Neural networks for first order HJB equations and application to
front propagation with obstacle terms*

Olivier Bokanowski,™ Averil Prost,} Xavier Warin¥

October 9, 2022

Abstract

We consider a deterministic optimal control problem with a maximum running cost functional, in a
finite horizon context, and propose deep neural network approximations for Bellman’s dynamic program-
ming principle, corresponding also to some first order Hamilton-Jacobi-Bellman equation. This work
follows the lines of Huré et al. (SIAM J. Numer. Anal., vol. 59 (1), 2021, pp. 525-557) where algorithms
are proposed in a stochastic context. However we need to develop a completely new approach in order
to deal with the propagation of errors in the deterministic setting, where no diffusion is present in the
dynamics. Our analysis gives precise error estimates in an average norm. The study is then illustrated
on several academic numerical examples related to front propagations models in presence of obstacle
constraints, showing the relevance of the approach for average dimensions (e.g. from 2 to 8), even for
non smooth value functions.

Keywords: neural networks, deterministic optimal control, dynamic programming principle, first order Hamil-
ton Jacobi Bellman equation, state constraints

1 Introduction

In this work we are interested by the approximation of a deterministic optimal control problem with finite
horizon involving a maximum running cost, defined as

ot,x)= inf max(max 9 (9)), so(y;m)), 1)

a(')EA[LT] Qe[t,T]

where the state = belongs to R? and t € [0, 7] for some T > 0. Here the trajectory y(s) = y2(s) obeys the
following dynamics

y(s) = f(y(s),als)), ae seltT], (2)

with initial condition y(t) = x, and control a € Ay, 7)== L> ([t,T], A). It is assumed that A is a non-empty
compact subset of R* (k > 1) and (f, ¢, g) are Lipschitz continuous. The value v is solution of the following
Hamilton-Jacobi-Bellman (HJB) partial differential equation, in the viscosity sense (see for instance [14])

min (— v + gleaj((—f(x, a)-Vgv), v— g(x)) =0, te€]l0,T] (3a)
(T, x) = max(p(x), g(z))- (3b)

*This research benefited from the support of the FMJH Program PGMO and from the support to this program from EDF.
TUniversité Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), F-75013 Paris, France

*Sorbonne Université, CNRS, LJLL, F-75005 Paris, France olivier.bokanowskiQu-paris.fr

$INSA Rouen, LMI (EA 3226 - FR CNRS 3335), 76801 St Etienne du Rouvray, France. averil.prost@insa-rouen.fr
TEDF R&D & FiME, 91120 Palaiseau, France xavier.warinQedf .fr

Tremendous numerical efforts have been made in order to propose efficient algorithms for solving problem
related to (1), or the corresponding HJB equation (3). Precise numerical methods have been developed, using
approximations on grids, such as Markov Chains approximations [33], finite difference schemes (monotone
schemes [17], semi-Lagrangian schemes (see e.g. [18, 20]) ENO or WENO higher-order schemes [37, 38],
finite element methods (see [31]), discontinuous Galerkin methods [28, 35], and in particular [12, 13] for
(3), see also [40], or max-plus approaches [2]). However, grid-based methods are limited to low dimensions
because of the well-known curse of dimensionality. In order to tackle this difficulty, various approaches are
studied, such as spare grids methods [16, 21], tree structure approximation algorithm (see e.g.[3]), tensor
decomposition methods [19], max-plus approaches in [36].

In the deterministic context, problem (1) is motivated by deterministic optimal control with state con-
straints (see e.g. [14] and [4]). In [41], the HJB equation (3) is approximated by deep neural networks
(DNN) for solving state constrained reachability control problems of dimension up to d = 10. In [15] or
in [6], formulation (1) is used to solve an abort landing problem (using different numerical approaches); in
[11], equations such as (3) are used to solve an aircraft payload optimization problem; a multi-vehicle safe
trajectory planning is considered in [§].

On the other hand, for stochastic control, DNN approximations were already used for gas storage op-
timization in [9], where the control approximated by a neural network was the amount of gas injected or
withdrawn in the storage. This approach has been adapted and popularized recently for the resolution of
BSDE in [26] (deep BSDE algorithm). For a convergence study of such algorithms in a more general context,
see [27].

In this work, we study some neural networks approximations for (1). We are particularly interested
for the obtention of a rigorous error analysis of such approximations. We follow the approach of [29] (and
its companion paper [7]), combining neural networks approximations and Bellman’s dynamic programming
principle. We obtain precise error estimates in an average norm.

Note that the work of [29] is developed in the stochastic context, where an error analysis is given. However
this error analysis somehow relies strongly on a diffusion assumption of the model (transition probabilities
with densities are assumed to exists). In our case, we would need to assume that the deterministic process
admits a density, which is not the case (see remark 6.5). Therefore the proof of [29] does not apply to the
deterministic context. Here we propose a new approach for the convergence analysis, leading to new error
estimates. We chose to present the algorithm on a running cost optimal control problem, but the approach
can be generalized to Bolza or Mayer problems (see e.g. [4, 6]).

For sake of completeness, let us notice that the ideas of [29] are related to methods already proposed
in [23] and [10] for the resolution of Backward Stochastic Differential Equations (BSDE), where the control
function is calculated by regression on a space of some basis functions (the Hybrid-Now algorithm is related
to [23], and the performance iteration algorithm is related to an improved algorithm in [10]). For recent
developments, see [24] using classical linear regressions, and [30] and [22] for BSDE approximations using
neural networks.

From the numerical point of view, we illustrate our algorithms on some academic front-propagation
problems with or without obstacles. We focus on a ”Lagrangian scheme” (a deterministic equivalent of
the performance iteration scheme of [29]), and also compare with other algorithms : a ”semi-Lagrangian
algorithm” (similar to the Hybrid-Now algorithm of [29]) and an hybrid algorithm combining the two previous,
involving successive projection of the value function on neural network spaces.

