A Durand-Petiteville

V Cadenat

T Sentenac

Stand-alone obstacle avoidance controller for image-based navigation

In this paper we present a stand-alone reactive avoidance controller inspired by the spirals described by insects during their flights. Unlike state-of-the-art obstacle avoidance methods, it only focuses on circumventing hazardous elements and can be coupled to navigation controllers working in different state space, such as the image one. We describe the obstacle avoidance problem by following a set of spirals, the spiral parameters computation to deal with convex/concave obstacles, and the spiral following controller design. Finally, a set of simulations obtained with ROS/Gazebo show the efficiency of the proposed approach to navigate in a cluttered environment.

I. INTRODUCTION

This paper addresses the obstacle avoidance problem during an image-based navigation in an unknown environment. For this work, the motion planning techniques where a collisionfree trajectory to the target is computed, leading to a global solution to the navigation problem, are discarded. Indeed, they consider a perfect model of the robot and of the environment, and fail when the surroundings are unknown and unpredictable [START_REF] Minguez | Motion planning and obstacle avoidance[END_REF]. For this reason, it is proposed to focus on the obstacle avoidance techniques. They consist in driving the robot towards the goal relying on the data collected by the sensors during the navigation execution [START_REF] Minguez | Motion planning and obstacle avoidance[END_REF]. Thus, these techniques, classified as reactive, introduce the sensor information within the control loop, and allow adapting the motion to any contingency incompatible with initial plans at the cost of a local solution. Among the most representative obstacle avoidance methods, let us mention first the ones computing the motion in one step. For example, the Potential Fields method [START_REF] Khatib | Real-time obstacle avoidance for manipulators and mobile robots[END_REF] which is based on physical analogies and directly reduces the sensor information to motion control. Then, one focuses on approaches requiring more than one step: first, an intermediate set of motion controls is computed, and next, one of them is chosen. The intermediate set might be a subset of motion directions for methods such as the Vector Field Histogram (VFH) [START_REF] Borenstein | The vector field histogram-fast obstacle avoidance for mobile robots[END_REF] or Obstacle Restriction [START_REF] Minguez | The obstacle restriction method (orm): Obstacle avoidance in difficult scenarios[END_REF], or a subset of velocity controls in the case of the Dynamic Window Approach (DWA) [START_REF] Fox | The dynamic window approach to collision avoidance[END_REF] or Velocities Obstacles (VO) [START_REF] Wilkie | Generalized velocity obstacles[END_REF] ones. However, all these methods share a common approach: they compute a motion leading to the goal and avoiding obstacles, and to do so they require to know the desired pose in the metric space. Thus, when the goal is expressed in a different space, such as the image space when controlling a robot via Visual Servoing [START_REF] Chaumette | Visual servo control, part 1 : Basic approaches[END_REF], it is not possible to rely on one of these approaches to avoid obstacles. To tackle this issue, it was proposed in [START_REF] Khelloufi | Tentacle-based moving obstacle avoidance for omnidirectional robots with visibility constraints[END_REF] to design a tentacle-based obstacle avoidance method coupled with an Image-Based Visual Servoing (IBVS). It relies on an occupancy grid which is then used to evaluate the collision risk of a set of tentacles. When the risk of collision is too high, the robot follows the tentacle with the best evaluation.

In this work, we present a navigation framework inspired by the behavior-based systems [START_REF] Michaud | Behavior-based systems[END_REF], where the navigation task is divided into two sub-tasks: reaching the desired pose and avoiding obstacles. The proposed system is then composed of two controllers and one finite-state machine activating one of the them based on the current situation. The first controller is an IBVS driving the robot towards a desired pose expressed in the image space, while the second one is a spiral follower using data provided by a laser range finder in order to perform the obstacle avoidance. The choice of IBVS is motivated by the relatively low cost of cameras and their ability to detect landmarks in challenging environments. Moreover, this approach does not require the robot to estimate its metric pose on a global frame. Regarding the obstacle avoidance controller, its design is inspired by the work presented in [START_REF] Boyadzhiev | Spirals and conchospirals in the flight of insects[END_REF] and modeling the spirals described by insects during their flights. This work has already been used in [START_REF] Mcfadyen | Decision strategies for automated visual collision avoidance[END_REF] to avoid aircraft, in [START_REF] Durand-Petiteville | Design of a sensor-based controller performing u-turn to navigate in orchards[END_REF] and [START_REF] Villemazet | Autonomous navigation strategy for orchards relying on sensor-based nonlinear model predictive control[END_REF] to perform a u-turn in an orchard, and in [START_REF] Leca | Sensor-based obstacles avoidance using spiral controllers for an aircraft maintenance inspection robot[END_REF] to avoid convex obstacles during a metric-based navigation. In this work, it is proposed to use the spiral model to design a stand-alone obstacle avoidance controller that can be coupled with any navigation controller, such as an IBVS one. The model is simple enough to provide a computationally efficient implementation, while being sufficiently versatile to lead to advance paths circumventing complex static obstacles. Thus, in this paper we present (i) the approach allowing to use the spiral model to avoid convex and concave obstacles, (ii) the design of a time-varying spiral following controller, and (iii) the finite-state machine coupling the controllers.

