
Optimized and Robust Implementation of Mobile
Networks Confidentiality and Integrity Functions

Mahdi Madani

Laboratory ImViA, University of Bourgogne Franche-Comté , Dijon, France
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Abstract

In mobile networks, sensitive information is transmitted over the radio link bet-
ween the Base Station (BS) and the Mobile Station (MS). Therefore, a security
mechanism based on confidentiality and integrity functions is designed to pro-
tect the anonymity of users’. More precisely, the confidentiality function was
standardized by the Third Generation Partnership Project (3GPP) to protect
users’ data and the integrity function to protect control (signaling) data. Howe-
ver, both functions are based on the same kernel algorithm. For example, the
functions used in the Universal Mobile Telecommunications System (UMTS)
network are based on the algorithm, namely the KASUMI block cipher. In this
work, we proposed an optimized function that combines the confidentiality and
integrity functions in one Running-Block-Cipher and ensures the same func-
tionalities as the basic functions (UMTS F8 and F9 functions). We used an
architectural synthesis technique that allows for achieving a significant reduc-
tion in the area occupied on the hardware device. The designed architecture
was implemented on Xilinx Virtex Field Programmable Gate Arrays (FPGA)
technology. The synthesis results after a place-and-route and comparison with
previous works show the good performance of the proposed architecture in terms
of throughput, consumed energy, and occupied hardware logic resources.

Keywords: Mobile Networks, FPGA Implementation, Confidentiality,
Integrity, Architectural synthesis

1. Introduction

Today, mobile networks and Internet applications (e-mail, e-commerce, e-
learning, etc.) occupy an important part of our lives and transfer a lot of perso-
nal information via a radio link that is not protected physically. Consequently,
service providers must protect all data exchanged on the channel used (wireless)
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to preserve the anonymity of users despite the difficulties encountered. For this
reason, security mechanisms based on encryption algorithms are used to ensure
the security of data transmitted over mobile networks.

In this paper, we propose a Running-Block-Cipher to ensure the confidentia-
lity and integrity of users’ and control (signaling) data. The proposed architec-
ture is based on the standardized F8 confidentiality and F9 integrity functions
designed by the Third Generation Partnership Project (3GPP) for the Universal
Mobile Telecommunications System (UMTS) network [1–3]. We fixed two main
objectives. Firstly, we combined the internal blocks of the original F8 and F9
functions to reduce the required area for hardware implementation [4, 5]. The
adopted technique is based on the reuse of common blocks for original func-
tions [6, 7], principally KASUMI algorithm [8–10]. Secondly, we simplified the
implementation of the internal functions (FL, FO, and FI) of the KASUMI block
cipher (the core of standard F8 and F9 functions) to increase the encryption
throughput. The connection between the different levels of hierarchy and the
control of the internal signals in the proposed architecture relies on the use of
Moors’ Finite State Machines (FSM) [11, 12].

Register-Transfer-Level (RTL) abstraction is used in VHSIC Hardware Des-
cription Language (VHDL) to create high-level representations of the proposed
architecture. The design has been implemented on the ML507 Virtex develop-
ment platform. To prove the good performance of the proposed Running-Block-
Cipher, we compared the synthesis results after a place-and-route with previous
implementation [13], in terms of throughput and occupied hardware logic re-
sources. To test and validate the proposed design, we compared the generated
outputs with the 3GPP standardized documents [1, 2, 14]

The rest of this paper is organized as follows. In Section 2 the related work is
discussed. In Sections 3, the standard F8 and F9 functions are briefly described.
The proposed Running-Block is detailed in Section 4. The Field Programmable
Gate Arrays (FPGA) implementation results, comparison of the proposed archi-
tecture with previous works, and discussion is the subject of Section 5. Finally,
the paper ends with some conclusions in Section 6.

