
HAL Id: hal-03807426
https://hal.science/hal-03807426

Submitted on 9 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stand-alone obstacle avoidance controller for
image-based navigation

Adrien Durand-Petiteville, Viviane Cadenat, Thierry Sentenac

To cite this version:
Adrien Durand-Petiteville, Viviane Cadenat, Thierry Sentenac. Stand-alone obstacle avoidance con-
troller for image-based navigation. IEEE LARS 2022 / SBR 2022 -19th IEEE Latin American Robotics
Symposium / 14th Brazilian Symposium on Robotics, Oct 2022, São Paulo, Brazil. p. 133-138,
�10.1109/LARS/SBR/WRE56824.2022.9995933�. �hal-03807426�

https://hal.science/hal-03807426
https://hal.archives-ouvertes.fr

Stand-alone obstacle avoidance controller for
image-based navigation

A. Durand-Petiteville
Mechanical Engineering Department
Universidade Federal de Pernambuco

Recife, Brazil
adrien.durandpetiteville[at]ufpe.br

V. Cadenat
LAAS-CNRS

Université Paul Sabatier Toulouse III
Toulouse, France
cadenat[at]laas.fr

T. Sentenac
LAAS-CNRS and Institut Clément Ader (ICA)

IMT Mines Albi, INSA, UPS, ISAE
Albi, France

sentenac[at]laas.fr

Abstract—In this paper we present a stand-alone reactive
avoidance controller inspired by the spirals described by insects
during their flights. Unlike state-of-the-art obstacle avoidance
methods, it only focuses on circumventing hazardous elements
and can be coupled to navigation controllers working in different
state space, such as the image one. We describe the obstacle
avoidance problem by following a set of spirals, the spiral
parameters computation to deal with convex/concave obstacles,
and the spiral following controller design. Finally, a set of
simulations obtained with ROS/Gazebo show the efficiency of
the proposed approach to navigate in a cluttered environment.

I. INTRODUCTION

This paper addresses the obstacle avoidance problem during
an image-based navigation in an unknown environment. For
this work, the motion planning techniques where a collision-
free trajectory to the target is computed, leading to a global
solution to the navigation problem, are discarded. Indeed, they
consider a perfect model of the robot and of the environment,
and fail when the surroundings are unknown and unpredictable
[1]. For this reason, it is proposed to focus on the obstacle
avoidance techniques. They consist in driving the robot to-
wards the goal relying on the data collected by the sensors
during the navigation execution [1]. Thus, these techniques,
classified as reactive, introduce the sensor information within
the control loop, and allow adapting the motion to any con-
tingency incompatible with initial plans at the cost of a local
solution. Among the most representative obstacle avoidance
methods, let us mention first the ones computing the motion
in one step. For example, the Potential Fields method [2]
which is based on physical analogies and directly reduces the
sensor information to motion control. Then, one focuses on
approaches requiring more than one step: first, an intermediate
set of motion controls is computed, and next, one of them
is chosen. The intermediate set might be a subset of motion
directions for methods such as the Vector Field Histogram
(VFH) [3] or Obstacle Restriction [4], or a subset of velocity
controls in the case of the Dynamic Window Approach (DWA)
[5] or Velocities Obstacles (VO) [6] ones. However, all these

This work was supported by FACEPE (APQ-0139-3.04/20) and ANR
(ANR-20-CE33-001-01)

978-1-6654-6280-8/22/$31.00 ©2022 IEEE

methods share a common approach: they compute a motion
leading to the goal and avoiding obstacles, and to do so they
require to know the desired pose in the metric space. Thus,
when the goal is expressed in a different space, such as the
image space when controlling a robot via Visual Servoing
[7], it is not possible to rely on one of these approaches to
avoid obstacles. To tackle this issue, it was proposed in [8]
to design a tentacle-based obstacle avoidance method coupled
with an Image-Based Visual Servoing (IBVS). It relies on an
occupancy grid which is then used to evaluate the collision
risk of a set of tentacles. When the risk of collision is too
high, the robot follows the tentacle with the best evaluation.