The rest of the paper is organized as follows. The next section is dedicated to a succinct presentation of the IBVS approached used in our navigation framework. Then, the obstacle avoidance approach is described, including the overall description, the data processing step, the design of the controller and the presentation of the finite-state machine. Finally, results obtained via simulation are presented to show the relevancy and efficiency of the proposed approach.

II. PRELIMINARIES

A. System modeling Fig. 1: Differential drive robot model.

In this work we aim at controlling a differential robot equipped with a camera embedded on a pan-platform and a laser rangefinder attached to the mobile base. To model the robotic system, the following frames are introduced as shown in Figure 1:

F o (O, x o , y o , z o)
as the world frame, F r (O r , x r , y r , z r) as the robot frame, F p (O p , x p , y p , z p) as the pan-platform frame, F c (O c , x c , y c , z c) as the camera frame, and F l (O l , x l , y l , z l) as the laser frame. The robot pose is given by χ r = [x r , y r , θ r , θ p] T , where x r and y r are the coordinates of O r in F o , and θ r and θ p are respectively the robot orientation with respect to x o , and the pan-platform orientation with respect to x r . Finally, q = [υ, ω r , ω pp] T denotes the system control input vector, where υ and ω r are the mobile base linear and angular velocities, and ω pp is the pan-platform angular velocity with respect to F r .

As the camera is mounted on the pan-platform of a differential drive robot, its motion is controlled via the robotic system, and its number of degrees of freedom is reduced to three (two translation motions along y c and z c , one rotation motion around x c as shown in Fig. 1). Thus, the camera kinematic screw ν c can be written as follows [START_REF] Durand-Petiteville | A new predictor/corrector pair to estimate the visual features depth during a visionbased navigation task in an unknown environment[END_REF]:

ν c = Jq =   -sin(θ p) ∆ rp cos(θ p) + c x c x cos(θ p) ∆ rp sin(θ p) -c y -c y 0 -1 -1   q (1)
where J is the robot Jacobian, c x and c y are the coordinates of O c along axes x p and y p , and ∆ rp is the distance between O r and O p (see Figure 1).

B. The vision-based positioning task

The navigation task is made of two sub-tasks: the visionbased positioning sub-task, detailed hereafter, and the obstacle ca m er a fo ca l le ng th op tic al ax is image plane Fig. 2: Perspective camera model. avoidance one, presented in the following section. The visionbased positioning task consists in controlling the robot to make the camera reach a pose defined in the image space. To do so, we rely on a visual features vector s, which values depend on the relative camera pose with respect to a reference static landmark. The landmark is characterized by n vf interest points whose coordinates in F c are defined by (x j , y j , z j) with j ∈ [1, ..., n vf]. Their projections on the image plane are defined as s j = (X j , Y j) (see Fig. 2). Thus, the visual features vector s is given by:

s = [X 1 , Y 1 , ..., X n vf , Y n vf] T (2)
For the considered robot and visual features, the relation between ṡ and q is given by [START_REF] Chaumette | Visual servo control, part 1 : Basic approaches[END_REF]:

ṡ = Lν c = LJq where L = [L T 1 , ..., L T n vf]
T is the so-called interaction matrix with L j defined by [START_REF] Chaumette | Visual servo control, part 1 : Basic approaches[END_REF]:

L j = 0 Xj zj Xj Yj f f zj Yj zj (f + Y 2 j f) (3)
with f the focal distance. The visual servoing task will be successfully performed if s converge towards s * , that is if the error function e vs = ss * vanishes. To do so, we apply the visual servoing technique given in [START_REF] Espiau | A new approach to visual servoing in robotics[END_REF] to mobile robots as in [START_REF]Applying visual servoing techniques to control a mobile handeye system[END_REF]. It consists in zeroing e vs by imposing an exponential decrease, that is: ėvs = -λ vs e vs where λ vs is a positive scalar or a positive definite matrix which fixes the decrease rate. The corresponding control law is given by:

q vs = -λ vs (LJ) + (s -s *) (4)
where (LJ) + is the pseudo-inverse of LJ.