The plan of the paper is the following. In section 2 we define a semi-discrete value approximation for (1),
with controlled error with respect to the continuous value, using piecewise constant controls. In section 3,
equivalent reformulations of the problem are given using feedback controls and dynamic programming. In
section 4, an approximation result of the discrete value function by using Lipschitz continuous feedback
controls is given. In section 5 we present three numerical schemes using neural networks approximations
(for the approximation of feedback controls and/or for the value), using general Runge Kutta schemes for
the approximation of the controlled dynamics. Section 6 contains our main convergence result for one of the
proposed scheme (the Lagrangian scheme) which involves only approximations of the feedback controls, and
section 7 focuses on the proof of our main result. Section 8 is devoted to some numerical academic examples

of front-propagation problems with or without an obstacle term (state constraints), for average dimensions,
showing the potential of the proposed algorithms in this context, and also giving comparisons between the
different algorithms introduced. An appendix contains some details for computing reference solutions for
some of the considered examples.

Notations. Unless otherwise precised, the norm |.| on R? (¢ > 1) is the max norm |z| = [|z||ec =
maxi<i<q |:|. The notation [p,q] = {p,p +1,...,q} is used, for any integers p < ¢. For any function
la(y) — ()|

a: RP — R? for some p,q > 1, [a] := SUDy£y denotes the corresponding Lipschitz constant. We

ly—z|
also denote a V b := max(a, b) for any a,b € R. The set of "feedback” controls is defined as A := {a: R —

A, a(.) measurable}.

2 Semi-discrete approximation with piecewise constant controls

In this section, we first aim to define a semi-discrete approximation of (1) in time.
Let the following assumptions hold on the set A and functions f, g, ¢.

(HO) A is a non-empty compact subset of R® (k > 1), and is a convezx set.

(H1) f:R% x A — R? is Lipschitz continuous and we denote [f]1,[f]2 > 0 constants such that

[f(z,0) = f(@',d)] < [flilz = 2’| + [flala—dl, Y(z,2') € (R)? V(a,a') € A,

(H2) g : R4 — R is Lipschitz continuous.
(H3) ¢ : RY — R is Lipschitz continuous.

Let T' > 0 be the horizon, let N € N* be a number of iterations, and (tx)refo,n] C [0,T] be a time mesh
with tg = 0 and ¢y = T. To simplify the presentation, we restrict ourselves to the uniform mesh ¢, = kAt
with At = %, but the arguments would carry over unchanged with a non-uniform time mesh.

Let us consider FJ, : R x A — R? (for a given h > 0), corresponding to some one time step approximation
of y%(h) (starting from y2(0) = x). For instance, we may consider the Euler scheme Fy(x,a) = = + hf(x,a),
or the Heun scheme Fj(z,a) = 2+ %(f(z,a) + f(z + hf(z,a),a)), and so on. General Runge Kutta schemes
are considered later on in section 5.2. Assumptions on Fj, will be made precise when needed.

For a given sequence a = (an,ani1,---,an—1) € AN™™ (with n € [0, N — 1]), which corresponds to a
piecewise constant control approximation, and a given integer p > 1, we define two levels of approximations
for the trajectories.

The fine approximation involves time step h = %, is denoted YJ“fj (for a fixed control ay, V0 < j < p),
and is defined recursively by

= a
Yol 4
}/jafl’fr :Fh(}/jffgaak)7 j:O7"'7p_17 (4b)

which also corresponds to j iterates of y — Fy(y, a), starting from y = x, with the same control a;. This
fine level will be used to obtain approximation of the trajectory at intermediate time steps tx + jh which lie
into [tg, trt1]-

The coarse approximation with time step At is denoted (Xj ,)n<r<n and is defined recursively by

Xpp =1 (5a)
X,‘LFLI:Ypa;(?7 k=mn,...,N—1 (5b)
Notations. We will often use the notations, for a given a € A, F(-,a) = F*(-) := Y}! and the fact that

(5b) can also be written
Xl(:-&-l,w :F(X,‘;@,ak), k=n,...,N—1.

We can now define the following cost functional, for z € R?, a € AN=" and n € [0, N]

— ag a d N—n
Jn(2,0) = max Orélffpg(Yj’ngm) \/(g Vo) (XNy), z€RY ae A", (6)

and the following semi-discrete version of (1), for # € R? and n € [0, N]

Vo(z) := min J,(z,a). (7)

acAN—n

(for n = N, we have Vi (z) = Jn () = g(z) Vo(z)). It will be also useful to introduce the following notation,
for a € A and = € RY,

G(x) = max g(Vf,). ®)

0<j<p

The values (V;,)o<n<n satisfy also Vy(z) = g(x)Ve(x), and the following dynamic programming principle
(DPP) forn=0,...,N —1:

Valz) = inf G*(@) V Vi (F(z,0)), @ € Y, (9)

Let us notice that the case p = 1 leads to the following simplifications: h = At, F(z,a) = Fa¢(z,a),
G (z) = g(z), Jao(z) = max,<p<n 9(X7,) V @(XR), as well as Vy(x) = g(z) V ¢(x) and the DPP
Val(z) = iggg(x) V Vg1 (Fat(z,a)) (0<n<N-—1).

The motivation behind the introduction of the finer level of approximation (Yj"lg’;)osjgp is first numerical.

It enables a better evaluation of the running cost term g(.) along the trajectory, without the computational
cost of more intermediate controls. The numerical improvement is illustrated in the examples of section 8.1.
Furthermore, from the theoretical point of view, the convergence analysis in our main result will strongly
use the fact that © — F,(z,a) is a change of variable for h sufficiently small (i.e., p sufficiently large).

We start by showing some uniform Lipschitz bounds.

Lemma 2.1. Assume (H0)-(H3), and the Lipschitz bound sup,c 4[F1(.,a)] < 1+ch for some constant ¢ > 0.
(i) The function Jy(.,a) is Lipschitz for all a € AN=", with uniform bound [J,(.,a)] < [g] V [¢]eT.
(ii) In particular, the uniform bound maxo<n<n[Va] < [g] V [¢lecT holds.

Proof. (i) Notice that 1+ ch < e°®. Then for a € A and for the j-th iterate F}Ej)(.,a) of F},, we obtain
e, =Y | = |F,§J)(x,a) - F}Ej)(y,a)| < Mz —y| < Atz — y| for any 0 < j < p (by recursion). Hence
also sup,c4[F(.,a)] < e“?t, from which we deduce for any a = (an,...,ay—1) € AN "™ and n < k < N,
1Xi. — Xiyl < eclh=m)At | | < €|z — y|. The desired result follows from the definition of .J,, and
repeated use of max(a,b) — max(c,d) < max(a — ¢,b — d).