In this work, we present a navigation framework inspired
by the behavior-based systems [9], where the navigation task
is divided into two sub-tasks: reaching the desired pose and
avoiding obstacles. The proposed system is then composed of
two controllers and one finite-state machine activating one of
the them based on the current situation. The first controller is
an IBVS driving the robot towards a desired pose expressed
in the image space, while the second one is a spiral follower
using data provided by a laser range finder in order to perform
the obstacle avoidance. The choice of IBVS is motivated
by the relatively low cost of cameras and their ability to
detect landmarks in challenging environments. Moreover, this
approach does not require the robot to estimate its metric
pose on a global frame. Regarding the obstacle avoidance
controller, its design is inspired by the work presented in [10]
and modeling the spirals described by insects during their
flights. This work has already been used in [11] to avoid
aircraft, in [12] and [13] to perform a u-turn in an orchard,
and in [14] to avoid convex obstacles during a metric-based
navigation. In this work, it is proposed to use the spiral model
to design a stand-alone obstacle avoidance controller that can
be coupled with any navigation controller, such as an IBVS
one. The model is simple enough to provide a computationally
efficient implementation, while being sufficiently versatile to
lead to advance paths circumventing complex static obstacles.
Thus, in this paper we present (i) the approach allowing to use
the spiral model to avoid convex and concave obstacles, (ii)
the design of a time-varying spiral following controller, and
(iii) the finite-state machine coupling the controllers.

The rest of the paper is organized as follows. The next

section is dedicated to a succinct presentation of the IBVS
approached used in our navigation framework. Then, the
obstacle avoidance approach is described, including the over-
all description, the data processing step, the design of the
controller and the presentation of the finite-state machine.
Finally, results obtained via simulation are presented to show
the relevancy and efficiency of the proposed approach.

II. PRELIMINARIES

A. System modeling

Fig. 1: Differential drive robot model.

In this work we aim at controlling a differential robot
equipped with a camera embedded on a pan-platform and
a laser rangefinder attached to the mobile base. To model
the robotic system, the following frames are introduced as
shown in Figure 1: Fo(O,xo,yo, zo) as the world frame,
Fr(Or,xr,yr, zr) as the robot frame, Fp(Op,xp,yp, zp) as
the pan-platform frame, Fc(Oc,xc,yc, zc) as the camera
frame, and Fl(Ol,xl,yl, zl) as the laser frame. The robot
pose is given by χr = [xr, yr, θr, θp]

T , where xr and yr are
the coordinates of Or in Fo, and θr and θp are respectively
the robot orientation with respect to xo, and the pan-platform
orientation with respect to xr. Finally, q = [υ, ωr, ωpp]

T

denotes the system control input vector, where υ and ωr are
the mobile base linear and angular velocities, and ωpp is the
pan-platform angular velocity with respect to Fr.

As the camera is mounted on the pan-platform of a differen-
tial drive robot, its motion is controlled via the robotic system,
and its number of degrees of freedom is reduced to three
(two translation motions along yc and zc, one rotation motion
around xc as shown in Fig. 1). Thus, the camera kinematic
screw νc can be written as follows [15]:

νc = Jq =

 − sin(θp) ∆rp cos(θp) + cx cx
cos(θp) ∆rp sin(θp)− cy −cy

0 −1 −1

q (1)

where J is the robot Jacobian, cx and cy are the coordinates
of Oc along axes xp and yp, and ∆rp is the distance between
Or and Op (see Figure 1).

B. The vision-based positioning task

The navigation task is made of two sub-tasks: the vision-
based positioning sub-task, detailed hereafter, and the obstacle

camera focal length

optical axis

im
a
g
e
 p

la
n
e

Fig. 2: Perspective camera model.

avoidance one, presented in the following section. The vision-
based positioning task consists in controlling the robot to make
the camera reach a pose defined in the image space. To do so,
we rely on a visual features vector s, which values depend
on the relative camera pose with respect to a reference static
landmark. The landmark is characterized by nvf interest points
whose coordinates in Fc are defined by (xj , yj , zj) with j ∈
[1, ..., nvf]. Their projections on the image plane are defined
as sj = (Xj , Yj) (see Fig. 2). Thus, the visual features vector
s is given by:

s = [X1, Y1, ..., Xnvf
, Ynvf

]T (2)

For the considered robot and visual features, the relation
between ṡ and q is given by [7]: ṡ = Lνc = LJq where
L = [LT1 , ...,L

T
nvf

]T is the so-called interaction matrix with
Lj defined by [7]:

Lj =

[
0

Xj

zj

XjYj

f

f
zj

Yj

zj
(f +

Y 2
j

f)

]
(3)

with f the focal distance. The visual servoing task will be
successfully performed if s converge towards s∗, that is if the
error function evs = s− s∗ vanishes. To do so, we apply the
visual servoing technique given in [16] to mobile robots as
in [17]. It consists in zeroing evs by imposing an exponential
decrease, that is: ėvs = −λvsevs where λvs is a positive scalar
or a positive definite matrix which fixes the decrease rate. The
corresponding control law is given by:

qvs = −λvs(LJ)+(s− s∗) (4)

where (LJ)+ is the pseudo-inverse of LJ.

