hgi‘j (Z()) =+ t*H&’j (61) = EO =+ t*Hg‘J (61'),
so that in such a case [z;(20) - &5, 2j(20) - &,;] C Zo + R ; N Q and
DG 1([26(20) - €i5s 2(20) - €5]) < (S (Q\ TS

regardless of the value of z{, = zy - & ; (satisfying zy + (& ; € ¢ since we integrate over zg € q).
It follows that (notice that £({s € R: Z + 20&; € Q}) < V2)

[0 20 .5 €l
- / de_l(gO)/|Dﬂ§ij(zﬂ)|([zi(20) “&ijy zj(20) - & 5]) dzg

o=rlii et (FotREL,)Ng (2.14)
<V2 / 57 (Q\ DS dH ()
2066{‘

< V2(i) QN Jy)-
Summing (2.14) over 0 <i < j < d, we get

[P < VA + 1@\ I,

q

and there exists g2 C ¢ with £9(g2)/L£%(q) > 3/4 such that for every zy € g2
F(z0) < 4/3(d + 1°7(Q\ J2). (215)

This is the analogue of 5], condition (2.8)]. At this stage, following [5], it holds that for any zo
satisfying (2.13b)) and (2.15) the affine map a: R? — RY such that a(z;(20)) = u(z;(20)) for all
i =0,...,d satisfies

le(a)] < chiu(Q\ Jy). (2.16)
Arguing exactly as in Step 3 of the proof of Proposition 2.1 in [5] we find a set g3 C ¢ with
L£%(q3)/L%(q) > 3/4 such that if zy € g3 then
(2.12)) holds for any [z;(z0),y] for y € Q \ w, where

" 2.17
w= Uw(i), wey =1y € Qi y = z; +t€ with T'(2;,€,t) = 1}. ( )
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With (2.12) and the fact that for any y there are d points in {z,..., 24} such that the simplex
generated by those and y has volume at least t./(d + 1)!, (2.17) implies that

n

lw(y)] <e S ID@S ([z:(20) - iy - Eiy]) for all y € Q\ w, where
w/( O)
i=0 (2.18)

y — 2i(20) ;
wi=u—a, &= = 7o) i y(20) 1= 115 (2;(20))
Let us consider the quantity
H(z) =Y Hi(2), Hi(z0):= [ D@5 I(zi(20) - iy - &iy)) dy. (2.19)
20 i\20), (20 W, (z0)\ZiL 20 §z7y7y guy Yy
o\ 1v(20)
i=0 w

In the following we prove that there exists ¢4 C g3 with £9(q4)/L£%(g3) > 3/4 such that H(z)
is controlled by i, (Q \ J}) times a constant ¢ depending only on d, for every zy € q4. Together

with (2.16]) and (2.18]) this will conclude the proof.

By Fubini’s Theorem, we have that for every ¢ =0,...,d

H;(20)dzo = /

N [ D (est0) €y i) o
w Jq3

a3
For fixed y € @ \ w we argue similarly to what done to prove (2.14), namely we integrate for
20 € q3 as zg = 1% (z() ranges in ffy and z{, = zo-&;,, ranges in (qg)gf)'y, using Fubini’s Theorem.
Then, given Zy, we have that x; ,(20) = Zo + t.11%(e;) =: Zp and that
i, ~ &, i,
D@, oy ([2i(20) - iy - Eig]) < ()2 (Q\ T0)Z"),

Ti,y

regardless of the value of z{. Therefore

D@5 ) [([26(20) - €igr - €iy]) dzo < V2 / ()5 (Q\ THEY) AR (%)
as ' &k, (2.20)

< V2(f) " (Q\ 1) = V2(7i,) 5 (Q\ J,)

where the equality above follows from the fact that a is an infinitesimal rigid motion. Summing

(2.20) over i (and arguing as done for (2.15))) we get that

H(z)dzo < cfiu(Q\ J,),
g3
thus we find ¢4 C g3 with £%(qq)/L%(g3) > 3/4 and H(20) < cfin(Q \ J}) for every zy € qq; we
conclude the proof by picking zp in g1 N g2 N g4 (which has positive measure) and integrating

(2.18) over y € Q \ w. O

3. PROOF OF THE COMPACTNESS THEOREM

In this section we prove Theorem In Subsection we construct a suitable partition
P = (P,), of Q and a sequence piecewise rigid functions (ay)s satisfying (L.3); in the next two
subsections we prove the existence of u € GBD((Q) satisfying and the lower semicontinuity
condition on the surface measure of 9*P, respectively.



