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Abstract 

In our ongoing search for bioactive compounds, a class of novel spiro-β-lactam isatin hybrids has 

been synthesized through a [2+2] cycloaddition reaction from 1-allyl-3-(arylimino)indolin-2-one, 

ketenes and various aryloxy acetic acids. The formation of all cycloadducts was confirmed by 

FTIR, 
1
H NMR, 

13
C NMR, and mass spectroscopy as well as elemental analyses. The new β-

lactams were subsequently evaluated for their biological activities demonstrating moderate to 

good activities against P. falciparum K1 strain. Among them, 4b and 4e lead to the best results 

with IC50 of 5.04 and 7.18 µM, respectively. The molecular docking simulation of 4b with P. 

falciparum dihydrofolate reductase enzyme (PfDHFR) binding site presented several important 

intermolecular interactions. All the synthesized β-lactams were also evaluated for their 

antimicrobial activities  against both Gram-positive (S. aureus ATCC 25923) and Gram-negative 

bacteria (E. coli ATCC 28922, P. aeruginosa ATCC 27853) but unfortunately MICs up to 200 

µg/mL were encountered in all cases. 
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Introduction 

Malaria is an infectious disease killing thousands of people every year especially in Africa and 

caused by a parasite belonging to genus plasmodium and spread through the bite of the female 

mosquito of the genus Anopheles [1]. Various species of malaria parasites are pathogenic to 

human such as P. vivax, P. ovale, P. malariae, and P. knowlesi [2,3], and the most lethal human 

malaria is caused by P. falciparum. Some effective drugs are used in the treatment or prevention 

of malaria with different targets and mechanism of action. Quimolinomethanols (quinine, 

mefloquine), aminoquinolines (chloroquine, primaquine, amodiaquine), naphtoquinones 

(atovaquone), sesquiterpene trioxanes (artemisinin), sulfonamides (sulfadiazine, sulfadoxine), 

and antibiotics (clindamycin, tetracyclines) especially in combination with quinine have been 

mostly used for the treatment of malaria [2,4]. Unfortunately, the increase of antimalarial drug 

resistance limited the efficiency of classical treatments. Thus, although, the World Health 

Organization (WHO) recommend combination therapy of classical drugs [1], new and effective 

medications are needed to circumvent established mechanisms of resistance. In this context, the 

design and synthesis of new antimalarial agents as hybrid molecules combining two or more 

active pharmacophoric fragments constitute an interesting strategy [5–10] for which a diversity 

of natural products such as taxoids, peptides, carbohydrates and steroids have been hybridized by 

other pharmacologically active molecules such as β-lactams, anthraquinones, C60-fullerenes, 

porphyrin and enediyne [11,12].  

Four membered cyclic amides ,2-azetidinones, are commonly known as β-lactams. Among β-

lactams, spiro-β-lactams have received special attention since some of their derivatives have 
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exhibited potential pharmaceutical applications including cholesterol absorption inhibition [13], 

antimalarial [14–17], antibacterial [18], antiviral [19], anti-HIV [14,15], antioxidant [20], 

anticancer and antiproliferative [20,21] activities.
 
Moreover, spiro-β-lactams have been also used 

as synthons for synthesis of heterocycles and other organic compounds [22]. On the other hand, 

isatin (1H-indol-2,3-dione), a privileged structure, and its derivatives have received special 

attention among medicinal chemists since they can be used as starting materials for the synthesis 

of heterocycles with potential bioactivities [23–25]. During last decades, a large number of isatin 

derivatives have been reported to exhibit a wide range of biological activities [26–34].  

Our research group previously reported the synthesis and characterization of some mono- and 

bis-spiroisatino β-lactams (Fig.1) [35] and designed some isatin-derived spiro β-lactams with 

aromatic and aliphatic spacers (Fig.1) which have exhibited similar activity towards cancer cells 

that of cisplatin used as positive control [21]. In the continuation of our studies, we would like to 

report herein the synthesis of some new spiro-β-lactam isatin hybrids involving a Staudinger 

reaction key step. We will also evaluate their antimalarial activity against P. falciparum K1 

strain and their antibacterial activity against both Gram-positive and Gram-negative bacteria. 
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Fig 1. Examples of some
 
isatin-derived spiro β-lactams previously reported by our group 

Results and Discussion 

Chemistry 

Owing to the importance and potential utility of the β-lactam, isatin and spiro structures, some 

new cycloadduct were synthesized and the influence of different substituents on the N-1, C-3 and 