III. OBSTACLE AVOIDANCE

A. The obstacle avoidance strategy

In this work, we design an obstacle avoidance strategy
relying on the spirals described by insects during their flights.
To do so, we use the spiral model presented in [10] (see Fig.
3a). Let us first consider a point Or moving according to the
velocity vector v. Or represents the insect position or the
robot frame origin in our case. Let consider a second point
Os, static, whose polar coordinates in Fr can be expressed
as Os = (α, d), where α is the oriented angle from v to the
OrOs vector, and d the distance between Or and Os. It is
shown in [10] that if both v and α are constant during a time

interval ∆t, then Or describes a spiral whose center is Os
during ∆t. In such a case, the following equation holds:

ḋ = −v cos(α) (5)

Thus, (5) shows that the type of spiral only depends on α.
Indeed, if α ∈]− π; 0[, then Or turns clockwise with respect
to Os and counter-clockwise if α ∈]0;π[. Moreover, if α ∈
] − π;−π2 [∪]π2 ;π[, then the spiral is outward and inward if
α ∈] − π

2 ; 0[∪]0; π2 [. It becomes a circle if α = ±π2 , with a
radius equal to d. Finally, if α = 0, then Or follows a straight
line towards Os or away from it if α = π.

The spiral model being presented, we now describe the
obstacle avoidance strategy. Each new data are processed to
determine if an obstacle should be considered as dangerous
(see Section III-B). In such a case, we determine a reference
spiral the robot has to follow to avoid a collision. It consists
in calculating a center point Os and an angle α∗, both
guaranteeing non-collision. We then use a spiral following
controller (see Section III-C) to avoid the obstacle. It should
be noted that a reference spiral is computed for each new
laser data. Thus, our method does not seek to follow a unique
spiral over time, and the robot does not describe a spiral-
shaped path. On the contrary, it follows a different spiral at
each iteration, allowing thus to generate complex path and to
deal with challenging obstacles.

(a) Spiral model

R
o
b
o
t

L
a
s
e
r

b
e
a
m

(b) Os computation

Fig. 3: Obstacle avoidance models

B. Determination of the reference spiral parameters

To compute the reference spiral parameters, the laser point
cloud is first preprocessed to extract the data corresponding
to the obstacle to avoid. Thus, it is divided into no subsets,
corresponding to the no obstacles in the sensor field of view.
To do so, the range values set is browsed and a new subset
is created and/or closed when the difference between two
consecutive ranges is larger than a user-defined threshold ∆o.
Next, obstacles that are too close to allow the robot to pass
between them are merged. Thus, if the distance between two
points of two different subsets is smaller than a user-defined
threshold ∆m, the subsets are merged. ∆m is chosen based
on the robot diameter and a minimal safety distance. Finally,
among the subsets, we select the closest one to the robot as
the point cloud representing the obstacle to avoid. Note, that

it could represent a unique physical obstacle, e.g., a sofa, or
several close obstacles, e.g., the legs of a chair.

We now focus on the reference spiral center Os. We first
compute Oc, the closest obstacle point to the robot. Next,
we compute an approximation of the closest point lying on
a segment line closing a concavity (see Fig. 3b). To do so,
we first calculate Opi , the orthogonal projection of the robot
center onto the line passing by Oc and Oi, for each point Oi
of the point cloud. If Opi belongs to the line segment OcOi,
it becomes a candidate for Os. Once Opi has been calculated
for each Oi, we select among them and Oc the closest one to
the robot as Os. Thus, the spiral center is either Oc or a point
belonging to the segment line closing the concavity.