A GENERAL COMPACTNESS THEOREM IN G(S)BD 7

3.1. Construction of a partition. For § > 0, let Q% = {z + (-4/2,§/2]% : z € §Z¢, » +
(—=8/2,6/2)% C Q}. Let n > 0, small, and define

B (ux) ={Q € @ : H'M(J;, N Q) >ns" '}, G%(uy) = Q" \ B (uy,).

By construction, one has
0, a
Ugessuy) €| < EHd M- (3.1)

We fix a first value 6y > 0, small enough so that G% (uy) # 0 for all k > 1, and for j > 0, denote
0; = 50277, Upon extracting a subsequence, we may assume that B%(uy) is not depending on
k. By a diagonal argument, we may (and will) assume even that for any j > 0, B% (u) does
not depend on k if k is large enough (depending on j). We denote then B% (and G%) the
corresponding limiting sets, dropping the dependence in wuy.

Thanks to Theorem for any j > 0 and each Q € Q%, there is w,? C @ and ag, an
infinitesimal rigid motion, such that

/ g — a2ldz < 87 (Q\ T2, (3.2)
Q\wy

and |w§| < cd; MY (L, N Q). In particular:
QeG (u) = |wgl<enlQl (3.3)

Considering the finite family of sequences of infinitesimal rigid motions (akQ — ale)k, {Q,Q'} C
G% (which does not depend on k), we may assume, upon extracting a subsequence, that either
\akQ(:zr) — ag (z)| = oo a.e., or supy sup|, <1 |ag( ) — a,C (z)| < +00. By a diagonal argument,
similarly, for j > 1, considering (akQ — ag Yk, 1Q, Q'} € G% (uy,), which for k large enough is G%,
not depending on k, we may assume the same.

We let for j >0
Bj:(Q\ U Q)UU U e

QeQdi I>j QeBd
Thanks to (3.1)), it holds that

26 N
‘B]| S ‘Q\UQQQ5.i Q‘ + #SgpMUk (Q)7 (34)

so that lim; | B;| = 0; moreover (B;); is decreasing, that is B,;41; C B; for all j > 0.

We define a partition (PJ)nN , of @\ B; as follows: the sequences (ak) Q € G%, for k large
enough so that G% (uy) = G%, can be grouped in equivalent classes for the relationship akQ ~ ag
when sup;, sup|,<; |akQ( ) — ak ( )| < +00. Then, we say that Q ~ Q" whenever ag ~ ak We
define, for each equivalence class C,, in G%, n=1,..., Nj, the set P = UQeCn Q\ B;.

Observe that for any j > 1, if Q € G%, Q' € G%+* with Q' C Q (and Fk is large enough), then
one has:

/ 102 — a2 |dx < e (Q\ J1 ),
Q\(wQuw?)

so that, provided n > 0 was chosen small enough (to ensure for instance that |w,C ka | <|Q'|/2,
which is guaranteed if n < 27%/(4¢), ¢f. (3.3)), supy, sup, <, % (z) — af ( )| < +oc.

Hence given Q € Q%, Q' € Q% for I' > 1 > j, and such that Q' C @ and |Q’ \ B;| > 0, one
obtains by induction, sup;, sup|, <, |a§(m) - ag ()] < +o0 (as all the intermediate cubes are all
“good” at their respective scale).
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It follows that: for any smaller scales [,I’ > j, and any Q € G%, Q' € G% with both
Q\ B; and Q" \ B; of positive measure and contained in the same component P, one finds that
SUpy, SUP|4|<1 |a§(az) — a,?/(x)| < +00. Indeed, there are Q,Q' € G% with Q C Q, Q' c Q' and
Q~Q".

In particular this shows that for j/ > j and n € {1,...,N;}, there is n’ € {1,..., N/} such
that P C Pi: We may always number the sets (PJ),, j > 1, according to the numbering of
(Pi=1),, so that in fact PJ C PJ’ for any j/ > j and any n € {1,..., N;}. As a consequence, we
may define, for 1 <n <1+sup; N; € NU{+oo}, the set P, = J; P} (where the union starts at
the first j such that n < N;). These sets partition 2\ (; B, hence, up to a Lebesgue-negligible
set, .

For each n, we choose an arbitrary Q € G%, at some arbitrary scale j > 0, with |Q \ Bj| >0

and Q\ Bj C P,, and we associate to P, the subsequence (ag)k, hence denoted (a})y. It follows
that for any other such cube @ at any other scale j, one has sup, sup|,<; |aj () fag(x)| < +o00,

while limy, |a}’ (z) — a,;Q(x)| = +o0 a.e. if n’ #n.