III. OBSTACLE AVOIDANCE

A. The obstacle avoidance strategy

In this work, we design an obstacle avoidance strategy relying on the spirals described by insects during their flights. To do so, we use the spiral model presented in [START_REF] Boyadzhiev | Spirals and conchospirals in the flight of insects[END_REF] (see Fig. 3a). Let us first consider a point O r moving according to the velocity vector v. O r represents the insect position or the robot frame origin in our case. Let consider a second point O s , static, whose polar coordinates in F r can be expressed as O s = (α, d), where α is the oriented angle from v to the O r O s vector, and d the distance between O r and O s . It is shown in [START_REF] Boyadzhiev | Spirals and conchospirals in the flight of insects[END_REF] that if both v and α are constant during a time interval ∆t, then O r describes a spiral whose center is O s during ∆t. In such a case, the following equation holds:

ḋ = -v cos(α) (5)
Thus, [START_REF] Fox | The dynamic window approach to collision avoidance[END_REF] shows that the type of spiral only depends on α.

Indeed, if α ∈] -π; 0[, then O r turns clockwise with respect to O s and counter-clockwise if α ∈]0; π[. Moreover, if α ∈] -π; -π 2 [∪] π 2 ; π[, then the spiral is outward and inward if α ∈] -π 2 ; 0[∪]0; π 2 [. It becomes a circle if α = ± π 2
, with a radius equal to d. Finally, if α = 0, then O r follows a straight line towards O s or away from it if α = π.

The spiral model being presented, we now describe the obstacle avoidance strategy. Each new data are processed to determine if an obstacle should be considered as dangerous (see Section III-B). In such a case, we determine a reference spiral the robot has to follow to avoid a collision. It consists in calculating a center point O s and an angle α * , both guaranteeing non-collision. We then use a spiral following controller (see Section III-C) to avoid the obstacle. It should be noted that a reference spiral is computed for each new laser data. Thus, our method does not seek to follow a unique spiral over time, and the robot does not describe a spiralshaped path. On the contrary, it follows a different spiral at each iteration, allowing thus to generate complex path and to deal with challenging obstacles.

B. Determination of the reference spiral parameters

To compute the reference spiral parameters, the laser point cloud is first preprocessed to extract the data corresponding to the obstacle to avoid. Thus, it is divided into n o subsets, corresponding to the n o obstacles in the sensor field of view. To do so, the range values set is browsed and a new subset is created and/or closed when the difference between two consecutive ranges is larger than a user-defined threshold ∆ o . Next, obstacles that are too close to allow the robot to pass between them are merged. Thus, if the distance between two points of two different subsets is smaller than a user-defined threshold ∆ m , the subsets are merged. ∆ m is chosen based on the robot diameter and a minimal safety distance. Finally, among the subsets, we select the closest one to the robot as the point cloud representing the obstacle to avoid. Note, that it could represent a unique physical obstacle, e.g., a sofa, or several close obstacles, e.g., the legs of a chair.

We now focus on the reference spiral center O s . We first compute O c , the closest obstacle point to the robot. Next, we compute an approximation of the closest point lying on a segment line closing a concavity (see Fig. 3b). To do so, we first calculate O pi , the orthogonal projection of the robot center Regarding the spiral angle, it is proposed to define a time-varying reference angle α * (t). Indeed, if the error to minimize only depends on a constant reference angle α * , then the distance to the spiral center, i.e., to the obstacle, is not controlled and depends on the initial condition. If the controller is activated far away from the obstacle, the initial distance is then large. By following such a spiral the robot safely avoids the obstacle but describes an inefficient path in regards of the navigation task. On the contrary, if activated close to the obstacle, the initial distance is small. It leads to an efficient path but the robot might collide with the obstacle, especially during the transient phase. For a navigation, we would like to start the avoidance as soon as the obstacle is considered dangerous, while passing at the smallest possible distance from it to obtain an efficient path. For this reason, the robot has to follow a spiral at a given distance from the its center, i.e., to control both α and d. We then define the following time-varying reference angle α * (t):