Regarding the spiral angle, it is proposed to define a
time-varying reference angle α∗(t). Indeed, if the error to
minimize only depends on a constant reference angle α∗,
then the distance to the spiral center, i.e., to the obstacle,
is not controlled and depends on the initial condition. If the
controller is activated far away from the obstacle, the initial
distance is then large. By following such a spiral the robot
safely avoids the obstacle but describes an inefficient path in
regards of the navigation task. On the contrary, if activated
close to the obstacle, the initial distance is small. It leads to
an efficient path but the robot might collide with the obstacle,
especially during the transient phase. For a navigation, we
would like to start the avoidance as soon as the obstacle is
considered dangerous, while passing at the smallest possible
distance from it to obtain an efficient path. For this reason,
the robot has to follow a spiral at a given distance from the
its center, i.e., to control both α and d. We then define the
following time-varying reference angle α∗(t):

α∗(t) = αc + αdε(t) (6)

α∗(t) is composed of two parts. The first one, αc, is constant
and equal to ±π/2 to maintain a constant robot-obstacle
distance. The second one, αdε(t), makes the robot reach the
desired distance. Thus, when d > d∗, α∗(t) should tend
towards 0, which is the best value to get the robot closer
to the spiral center. On the contrary, when d < d∗, α∗(t)
should tend towards ±π, which is the best value to get the
robot away from the spiral center. To do so, αd represents the
maximal value that can be added/subtracted to αc to make
the robot converge towards the spiral without changing its
circumvention direction. Then ε(t) should have its norm equal
to 1 when ||d(t) − d∗|| ≥ ||d(0) − d∗||, and equal to 0 when
d(t) = d∗. To do so, αd and ε(t) are defined as:

αd =

{
αc if d(0) > d∗

sign(αc) ∗ π − αc if d(0) < d∗
(7)

ε(t) = sign(d∗ − d(t)) min

(
| d

∗ − d(t)

|d∗ − d(0)|
|, 1
)

(8)

First, (7) guarantees that the sense of rotation is not modified.
Indeed, we obtain α∗ ∈ [0, π] when αc ∈ [0, π], and α∗ ∈
[0,−π] when αc ∈ [0,−π]. Next, (8) computes ε(t) as the
normalized error between d∗ and d(t) and makes it saturated

to ±1. Thus, its value belongs to the domain [0, 1] if d(0) < d∗

or [−1, 0] if d(0) > d∗. We then obtain the desired behavior:
(i) when d 6= d∗, the robot converges towards the spiral with
α∗(t) = 0 or α∗(t) = ±π and (ii) when d = d∗, then α∗(t) =
αc maintaining a constant distance.

Finally, it is necessary to compute the sign of αc, i.e., the
direction of circumvention. We first compute the point cloud
barycenter Ob. If its y coordinate is positive, then αc = π/2
and the circumvention direction is counter-clockwise. Other-
wise αc = −π/2 and the circumvention direction is clockwise.
Unlike the spiral center which is computed for each new laser
scan, the circumvention direction is only calculated when the
obstacle avoidance controller is started.

C. Obstacle avoidance controller

During the obstacle avoidance, the robot has to follow a
succession of reference spirals while keeping the target in the
camera field of view to restart the visual navigation once the
obstacle is avoided. We present the two controllers achieving
these tasks: the spiral following controller computes qsf =
[υ, ωr]

T to make the mobile base follow a reference spiral and
the pan-platform controller computes qpp = ωpp to control the
camera and keep the landmark in its field of view despite of
the mobile base displacements.

To compute qsf , we first define the following error:

esf (t) = α(t)− α∗(t) (9)

To make esf (t) vanish, we impose an exponential decrease,
that is: ėsf (t) = −λsfesf (t) where λsf is a positive scalar.
We then derive an expression for ėsf (t) such as:

ėsf (t) = α̇(t)− αdε̇(t)
= −ωr(t) + υ(t)

d(t) sin(α(t))− αdε̇(t)
(10)

By imposing a constant linear velocity υ, and combining the
previous equations, we obtain the following controller:

ωr(t) = λsf (α(t)− α∗(t)) +
υ

d(t)
sin(α(t))− αdε̇(t) (11)

Controller (11) only controls the robot mobile base. To keep
the landmark in the camera field of view during the spiral
following phase, we define the following new 1-dimensional
error epp = Yg where Yg is the abscissa of the visual pattern
gravity center. Its time derivative is such as:

ėpp = Lgνc =
[

f
zg

Yg

zg
(f +

Y 2
g

f)
]
νc (12)

where zg is depth of the Yg . Partitioning J leads to: νc =
Jsfqsf +Jppqpp where Jsf (respectively, Jpp) is made of the
two first columns (respectively, the third one) of J. Imposing
an exponential decrease such as ėpp = −λppepp, with λpp > 0,
and replacing νc by its expression in (12) allows to deduce:

ωpp = − 1

LgJpp
(λppepp + LgJsfqsf) (13)

Finally, the complete control vector for the obstacle avoidance
phase is defined qoa =

[
qTsf qpp

]T
.