(#4) As a direct consequence of (i) and the definition of V. O

The following result shows that V,,(z) is a first order approximation of v(t,,z) in time.
Theorem 2.2. Assume (H0)-(H3), and that there exists ho > 0 such that

- Fy, is consistent with the dynamics f in the following sense:

3C >0, Y(z,a,h) € RT x A x (0,hg), |Fn(z,a)— (z+hf(z,a))| < Ch 1+ |z|), (10)

- for all h €]0, hol, sup,eca[Fhr(.,a)] <1+ ch for some constant ¢ > 0 (c may depends on [f]),

- f(z,A) is convex for all x € RZ.

Let h= 2t < hg (withp > 1). Then

max_ |V, (z) — v(tn,z)| < CAL(1 + |z|) (11)

0<n<N
for some constant C > 0 independent of z, At,p (and N).

Proof. This follows from the arguments of Theorem B.1. in [15]. O

Corollary 2.3. In particular, if Fy, is a consistent RK scheme (see definition 5.2) and f(x, A) is convex for
all z, then by Lemma 5.6, (10) holds and therefore the error estimate (11) also holds.

Our aim is now to propose numerical schemes for the approximation of V;,(.).

3 Reformulation with feedback controls

In this section, equivalent definitions for V,, are given using feedback controls in A (the set of measurable
functions a : R? — A). These formulations will lead to the numerical schemes.

First, for a given a;, € A, the fine approximation Y, (with time step h = %) is defined by Y% := Y;’]‘l(x)
using definition (4). This corresponds also to

Yoh =g (12)

Vi, = BV an(a)), j=0.....p—1 (13

(that is, j iterates of y — Fp,(y, ax(x)), starting from y = x, with the fixed control ax(x)). Then, for a given

sequence a = (ay,,...,an_1) € AN™", the coarse approximation is defined by
Xps=7 (14a)
Xppq = F (X}) EF(X,?yx,ak(Xgﬁx)) , k=n,...,N—1. (14b)

(with notation F% (x) = F(x,ax(z)). We also extend the definition of J,, to the feedback space, for x € R¢
and a € AN~ as follows

Inw,0) = (| max G (XE)) \ ¢(X3.) (15)

where now, for a given control a € A, we extend the definition of (8) by

G%(z) := max (V")) (16)

0<j<p” I
(this also corresponds to define G%(x) as G®)(z)). With this definitions, we have the following results.

Proposition 3.1. (i) V,,(z) is the minimum of J(x,.) over feedback controls:

Vi(z) = aerﬁif\?f" Jo(z,a), xR

(it) For all 0 < n < N — 1, V, satisfies the following dynamic programming principle over feedback
controls

Va(z) = min G* (x) \V Vi1 (F(x), zeR% n=0,...,N—1 (17)

and in particular, the infimum is reached by some some a, € A.

Proof. The problem is to show the existence of a measurable feedback control. By using a measurable
selection procedure (see for instance Lemmas 2A, 3A p. 161 of [34]), since A is compact and G (such
that G*(z) = G(z,a(x))), Va1 and F (such that F*(z) = F(x,a(z))) are continuous, we may choose ay,
measurable in (17). O

The following well-known result links pointwise minimization over open-loop controls a € A and mini-
mization of an averaged value over feedback controls a € A.

Lemma 3.2. Let X be a random variable with values in R? which admits a density p, and such that
E[|X|] < co. Then for any measurable C R? such that p(x) >0 a.e. x € Q, and n € [0, N — 1],

an(.) € argénAmE{]IQ(X) G*(X)V V1 (FUX))

= (&h(a:) € arg;énAin (G*(@) V Vg1 (F(2))), ae z € Q)

We now introduce a new assumption on a sequence of sets ,, densities p, (supported in Q,) and
associated random variables X,, (with associated probability densities p,,).

(H4) The functions pi, € L*(R?) and open sets), C R?, 0 < k < N, are such that

pr(z) >0 on Q, and supp(pr) C U, Vk=0,...,N (18a)
F(Qp,a) C Qpy1, YVae A, Vk=0,...,N—1 (18b)
Ck, At = sup suppki(m) <oo, Vk=0,...,N —1. (18c¢)

r€Q, a€A karl(F(aj? a))

Furthermore, we consider random variables (Xy)o<k<n on some probability space, with values in R%, abso-
lutely continuous with respect to Lebesgue’s measure and admitting (pr)o<k<n as associated densities.
From the definitions we have E[¢(Xy)] = ka o(x)pi(x)dx for any measurable bounded function ¢.

The technical assumption (18¢) is not important in this section but will be needed for the main result
later on. Before going on, we give some examples where (H4) holds:

e case () is a bounded subset of RY, Qp = Qg + £(0, ckAt|| f|lo) (where 2(0,7) is the ball of radius r,
I flloo is & bound for |f| on Qn x A, and assuming |Fp,(z)| < |z] + ch||f|lo as it will be the case for RK
schemes as in (5.2)(i)), and (pg(.))x is any set of bounded functions such that pg(x) > n, Vo € Qgyq,
Vk=0,...,N — 1, for some n > 0.

A useful example is the case of Qy = B(0, Ly + ckAt||f||x), Yk > 0, with uniform densities py

. d
compactly supported on Q. In that case we notice that Cp A = Klléz‘ll = (Lo;()c—f_/z;ri)tﬁ;\ll‘f ”"") and

also the following uniform estimate holds:

N-1 d
Lo + T fllo
<|\——- . 1
og}ca%XN kli!; Cr,at < (Lo (19)

|z|—o00

e case Oy = R? and py(z) "'~ e~ %17l with ¢, > 0, Vk.

e case (U = Q and pp = p, Vk, where is bounded, assuming furthermore that 2 is invariant by the
dynamics, i.e., F(Q) C Qfor alla € A and h > 0.

We can now give the following equivalent properties for V,.