C-4 positions of β-lactam ring was investigated. In this study, we have reported the synthesis of 

new spiro-β-lactams bearing an isatin moiety through a Staudinger cycloaddition reaction, as 

shown in scheme 1. Thus, the synthesis of compounds 4a-h was achieved by treatment of isatin 

with sodium hydride and allyl bromide in N,N-dimethyl formamide (DMF) to lead to the 

formation of the expected allyl-isatin (2). The isatin-based imines (3) were subsequently 

synthesized through a condensation reaction of (2) with an appropriate aromatic amine in 

ethanol. Finally, the spiro-β-lactam adducts 4a-h were obtained in good yields by reacting the 

different imines (3) with various acetic acid derivatives in the presence of p-toluenesulfonyl 
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chloride and Et3N in CH2Cl2 at room temperature (Scheme 1, Table 1). Two other spiro-β-

lactams (6a-b) were obtained from imine (5) by involving a [2+2] cycloaddition reaction. Thus, 

isatin was treated with 2-91-H-benzo[d][1,2,3]triazol-1-yl)acetohydrazide in EtOH to afford 

desired imine (5) which was subsequently treated with appropriate acetic acid derivatives in dry 

CH2Cl2 at room temperature in the presence of Et3N and p-toluenesulfonyl chloride as acid 

activator to afford the expected spiro-β-lactams (6a-b).  

The structure of all these new compounds was confirmed by elemental analyses and different 

spectroscopy techniques. As an example, the infrared spectra of 4e exhibited the main 

characteristic band of β-lactam carbonyl group at 1766 cm
-1

, while the signal at 1728 cm
-1 

was 

assigned to the carbonyl group of isatin ring. Furthermore, the 
1
H-NMR spectra of 4e confirmed 

the structure of the cycloadduct since a singlet signal at 5.35 ppm was assigned to H-3 proton of 

a β-lactam ring and another one at 2.78 ppm to the two methyl groups attached to the nitrogen 

atom. The presence of the allylic protons was confirmed at 4.00-4.36 ppm as a multiplet as well 

as to vinylic ones presenting a signal at 4.99-5.08 (2H) and 5.72-5.87(1H) ppm. The 
13

C NMR 

spectrum of 4e displayed two signals at 87.7 and 80.7 ppm related to C-3 and C-4 of the β-lactam 

ring, respectively. On the other hand, the signal at 159.2 ppm and 171.0 ppm can be 

unambiguously assigned to the carbonyl groups of the β-lactam and isatin rings, respectively.  



7 
 

Ar'= C6H5, 4-ClC6H4, 2,4-Cl2C6H3, naphthalen-1-yl

Ar= 4-CH3C6H4, 4-N(Me)2C6H4, 4-IC6H4, 4-OMeC6H4

N
H

O

O

     1                                                                                         2                                                   3                                                                      4a-h

HN

O

N

H
N

O

N

N N

HN
O

N

N N

H2N

EtOH, reflux

Ar'OCH2COOH, TsCl

Et3N, CH2Cl2, rt, overnight
N

O NH

NH

O

Ar'O

N
O

N N

N
O

N
Ar

1) NaH, DMF, 30 minutes, 40-50 ºC

2) allyl bromide N
O

O

Ar'OCH2COOH, TsCl

Et3N, CH2Cl2, rt, overnight N

Ar'O

O Ar

N

O

ArNH2

EtOH, reflux

       5                                                                                                  6a-b

 

Scheme.1. Synthetic pathway for the preparation of isatin-based spiro-β-lactams 4a-h, 6a-b 

Table 1. Structures and isolated yields of β-lactams 4a-h, 6a-b 

Cpd Ar Ar´ Yield (%) Cpd Ar Ar' Yield (%) 

4a 4-CH3C6H4 C6H5 85% 4f 4-N(CH3)2C6H4 C6H5 77% 

4b 4-CH3C6H4 2,4-Cl2C6H3 80% 4g 4-N(CH3)2C6H4 2,4-Cl2C6H3 70% 

4c 4-IC6H4 C6H5 75% 4h 4-OCH3C6H4 C6H5 79% 

4d 4-N(CH3)2C6H4 1-naphtyl 84% 6a - 4-ClC6H4 75% 

4e 4-N(CH3)2C6H4 4-ClC6H4 77% 6b - 2,4-Cl2C6H3 84% 

 

The solid-state structure of 4e was also investigated by X-ray single crystal diffraction study as 

depicted in Fig. 2. Despite several attempts to get better crystals of 4e and a better data set, only 

poor-quality data were obtained (See supporting information). However, it was possible to solve 

the structure and all non-hydrogen atoms have been located unambiguously and their positions 

refined with anisotropic thermal parameters confirming the skeletal arrangement and geometry 

of 4e. 
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Fig. 2. A view of 4e showing the atom-labelling scheme. Displacement ellipsoids are drawn at 

the 20% probability level and H atoms are shown as small spheres of arbitrary radii. Only major 

part of the disordered allyl moiety is shown for clarity. 