α * (t) = α c + α d (t) (6)
α * (t) is composed of two parts. The first one, α c , is constant and equal to ±π/2 to maintain a constant robot-obstacle distance. The second one, α d (t), makes the robot reach the desired distance. Thus, when d > d * , α * (t) should tend towards 0, which is the best value to get the robot closer to the spiral center. On the contrary, when d < d * , α * (t) should tend towards ±π, which is the best value to get the robot away from the spiral center. To do so, α d represents the maximal value that can be added/subtracted to α c to make the robot converge towards the spiral without changing its circumvention direction. Then (t) should have its norm equal to 1 when ||d(t) -d * || ≥ ||d(0) -d * ||, and equal to 0 when d(t) = d * . To do so, α d and (t) are defined as:

α d = α c if d(0) > d * sign(α c) * π -α c if d(0) < d * (7) (t) = sign(d * -d(t)) min | d * -d(t) |d * -d(0)| |, 1 (8)
First, [START_REF] Chaumette | Visual servo control, part 1 : Basic approaches[END_REF] guarantees that the sense of rotation is not modified. Indeed, we obtain α * ∈ [0, π] when α c ∈ [0, π], and α * ∈ [0, -π] when α c ∈ [0, -π]. Next, (8) computes (t) as the normalized error between d * and d(t) and makes it saturated to ±1. Thus, its value belongs to the domain

[0, 1] if d(0) < d * or [-1, 0] if d(0) > d * .
We then obtain the desired behavior: (i) when d = d * , the robot converges towards the spiral with α * (t) = 0 or α * (t) = ±π and (ii) when d = d * , then α * (t) = α c maintaining a constant distance. Finally, it is necessary to compute the sign of α c , i.e., the direction of circumvention. We first compute the point cloud barycenter O b . If its y coordinate is positive, then α c = π/2 and the circumvention direction is counter-clockwise. Otherwise α c = -π/2 and the circumvention direction is clockwise. Unlike the spiral center which is computed for each new laser scan, the circumvention direction is only calculated when the obstacle avoidance controller is started.

C. Obstacle avoidance controller

During the obstacle avoidance, the robot has to follow a succession of reference spirals while keeping the target in the camera field of view to restart the visual navigation once the obstacle is avoided. We present the two controllers achieving these tasks: the spiral following controller computes q sf = [υ, ω r] T to make the mobile base follow a reference spiral and the pan-platform controller computes q pp = ω pp to control the camera and keep the landmark in its field of view despite of the mobile base displacements.

To compute q sf , we first define the following error:

e sf (t) = α(t) -α * (t) (9)
To make e sf (t) vanish, we impose an exponential decrease, that is: ėsf (t) = -λ sf e sf (t) where λ sf is a positive scalar. We then derive an expression for ėsf (t) such as:

ėsf (t) = α(t) -α d ˙ (t) = -ω r (t) + υ(t) d(t) sin(α(t)) -α d ˙ (t) (10)
By imposing a constant linear velocity υ, and combining the previous equations, we obtain the following controller:

ω r (t) = λ sf (α(t) -α * (t)) + υ d(t) sin(α(t)) -α d ˙ (t) (11)
Controller [START_REF] Mcfadyen | Decision strategies for automated visual collision avoidance[END_REF] only controls the robot mobile base. To keep the landmark in the camera field of view during the spiral following phase, we define the following new 1-dimensional error e pp = Y g where Y g is the abscissa of the visual pattern gravity center. Its time derivative is such as:

ėpp = L g ν c = f zg Yg zg (f + Y 2 g f) ν c (12
)
where z g is depth of the Y g . Partitioning J leads to: ν c = J sf q sf + J pp q pp where J sf (respectively, J pp) is made of the two first columns (respectively, the third one) of J. Imposing an exponential decrease such as ėpp = -λ pp e pp , with λ pp > 0, and replacing ν c by its expression in [START_REF] Durand-Petiteville | Design of a sensor-based controller performing u-turn to navigate in orchards[END_REF] allows to deduce:

ω pp = - 1 L g J pp (λ pp e pp + L g J sf q sf) (13)
Finally, the complete control vector for the obstacle avoidance phase is defined q oa = q T sf q pp T .