Proposition 3.3. Let n € [0, N — 1] and (Q, pn) as in (H4) (with associated random variables X,). Then
V. satisfies the following dynamic programming principle

Vo(z) = G™ (2) \/ Var (F" (x)), Yz €Q, (20)
for any
an(.) € argmin E {GG(X,L) Vv vnH(Fa(Xn))} . (21)
acA
In particular, we have
IV, ()] = B[6% () \/ Vosa(F ()| = B 67 v Vi (F2(X,) (22)

Proof. The proof follows from Lemma 3.2 and the dynamic programming principle of Proposition 3.1. [

The above reformulation with an averaging criteria is motivated by numerical aspects: the problem can
then be relaxed with an approximation A of the control space A, for instance by neural networks. However,
in general, a,, is no more than measurable. To circumvent this difficulty, we first approximate problem (22)
by more regular feedback controls.

4 Approximation by Lipschitz continuous feedback controls

We aim to approximate (22) by using by Lipschitz continuous feedback controls. Note that in Krylov [32],
some approximations using feedback controls are given, yet in a different context with stochastic differential
equations and for non-degenerate diffusions.

Let p € C* (R%,R) be a smooth function such that supp(p) C £(0,1), and [, p(z)dz = 1. Let (p:)s>0
be the mollifying sequence such that p.(x) = E%p(g) For any sequence a = (ag,...,an_1) € AN, we
associate the regularization by convolution

ag, = pe * a. (23)

Therefore af, is Lipschitz continuous, and [|[Vag |z~ = [[(Vpe) * akllz~ < 1[|Vpl|r1]lak|lz~. By classical
arguments, lim. o a®(z) = a(z) a.e z € RY.
In this section the following assumptions on F} will be needed.

(H5) The function F}, satisfies:

o there exists a constant C > 0 and hg > 0 such that, for all 0 < h < hg:

|Fy(x,a)] < |z| + Ch(1 +|z|), z€R%acA, (24)

o [}, satisfies a continuity property (for all0 < h < hg):

Vz e RY, a€ A— Fy(z,a) € RY is continuous. (25)

Such assumptions are naturally satisfied by Euler or Heun schemes already mentioned, and will be satisfied
by more general RK schemes.

The following result will be used later on in order to obtain a regularized sequence of controls (for the
approximation of the dynamic programming principle) which will be more and more precise as k varies from
k=ntok=N—1.

Proposition 4.1. Let k € [0, N]. Assume (H0)-(H4) and (24)-(25). Then

lim |E[Vi(Xk)] — E[G™ (X)) \/ Vig1(F(Xy,ag))]| =0 (26)

e—0+
(with @i as in (21) and @3, as in (23)).
Lemma 4.2. Assume (24). There exists constant «, 8 independent of p > 1, such that
V(z,a) e RT x A, |F(z,a)| < alz| + B.
Proof. By using the bound |Fy,(x,a)| < |z| + Ch(1 + |z|) < e“*|x| + Ch, by recursion (discrete Gronwall
estimates) we obtain |F(z,a)| = |F,Ep)(.,a)\ < e (|z| + pCh) < eCAt(|z| + CAL). O

Proof of Proposition 4.1. In order to simplify the presentation, we consider the case of p = 1 (G*(z) = g(x)),
the proof being similar in the general case p > 1. The optimal control a,(.) satisfies V,,(z) = g(z) V
Vis1(F(z,an(2))) ae. © € Qp, hence E[V,(X,,)] = E[g(X,) V Vo1 (F(Xn,a,))]. By assumption (25) of
(H5), and the pointwise convergence of @ (x), we deduce that lim._,q F'(z, a5 (x)) = F(z,a,(x)) a.e. On the
other hand, by using Lemma 4.2 and the fact that g is Lipschitz continuous, there exists constants o, 3’ such
that |g(z) V F(z,a5 ()| < o/|z| + 8 Vo € R% Therefore, the result is obtained by Lebesgue’s dominated
convergence theorem, the continuity of (x,y) = g(z) V V,4+1(y) and the integrability assumption on X,,. O

We give also an other approximation result of V,, by J,.

Proposition 4.3. Let N > 1 be given, assume (H0)-(H4), and (24)-(25). Then

: —c —€ _ —
ggr%)ogglgaji](_l]E“Jn(Xn,(an,...,aN_l)) Vn(Xn)@ 0.

Proof. Tt suffices to prove the result for a given n. Let a € AN~ be an arbitrary sequence. By Lemma 4.2

we have
X7yl < 9PN (XE |+ CAY).

Then by similar estimates, we obtain
|Xf{x| < eC"At(|x| + CnAt) < eCT(\x| +CT).
Hence

(e) < max [lg(0)]+ 191 [X2 [V/ [19(0)] + [[X.]] < Ko+ Ka(ja] + CT)

where Ko = |g(0)| V [¢(0)] and K; == ([g] V [¢])e€T. In particular E (].J,(X,a)|) < co. In the same way, we
can also obtain, for any k£ < n € [0, N], a Lipschitz bound of the form

G () V G (X1 0) - V GUX) V Vi (X L)) < of|2] + .

(for some constant o', 5').

In order to simplify the presentation, we consider again the case p = 1 (G*(x) = g(x)), the proof being
similar in the general case p > 1. Let n > 0. Consider the optimal control sequence a and its regularization
ac. Let n € [0,...,N — 1]. By using the optimality of a,,, we have V,,(z) = g(z) V Vy1(F® (x)), and as in
Proposition 4.1, for € > 0 small enough,

’E[Vn(xn)] - E[Q(Xn) vV Vn—&-l(Fai (Xn)” S %

Then we remark that V,, 1 (F (x)) = g(F% (z)) V Vypo(F%+ (F (z))). Hence by the same argument as
before, for € > 0 small enough,

‘]E[V"(Xn)] - Elg(Xn) v Q(Faf" (Xn)) Vv Vn-&-2(Fa’i+1 (Faf” (Xu)))]| < 2%'

Iterating this argument we deduce the existence of Lipschitz continuous controls a® := (@, ...,a%_;) such
that

B ()] - B ()] < (V=) < (27)
This concludes the proof. O]

5 Numerical schemes

5.1 Dynamic programming schemes

It is natural to consider approximation schemes that mimic the dynamic programming principle (20) - (21).
We see that (9) (or (17)) has been relaxed by (21) by minimizing a certain expectation over a set of feedback
controls.

We consider three schemes. Two of them may be seen as deterministic counterparts of the ”value
iteration” scheme (Huré et al. [29] or the BSDE scheme of [23]) and the ”performance iteration” scheme
(Huré et al. [29] or the BSDE scheme of [10]), hereafter denoted the ”SL-scheme” and the ”L-scheme”,
respectively.