Biological evaluations 

Antimalarial screening  

The antimalarial activity of the new molecules was succesfully evaluated against P. falciparum 

K1 strain. The β-lactams 4a-g showed moderate to good results with IC50 values ranging from 

5.04 to up to 22.27 μM, as outlined in Table 2. The compounds 4b and 4e exhibited the highest 

activity with IC50 values of 5.04 and 7.18 μM, respectively. The structure activity relationship 

(SAR) analysis of the obtained results confirmed that the presence of electron withdrawing 

chlorine group on the phenyl ring at C-3 position lead to a positive effect on the antimalarial 

activity. The results demonstrated that as well as 4-chlorophenoxy and 2,4-dichlorophenoxy 

counterparts, the presence of the naphthyloxy moiety on the C-3 position of β-lactam ring in 4d 

(IC50 =10.88 μM) enhances both lipophilicity and antimalarial activity. These results is in 

agreement with our previous report [36]. Moreover, the comparaison between compounds 4b 
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(IC50 =5.04 μM) and 4g (IC50 =16.48 μM) containing 2,4-dichlorophenoxy pendent at the C-3 

position showed that the replacement of a p-tolyl moiety by more electron-rich N,N-dimethyl 

amino phenyl moiety on the N-1 position could reduce the inhibitory activity. 

Amongst the 4d-g compounds set possessing a N,N-dimethyl amino phenyl on N-1 position, 

derivative 4e presenting a 4-chlorophenoxy counterpart on C-3 position (IC50 =7.18 μM) 

demonstrated superior potency than compounds 4d (IC50 =10.88 μM), 4g (IC50 =16.48 μM) and 

4f (IC50 =18.54 μM) with naphthalenyloxy, 2,4-dichlorophenoxy and phenoxy groups, 

respectively. Furthermore, amongst the compounds having phenoxy moiety on the C-3 position 

of the β-lactam (4a, 4c, 4f and 4h), we observed that replacing of the electron withdrawing group 

with the electron rich ones on para position of phenyl group attached to N-1 decreased the 

antimalarial activity. On the other hand, the compound 4c with iodophenyl counterparts 

exhhibited IC50 equal to 12.94 μM, while 4f (N,N-dimethyl amino phenyl), 4a (p-tolyl) and 4h 

(phenoxy) lead to IC50 of 18.54, 22.27 and 41.02 μM, respectively. The presence of the 

benzotriazole derivatives on the N-1 position of β-lactam ring had a negative effect on the 

antimalarial activity, the results suggesting that introduction of a bulky lipophilic substituted 

groups might affect the potency of the compounds. 

Table 2. Antimalarial activity of spiro-β-lactams 4a-h, 6a-b against P. falciparum K1 Strain
a 

Compound IC50 (µM) SD
b 

Compound IC50 (µM) SD 

4a 22.27 4.65 4f 18.54 1.98 

4b 5.04 0.28 4g 16.48 2.91 

4c 12.92 0.25 4h 41.02 3.18 

4d 10.88 0.58 6a 35.51 1.49 

4e 7.18 0.65 6b 42.46 5.32 

a 
The standard antimalarial drug used was chloroquine with an IC50 of 0.80 µM 

b 
Standard deviation

 

Antibacterial screening  
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All new compounds were then evaluated for their antibacterial activities against E. coli ATCC 

28922, P. aeruginosa ATCC 27853 and S. aureus ATCC 25923 by determining the Minimal 

Inhibitory Concentrations (MIC) according to the NCCLS guidelines M7-A6 using the 

microbroth dilution methods [37]. Nevertherless, no compounds were able to demonstrate any 

significant antibacterial activity with MIC values greater than 200 µg/mL (Table 3) whatever the 

considered bacterial strain. 

