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Monomial transformations of the projective
space

Olivier Debarre and Bodo Lass

Abstract We prove that, over any field, the dimension of the indeterminacy locus
of a rational mapf : Pn

99K Pn defined by monomials of the same degreed with no
common factors is at least(n−2)/2, provided that the degree off as a map is not
divisible byd. This implies upper bounds on the multidegree off and in particular,
when f is birational, on the degree off−1.
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1 Introduction

We denote byPn then-dimensional projective space over a fixed field. A monomial
transformation ofPn is a rational mapf : Pn

99K Pn whose componentsf0, . . . , fn
are monomials (of the same positive degreed( f ) and with no common factors) in
the variablesx0, . . . ,xn.

Monomial transformations are of course very special among all rational transfor-
mations, but also much easier to study. For this reason, theyhave recently attracted
some attention. In particular, there is a description of allbirational monomial trans-
formationsf with d( f ) = 2 in [CS], §2, from which it follows thatd( f−1) is then
at most equal ton ([CS], Theorem 2.6). Extensive computer calculations werethen
performed by Johnson in [J] and led him to suggest that the largest possible value
for d( f−1) should be(d( f )−1)n−1

d( f )−2 whend( f )≥ 3.
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These values should be compared with the optimal boundd(g−1)≤ d(g)n−1 for
all birational transformationsg of Pn. This maximal value ford(g−1) is attained if
and only if the indeterminacy locus ofg is finite (see§4), hence one is led to think
that the indeterminacy locus of a monomial map should be rather large. This is what
we prove in Theorem 1:the dimension of the indeterminacy locus of a monomial
map f : Pn

99K Pn is at least(n−2)/2, provided that the degree of f as a map is not
divisible by d( f ).

We show in§4 that this implies a bound ond( f−1) for all birational monomial
transformationsf , which is however not as good as the one suggested by Johnson.

2 Monomial transformations

We represent a monomial transformationf : Pn
99K Pn, with componentsf0, . . . , fn,

by the(n+1)× (n+1)matrixA= (ai j )0≤i, j≤n whoseith row lists the exponents of
fi . With this notation, one hasfA ◦ fB = fAB.

The following proposition is elementary ([GSP]; [SV] Lemma1.2; [J]).

Proposition 1. With the notation above, we have

|det(A)|= d( f )deg( f ).

In particular, f is birational if and only if|det(A)|= d( f ).

Proof. The condition that all monomialsf0, . . . , fn have the same degreed := d( f )
means that in each row ofA, the sum of the entries isd. Adding all columns to the
0th column, then subtracting the first row from all other rowswe obtain

det(A) =

∣∣∣∣∣∣∣

d a01 · · · a0n
...

...
...

d an1 · · · ann

∣∣∣∣∣∣∣
= d

∣∣∣∣∣∣∣

1 a01 · · · a0n
...

...
...

1 an1 · · · ann

∣∣∣∣∣∣∣
= d det(M),

whereM := (mi j )1≤i, j≤n is defined bymi j := ai j − a0 j . If T ≃ (C∗)n ⊂ Pn is the
torus defined byx0 · · ·xn 6= 0, the mapf induces a morphismfT : T → T given by

fT(x1, . . . ,xn) = (xm11
1 · · ·xm1n

n , . . . ,xmn1
1 · · ·xmnn

n ).

The induced map̂fT : T̂ → T̂ between algebraic character groups (whereT̂ is the
free abelian groupZn) is given by the transposed matrixMT : Zn → Zn. Perform-
ing elementary operations onM amounts to composingfT with monomial auto-
morphisms, so we can reduce to the case whereM is diagonal, in which case it is
obvious that the degree of the morphismfT (which is the same as the degree off )
is |det(M)|. ⊓⊔

Corollary 1. With the notation above, f is birational if and only if|det(A)|= d( f ).
Its inverse is then also a monomial transformation.
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Proof. It is clear from the proof above thatf is birational if and only if|det(M)|= 1,
i.e., if and only ifM ∈ GLn(Z) or, equivalently, if and only iffT is an isomorphism,
whose inverse is then given by the matrixM−1. It is therefore a monomial transfor-
mation. ⊓⊔

3 Indeterminacy locus

In this section,f : Pn
99K Pn is again a monomial transformation.We assume that

its components f0, . . . , fn have no common factors.In terms of the matrixA defined
in §2, this means that each column ofA has at least one 0 entry.