The third one is an hybrid combination of both paradigm (hereafter denoted the ”H-scheme”).

The set of measurable functions A will be approximated by finite-dimensional spaces (./Zln)n7 with A,
typically a neural network space. When needed, neural networks will also be used in order to approximate
value functions: in this case, we will denote by V,cC (©,R) a finite-dimensional space for the approximation
of V,,.

Let (pn)o<n<n be a sequence of densities supported in domains (Q,,)o<n<n, as in (H4), with associated
random variables (X,)o<n<n. Recall that, for feedback controls a € A, F%(x) and G*(z) are defined at
the beginning of section 3 in terms of the approximate dynamics F,(.,.) (F*(z) corresponds to p iterates
of y — Fy(y,a(z)) starting from y = z, and G*(x) corresponds to the maximum of g(.) taken at the first
previous p iterates).

Semi-Lagrangian scheme (or ”SL-scheme”) Let (An)neﬂo,Nﬂ]] and (f}n)neﬁo,Nﬂ]] be two given se-
quences of finite-dimensional spaces. Set Vy = gV . Then, forn=N—-1,...,0:

- compute a feedback control a,, according to

an € argmin E [G“(Xn) \V VnH(Fa(Xn))} (28a)
aEAn
- set
N . “ . 2
¥ i argnine| [V06,) - 6% () V/ Vo (2 (5) | (25b)
Vev,

The approximations (Vn>n€[[0, ~—1] are stored, and only Vn+1 is used at iteration m. This explains the
”semi-Lagrangian” terminology. Owing to these projections, the computational cost is in O(N), where N is
the number of time steps.

Lagrangian scheme (or ”L-scheme”) Let (-/Zln)ne[[o, N—1] be a given sequence of finite-dimensional
spaces. Set Vy =gV @. Then, forn=N—1,...,0

- compute a feedback control a,, according to

an € argmlnE[X))\ Ve (F (X,))} (29a)
acA,,
- set
Va(x) = G (2) \/ Viy1 (F* (2)) = Jn(2, (an, ..., an—1)). (29b)

In this algorithm, only the feedback controls () are stored (V;, is not stored). Each evaluation of the
value Vm_l(w) uses the previous controls (G,41,...,Gx—1) to compute the approximated characteristic, in a
full Lagrangian philosophy. Therefore the overall computational cost is then of order O(N?). This scheme
completely avoids projections of the value on functional subspace.

Remark 5.1. From a computational point of view, an approximation of the minimum (29a) is obtained by
using a stochastic gradient algorithm (see numerical section for details). Hence the optimality of ay, in (29a)
should therefore be replaced by some approximation aj such that

]E{G&k(Xk)vVnJrl(F&k (Xk))] < min E[Ga X))\ Vo (F (X’f”} + % (30)

for some vy > 0 (which takes into account some error on the optimal feedback control). Then an error
analysis still holds (see Corollary 6.7) showing some robustness of the approach.

Hybrid scheme (or ”H-scheme”) Let (An)ne[[o,Nq]] and (f}n)ne[[o,Nq]] be two given sequences of
finite-dimensional spaces. Set Vy = gV as well as f/ﬁmp} =gV . Then, forn=N—1,...,0:

- compute a feedback control a,, according to

i € argmin]E{Ga(Xn) \ Vi (x,))] (31a)
QEAn

-if n > 1, compute V#mp] eV, (in prevision of the computation of a,—1), such that

. . 2
Vltmel = argmin | (V(Xn) - Vn(Xn))], (31b)
Vev,
where Vn is such that
Vo(@) = G (2) \/ Vo1 (FO (2)) = Jn(@, (..., an-1))- (31c)
The sequence of controls (do, . . ., éy_1) is the output of the algorithm, and V;,(z) can be recovered using
tmp)]

(31c). At each iteration 1 < n < N, V, is projected on the space V,, and its projection VJ is used to
compute a,_1. In this hybrid method, we still avoid some of the projection errors, by computing V,, from
the feedback controls in (31c). Each evaluation of V,, costs N — n evaluations of the controls mappings,
leading to an overall quadratic cost in O(N?). However, in the minimization procedure for (31a), we can
directly access to the values of yltme }(.), which is less costly that computing V;,(.).

In the present work, only the convergence of the L-scheme is analyzed. However, the three proposed
schemes will be compared on several examples in the numerical section (see in particular Sec. 8.1).

10

5.2 Runge Kutta schemes

In this section, we consider a particular class of Runge-Kutta (RK) schemes for the definition of Fj(x,a)
which will corresponds to some approximation of the characteristics for a given control a.
For given ¢ = (¢;)1<j<q, B =€ R?7*?, let us denote

q
el =" Jeil, 1Bl i= max S by
J=1 J

and let also
Cr = (0, 4)] = max | (0,)|

Definition 5.2 (Runge-Kutta scheme). (i) For a given a € A, we say that v — Fp,(x,a) is a Runge-Kutta
scheme for § = f(y,a) with time step h > 0, if there exists ¢ € N*, <bij)ij € R7*? and (¢;); € R? such
that

yi(w) =z +hY biif(y(x),a) Viel[l,q]
j=1
and

Fy(z,a) =x+ hZCz‘f(yi(x),a)

i=1

(ii) The scheme is said to be consistent if Y ¢ ¢; = 1.
(tii) The scheme is said to be explicit if b;; = 0 for all j > i.

Remark 5.3. (a) Note that a consistent RK scheme satisfies Fj,(z,a) = z+hf(x,a)+O(h?) for h sufficiently
small. This is made precise in Lemma 5.6.

(b) Also, for any given value a € A, y; :=x+hY i, bij f(yj.a) can be solved by a fized point argument
in (R?)9, as soon as h|B|«[f]1 < 1. Hence for h small enough such that h||B|~[f]1 < 1, the RK scheme
is well defined. Explicit RK schemes are always well defined.

(c) Note that in the above definition, the value of the control ag = a(x) is frozen at the foot of the
characteristic. Hence we consider an RK approzimation of y(t) = f(y(t),a(x)) on [tn,tnt1] with y(t,) = x
and fized a(x), rather than an approzimation of y(t) = f(y(t), a(y(t))).