3.2. Compactness. We introduce the smooth, one-Lipschitz truncations t,(z) := o tanh(z/0),
for o > 0. We also let v, = " aj’xp,. Note that at the scale j > 0, one has that

N;
_ n _ n .
'Uk|Q\Bj = E A XP,\B; = E A Xpi>
n n=1

showing that vi|g\ g, is built up of N; infinitesimal rigid motions.
For each scale j > 0 let

wi( Z akQXka>(1XBj)'

QeG’% (u,)

By construction, supy sup,eq\ s, |wi(m)| < +o00 and since vg|o\p, is built up of a bounded
number of affine maps, the sequence of functions (wi) & 18 finite-dimensional, and we may extract
a subsequence such that it converges to some limit w’/. By a diagonal argument, we may assume
this is true for all 5 > 0.
For e € R?, |e|] =1, 0 > 0, we consider the sequences of functions uj? := t,(e - (ur, — vi)).
- Q ] d— .
We let wj, == Upegs (uy) WK > then |lwi | < ed;HA( T, ). Thus:

/ g —ty(e-wl)lde < o ’Bj Uwi’ —|—/ e (ug, —w))|dz
Q O\ (B;Uwl)
<on;+ Z 0 lug — ag\dx (3.5)
Qeg’s (u) " AN
S arnly + C§j

where we have let n; = |B;| + cd;sup, H*"*(J} ), and C = csupy, fiy, (2 \ J3, ) < 400, and
used (B.2). Using that w), —w] — 0 as k,l — oo in L*(Q), we find that:
lim sup/ lup? —uy%|dz < 2(om; + C4;).
Q

k,l—o0

Sending j — +oo we find that limsupy ;. [ |u” —u;7|de = 0, that is, (uy”); are Cauchy
sequences and converge to some limit u®? in L'(Q).
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We show now that the limit u®? is t, (e - u) for some well-defined measurable function u. Let
us consider a subsequence such that uZ’l — u®! a.e. In that case:
e cither |u®!(x)| = 1, which happens if and only if limy_, | (ux(z) — vx(2))| = +00, and
in particular for any o > 0, |u®?(z)| = o3
e or, by continuity, e - (u(z) — vg(x)) — tanh™* (u>'(z)), and we also have that u®° () =
ty(tanh ™t (u®'(x))) for any o > 0.
Let A= {z: |[u®!(z)| =1} = {z: [u®?(z)| = o}: then, for j >0,

/A\B uZ’UtU(awi)de/A\ |uZ’”|dm—/ |w! |da "= J|A\Bj|f/ |w|da.

B, A\ B, A\B;

On the other hand thanks to (3.5):

[ = tale - wide < om; + €,
A\B;

hence:
oA\ Bj| §/ \wi|dz + on; + Cd;.
A\B,
Dividing by ¢ and letting o — oo, we deduce:
[AN\ Bj| < nj,
so that |A| = 0. Tt follows that tanh ™' u®! is finite a.e.
To sum up, we have shown that for any e with |e| = 1, there is a measurable function u®

such that t, (e - (up — vg)) — to(u®) in L1(Q) for any o > 0. It is then obvious to check that
u¢ = e - u for some measurable vector-valued function u, and, up to a subsequence, to deduce
that up — v — u a.e. in Q.

3.3. Lower semicontinuity. We argue similarly to what done in [9, Step 2 in Section 3| to
prove the GSBDP analogue of (1.4Db)), that is [9, equation (1.5d)].

Let us fix 0 > 1, £ € S% ! in a set of full H? '-measure of S?~! for which holds
(¢f. Lemma [2.2), and define

198 (ug) := |D(@r)5] (25 \ Gs) (3.6)
Since
17 us) < (7, )5(25) + (0~ DHOO5 0 (Il e \ TG ) < (7 )5(05),
it holds that
[ 15 a1 ) < o7, () < o5, (@) (3.7)
11¢ keN
Following exactly [9, Step 2 in Section 3| for o > 1 fixed (using in pl/a}ce of [9], estimate

(3.11)]), we get that all the [9] (3.12)-(3.18)] hold for .J, replaced by JZ and I} replaced by Ig’g.