The indeterminacy locusB of f is then the subscheme ofPn defined by the equa-
tions f0, . . . , fn. Its blow-upX̂ → X is the graphΓf → Pn of f ([D], §1.4).

For each nonempty subsetJ ( {0, . . . ,n} such that the(n+1)× |J| matrix AJ

constructed from the columns ofA corresponding to the elements ofJ has no zero
rows, we obtain a linear space contained inB by settingx j = 0 for all j ∈ J. Its
codimension inPn is |J|. Moreover,Bred is the union of all such linear spaces.

Theorem 1. Let f : Pn
99K Pn be a dominant transformation defined by monomials

of degree d with no common factors. If the degree of f is not divisible by d, the
dimension of the indeterminacy locus of f is at least(n−2)/2.

The condition on the degree is necessary, as shown by the morphism(x0, . . . ,xn) 7→
(xd

0, . . . ,x
d
n) of degreedn (whose indeterminacy locus is empty).

Proof. Since the determinant of the matrixA is nonzero we may assume, upon per-
muting its rows and columns, that we haveaii 6= 0 for all i ∈ {0, . . . ,n}.

We then define an oriented graph on the set of vertices{0, . . . ,n} by adding an
oriented edge fromi to j wheneverai j 6= 0. We then say that a vertexx is equivalent
to a vertexy if and only if there exists an oriented path fromx to y and an oriented
path fromy to x. This defines a partition of the set{0, . . . ,n} into equivalence classes
(note thatx is equivalent tox sinceaxx 6= 0).

Say that an equivalence classX is greater than or equal to an equivalence class
Y if there is an oriented path from an element ofX to an element ofY (there exists
then an oriented path from any element ofX to any element ofY). This defines a
partial order on the set of equivalence classes.

Choose a classX minimal for this order. Entries ofA in a row corresponding to an
element ofX which are not in a column corresponding to an element ofX are then
0 (otherwise, at least one oriented edge should come out of aX to element not inX,
contradicting the minimality ofX). It follows that the determinant of the submatrix
AX of A corresponding to rows and columns ofX divides the determinant ofA. The
sum of all entries in a row ofAX is d hence, by the same reasoning used in the proof
of Proposition 1, the determinant ofAX is nonzero, divisible byd.

Because of the conditiond ∤ deg( f ) and Proposition 1, the determinant ofA is
not divisible byd2. In particular, our partial order has a unique minimal element X.
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Without loss of generality, we may assume 0∈ X. Every other vertex then has an
oriented path to 0. In particular, we may define an acyclic function

ϕ : {1, . . . ,n}→ {0,1, . . . ,n}

such that(x, f (x)) is an oriented edge of our graph for allx∈ {1, . . . ,n} (“acyclic”
means that for allx∈ {1, . . . ,n}, there existsk> 0 such thatf k(x) = 0).

We keep only then edges of the type(x, f (x)); sinceax f(x) 6= 0, they correspond
to n nonzero entries, off the diagonal, in each row 1, . . . ,n. Since our new graph on
{0, . . . ,n} hasn edges and no cycles, we may color its vertices in black or white in
such a way thatx and f (x) have different colors, for allx∈ {0, . . . ,n}.

We select the vertices of the color which has been used less often (if both colors
have been used the same number of times, we select the vertices with the same color
as 0). If 0 is not selected, we add it to the selection. We end upwith at most(n+2)/2
selected vertices which are all on one of ourn edges or the loop at 0.