We now give some estimates that will be useful later on.
The following lemma gives an estimate between two trajectories led by different controls.

Lemma 5.4. Assume h||B|[f]1 < %, and (a,a) € A%
(1)
|Fr(w,a(@)) = Fu(y aly))| < "Mz — y| 4 2h]e]i[fla]a(z) — aly)]. (32)
(1) V0 <j <p,
(D () = (F)V(@)] < CpAtla(z) - a(z) (33)

(where (F)U)(z) corresponds to j iterates of y — Fi(y,a(x)) starting from y = x), where Cp is a constant
independent of At and such that

2lcli[flae*A Bl < O, (34)

11

In particular, denoting F*(x) = F(x,a(x)), we have also
|F*(z) — F*(x)] < CrAtla(z) — a(z)| (35)

(recall that F*(x) corresponds to p iterates of y — Fp(y, a(x)) starting with y = z, and h = At/p).
(ii7) More generally,

[F(a) = F(y)| < e 2|z — y| + CaAtla(z) — a(y)]) (36)
where C := 2|c|1[f]1 and Cs := 2|c|1[f]2-

Proof. (i) From the definitions, denoting ay = a(x) and @y = a(y), we have

|Fy(z,a0) = Fu(y,a0)| < Jz—yl+h Y lellf(yf(x),a0) — f(4] (y),a0)]

1<j<q

|z =yl + hleh[fl Y = Y| + hlel1[f]2]ao0 — ao (37)

IN

where the intermediate values of the RK schemes are denoted Y* = (y§(z))1<j<q and Y = (y3(y))1<j<q
and satisfy Y* = X + hBf(Y %, ag) and Y® =Y + hBf(Y? ag) (with X = (z,...,z) and Y = (y,...,y)).
Hence we have also

V=Y < o=yl +hlIBlolfhIY* = Y[l + hllBlloc[fl2lao0 — aol,
from which we deduce, using the assumption of the present Lemma,
Yo=Yl < 2(la— gl + Al Bloolflalao — aol).
Combining with (37), we obtain
|Fh(x, aop) — Fu(y,a0)| < Ml — y| + 2h)c|1[f]2]ao — aol-
(i1)-(iii) From the previous bound, denoting e; := |(F/*)) (z) — (Fi°)Y(y)| = }Yfg - Yf; , we have
ejrn < eMllie; 4 2nel [fla]ao — dol,

and, by recursion, 4
ej < XM (eg 4 2jh|c]1[fla]ao — aol), 0<j<p.

This concludes to (i), and also for (ii) using y = x, eg = 0 and jh < At. O

Lemma 5.5. Assume h||Bl||x[f]1 < & and let F, be an RK scheme.
(i) For a € A and x € R%:

|Fn (2, a)| < |z + 2h[e1(Cp v [fl)(J2] + 1)
(i2) Let a in A and denote F(x) := Fy(z,a(z)), then it holds
[F5 —ia] < 2lchi([fh + [f]2[a]) b (38)
Proof. We start by proving (éi). As in the proof of Lemma 5.4(ii), with @ = a, we obtain
|(F (2, a(x)) — F*(y,ay))) — (& = y)| < hlch[fl1(2le =yl + 2k Bl [f]2]allz — yl) + hleli[fl2[a]|z - y].
Combining with the assumption that 2h|B||s[f]1 < %, we obtain the desired bound.
For the proof of (7), for any a in A we have [f*] = [f]; and |F(z)| < |F2(0)| + [FP]lz] < |F20)] +

(14 2hle|1[f]1])|z|. By direct bounds we have also |F(0)| < 2h|c|1Cy, from which we deduce the desired
bound. O

12

Lemma 5.6. Assume h|B|s[f]1 < 5 and let F{! be a consistent RK scheme. Then F), is consistent with f
in the following sense:

3C >0, 3hg > 0,Y(z,a,h) € R x A x (0, ho), |Fi(z,a) — (z + hf(z,a))| < Ch*(1 + |z|), (39)

Proof. We use |f(y;,a)| < [fl1ly;| + C; where Cy = max,ca |f(0,a)| to obtain in the RK scheme |y; — x| <
hzj 1bi;|([f]1ly;] + Cf), hence

max [y; — x| < b Blloo [f]1 (max[yi]) + 2| Bl Cy- (40)

By using the assumption we then get max; |y;| < 2|z| 4+ 2h||B||ccCs. Let h €]0, ho] with ho such that

ho|| Bl [f]1 = 1. Using (40) (and the fact that h||B|s[f]1 < 3), we obtain

max|y; — x| < b Blloo[f]1|2] + 20 Blloc Oy = Ch(1 + [x]) (41)

for some constant C > 0. Then

z+hchf(yj,a) = :z:+h2cjf(x+0(h(l + |z])),a)

Fh(xva) =
j=1 j=1
q
= 2+hY ¢(f(wa)+ O+ x])
j=1
= z+hf(z,a)+ 0K (1+ |z)
which is the desired result. O

5.3 Neural network spaces

Neural networks are functions build by compositions of other ”simple” functions. They are widely used for
their approximating capabilities, and are known to be dense in the class of continuous multivariate functions
under mild hypotheses (see or instance Lemma 16.1 of [25]). We restrict ourselves to so-called feedforward
neural networks, in the following sense.

Definition 5.7 (Feedforward neural network). Let L € N* (the number of layers), and (di)iejo,c] C N* be
a sequence of dimensions. A neural network is a function R : R% s R of the form

R(z)=ocroLpo---00y0Ly(x)

where Ly, : R%=1 s R¥% is an affine transformation, oy, : R%* — R%* is a nonlinear activation function
which acts coordinate by coordinate:

ak(:z:) = (6k(x1),5k(x2), .. .,5’k($dk))

for x € R* and for a certain &y, : R — R.

1
Classical examples of activation functions include the sigmoid function &(z) = H%, the rectified linear
unit (ReLU) 6 (z) = max(0, x), etc... The last activation function, 51, may be set to the identity function,
or o7, may be a more complex function (so that or,(.) € A for the control approximation) depending on the

example. . R
We may now define the sets A and V as (recall that A C R")

Each affine transformation is represented by a weight matrix wj, € R > (k141 with £ (x) = wy, <x>

A= {feedforward neural networks with dy = d and dj, = K},

V= {feedforward neural networks with dy = d and dp, = 1}.