In particular, for H9 l-ae. £ € S¥7! and H? l-ae. y € I, along a suitable subsequence (-);
depending on o, &, € € (0,072) fixed as in [9, (3.13)], and y, it holds that

(W — a;)5 — a5, L'-ae.in QF, (3.8)
@ —a2)5(t)] = (@ —ai2)5(0)| — +oo for ¢ € QO and iy # i, (3.9)
lim, (HO(J&)g ) + €I7¢ (uj)) = lim inf (7—[0( Coe) el (um)) =My)eR  (3.10)

for (+),, a subsequence of (), independent of y such that

HEei= Tim | (KOG, ) + €15 (um) ) a7 (y) € R (3.11)
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and
lim sup / HZ e dH(€) < liminf 771 (I ). (3.12)
e—0 §d—1 > k— o0

Denoting

oP5 == J 0 ((Pn)§) nQS c 05,

neN
by (3.10) we may assume, up to a further subsequence, that H° (J("av)s) = N, € N for every j
37y
and so that there are N, < N, cluster points in the limit, denoted by
t1,... ’tﬁy'

Therefore we have that K NJ7 . = § for any K compact subset of (t;,t;11), so [D(ux)§| (K \

Uiy
JE’A )5) = |D(@;)$|(K); with (3.10) and the Fundamental Theorem of Calculus, this gives that,

Uiy

for £1-almost any choice of £ € (t;,t111),
t (ﬂj)g(t) - (@)g(i) are equibounded w.r.t. j in BVioc (1, ti41), (3.13)
so the bound above is also in L{% (¢;,t;4+1). At this stage we prove, as in [9, (3.20)], that
OP; C {tr,.. 15} (3.14)
in fact, assuming by contradiction that there exists [ € {1,...,M,} and i; # o such that
A(Pi,)5 N (t, tig1), O(Py,)5 ﬂl(tl,tlﬂ) # 0, by (3.8) there are two corresponding sequences of
infinitesimal rigid motions (a%');, (a3*); for which
1)5 — L'-a.e. in (le)g N (tl, tl+1),

@ (3.15)
(@ —a?)s — a5 Llae in (P,)50 (4, ti1), '

with £ ((P;,)5 N (t,tig)), £1((Py)5 0 (6, tig)) > 0; this gives (with (3.13) and since a} are
e - . o iy g€ : .
infinitesimal rigid motions and ug Qg — R) that (a}' —a 2)§ is constant in Qg and uniformly
bounded w.r.t. j, in contradiction with (3.9). Therefore, (3.14) is proven.

Integrating (3.14) over y € II¢ and using Fatou’s lemma with (3.10)), (3.11) we deduce that

/ HOOPS) A y) < Tim [ (HO(IE, o) + e 15€ (un) ) dH 1 (y) (3.16)

m—o0
I1¢ ¢
for every o > 1 and H% -a.e. £ € S?! (in view of the choice of the subsequences, see [9]). This
implies that P is a Caccioppoli partition.
Moreover, integrating over £ € S9~! we get that

HIHO*P N Q) < Ceosup iy, () + / HE, dHL(€)
keN §d—1 ’ (3 17)

< OVEsupfia, (Q) + / HY (A4 (6)
keN §d—1

for a universal constant C' > 0 and every o > 1, ¢ € (0,07 2). Letting ¢ — 0, in view of
and the arbitrariness of o > 1 we conclude (|1.4b]).

Let us now confirm that u € GBD(Q). For any ¢ € S%! and H l-ae. y € TI¢, setting
Uy = u — ay, for any k € N, it holds that

(Fia,)5(B) < (iw,)5(B) +H°(0*P5 N B)  for every B C € Borel,
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since ay, is a piecewise rigid motion constant on every P;, j € N, where P = (P;);. Integrating
over Il and recalling (2.5) we have that

fia, (B) < fiu, (B) +H*H0*P N B) for every B C Q Borel.

Since 1, pointwise converges L£%-a.e. to u, there is an increasing function 1: RT — Rt with
lim_, 1 o0 %0 (8) = +o00 such that |[1o(tr)| L1 () is uniformly bounded w.r.t. k € N (see e.g. [16}
Lemma 2.1]). Then we may apply [II, Corollary 11.2] to deduce that v € GBD(Q).

This concludes the proof of Theorem [1.1

Remark 3.1. Let us consider a sequence (ug)y such that
/ le(u)|P dz +HN(J) <M, p>1 (3.18)
Q

for M > 0 independent of £ € N. Applying Theorem we obtain the compactness part of [9]
Theorem 1.1] (that is [0, (1.5b)] for u € GBD(f?)) without using the Korn-type inequality in
[]. Combining this with the last part of the proof (|9, Steps 2-3 in proof of Theorem 1.1]) we
obtain [9, Theorem 1.1], and in particular (1.4c). Nevertheless, the result in [4] is crucial for [9,
Theorem 1.2].