Consider the submatrix ofA formed by the≤ (n+2)/2 columns corresponding
to the selected vertices. In each row, there is a nonzero entry: in the row 0, because
0 was selected anda00 6= 0; in any other rowx because eitherx was selected and
axx 6= 0, or f (x) was selected andax f(x) 6= 0. This proves the theorem.⊓⊔

Example 1.The bound in the theorem is sharp: ford ≥ 2, one easily checks that the
indeterminacy locus of the birational automorphism ([J], Example 2)

fn,d : (x0, . . . ,xn) 7→ (xd
0,x

d−1
0 x1,x

d−1
1 x2, . . . ,x

d−1
n−1xn) (1)

of Pn has dimension exactly⌈(n− 2)/2⌉. But there are many other examples of
birational monomial automorphisms ofPn with indeterminacy locus of dimension
exactly⌈(n−2)/2⌉, such as monomial maps defined by matrices

A=




d 0 · · · · · · · · · · · · · · · · · · 0
d−1 1 0 · · · · · · · · · · · · · · · 0

0 d−1 1 0 · · · · · · · · · · · · 0
a30 a31 a32 1 0 · · · · · · · · · 0
0 0 0 d−1 1 0 · · · · · · 0

a50 a51 a52 a53 a54 1 0 · · · 0
...

...
.. .

. . .
...

...
. . .

. . . 0
1




where, for each oddi, we chooseai0 6= 0 and∑i−1
j=0ai j = d−1. The (reduced) inde-

terminacy locus is then defined by the equations

x0 = x1x2 = x3x4 = · · ·= 0.

It has dimensionn−1−⌊n/2⌋= ⌈(n−2)/2⌉.
Another set of examples is provided by matrices of the form
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1 1 1 d−3 0 · · · · · · · · · · · · 0
0 1 1 d−2 0 · · · · · · · · · · · · 0

d−1 0 1 0 0 · · · · · · · · · · · · 0
a30 a31 0 a33 0 · · · · · · · · · · · · 0
a40 a41 a42 a43 1 0 · · · · · · · · · 0
0 0 0 0 d−1 1 0 · · · · · · 0

a60 a61 a62 a63 a64 a65 1 0 · · · 0
...

...
.. .

. . .
...

...
. . .

. . . 0
1




wherea30+a31+a33= d≥ 3,a31a33 6= 0, and, for each eveni, we chooseai0ai2 6= 0
and∑i−1

j=0ai j = d−1.

4 Degrees of a monomial map

Let g : Pn
99K Pn be a rational map. One defines theith degreedi(g) as the degree

of the image byg of a generalPi ⊂ Pn (more precisely,di(g) := Pn−i · f∗Pi). One
hasd0(g) = 1, dn(g) = deg(g), andd1(g) is the integerd(g) defined earlier (i.e., the
common degree of the componentsg0, . . . ,gn of g, provided they have no common
factors).An alternative definition of thedi(g) is as follows: ifΓg ⊂ Pn×Pn is the
graph ofg,

di(g) = Γg · p∗1Pi · p∗2Pn−i . (2)

The sequenced0(g), . . . ,dn(g) is known to be a log-concave sequence: it satisfies

∀i ∈ {1, . . . ,n−1} di(g)
2 ≥ di+1(g)di−1(g)

(this is a direct consequence of the Hodge Index Theorem; [D], (1.6)). This implies
di(g)≤ d1(g)i .

Proposition 2. Let f : Pn
99KPn be a dominant map defined by monomials of degree

d with no common factors. Set c:= ⌊n/2⌋+1. If the degree of f is not divisible by
d, we have, for all i∈ {c, . . . ,n},

di( f ) ≤ (1−d−c)
i−1
c−1 di .