Table 3. Antibacterial activity of new spiro-β-lactams  

Compound
 

MIC (µM) 

E. coli
 

MIC (µM) 

P. aeruginosa
 

MIC (µM) 

S. aureus
 

4a
 

>200
 

>200
 

>200
 

4b
 

>200
 

>200
 

>200
 

4c
 

>200
 

>200
 

>200
 

4d
 

>200
 

>200
 

>200
 

4e
 

>200
 

>200
 

>200
 

4f
 

>200
 

>200
 

>200
 

4g
 

>200
 

>200
 

>200
 

4h
 

>200
 

>200
 

>200
 

6a
 

>200
 

>200
 

>200
 

6b
 

>200
 

>200
 

>200
 

Molecular Docking study 

A computational ligand-target docking approach was carried out to disclose more details behind 

the inhibitory activity of compound 4b with P. falciparum dihydrofolate reductase enzyme 

(PfDHFR) binding site. The best experimental conformation was  found to possess a binding free 

energy of -7.13 kcal/mol as depicted in Fig. 1. Thus, 4b was found to interact with key amino 

acids Ala16, Leu46, Ser11, Ile112, Ile164 and Val195. Furthermore, there are significant H-

bonding interactions between oxygen of isatin and oxygen at C-3 position of the β-lactam ring 

with active sites Ile164 and Ser111, respectively. It should be noted that the presence of a 2,4-
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dichlorophenoxy substituent led to the formation of hydrophobic interaction with amino acids 

Leu46 and Val195. Moreover, a stacking interaction between the phenyl rings and Ala16 and 

Ile112 located in the binding site of the enzyme was also observed. It is worth mentioning that 

the phenoxy substituted and N- substituted groups in the spiro-β-lactam-isatin scaffold could 

facilitate the orientation toward key residues in P. falciparum dihydrofolate reductase enzyme 

(PfDHFR) binding site. We were able to conclude that the introduction of a dichlorophenyl 

moiety lead to a favourable binding mode, resulted a suitable ligand-acceptor interaction. [37] 

Figure 1. Docked complex of compound 4b in the binding pocket of PfDHFR (PDB ID: 1J3I), 

A: the 3D view of the active site, B: the 2D view of the active site, (ΔG: - 7.13 kcal/mol) 

Conclusion 

Briefly, some spiro β-lactams 4a-h and 2a-b bearing the biological active isatin moiety have 

been synthesized, purified, well characterized and then evaluated for their biological activities. 

The new compounds have been prepared from imines derived from 1-allyl-3-(arylimino)indolin-

2-one and ketenes of various acetic acid derivatives. These isatin-based β-lactams demonstrated 

moderate to good activity against p. falciparum K1 strain. The best results were obtained by 4b 
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and 4e with IC50 ranging from 5.04 to 7.18 μM, respectively. The in-silico results revealed that 

compound 4b involved two favorable H-bonding through oxygens in carbonyl and ether moieties 

in the active site of P. falciparum dihydrofolate reductase enzyme. Further works are under 

current investigation to improve the structure of the best active compounds. 

Experimental section 

Materials 

All reagents and organic solvents were purchaced from Merk, Fluka, Sigma-Aldrich and Acros 

Organic companies. Et3N and CH2Cl2 were dried over anhydrous CaH2 and stored over 4Aº 

molecular sieves before use. Thin layer chromatography (TLC) and column chronatgraphy were 

performed on silica gel 254 and Merk Kieselgel (230-270 mesh), respectively. Structure 

determination of the synthesized compounds was achieved by using FT-IR, 
1
HNMR, 

13
CNMR, 

GC-Mass as well as Elemental analysis. 
1
H NMR and 

13
C NMR spectra were recorded on Bruker 

Avance DPX instrument (250 MHz for 
1
H and 62.9 MHz for 

13
C) in CDCl3 or DMSO-d6 with 

tetramethylsilane (TMS) as internal standard. All the chemical shifts were reported in ppm and 

coupling constants (J) are in Hz. FT-IR spectra were recorded on a Shimadzu FT-IR 8300 

spectophotometer in KBr pellets. Mass spectra analysis were carried out with a Shimadzu GC-

MS QP 1000 EX device and elemental analysis were performed with a Thermo Finning Flah 

EA-1112 series. Moreover, the melting points (mp) were carried out in open capillaries with a 

Buchi 510 melting point device. 