REFERENCES

[1] S. ALmi anD E. Tasso, A new proof of compactness in G(S)BD, Advances in Calculus of Variations, (2022).
[2] L. AmBros1O, N. Fusco, AND D. PaLLARA, Functions of bounded variation and free discontinuity problems,
Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
[3] G. BeLLETTINI, A. Coscia, aND G. DaL Maso, Compactness and lower semicontinuity properties in
SBD(Q2), Math. Z., 228 (1998), pp. 337-351.
[4] F. CaeNETTI, A. CHAMBOLLE, AND L. ScARDIA, Korn and Poincaré-Korn inequalities for functions with
a small jump set, Math. Ann., 383 (2022), pp. 1179-1216.
[5] A. CuaMmBOLLE, S. CoNTI, AND G. FrRANCFORT, Korn-Poincaré inequalities for functions with a small jump
set, Indiana Univ. Math. J., 65 (2016), pp. 1373-1399.
[6] A. CHAMBOLLE, S. CoNTI, AND F. IURLANO, Approzimation of functions with small jump sets and existence
of strong minimizers of Griffith’s energy, J. Math. Pures Appl. (9), 128 (2019), pp. 119-139.
[7] A. CuamMBOLLE AND V. CRISMALE, Ezistence of strong solutions to the Dirichlet problem for the Griffith
energy, Calc. Var. Partial Differential Equations, 58 (2019), pp. Paper No. 136, 27.
, Compactness and lower semicontinuity in GSBD, J. Eur. Math. Soc. (JEMS), 23 (2021), pp. 701-719.
, Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities,
Ann. SNS Pisa Cl. Sci., (2022). (preprint hal-02667936, to appear).
[10] S. ConTi, M. Focarpi, aND F. IurLaNO, Ezistence of strong minimizers for the Griffith static fracture
model in dimension two, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 36 (2019), pp. 455-474.
[11] G. DaL Maso, Generalised functions of bounded deformation, J. Eur. Math. Soc. (JEMS), 15 (2013),
pp. 1943-1997.
[12] E. D Giora! aND L. AMBROSIO, New functionals in the calculus of variations, Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Nat. (8), 82 (1988), pp. 199-210 (1989).
[13] G. DeL Nin, Rectifiability of the jump set of locally integrable functions, Ann. Sc. Norm. Super. Pisa CL
Sci. (5), 22 (2021), pp. 1233-1240.
[14] G. A. FrRANCFORT AND J.-J. MARIGO, Revisiting brittle fracture as an energy minimization problem, J.
Mech. Phys. Solids, 46 (1998), pp. 1319-1342.
[15] M. FriebpricH, A piecewise Korn inequality in SBD and applications to embedding and density results,
SIAM J. Math. Anal., 50 (2018), pp. 3842-3918.
, A compactness result in GSBVP and applications to I'-convergence for free discontinuity problems,
Calc. Var. Partial Differential Equations, 58 (2019), pp. Paper No. 86, 31.
[17] R. Koun anp R. TemaMm, Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl.
Math. Optim., 10 (1983), pp. 1-35.
[18] J. A. NirscHE, On Korn’s second inequality, RAIRO Anal. Numeér., 15 (1981), pp. 237-248.
[19] P.-M. SuqQuEeTt, Sur les équations de la plasticité: existence et régqularité des solutions, J. Mécanique, 20
(1981), pp. 3-39.




12 ANTONIN CHAMBOLLE AND VITO CRISMALE

[20] R. Temam, Mathematical problems in plasticity, Gauthier-Villars, Paris, 1985. Translation of Problémes
mathématiques en plasticité. Gauthier-Villars, Paris, 1983.

[21] R. TeEmam anp G. STrRANG, Duality and relazation in the variational problem of plasticity, J. Mécanique,
19 (1980), pp. 493-527.

CEREMADE, CNRS, UNIVERSITE PaRr1s-DAUPHINE PSL, FRaNCE AND MokaPLAN (INRIA/CNRS/PSL)
Email address, Antonin Chambolle: antonin.chambolle@ceremade.dauphine.fr

DIPARTIMENTO DI MATEMATICA GUIDO CASTELNUOVO, P1azzaLE ALpo Moro 5, 00185 Roma, ITaLy
Email address, Vito Crismale: vito.crismale@mat.uniromal.it



	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Rigidity in GBD

	3. Proof of the compactness theorem
	3.1. Construction of a partition
	3.2. Compactness
	3.3. Lower semicontinuity

	References