D. Finite-state machine

We now focus on the finite-state machine selecting the appropriate controller. It is made of 8 states and 11 transitions, and is shown in Fig. 4. Let us detail first the states, then the transitions. For the initial state S 0 , the robot is stopped and ready to start the navigation. For S 1 and S 4 , it moves towards the goal using the visual servoing controller, while for S 2 and S 3 , it circumvents the hazard using the obstacle avoidance controller. Finally, for S 5 , S 6 and S 7 , the robot is stopped and the navigation is over. S 5 and S 6 are reached when the navigation fails due to respectively a collision or the target loss, while S 7 is reached when the navigation is a success. Regarding the transitions, obs is used to switch to the obstacle avoidance controller and is computed as follows:

obs = d < δ doa AND |α| < δ αoa AND d > d (14)
where δ doa and δ αoa are respectively a distance and an angle defining a cone with its origin on O l and centered on x l . Moreover, d is the predicted distance between O s and O r when q vf is applied. Thus, the obstacle avoidance is activated when (i) O s belongs to a user-defined cone, and (ii) the visual servoing drives the robot towards the obstacle. On the contrary, the nav condition is used to switch to the visual servoing controller and is computed as follows:

nav = |θ p | < δ θvs AND |α| < δ αvs (15)
where δ θvs and δ αvs are two angular thresholds. Thus, we switch to the visual servoing when (i) the pan-platform and the mobile base are almost aligned, i.e., the robot is oriented towards the target, and (ii) O s belongs to a user-defined cone.

To prevent too many switches between the controllers, the following strategy was developed. After switching from S 1 to S 2 , it is not possible to immediately reactivate the visual servoing. The robot must first complete the spiral following transient phase. This is encoded in unlock oa as follows:

unlock oa = |α -α * | < δ α * (16)
where δ α * is a user-defined threshold. Once spiral is true, S 3 is reached, and it is possible to reactivate the visual servoing. Similarly, after switching from S 3 to S 4 , it is not possible to immediately reactivate the obstacle avoidance. The robot must first move sufficiently away from the obstacle. This is encoded in unlock vs as follows:

unlock vs = d > δ d (17
)
where δ d is a user-defined threshold. Once unlock vs is true, S 1 is reached, and the obstacle avoidance can be reactivated. The target, col and goal conditions are used to stop the robot when necessary. They are respectively true when the landmark is in the camera field of view, a collision is detected, and the desired pose is reached. In this section we presents the results obtained when simulating the proposed navigation strategy with the ROS middleware, the 3D simulation software Gazebo, the Python programming language, and a robot model based on TIAGo from PAL Robotics. The robot is equipped with an RGB-D camera with a 1280 by 960 pixels resolution, and a laser rangefinder with a 220 • field of view and a 0.33 • resolution. The navigation strategy is tested in the two environments A and B (see Fig. 5). Environment A contains two convex cubes and a portion of wall forming a concave obstacle, and environment B is made of one table and four chairs. The obstacle of A are entirely detected by the laser rangefinder, while only the furniture legs can be sensed and appear as a set of small convex obstacles. For both environments, the robot has to reach a desired pose defined 1 meter in front of a landmark. This latter is made of an AprilTag [START_REF] Wang | Apriltag 2: Efficient and robust fiducial detection[END_REF] whose four corners are extracted using OpenCV to be used as the four visual features. Regarding the different parameters of the navigation the following values are used: ∆ o = 0.15m and ∆ m = 1m for the laser processing, λ vf = 0.5, λ sf = 1.5 and λ pp = 2 for the control gains, d * = 0.6 for the safety distance, and δ αoa = 60 • , δ doa = 5m, δ αvs = 80 • , δ θvs = 10 • δ α * = 10 • , and δ d = 0.7m for the transition conditions. The navigation is stopped when the four visual features are at a distance smaller than 50 pixels from their reference values. This choice allows the robot to reach a pose sufficiently close to the desired one from a navigation perspective. To improve the robot pose, it would be necessary to switch to an IBVS with a gain higher than λ vs . For the given configuration the control frequency is setup at 30 Hz.