General experimental procedure for the synthesis of monobactams (4a-h, 6a-b) 
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To a solution of isatin (5.00 mmol) in DMF (23 mL) was added sodium hydride (10.00 mmol) 

and the mixture was stirred for 30 minutes at 40-50ºC. Allyl bromide (5.50 mmol) was then 

added and the reaction was allowed to proceed at room temperature until formation of N-allyl 

isatin (2). The crude product was poured into aqueous solution including NaCl, acidified with 

HCl (0.2 M), and the mixture was washed with 3×110 mL of ethyl acetate. The organic layer was 

dried over anhydrous Na2SO4 and the solvent evaporated under reduced pressure for more 

purification. After purification by short column chromatography, isatin derivative 2 (2.00 mmol) 

was treated with appropriate amine (2.00 mmol) in EtOH under reflux conditions to give imine 

(3). 

For the synthesis of β-lactams (4a-h), to a slution of imine 3 (1.00 mmol) in dry CH2Cl2 (20 mL) 

was added corresponding acetic acid derivative (1.50 mmol), p-toluenesulfonyl chloride (1.50 

mmol) as well as Et3N (5.0 mmol) and let to stirr at room temperature overnight. The crud 

mixture was washed with HCl 1M (20 mL), saturated NaHCO3 (20 mL), and saturated sodium 

chloride (20 mL),respectively, and dried over anhydrous Na2SO4. Finally, the solvent was 

evaporated for more purifaction by colum chromatography.  

For the synthesis of imine 5, a solution of isatin (2.00 mmol) and 2-(1H-benzo[d][1,2,3]triazol-1-

yl)acetohydrazide was refluxed for appropriate time. After cooling the mixture, the percipate was 

filtered and wash with EtOH several times to give pure Imine 5. In the next step, we applied the 

same above procedure for synthesis of β-lactams (6a-b) from imine 5.  

1'-Allyl-3-phenoxy-1-(p-tolyl)spiro[azetidine-2,3'-indoline]-2',4-dione (4a): White solid (Yield 

85%); mp: 143-146  C; IR (KBr, cm
-1

): 1774 (CO β-lactam), 1720 (CO, amide); 
1
H-NMR 

(CDCl3, 250 MHz) δ 2.17 (3H, s, CH3), 4.29-4.52 (2H, m, allylic CH2N), 5.18-5.25 (2H, m, 

vinylic CH2), 5.51 (1H, s, CH β-lactam ring), 5.71-5.92 (1H, m, vinylic CH), 6.54-6.59 (2H, m, 
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ArH), 6.78-6.85 (2H, m, ArH), 6.91-7.07 (6H, m, ArH), 7.16-7.25 (2H, m, ArH), 7.42 (1H, d, 

J=7.25 Hz, ArH); 
13

C-NMR (CDCl3, 62.5 MHz) δ 20.9 (CH3), 42.8(CH2-N), 77.6 (C-3), 76.7 (C-

4), 109.7-157.01(aromatic and C=C vinylic), 160.1 (CO, β-lactam), 176.7 (CO amide); GC-MS 

m/z = 410 [M
+
]; Anal. Calcd. for C26H22N2O3: C, 76.08; H, 5.40; N, 6.82%. Found: C, 75.90; H, 

5.10; N, 6.70%.  

1'-Allyl-3-(2,4-dichlorophenoxy)-1-(p-tolyl)spiro[azetidine-2,3'-indoline]-2',4-dione (4b): White 

solid (Yield 80%); m   1 8.4-141  C; IR (KBr, cm
-1

): 1759 (CO β-lactam), 1728 (CO, amide); 

1
H-NMR (CDCl3, 250 MHz) δ 2.17 (3H, s, CH3), 4.12-4.48 (2H, m, allylic CH2N,), 5.13-5.21 

(2H, m, vinylic CH2), 5.31 (1H, s, CH β-lactam ring), 5.52-5.67 (1H, m, vinylic CH), 6.90-6.97 

(6H, m, ArH), 7.01-7.09 (1H, m, ArH), 7.16-7.20 (1H, m, ArH), 7.24-7.29 (2H, m, ArH), 7.33-

7.40 (1H, m, ArH); 
13

C-NMR (CDCl3, 62.5 MHz)  δ 20.9 (CH3), 43.0 (CH2-N), 88.5 (C-3), 73.8 

(C-4), 110.1-142.7 (aromatic and C=C vinylic), 162.1 (CO, β-lactam), 184.6 (CO, amide); GC-

MS m/z = 478 [
35

M
+
], 480 [

37
 M

+
]; Anal. Calcd. for C26H20Cl2N2O3: C, 65.15; H, 4.21; N, 

5.84%. Found: C, 65.65; H, 5.33; N, 5.90%.  