2. Related work

In modern cellular networks, the wireless link is widely used to transmit
sensitive data. Therefore, security mechanisms are used to prevent unauthori-
zed access to user’s information exchanged over this radio channel. For example,
the UMTS security is based on the KASUMI block cipher. Because of the li-
mited logic resources and the high throughput required by real-time embedded
applications (mobile phones), the hardware implementation of this algorithm
becomes complicated. Despite that, several proposals have been published that
use different approaches to implement KASUMI in hardware, ranging from reuse
techniques, the addition of internal registers to reduce critical path, pipelined
designs, and specialized processor core extension for the KASUMI encryption
algorithm [9, 10, 15–21].
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The KASUMI block cipher is principally used to ensure high levels of confi-
dentiality and integrity of information. The F8 and F9 functions are the 3GPP
algorithms designed for this focus. Contrarily to the works [9, 10, 15–21] that
implementing the KASUMI block cipher, Helion’s work [13] has successfully
implemented the F8 and F9 algorithms on Xilinx FPGA devices.

The objective of this work is to realize an optimized and robust implementa-
tion that outperforms the Hellion’s implementation [13] in terms of throughput
and occupied hardware resources. Unlike Hellion’s approach based on the imple-
mentation of standardized 3GPP algorithms, we used an architectural synthesis
technique (work [8]). We have simplified the internal functions of the common
KASUMI block. Then, we have combined the internal blocks of F8 and F9 func-
tions to form a single algorithm that ensures both the original functionalities.

After implementation and validation, the comparison of the proposed archi-
tecture with the 3GPP test set vectors [14] proves the generation of the expected
outputs, and the FPGA implementation results prove the achievement of high
performance.

3. F8 and F9 architectures

The UMTS security mechanism is based on two main functions, confidentia-
lity function named F8 and integrity function named F9 [1, 22]. Both functions
are based on the KASUMI block cipher used as the internal kernel algorithm.
In this section, we begin by presenting the architecture and the main functions
used to form KASUMI block cipher. After that, we present the internal archi-
tecture and the execution process of each of the confidentiality and integrity
functions, respectively.

3.1. A general vision on KASUMI block cipher

KASUMI is a block cipher with a Feistel structure for eight rounds and
developed on 3GPP. It operates in 64-bits block data and controlled by 128-bits
Ciphering Key (CK). To generate output key-stream at each round, it executes
two internal functions, FL and FO. It executes the FL then FO function in the
odd rounds ((1, 3, 5, and 7), and the FO then FL function in the even rounds 2,
4, 6, and 8). The process begins by dividing the 64-bits input data into two 32-
bits strings, left L0 and right R0. The outputs of the odd rounds are produced
according to Equation 1 for i = 1, 3, 5, and 7, and the outputs of the even
rounds are produced according to Equation 2 for i = 2, 4, 6, and 8.

L(i+1) = FO (FL (L(i), KLi ), KOi, KIi) xor R(i) ; R(i+1) = L(i) (1)

L(i+1) = FL (FO (L(i), KOi, KIi), KLi) xor R(i) ; R(i+1) = L(i) (2)

We not that CK is used at each round to derive 8 sub-keys of size 16-bits :
KLi1 and KLi2 (used by FL function), KOi1, KOi2, and KOi3 (used by
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FO function), KIi1, KIi2, and KIi3 (used by FI function). Where FI is an
internal function of the FO function and based on S-box tables (S9 and S7).
The algorithm architecture is shown in Figure 1.

For more details in the KASUMI components and specifications, please refer
to [2].

3.2. Confidentiality function F8

As we said, the UMTS confidentiality is based on function F8. The ciphering
process is based on the use of 5 input parameters : CK (128-bits), encryption
sequence COUNT −C (32-bits), the used channel identifier BEARER (5-bits),
DIRECTION (1-bit), and the length of encrypted block LENGTH. The out-
put of the F8 function is combined by a XOR operation with the plain-text to
form the cipher-text. The receiver uses the same process to retrieve the plain-
text. The confidentiality process is shown in Figure 2.