D. Finite-state machine
We now focus on the finite-state machine selecting the

appropriate controller. It is made of 8 states and 11 transitions,
and is shown in Fig. 4. Let us detail first the states, then the
transitions. For the initial state S0, the robot is stopped and
ready to start the navigation. For S1 and S4, it moves towards
the goal using the visual servoing controller, while for S2 and
S3, it circumvents the hazard using the obstacle avoidance
controller. Finally, for S5, S6 and S7, the robot is stopped
and the navigation is over. S5 and S6 are reached when the
navigation fails due to respectively a collision or the target
loss, while S7 is reached when the navigation is a success.

INIT

VS

VS

OA

OA

STOP STOP

STOP

Fig. 4: Navigation finite-state machine

Regarding the transitions, obs is used to switch to the
obstacle avoidance controller and is computed as follows:

obs = d < δdoa AND |α| < δαoa
AND d > d̂ (14)

where δdoa and δαoa
are respectively a distance and an angle

defining a cone with its origin on Ol and centered on xl.
Moreover, d̂ is the predicted distance between Os and Or
when qvf is applied. Thus, the obstacle avoidance is activated
when (i) Os belongs to a user-defined cone, and (ii) the visual
servoing drives the robot towards the obstacle. On the contrary,
the nav condition is used to switch to the visual servoing
controller and is computed as follows:

nav = |θp| < δθvs AND |α| < δαvs (15)

where δθvs and δαvs are two angular thresholds. Thus, we
switch to the visual servoing when (i) the pan-platform and
the mobile base are almost aligned, i.e., the robot is oriented
towards the target, and (ii) Os belongs to a user-defined cone.

To prevent too many switches between the controllers, the
following strategy was developed. After switching from S1

to S2, it is not possible to immediately reactivate the visual
servoing. The robot must first complete the spiral following
transient phase. This is encoded in unlockoa as follows:

unlockoa = |α− α∗| < δα∗ (16)

where δα∗ is a user-defined threshold. Once spiral is true, S3

is reached, and it is possible to reactivate the visual servoing.
Similarly, after switching from S3 to S4, it is not possible to
immediately reactivate the obstacle avoidance. The robot must
first move sufficiently away from the obstacle. This is encoded
in unlockvs as follows:

unlockvs = d > δd (17)

where δd is a user-defined threshold. Once unlockvs is true,
S1 is reached, and the obstacle avoidance can be reactivated.

The target, col and goal conditions are used to stop the
robot when necessary. They are respectively true when the
landmark is in the camera field of view, a collision is detected,
and the desired pose is reached.

IV. RESULTS

(a) Environment A (b) Environment B

Fig. 5: The navigation environments

In this section we presents the results obtained when
simulating the proposed navigation strategy with the ROS
middleware, the 3D simulation software Gazebo, the Python
programming language, and a robot model based on TIAGo
from PAL Robotics. The robot is equipped with an RGB-
D camera with a 1280 by 960 pixels resolution, and a laser
rangefinder with a 220◦ field of view and a 0.33◦ resolution.
The navigation strategy is tested in the two environments
A and B (see Fig. 5). Environment A contains two convex
cubes and a portion of wall forming a concave obstacle, and
environment B is made of one table and four chairs. The
obstacle of A are entirely detected by the laser rangefinder,
while only the furniture legs can be sensed and appear as
a set of small convex obstacles. For both environments, the
robot has to reach a desired pose defined 1 meter in front of
a landmark. This latter is made of an AprilTag [18] whose
four corners are extracted using OpenCV to be used as the
four visual features. Regarding the different parameters of the
navigation the following values are used: ∆o = 0.15m and
∆m = 1m for the laser processing, λvf = 0.5, λsf = 1.5
and λpp = 2 for the control gains, d∗ = 0.6 for the safety
distance, and δαoa

= 60◦, δdoa = 5m, δαvs
= 80◦, δθvs

= 10◦

δα∗ = 10◦, and δd = 0.7m for the transition conditions. The
navigation is stopped when the four visual features are at a
distance smaller than 50 pixels from their reference values.
This choice allows the robot to reach a pose sufficiently close
to the desired one from a navigation perspective. To improve
the robot pose, it would be necessary to switch to an IBVS
with a gain higher than λvs. For the given configuration the
control frequency is setup at 30 Hz.