IV. RESULTS

The results in environment A are shown in Fig. 6. In Fig. 6a, we can see that the first obstacle is immediately considered as dangerous, and the obstacle avoidance is started. The robot circumvents the obstacle without going deep into the concavity thanks to the calculation method of the spiral center proposed Video link in this work. Once the robot gets closer to the second obstacle, the values of ∆ m and d * allows passing between the two obstacles. Indeed, obstacles 1 and 2 are not merged based on ∆ m , and d * is small enough to not make the robot collide with obstacle 2. On the contrary, obstacles 1 and 3 are merged based on ∆ m and the obstacle avoidance continues after passing the first obstacle. Once again, the robot does not deeply enter the concavity and manages to avoid the last obstacle. Finally, the visual servoing is started and the robot safely reaches an area around the desired pose. Indeed, in Fig. 6b, it can be seen that the task is successfully achieved in the image space. Moreover, by compensating the mobile base rotation with the pan-platform during the obstacle avoidance, the visual features are kept in the camera field of view during the entire navigation. In Fig. 6c, it can be seen that, while navigating in a complex environment, the robot successfully stays beyond the safety distance d * = 0.6m, which is achieved by tracking a time-varying α * (t). Finally, the control inputs leading to the described navigation are shown in Fig. 6d. The results obtained in environment A with two modifications of the navigation parameters are shown in Fig. 7. In Fig. 7a, the obstacle avoidance exit parameter is now equal to δ αvs = 45 • . In Fig. 7b, the merging threshold is adjusted to ∆ m = 0.5m, and obstacles 1 and 3 are not merged anymore. For both cases, it results in switching to the visual visual controller after passing the first obstacle. After a few moments, the third obstacle is considered as dangerous and the obstacle avoidance is re-started. Thus, the modification of two navigation parameters has some impact on the path but does not significantly modify the overall performances.

The results for environment B are shown in Fig. 8. Similarly to the previous case, the obstacle lies on the robot path towards the desired pose and the obstacle avoidance is immediately started (see Fig. 8a). However, from the laser rangefinder perspective the obstacle is not continuous but discrete, i.e., the furniture legs represent a set of small obstacles. Thanks to the merging step and the method used to compute the spiral center, the robot manages to circumvent the discrete obstacle with a behavior similar to the one obtained with a continuous obstacle. Once the obstacle is not dangerous anymore, the visual servoing is started to drive the robot towards a visual pose close to the desired one (see Fig. 8b). Similarly to the previous cases, it can be seen that the robot successfully stays beyond the safety distance d * by tracking a time-varying α * (t) (see Fig. 8c) and despite the discontinuities observed on both d and α. They are due to the limited laser field of view. Indeed, when the spiral center is at α = ±π/2, the obstacle is at the border of the laser field of view. Thus, when a furniture leg disappear from the laser view, the spiral center jumps to the next leg, creating discontinuities in the spiral center evolution. These discontinuities impact the control inputs (see Fig. 8d) but they do not cause the navigation to fail. This phenomenon can be avoided by increasing the sensor field of view. In this paper we have presented a stand-alone obstacle avoidance method based on the follow-up of successive spirals. It allows dealing with unknown convex and concave obstacles while navigating in a cluttered environment. This method can be coupled with navigation controllers working in a variety of state spaces. We have shown an example where the navigation is performed using an IBVS controller and a finite-state machine is used to select the appropriate controller. The obtained results are satisfactory: the robot achieves the navigation while avoiding the unknown convex/concave obstacles without requiring any metric localization. In a near future, we plan to adapt the method to deal with small dynamic obstacles.

Fig. 3 :

 3 Fig. 3: Obstacle avoidance models

 onto the line passing by O c and O i , for each point O i of the point cloud. If O pi belongs to the line segment O c O i , it becomes a candidate for O s . Once O pi has been calculated for each O i , we select among them and O c the closest one to the robot as O s . Thus, the spiral center is either O c or a point belonging to the segment line closing the concavity.

Fig. 4 :

 4 Fig. 4: Navigation finite-state machine

Fig. 5 :

 5 Fig. 5: The navigation environments

Fig. 6 :

 6 Fig. 6: Results for environment A

1 T

 1 Path with δα vs = 45 • Path with ∆m = 0.5m

Fig. 7 :

 7 Fig. 7: Results for environment A (cont.)

Fig. 8 :

 8 Fig. 8: Results for environment B

This work was supported by FACEPE (APQ-0139-3.04/20) and ANR (ANR-20-CE33-001-01)