The internal architecture of the function F8 is presented in Figure 3. It is
composed of several KASUMI blocks that are connected to generate the output
keystream. The input to the first block is formed by concatenating the para-
meters COUNT − C, BEARER, DIRECTION , and LENGTH. Then, the
output is saved on register A. After that, it is combined with the BLKCNT
counter using a bitwise XOR operation. The results form the input of the next
block. Note that the first block is controlled by the combination of CK with
a fixed sequence named KM1 = 0x55 . . . 5 (128-bits) using a bitwise XOR
operation. But the other blocks are controlled only by CK.

For more details in the function F8, please refer to [1].

3.3. Integrity function F9

UMTS integrity is based on the function F9. The integrity process is based on
the use of 5 input parameters : Integrity Key IK (128-bits), integrity sequence
COUNT − I (32-bits), the message to protect MESSAGE, DIRECTION
(1-bit), and a generated random sequence FRESH (32-bits). The function F9
generates a 32-bits Message Authentication Code Integrity (MAC − I) that is
sent with the message. The receiver follows the same process to generate the
authentication code corresponding to the received message (XMAC− I). If the
expected XMAC − I and received MAC − I codes are similar, the receiver
concludes that there is no alteration in the content of the received message (no
added, no deleted, and no modified parts). The integrity process is shown in
Figure 4.

The internal architecture of the function F9 is presented in Figure 5. It is
based on a string of KASUMI blocks. The input is formed by concatenating
the parameters : COUNT − I, FRESH, MESSAGE, and DIRECTION .
The result is divided into n 64-bits vectors (PS0, PS1, . . . , PSn). Where n is
the number of 64-bits blocks formed by the concatenation sequence. Then, the
outputs of the n blocks are combined by a bitwise XOR operations to form the
input to an additional KASUMI block. The left half of the generated output
forms the integrity code (MAC − I) of the processed message. Note that the
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(a) Architecture of KA-
SUMI block cipher
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(d) The FL function

Figure 1: The Feistel structure of KASUMI.
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Plain-text

(block)

Cipher-text

(block)

Plain-text

(block)

Figure 2: The UMTS confidentiality mechanism.

COUNT || BEARER || DIRECTION || 0...0

KASUMI

KASUMI KASUMI KASUMI KASUMICK CK CK

BLKCNT=0 BLKCNT=1 BLKCNT=2 BLKCNT=BLOCKS1

A

CK

CK     KM 

KS[0]...KS[63] KS[64]...KS[127] KS[128]...KS[191]

Figure 3: The F8 confidentiality function.

MESSAGE  /  MACA-I

Figure 4: The UMTS integrity mechanism.
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COUNT   ||   FRESH       ||      MESSAGE                               ||   DIRECTION    ||   1   ||  0...0

KASUMI KASUMI KASUMIIK IK IKIK

PS1 PSBLOKS-1PS2PS1

KASUMIIK

MAC-I(left 32-bits)

Figure 5: The F9 integrity function.

last block is controlled by the combination of IK with a fixed sequence named
KM2 = 0xAA . . . A (128-bits) using a bitwise XOR operation. But the other
blocks are only controlled by IK.

For more details in the F9 function, please refer to [1].

4. Proposed Running-Block

In this section, we present the proposed Running-Block architecture. The
purpose is to reduce the required logic resources to hardware parallel processing
on limited systems. To achieve this objective, we have developed an architecture
that allows confidentiality F8 and integrity F9 functions to be executed using
a single common kernel (KASUMI block cipher). Data routing and switching
between the confidentiality and integrity operating modes in the proposed ar-
chitecture is provided by a control block encoded as an FSM. The proposed
architecture is illustrated in Figure 6, and the processing steps are presented as
follows.