The results in environment A are shown in Fig. 6. In Fig.
6a, we can see that the first obstacle is immediately considered
as dangerous, and the obstacle avoidance is started. The robot
circumvents the obstacle without going deep into the concavity
thanks to the calculation method of the spiral center proposed

Video link

in this work. Once the robot gets closer to the second obstacle,
the values of ∆m and d∗ allows passing between the two
obstacles. Indeed, obstacles 1 and 2 are not merged based on
∆m, and d∗ is small enough to not make the robot collide with
obstacle 2. On the contrary, obstacles 1 and 3 are merged based
on ∆m and the obstacle avoidance continues after passing the
first obstacle. Once again, the robot does not deeply enter
the concavity and manages to avoid the last obstacle. Finally,
the visual servoing is started and the robot safely reaches
an area around the desired pose. Indeed, in Fig. 6b, it can
be seen that the task is successfully achieved in the image
space. Moreover, by compensating the mobile base rotation
with the pan-platform during the obstacle avoidance, the visual
features are kept in the camera field of view during the entire
navigation. In Fig. 6c, it can be seen that, while navigating in
a complex environment, the robot successfully stays beyond
the safety distance d∗ = 0.6m, which is achieved by tracking
a time-varying α∗(t). Finally, the control inputs leading to the
described navigation are shown in Fig. 6d.

1

TAR
G
ET

2

3

Initial pose

(a) Path

Desired area for the visual features

(b) Visual features

(c) Spiral parameters

OA VS

(d) Control inputs

Fig. 6: Results for environment A

The results obtained in environment A with two modifi-
cations of the navigation parameters are shown in Fig. 7. In
Fig. 7a, the obstacle avoidance exit parameter is now equal to
δαvs

= 45◦. In Fig. 7b, the merging threshold is adjusted
to ∆m = 0.5m, and obstacles 1 and 3 are not merged
anymore. For both cases, it results in switching to the visual
visual controller after passing the first obstacle. After a few
moments, the third obstacle is considered as dangerous and
the obstacle avoidance is re-started. Thus, the modification of
two navigation parameters has some impact on the path but
does not significantly modify the overall performances.

The results for environment B are shown in Fig. 8. Similarly
to the previous case, the obstacle lies on the robot path towards
the desired pose and the obstacle avoidance is immediately
started (see Fig. 8a). However, from the laser rangefinder
perspective the obstacle is not continuous but discrete, i.e.,

https://youtu.be/Mw8okoOpxZo

1

TAR
G
ET

2

3

Initial pose

(a) Path with δαvs = 45◦

1

TAR
G
ET

2

3

Initial pose

(b) Path with ∆m = 0.5m

Fig. 7: Results for environment A (cont.)

the furniture legs represent a set of small obstacles. Thanks to
the merging step and the method used to compute the spiral
center, the robot manages to circumvent the discrete obstacle
with a behavior similar to the one obtained with a continuous
obstacle. Once the obstacle is not dangerous anymore, the
visual servoing is started to drive the robot towards a visual
pose close to the desired one (see Fig. 8b). Similarly to the
previous cases, it can be seen that the robot successfully stays
beyond the safety distance d∗ by tracking a time-varying α∗(t)
(see Fig. 8c) and despite the discontinuities observed on both d
and α. They are due to the limited laser field of view. Indeed,
when the spiral center is at α = ±π/2, the obstacle is at the
border of the laser field of view. Thus, when a furniture leg
disappear from the laser view, the spiral center jumps to the
next leg, creating discontinuities in the spiral center evolution.
These discontinuities impact the control inputs (see Fig. 8d)
but they do not cause the navigation to fail. This phenomenon
can be avoided by increasing the sensor field of view.