1'-Allyl-1-(4-iodophenyl)-3-phenoxyspiro[azetidine-2,3'-indoline]-2',4-dione (4c): Grey solid 

(Yield 77%); m   1 9-184  C; IR (KBr, cm
-1

): 1774 (CO, β-lactam), 1712 (CO, Amide); 
1
H-

NMR (CDCl3, 250 MHz) δ 4.29-4.52 (2H, m, allylic CH2N), 5.18-5.27 (2H, m, vinylic), 5.52 

(1H, s, CH β-lactam ring), 5.73-5.88 (1H, m, vinylic CH), 6.56 (2H, dd, J=7.7, 1.2 Hz, ArH), 

6.78-6.87 (3H, m, ArH), 6.93-7.07 (3H, m, ArH), 7.19-7.28 (3H, m, ArH), 7.39-7.47 (2H, m, 

ArH); 
13

C-NMR (CDCl3, 62.5 MHz)  δ 48.0 (CH2-N),86.5 (C-3), 70.9 (C-4), 106.7-147.5 

(aromatic and C=C vinylic), 159.7 (CO, β-lactam), 176.5 (CO, amide); Anal. Calcd. for 

C25H19IN2O3: C, 57.49; H, 3.67; N, 5.36%. Found: C, 57.10; H, 3.66; N, 6.64%.  



15 
 

1'-Allyl-1-(4-(dimethylamino)phenyl)-3-(naphthalen-1-yloxy)spiro[azetidine-2,3'-indoline]-2',4-

dione (4d): White solid (Yield 77%); m   155-158  C; IR (KBr, cm
-1

): 1766 (CO, β-lactam), 1704 

(CO, amide); 
1
H-NMR (CDCl3, 250 MHz) δ 2. 8 (6H, s, NCH3), 4.30-4.51 (2H, m, allylic 

CH2N), 5.14-5.20 (2H, m, vinylic CH2), 5.66 (1H, s, CH β-lactam ring), 5.72-5.88 (1H, m, 

vinylic CH), 6.46-6.50 (2H, m, ArH), 6.70-6.72 (2H, m, ArH), 6.88-6.98 (3H, m, ArH), 7.23-

7.37 (3H, m, ArH), 7.45-7.54 (3H, m, ArH), 7.60 (1H, d, J=8.0 Hz, ArH), 7.67-7.76 (1H, m, 

ArH); 
13

C-NMR (CDCl3, 62.5 MHz) δ 40.56 (CH3N, 6H), 42.8 (CH2-N), 68.6 (C-4), 84.8 (C-

3),104.4-158.13 (aromatic carbons and C=C vinylic), 162.2 (CO, β-lactam), 179.0 (CO, amide); 

GC-MS m/z = 489 [M
+
]; Anal. Calcd. for C31H27N3O3: C, 76.05; H, 5.56; N, 8.58%. Found: C, 

75.17; H, 5.99; N, 9.69%. 

1'-Allyl-3-(4-chlorophenoxy)-1-(4-(dimethylamino)phenyl)spiro[azetidine-2,3'-indoline]-2',4-

dione (4e): White solid (Yield 79%); m   186-192  C; IR (KBr, cm
-1

): 1766 (CO, β-lactam), 1728 

(CO, amide); 
1
H-NMR (CDCl3, 250 MHz) δ 2.78 (6H, s, NCH3), 4.00-4.36 (2H, m, allylic 

CH2N), 4.99-5.08 (2H, m, vinylic CH2), 5.35 (1H, s, CH β-lactam ring), 5.72-5.87 (1H, m, 

vinylic CH), 6.44-6.51 (4H, m, ArH), 6.85-7.12 (5H, m, ArH), 7.19-7.23 (1H, m, ArH), 7.32-

7.40 (2H, m, ArH); 
13

C-NMR (CDCl3, 62.5 MHz) δ 40.5 (CH3N, 6H), 42.8 (CH2-N),80.7 (C-

4),87.7 (C-3),110.0-155.1 (aromatic carbons and C=C vinylic), 159.2 (CO, β-lactam),171.0 (CO, 

amide); GC-MS m/z = 473 [
35

M
+
], 475 [

37
M

+
],; Anal. Calcd. for C27H24ClN3O3: C, 68.42; H, 

5.10; N, 8.47%. Found: C, 67.86; H, 5.65; N, 9.48%. 