4.1. Confidentiality mode

The confidentiality mode is selected by the control unit. To generate the same
output as the regular function F8, we begin by uploading the confidentiality
input parameters (COUNT −C, BEARER, DIRECTION , and LENGTH)
to V ecConf and initializing BLKCNT and register A to zero. In the first round,
the combination of CK and KM1 using a bitwise XOR operation is selected
as the control key and V ecConf as the input to KASUMI. The output is saved
in register A (update of register A). In the second round, the combination of
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KASUMI

 

Figure 6: The proposed Running block.

8



register A and BLKCNT using a bitwise XOR operation forms the new input
to KASUMI, and the CK is selected as the new control key. The output is
saved in Keystream register. In the next rounds, the combination of register
A, Keystream, and BLKCNT forms the new input to KASUMI, and CK is
always selected as the control key. Note that BLKCNT is incremented at each
round. The cipher-text is generated by combining the plain-text blocks (64-bits)
with KASUMI output (from the second round) using a bitwise XOR operation.
The process is repeated n times, where n is the number of 64-bits blocks to
encrypt. The detailed process is shown in Figure 6.

4.2. Integrity mode

Like the confidentiality, the integrity mode is selected by the control unit.
To generate the same output as the regular function F9, we begin by uploa-
ding the integrity input parameters (COUNT − I, FRESH, MESSAGE, and
DIRECTION) to vecInt and initializing the registers Rge1 and Reg2 to zero.
Then, the V ecInt is divided into n 64-bits blocks (the last block is zero-extended
if bits are missing). In the first round, IK is selected as the control key and the
combination of register Reg1 with the first 64-bits block (V ecInt(1)) using a
bitwise XOR operation as input to KASUMI. The output is saved in the register
Reg1 (updates of register Reg1) and then combined with register Reg2 using
a bitwise XOR operation (updates of register Reg2). In the second round, the
same process is repeated until the last 64-bits bock (V ecInt(n)). At each cycle
the registers Reg1 and Reg2 are updated. After that, an additional cycle will
be executed. The last content of register Reg2 forms the input to KASUMI and
the control key switches to applying the combination of IK with KM2 using a
bitwise XOR operation as the new key. The left half of the generated output
forms the integrity code MAC − I (32-bits) of the processed message.

4.3. FSM control unit

To realize the Running-Block, we opt for a hardware behavior description
based on FSM. This system describes the numerical resolution based on a control
unit designed to manage the inputs (key and value) and output of the KASUMI
block cipher. Thereby, the description is implemented in a digital way suitable
for FPGA using the FSM system coded in VHDL language and detailed in
Figure 7. This figure describes the FSM system corresponding to the internal
states of the Running-Block. Detailed description at each state of the FSM
system is presented as follows.

— State-init : It is the initialization state. All outputs are set to zero, and the
confidentiality and integrity vectors (VecConf and VecInt) are initialized
with the corresponding input parameters, as follows.
V ecConf = COUNT − C‖BEARER‖DIRECTION‖0 · · · 0
V ecInt = COUNT − I‖FRESH‖MESSAGE‖DIRECTION‖10 · · · 0
If we want to execute the confidentiality mode, the next state is State-
Conf1, and if we want to execute the integrity mode, the next state is
State-Int1.
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State-Init
Vec-Conf=Count-C||Bearer||Dir||0...0

Vec-Int=Count-I||Fresh||Message||Dir||10...0

State-Conf1

Input=VecConf

A=0
BLKCNT=0
Keystream=0

Key=CK     KM1

State-Conf2

Input=A      BLKCNT

A=Output
Key=CK

State-Conf3

Input=A     BLKCNT     Keystream

Keystream=Output
Key=CK

BLKCNT++

Ciphertextt=Plaintext     Keystream

Cp<N

Cp=N

State-Int1

VecInt=>PS0||PS1||...||PSN

Reg1=0

Reg2=0

State-Int2

Key=IK
Input=PS0     Reg1  

State-Int3

Reg2=Reg2      Output

Key=IK
Reg1=Output

Input=PSi     Reg1  

State-Int4

Reg2=Reg2      Output
Key=IK     KM2

Input=Reg2  

State-Int5

MAC=Output(63 downto 32)

MAC

Cp<N

Cp=N

Figure 7: Description of the FSM system performing the proposed Running-Block.
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— State-Conf1 : In this state, we load the input parameters to the KASUMI
block. The control key is CK ⊕KM1 and input value is V ecConf . The
Content of the registers A, Keystream, and BLKCNT are always set
to zero. At the next rising edge of the clock signal, it jumps to the next
state without any condition.