13

In our numerical examples, we will always choose ReLU for the inner layer activation functions. The last
activation function oy, will vary to fit the definition of A for the given problem (see the numerical section).
We also choose to set dy = --- = dp_1 = N, i.e., the same number of neurons for each layer, to simplify
the set of parameters.

6 Main result

In this section, we focus on proving the convergence of the Lagrangian scheme (29). This algorithm only
uses approximations of feedback controls.

Since our estimates will need Lipschitz continuous controls, and since the exact optimal solution in general
does not involve such regular controls, we first introduce n-weak approximations as follows.

Definition 6.1. For a given sequence 1 = (N, Mnt1,---,IN—-1) € (Ri)N_", we say & = (an,...,4N-1) €
AN s an n-weak approzimation of (Vi)n<k<n if
(@) (Gn,...,an—1) are Lipschitz continuous controls,

(i4) ’E[Vk(Xk)] — E[G (X},) V Vi1 (Fo* (Xk))]‘ < 0, for all k € [n, N —1].

Notice that by using Prop. 4.1, it is possible to construct n-weak approximations. By recursion, it is
furthermore possible to construct the controls such that, for all k € [n, N — 1]

\wakn ~R[G (Xe) V Vi (P <Xk>>]] < m(laz), @5, @), (12)

for given strictly positive functions ny (i.e., nx > 0, Ngr1(xx) >0, ..., npy—1(Tk, ..., ZNn_2) > 0).

We now state our last assumption that will be needed on the approximate dynamics Fj,. First assumptions
where already introduced in (H5). The new assumption is the following. In what follows, we denote f*(z) :=
f(z,a(x)) and recall that [f?] is the Lipschitz constant of f°.

(H6) There exist a constant 6 > 0, for any Lipschitz continuous function a(-) € A and h > 0 such that
h[f%] <6, x — Fy(z,a(x)) is one-to-one and onto on RY, Lipschitz continuous, with Lipschitz bound

[Fn(-a() —ia] < c([fly + [fl2lal) b (43)

(where iq(x) := x), where ¢ > 0 is a universal constant (independent of a, h).
Assumption (H6) will needed in order to use a change of variables formula (for y = F%(x), corresponding
to p iterates of y — F,(y,a(x)) starting from y = x).

Remark 6.2. Lemma 5.5 shows that (H5)-(H6) are satisfied for Runge Kutta schemes as defined in 5.2.
For instance, dynamics Fy, such as the Euler scheme Fy,(x,a) = x+hf(x,a), or the Heun scheme Fy(x,a) =
z+ 2(f(z,a) + f(z + hf(z,a),a)) satisfy (H5)-(H6). Higher order schemes, or implicit schemes, could be
used as well.

Remark 6.3. Assumption (H6) is satisfied by the exact characteristics. Indeed, for any regular control
a € A, the map x — F(x) := y%(h) (where y(s) = y2(s) is the solution of y(s) = f*(y(s)) with y(0) = x)
is one-to-one and onto on R? and satisfies DF?(x) = exp By, with By, = foh Df*(y%(s))ds. Then denoting
[DF oo = supyepa | DFE(2)] 0o, we have [FY —ig) = | DFE — 1|0 < ellBrlle —1 < 2||By||o as soon as for
instance || By|loo < %, with also || Bpllos < h||Df%||ec = h[f?], hence (43) holds true with ¢ = 2 and § = 3.
When a is only Lipschitz regular, the same bound is obtained by a regularization argument.

Remark 6.4. Assumption (43) implies the following bounds:

| DFE(2)]loo < [F2] <14 ¢[f)h < eV ae zeRY (44)

14

from which we can deduce
|det(DF2(x))| < eI ge. z e RY. (45)

This estimate will be used in the change of variable Lemma 7.1. Note also that (H6) and maxgea |F(0,a)] <
Ch for some constant C, implies the bound (24) of (H5).

Remark 6.5. In [29], an assumption on the controlled transition probability of a stochastic process (say
v =Xy — 2" = X{ | for a given control a) is made, which is to be measure of the form

r(x,a;a")p(da’),

for some measure . which has a finite first order moment, and assuming a uniform bound ||r||- < co. How-
ever this assumption cannot be satisfied in our deterministic context (where, typically, ¥’ = x + Atf(z,a)).
Instead, assumption (H6) will be used (in the change of variable Lemma 7.1) in order to get a recursive error
bound estimate.

In the following, we recall that (Vk)OSkSN corresponds to the Lagrangian scheme (29). Also we have
Vi(x) > Vi(z), and therefore we look for an upper bound of Vi (z) — Vi(z).

Theorem 6.6. Assume (H0)-(H6), N > 1, and let n € [0,N]. Fork=mn,...,N —1, let g, : R"™* — R%.
be given functions (n, > 0 is a constant, n,+1 > 0 is a function of one variable, and so on). Let a =
(ag,...,an—1) be an n-weak approximation in the sense of (42). Then

E [(Vn - Vn)(Xn)}

< inf i ((ai‘: + 1) + O (2350 + g ([an])
(an...,aN_1)€®£,;nl A,

e b O CRF RS (). lav-al))
where Cff = C’hAtedc[fa]At (with ¢ > 0 is as in (H6), and Cy ay as in (HY)),
&f = Cr(lg] + [Viera]) At Ex [Ja(X) — a(xa)] (46)

and [Vi41] is bounded as in Lemma 2.1, Cp satisfies (34).

Note that the consistency of the scheme (with respect to the dynamics f, as in (10)) is not needed in the
previous Theorem, because the result only focuses on the error between the semi-discrete problem and its
approximation by a Lagrangian scheme.

Corollary 6.7. In the same way, for the perturbed algorithm (30) the same error bound holds where each
term (ei* 4+ i) is replaced by (e3* + mk + Yi)-

The proof of Theorem 6.6 is postponed to section 7 (the proof of Corollary 6.7 follows exactly the same
lines). We now give two corollaries of the previous theorem.