1'-Allyl-1-(4-(dimethylamino)phenyl)-3-phenoxyspiro[azetidine-2,3'-indoline]-2',4-dione (4f): 

Grey solid (Yield 74%); m   195  C; IR (KBr, cm
-1

): 1759 (CO, β-lactam), 1712 (CO, amide); 

1
H-NMR (CDCl3, 250 MHz) δ 2.85 (6H, s, NCH3), 4.26-4.52 (2H, m, allylic CH2N), 5.17-5.25 
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(2H, m, vinylic CH2), 5.52 (1H, s, CH β-lactam ring), 5.73-5.88 (1H, m, vinylic CH), 6.54-6.59 

(2H, m, ArH), 6.77-6.85 (2H, m, ArH), 6.92-7.07 (5H, m, ArH), 7.19-7.26 (3H, m, ArH), 7.42 

(1H, d, J=7.5 hz, ArH); 
13

C-NMR (CDCl3, 62.5 MHz)  δ 29.6 (CH3N, 6H), 42.7 (CH2-N), 72.5 

(C-4), 85.1 (C-3), 103.1-155.4 (aromatic carbons and C=C vinylic), 161.9 (CO, β-lactam), 173.4 

(CO, amide); GC-MS m/z = 439 [M
+
]; Anal. Calcd. for C27H25N3O3: C, 73.79; H, 5.73; N, 

9.56%. Found: C, 70.10; H, 5.49; N, 9.30%.  

1'-Allyl-3-(2,4-dichlorophenoxy)-1-(4-(dimethylamino)phenyl)spiro[azetidine-2,3'-indoline]-2',4-

dione (4g): Gray solid (Yield 84%); m   180  C; IR (KBr, cm
-1

): 1766 (CO, β-lactam), 1728 (CO, 

amide); 
1
H-NMR (CDCl3, 250 MHz) δ 1.18 (6H, s, NCH3), 4.09-4.48 (2H, m, allylic CH2N), 

5.12-5.20 (2H, m, vinylic CH2), 5.30 (1H, s, CH β-lactam ring), 5.50-5.66 (1H, m, vinylic CH), 

6.81 (1H, s, ArH), 6.84 (1H, s, ArH), 6.88 (1H, d, J=7.8 Hz, ArH), 6.92-6.97 (4H, m, ArH), 7.06 

(2H, t, J=7.5 Hz, ArH), 7.24-7.27 (1H, m, ArH), 7.30-7.32 (1H, m, ArH); 
13

C-NMR (CDCl3, 

62.5 MHz) δ 28.2 (CH3N, 6H), 44.5 (CH2-N), 70.4 (C-4), 78.4 (C-3), 105.1-157.4 (aromatic 

carbons and C=C vinylic), 161.9 (CO, β-lactam), 173.5 (CO, amide); Anal. Calcd. for 

C27H24ClN3O3: C, 63.79; H, 4.59; N, 8.27%. Found: C, 63.40; H, 4.28; N, 8.13%. 

1'-Allyl-1-(4-methoxyphenyl)-3-phenoxyspiro[azetidine-2,3'-indoline]-2',4-dione (4h): Brown 

solid (Yield 75 %); mp  124-128  C; IR (KBr, cm
-1

): 1774 (CO β-lactam), 1728 (CO, amide); 
1
H-

NMR (CDCl3, 250 MHz) δ 3.71 (3H, s, OCH3), 4.06-4.44 (2H, m, allylic CH2N), 5.05-5.12 (2H, 

m, vinylic CH2), 5.50 (1h, s, CH β-lactam ring), 5.79-5.95 (1H, m, vinylic CH), 6.60-6.65 (2H, 

m, ArH), 6.70-6.77 (2H, m, ArH), 6.95 (2H, d, J=8.0 Hz, ArH), 7.02-7.20 (5H, m, ArH), 7.26 

(1H, s, ArH), 7.39-7.43 (1H, m, ArH); 
13

C-NMR (CDCl3, 62.5 MHz) δ 42.8 (CH3), 55.4 (CH2-

N), 87.8 (C-3), 85.2 (C-4), 110,1-157.0 (aromatic and C=C vinylic), 161.1 (CO, β-lactam), 
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169.6(CO, amide); GC-MS m/z = 426 [M
+
]; Anal. Calcd. for C26H22N2O4: C, 73.23; H, 5.20; N, 

6.57%. Found: C, 73.10; H, 5.33; N, 6.39%. 