— State-Conf2 : The content of the register A is updated by the first genera-
ted output of the KASUMI block. After that, the new input parameters
are modified and loaded to the KASUMI block. The control key is CK,
and the input value is the result of the operation A ⊕ BLKCNT ⊕
Keystream. At the next rising edge of the clock signal, it jumps to the
next state without any condition.

— State-Conf3 : The content of the register Keystream is updated by
the generated output of the KASUMI block. The ciphertext is then
generated by combining a 64-bits block of the plaintext with a keys-
tream, ciphertext = plaintext ⊕ Keystream. After that, the content
of BLKCNT is incremented, and the input parameters (CK and A ⊕
BLKCNT ⊕Keystream) are loaded to the KASUMI block. At the next
rising edge of the clock signal, if Cp < N , then it repeats the State-Conf3
cycle to generate a new keystream. But, if Cp = N , which indicates that
all the required 64-bits blocks of plaintext are encrypted, the FSM jumps
to State-Init to wait for a new order of confidentiality or integrity func-
tion execution. Note that Cp is a command to control the end of plaintext
blocks, and N is the number of 64-bits blocks to be encrypted.

— State-Int1 : In this state, we divide the content of V ecInt to N 64-bits
blocks (PS0, PS1, · · · , PSN ). The content of the registers Reg1 and Reg2
are always set to zero. At the next rising edge of the clock signal, it jumps
to the next state without any condition.

— State-Int2 : We load the input parameters to the KASUMI block. The
control key is IK and input value is PS0⊕Reg1. At the next rising edge
of the clock signal, it jumps to the next state without any condition.

— State-Int3 : The generated output is used to update to content of the
registers Reg1 (Reg1 = Output) and Reg2 (Reg2 = Reg2 ⊕ Output).
After that, the input parameters (IK and Reg1⊕PS1) are loaded to the
KASUMI block. At the next rising edge of the clock signal, if Cp < N ,
then it repeats the State-Int3 cycle to generate a new keystream. But, if
Cp = N , which indicates that all the required N 64-bits blocks of divided
V ecInt are processed, the FSM jumps to State-Int4. Note that Cp is a
command to control the end of processing the expected N formed 64-bits
blocks.

— State-Int4 : In this state, the inputs parameters are modified then loaded
to the KASUMI block. The control key is the result of IK ⊕KM2, and
the input value is the last content of Reg2. At the next rising edge of the
clock signal, it jumps to the next state without any condition.

— State-Int5 : The left half of the generated output is selected as the in-
tegrity code MAC − I (32-bits) of the processed message. At the next
rising edge of the clock signal, the FSM jumps to State-Init to wait for a

11



new order of confidentiality or integrity function execution.
Note that parameter ⊕ is used to design a bitwise XOR operation.

5. Implementation, comparison and discussion

In this section, we begin by presenting FPGA implementation results. After
that, we give a comparison of the proposed architecture with previous works in
terms of throughput, occupied logic resources, and generated output. Finally,
we discuss the obtained results.

5.1. Implementation results

The proposed architecture has been described using the VHDL language and
has been implemented on Xilinx Virtex FPGA technology [23–25]. Integrated
Synthesis Environment (ISE) 13.2 of Xilinx tools have been used for this digital
implementation allowing us to obtain the logic resource requirements and the
associated real-time constraints. The proposed Running-Block synthesis results
after a place-and-route are presented in Table 1. Note that the throughput is
calculated using Equation 3.