TAR
G
ET

Initial pose

(a) Path

Desired area for the visual features

(b) Visual features

(c) Spiral parameters

OA VS

(d) Control inputs

Fig. 8: Results for environment B

V. CONCLUSION

In this paper we have presented a stand-alone obstacle
avoidance method based on the follow-up of successive spirals.
It allows dealing with unknown convex and concave obstacles

while navigating in a cluttered environment. This method can
be coupled with navigation controllers working in a variety of
state spaces. We have shown an example where the navigation
is performed using an IBVS controller and a finite-state ma-
chine is used to select the appropriate controller. The obtained
results are satisfactory: the robot achieves the navigation
while avoiding the unknown convex/concave obstacles without
requiring any metric localization. In a near future, we plan to
adapt the method to deal with small dynamic obstacles.

REFERENCES

[1] J. Minguez, F. Lamiraux, and J.-P. Laumond, “Motion planning and
obstacle avoidance,” in Springer handbook of robotics. Springer, 2016,
pp. 1177–1202.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[3] J. Borenstein, Y. Koren, et al., “The vector field histogram-fast obsta-
cle avoidance for mobile robots,” IEEE transactions on robotics and
automation, vol. 7, no. 3, pp. 278–288, 1991.

[4] J. Minguez, “The obstacle restriction method (orm): Obstacle avoidance
in difficult scenarios,” in IEEE Int. Conf. on Intelligent Robot and
Systems, 2005.

[5] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[6] D. Wilkie, J. Van Den Berg, and D. Manocha, “Generalized velocity
obstacles,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 5573–5578.

[7] F. Chaumette and S. Hutchinson, “Visual servo control, part 1 : Basic
approaches,” Robotics and Automation Mag., vol. 13, no. 4, 2006.

[8] A. Khelloufi, N. Achour, R. Passama, and A. Cherubini, “Tentacle-based
moving obstacle avoidance for omnidirectional robots with visibility
constraints,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 1331–1336.

[9] F. Michaud and M. Nicolescu, “Behavior-based systems,” in Springer
handbook of robotics. Springer, 2016, pp. 307–328.

[10] K. N. Boyadzhiev, “Spirals and conchospirals in the flight of insects,”
The college mathematics Journal, vol. 30, no. 1, pp. 23–31, 1999.

[11] A. Mcfadyen, A. Durand-Petiteville, and L. Mejias, “Decision strategies
for automated visual collision avoidance,” in International Conference
on Unmanned Aircraft Systems. IEEE, 2014, pp. 715–725.

[12] A. Durand-Petiteville, E. Le Flecher, V. Cadenat, T. Sentenac, and
S. Vougioukas, “Design of a sensor-based controller performing u-turn
to navigate in orchards,” in International Conference on Informatics in
Control, Automation and Robotics, vol. 2, 2017, pp. 172–181.

[13] A. Villemazet, A. Durand-Petiteville, and V. Cadenat, “Autonomous
navigation strategy for orchards relying on sensor-based nonlinear
model predictive control,” in IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, 2022.

[14] D. Leca, V. Cadenat, T. Sentenac, A. Durand-Petiteville, F. Gouaisbaut,
and E. Le Flecher, “Sensor-based obstacles avoidance using spiral
controllers for an aircraft maintenance inspection robot,” in 2019 18th
European Control Conference (ECC). IEEE, 2019, pp. 2083–2089.

[15] A. Durand-Petiteville, M. Courdesses, and V. Cadenat, “A new predic-
tor/corrector pair to estimate the visual features depth during a vision-
based navigation task in an unknown environment,” in 7th International
Conference on Informatics in Control, Automation and Robotics, Fun-
chal, Portugal, June 2010.

[16] Espiau, Chaumette, and Rives, “A new approach to visual servoing in
robotics,” IEEE Trans. Robot. Automat., vol. 8, pp. 313–326, 1992.

[17] Pissard-Gibollet and Rives, “Applying visual servoing techniques to
control a mobile handeye system,” in IEEE Int., Conf. on Robotics and
Automation, Nagoya, Japan, 1995.

[18] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detec-
tion,” in 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2016, pp. 4193–4198.

	Introduction
	Preliminaries
	System modeling
	The vision-based positioning task

	Obstacle avoidance
	The obstacle avoidance strategy
	Determination of the reference spiral parameters
	Obstacle avoidance controller
	Finite-state machine

	Results
	Conclusion
	References