2-(1H-Benzo[d][1,2,3]triazol-1-yl)-N-(3-(4-chlorophenoxy)-2',4-dioxospiro[azetidine-2,3'-

indolin]-1-yl)acetamide (6a): Yellow solid (Yield 84%); mp: 197-199  C; IR (KBr, cm
-1

): 1758 

(CO, β-lactam), 1728 (CO, amide); 
1
H-NMR (DMSO-d6, 250 MHz) δ 5.39 (2H, s, CH2N), 6.11 

(1H, s, CH β-lactam), 7.03 (2H, d, J=8.7 Hz, ArH), 7.28-7.44 (4H, m, ArH), 7.56 (2H, q, J=7.0 

Hz, ArH), 7.87 (1H, d, J=8.0 Hz, ArH), 8.06 (1H, d, J=8.0 Hz, ArH), 8.24 (1H, d, J=8.0 Hz, 

ArH), 8.41 (1H, d, J=7.5 Hz, ArH), 12.03 (1H, s, NH); 
13

C-NMR (DMSO-d6, 62.5 MHz) δ 68.4 

(CH2-N), 88.7 (C-3), 80.8 (C-4), 110.9-163.2 (aromatic ), 163.2 (CO, β-lactam), 171.3 (CO, 

amide), 168.5(CO, isatin); GC-MS m/z = 488 [
35

M
+
], 500 [

37
M

+
]; Anal. Calcd. for 

C24H17ClN6O4: C, 58.96; H, 3.51; N, 17.19%. Found: C, 57.94; H, 3.32; N, 16.10%. 

2-(1H-Benzo[d][1,2,3]triazol-1-yl)-N-(3-(2,4-dichlorophenoxy)-2',4-dioxospiro[azetidine-2,3'-

indolin]-1-yl)acetamide (6b): Yellow solid (Yield 70%); m   198.199  C; IR (KBr, cm
-1

): 1766 

(CO β-lactam), 1720 (CO, amide); 
1
H-NMR (DMSO-d6 , 250 MHz) δ 5.53 (2H, s, CH2N), 6.11 

(1H, s, CH β-lactam ring), 7.22-7.31 (2H, m, ArH), 7.35-7.44 (2H, m, ArH), 7.52-7.58 (3H, m, 

ArH), 7.88 (1H, d, J=8.2 Hz, ArH), 8.07 (1H, d, J=8.7 Hz, ArH), 8.24 (1H, d, J=8.2 Hz, ArH), 

8.42 (1H, d, J=7.75 Hz, ArH), 12.04 (1H, s, NH); 
13

C-NMR (DMSO-d6, 62.5 MHz) δ 68.9 (CH2-

N), 87.7 (C-3), 75.7 (C-4), 110.8-152.3 (aromatic ), 163.2 (CO, β-lactam), 178.8 (CO, amide), 

168.0 (CO, isatin); Anal. Calcd. for C24H16Cl2N6O4: C, 55.08; H, 3.08; N, 13.55%. Found: C, 

54.90; H, 2.93; N, 14.13%. 

Antibacterial activity procedure 



18 
 

Antibacterial activity determination (Minimal Inhibitory Concentration (MIC)) of novel β-

lactams against P. aeruginosa ATCC 27853, E. coli ATCC 28922 and S. aureus ATCC 25923 

was performed according to NCCLS guideline M7-A6 as described in the supporting 

information.  

In-vitro antimalarial activity procedure 

The determination of in-vitro antimalarial activity of the new compounds was performed against 

P. falciparum strain K1 according a previously reported procedure [36,39]  as described in the 

supporting information. 

Computational studies 

Molecular docking studies were performed using Auto-Dock software version 1.5.4, and the 

structure of tested compounds was created by HyperChem software version 8.0.10. The tested 

molecules energetically minimized by MM
+
 force field. The crystal structure of P. falciparum 

dihydrofolate reductase enzyme (PfDHFR PDB ID: 1J3I) was retrieved from the protein data 

Bank (http://www.rcsb.org/). All water molecules and ligands were deleted from the 

macromolecule and then, polar hydrogen atomes were added to the 1J3I. The active sites were 

explained in the x, y, z directions based on the center with x: 28.46, y:5.73, z: 62.35. All 

dockings were performedby the Lamarkian genetic algorithm (LGA) approach with grid sizes 

25×25×25 (grid spacing 0.375 Aº). The results were validated by redocking and comparing the 

original ligand inside the 1J3I utilizing root mean square difference (RMSD).The docking 

procedure was conducted according to previous report [40,41].  
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