Proof. The degrees off can be expressed in terms of the Segre class of its indeter-
minacy locusB. In particular, ifc′ := codim(B), one has ([D], Proposition 2.3.1)

di( f ) =

{
di for i < c′,

di −degs(B) for i = c′,
(3)
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where degs(B) is the sum of the degrees of the top-dimensional components of B,
counted with theirSamuel multiplicity(this is larger than the “ usual” multiplicity
([F], Examples 4.3.4 and 4.3.5.(c)); in particular degs(B) ≥ deg(B)). Since in our
casec′ ≤ c = n−⌈(n− 2)/2⌉ (Theorem 1), it follows from log-concavity that we
have

dc( f )< dc.

By log-concavity, this implies that fori ≥ c, one has

di( f ) ≤ dc( f )
i−1
c−1 d1− i−1

c−1 ≤ (dc−1)
i−1
c−1 d

c−i
c−1 = (1−d−c)

i−1
c−1 di .

This proves the proposition.⊓⊔

Wheng is birational, i.e., whendn(g) = 1, it follows from (2) thatdi(g−1) =
dn−i(g) for all i ∈ {0, . . . ,n}. In particular,

d(g−1) = dn−1(g)≤ d(g)n−1.

By (3), equality occurs exactly when the indeterminacy locus ofg is finite.
When f is a monomial birational transformation ofPn, Proposition 2 gives the

stronger bound:

d( f−1)≤ (1−d−c)
n−2
c−1 dn−1 = dn−1−

n−2
⌊n/2⌋

d⌊(n−3)/2⌋+O(d−2), (4)

whered := d( f ). However, as mentioned in the introduction, this is not optimal.
Whend( f ) = 2, the set of possible values ford( f−1) is {2, . . . ,n} and the maxi-

mal valuen is obtained only (up to permutation of the factors) for the birational map
fn,2 of (1) ([CS], Theorem 2.6). In particular, the other degreesof f are then fixed.

Johnson’s calculations. Whend := d( f ) > 2, Johnson’s computer calculations in
[J] suggest that the maximal possible value ford( f−1) should be

d( f−1
n,d ) =

(d−1)n−1
d−2

= dn−1− (n−2)dn−2+O(dn−3)

and that equality should only be attained when (up to permutation of the factors)
f = fn,d. More precisely, Johnson checks that whenn= 4 and 3≤ d ≤ 5, one has
d( f−1) ≤ d( f−1

n,d )−d+1 if (up to permutation of the factors)f 6= fn,d. There are

also further gaps in the list of possible values ford( f−1).

Mixed volumes. The degreesdi( f ) of a monomial mapf can be interpreted in
terms of mixed volumes of polytopes inRn as follows. Let∆ ⊂ Rn be the standard
n-dimensional simplex conv(0,e1, . . . ,en). Let f : Pn

99K Pn be a monomial map
with associated matrixA= (ai j )0≤i, j≤n, and let∆ f ⊂ Rn be the simplex which is the
convex hull of the pointsai = (ai1, . . . ,ain) ∈ Nn, for i ∈ {0, . . . ,n}. Then ([D],§3.5)

di( f ) = MV(∆ , . . . ,∆︸ ︷︷ ︸
n−i times

,∆ f , . . . ,∆ f︸ ︷︷ ︸
i times

).
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The right-hand side of this equality is amixed volume:if the n-dimensional volume
is normalized so that vol(∆) = 1/n!, this is (n− i)!i! times the coefficient ofun−ivi

in the polynomial vol(u∆ +v∆ f ), whereu∆ +v∆ f is the Minkowski sum{ux+vy |
x ∈ ∆ ,y ∈ ∆ f }.

Although mixed volumes are notoriously difficult to compute, there are com-
puter programs such asPHCpack (available on Jan Verschelde’s webpage) that can
do that. We should also mention the article [A], which expresses the degrees of a
monomial rational transformation in terms of integrals over an associated Newton
region.
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