Throughput =
Block size× Clock frequency

Latency cycle
(3)

Device Function Frequency Latency Throughput Area
mode Mhz cycle Mbps slice

Virtex-E
f8

91.208
3 1945.771

1434
f9 11 265.332

Virtex-II
f8

138.466
3 2953.941

1426
f9 11 402.810

Virtex-5
f8

274.771
3 5861.781

722
f9 11 799.334

Virtex-6
f8

372.815
3 7953.387

586
f9 11 1084.553

Table 1: FPGA implementation results of the proposed Running-Block.

From the obtained results, we remark that good performances are achieved
by the proposed implementation in terms of throughput (7953.387 Mbps and
3 latency cycles with the mode confidentiality, 1084.553 Mbps and 11 latency
cycles with the mode integrity), occupied hardware logic resources (586 slices),
and low power consumption (estimated by 1.46 Watts on FPGA device).

All these results prove that the proposed architecture is suitable for em-
bedded applications designed for real-time communications (mobile networks).
Consequently, we conclude that the simplified Running-Block can ensure both
the confidentiality and integrity functions using an optimized architecture with
low resources and efficiently occupy the device.
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5.2. FPGA implementation comparison

The FPGA implementation results of proposed and previous works are pre-
sented in Table 2. From the results obtained, we conclude that the proposed
architecture is faster than the previous work in terms of maximum frequency
and throughput achieved. The designed implementation is 8.4 times faster in
Virtex-5, and 9.8 times faster in Virtex-6 than work in [13]. In terms of logic
resources, the proposed and work in [13] occupies almost the same hardware
area.

By analyzing the comparison results presented in Table 2 and the addressed
remarks, it is clear that the proposed architecture achieves the highest through-
put due to the high processing clock rate and low latency cycles. Finally, we
conclude that the proposed Running-Block can provide fast protection (confi-
dentiality and integrity) of users’ data, which is considered as an important
parameter in real-time applications, like mobile network communications.

Source Device Function Freqency Throughput Area
MHz Mbps slice

Helion[13] Virtex-5 f8 186 700 548
f9 186 700

Virtex-6 f8 215 808 564
f9 221 830

This work Virtex-5 f8 274.771 5861.781 722
f9 274.771 799.343

Virtex-6 f8 372.815 7953.387 586
f9 372.815 1084.553

Table 2: FPGA comparison implementations.

5.3. Generated outputs comparison

To test and validate the generated outputs, we used the 3GPP test set vec-
tor [14] designed to help implementers in their realization. This document pro-
vides test data for the algorithms as well as details on the internal states of the
algorithms when they process the input data. For example, the test set vectors
1 is defi

ned as follows.
— The functions F8 and F9 inputs are presented in Table 3.
— The plaintext and the corresponding ciphertext are presented in Table 4.
The ISE Simulator (ISim) has been used to test the exactness of generated

outputs compared to the 3GPP reference data presented in Tables 3 and 4 . The
simulation results (VHDL test bench waveform) are shown in Figures 8 and 9.

By comparing outputs generated by the original F8 and F9 functions pre-
sented in Tables 4 and Table 3 with the outputs generated by the proposed
Running-Block presented in Figures 8 and 9, respectively, it is clear that the
proposed implementation generates the same and expected outputs (ciphertext
and integrity code MAC − I) like the original ones. Consequently, we conclude
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Confidentiality function F8 inputs
Key = 2BD6459F82C5B300952C49104881FF48
Count− C = 72A4F20F
Bearer = 0C
Direction = 1
Length = 798bits

Integrity function F9 inputs/outputs
Count− I = 38A6F056
Fresh = 05D2EC49
Direction = 0
Length = 189bits
MAC − I = F63BD72C
Message = 6B227737296F393C8079353EDC87E2E805D2EC49A4F2D8E0

Table 3: 3GPP Test set vector1 confidentiality/integrity inputs/outputs.

Plaintext Ciphertext
7EC61272743BF161 D1E2DE70EEF86C69
4726446A6C38CED1 64FB542BC2D460AA
66F6CA76EB543004 BFAA10A4A093262B
4286346CEF130F92 7D199E706FC2D489
922B03450D3A9975 1553296910F3A973
E5BD2EA0EB55AD8E 012682E41C4E2B02
1B199E3EC4316020 BE2017B7253BBF93
E9A1B285E7627953 09DE5819CB42E819
59B7BDFD39BEF4B2 56F4C99BC9765CAF
484583D5AFE082AE 53B1D0BB8279826A
E638BF5FD5A6061 DBBC5522E915C120
3901A08F4AB41AAB A618A5A7F5E89708
9B134880 9339650F

Table 4: 3GPP Test set vector1 plaintext/ciphertext.
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Figure 8: ISim F8 simulation results.

Figure 9: ISim F9 simulation results.
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that the design proposed in this study can ensure the same functionalities com-
pared to the original F8 and F9 functions.
Note that the proposed algorithm satisfies all of the test data sets provided in
[14].

5.4. Discussion

According to the proposed architecture illustrated in Figure 6 and results
presented in Tables 1 and 2, we remark that the proposed Running-Block re-
quires low hardware logic resources (slice registers) and provides high through-
put. Besides, it ensures the same functionalities that the original confidentiality
F8 and integrity F9 functions, and generates the expected outputs fixed in the
3GPP test vector set1 [14], as presented in Figures 8and 9.

Indeed, the proposed architecture presents a simple, efficient, and less com-
plicated implementation in a hardware device (FPGA technology). Also, the
characterizing good performances prove that proposal architecture is more sui-
table for use in UMTS networks. Consequently, the proposed Running-Block
architecture can replace both the old confidentiality F8 and integrity F9 func-
tions while satisfying the network requirements (time constraint, size of data...).
Additionally, it is suitable for embedded applications (handsets), in particular
for a mobile station in our case study.

In terms of security, the proposed architecture is robust against the linear
and nonlinear cryptanalysis, like the kernel (KASUMI) of original F8 and F9
functions. However, in the last decade, KASUMI was the subject of many cryp-
tanalysis attacks, such as [26–31]. Therefore, the improvement of the KASUMI
block security to resist the existing cryptanalysis attacks and to upgrade the
knowing drawbacks is the main perspective of our future works.

5.5. Potential uses

The proposed design can be used in the UMTS security mechanism to replace
the separated confidentiality F8 and integrity F9 functions.

6. Conclusion

The main contribution of this work was the implementation of UMTS confi-
dentiality F8 and integrity F9 functions in the same hardware architecture. The
technique used consists of keeping the kernel of the original functions (KA-
SUMI block encryption) as the core of the proposed Running-Block. Then, we
developed a control unit based on an FSM to ensure the routing of data in
two operating modes (confidentiality and integrity modes) to generate the same
outputs as the original functions.

The proposed architecture has been performed and implemented on an FPGA
Virtex technology using VHDL structural description. The synthesis implemen-
tation results after place-and-route show the good performance of the optimized
Running-Block. Consequently, the final proposed architecture allows us to in-
crease data protection (confidentiality and integrity) and to decrease the occu-
pied area in the handset compared to the original functions. By considering the
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obtained good trade-off between time performance and logic resources, com-
pared with previous works, we conclude that the proposed design forms the
best FPGA implementation designed to ensure data transmitted over the third
generations of mobile networks.

Finally, we conclude that this proposed architecture is still satisfying the real-
time and embedded systems properties while preserving the 3GPP standardized
requirements (key length, data size, etc.). Therefore, it is possible to replace the
old F8 and F9 functions with the proposed optimized Running-Block, which can
ensure the same functionalities with more performances.
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