Corollary 6.8. Assume (H0)-(HG), and N > 1. Let A,C? denote the control approximation space at time t,,
with explicit dependency over the size ©. We denote by © — oo the limit when some parameters go to infinity
(for instance the number of neurons of a neural network). We assume that for any n = 0,...,N — 1, any
Lipschitz continuous function a € A can be approzimated by some function of a € AS up to any arbitrary
precision, which we write as

lim inf E[la(X,)—a(X,)|]]=0. (47)

©—00 acA®

15

Let (V.©) be the corresponding L-scheme values associated with sets (AS™ ,Afﬁl, . AeN 1"). Then

lim max E[V2(X,) - V,(X,)] =0.

O—000<n<N

(where © — oo means here that ©, — oo for allk =mn,...,N —1).
Remark 6.9. Notice that Group Sort neural networks satisfies furthermore (see [5, 42]):
lim inf Ella(X,) —a(X,)|] = 0. (48)

©—00 4 A2, [a]<[a]
Proof of Corollary 6.8. Let ¢ > 0. Let n,, := ¢/(2N). By assumption (47),

lim inf Egyqf|ag —dx|]] =0 Vn<k<N-1
@—>ocak€_,4-

and therefore 9lim inf e7* =0, where €} is defined in (46). Hence we can find a,, € A9~ (for ©,,, the size
— 00 ar E.Ae

of A, large enough) such that g4 < 5v > and therefore

an+nn§N

Then let 41 ([an]) :==¢/(2NCZ"). There exists an41 € nfﬁl (for ©,4+1 large enough) such that

a An €
Onn(n++11 + 7In+1([an])) < N?

and 5o on, until we chose 1y 1 ([an), .. ., [an_2]) := e/(2NCI C4 ... C%¥) and then find ay_; € AYY]"
such that .
CorCyntit - C 5 (e +v—1([an], -, [an—2])) < N

(we have N — n such bounds). By using the bound of Theorem 6.6, the sum of all error terms is bounded
by (N —n)+, and therefore

E[Va(Xn) = Va(Xa)] < e
This shows that lim E[V,9(X,,) =V, (X,)] = 0. The desired result follows since we have only a finite number

O— o0
N of such terms. O

Notice that in the previous result N > 1 is given. This does not give in general a convergence result as
N — 00, because of the uncontrolled Lipschitz constants that appear in the bounds of Theorem 6.6.

However, in the case the optimal controls (@), can be shown to be Lipschitz continuous with a uniform
Lipschitz constant, we may improve the result. We suppose that the numerical feedback space A can be
restricted to Lipschitz functions with a controlled Lipschitz constant. For instance, if A is a neural network
space, one could choose the GroupSort activation function and bound the weights to obtain this estimate
(see [5, 42]).

Corollary 6.10. Assume (H0)-(H6), N > 1, and that there exists a sequence of optimal feedback control
(denoted @) which are Lipschitz continuous: 3L >0, V0 < k < N — 1, [ag] < L. Then

N—-1
max E[V,(X,) — Vo (X,)] < Ky inf (At Ex[|as(Xk) — ax(Xy)
omax [Va(Xn) = Va(Xn)] o @ e fou] <] i kZ:O [an(Xk) (X&)l]
where
Ky = 2Cp(lg] V [p])ed+Delli+LIf1)T Jmax H Chnr. (49)

Furthermore, in the case of uniform densities, we can use the estimate (19) to deduce a bound for Ky which
is independent of N (other situations could also lead to a uniform bound for Ky).

16

Proof of Corollary 6.10. We make use of the bound of Theorem 6.6 with 7 = 0, Vk. Notice that [f] <
[f]1 + L[f]2, and also, with [ax] < [ax] < L, we have [f*] < [f]; + L[f]2. Then

[T c*<(I Cra)eZe=li™dt< (I Cuar)el@h+tiir

n<k<N-1 n<k<N-1 n<k<N-1
as well as [Vii1] < ([g] V [])ecTH LT and therefore (using also [g] < [g] V [¢])
e < 20p([g] v @) e W ETIDT AL By [|ar(X) — an(X5)].

The desired result follows. O

7 Proof of Theorem 6.6

We first state a change of variable Lemma, giving a statement for either an exact characteristic (z — yfm) or
for an approximate one (x — F'*(z)). Only the second statement will be used in the convergence analysis.

Lemma 7.1 (Change of variable). Let a : R? — R* be a given Lipschitz continuous function.

(i) Let t — yi, denotes the characteristic associated with dynamics x — f%(x) and such that yg , = .
We assume the following analogue of (H4) in the continuous case:

Yara, C kg1, VE=0,...,N =1,

and

ékAt (= max sup pki(x) < 00.

0SkSN 1260, Ph+1(YAs.)

Then for any non-negative measurable function ® : Q1 — R,
Ex[®(y&r x,)] < Crar e 18 Byyy [@(Xp41)] (50)

(i) Suppose (H5), (H6) and (H4). Assume p > 1 is such that h[f*] < 0, where h = %. Then for any
non-negative measurable function ® : Qpy1 — R,

Ey[®(F(X)))] < Croar VI8 By [0(Xp41)] (51)
where ¢ > 0 is as in (H6), Ci.a¢ is as in (H4).
Proof of Lemma 7.1. (i) Let y;, be the solution at time ¢ of the differential equation g, = f®(ys,.) for
t € R, with yo , = . Then for any function ® > 0 and ¢t > 0,
B@(nx)) = | apna)de < [@@y)i
Qp Yt,Qy,
(the Jacobian of the change of variable, as well as its inverse, is bounded by e4l/"I* for ¢ > 0). Since the r.v.
X} has density law pg(z)dz, we deduce
E[®(ye x,)] < eV / I POLCEED PN (52)
Y,y /D]C-i-l(z)

Let t = At, we have yfo C Qxi1 by assumption (18b). Also, for any 2’ = yi,, € yX;q,, We have

P Ar o)/ PE+1(2") = pr()/pr1(YA,) < Ch.a¢ by assumption (18¢). Together with (52) this allows to
conclude to the desired bound.
(#4) The proof is completely similar to (4). O

17

We are now in position to prove the main result.

Proof of Theorem 6.6. Our aim is to bound recursively the quantity
en = E[Vo(X,) — Vi (Xa)].
Let n, > 0. By Prop. 4.1, there exists a,, € A, Lipschitz continuous, such that

[E[Vi(X0n)] — E[G™ V Vit (F* (X))]| < 1
Recall that Vn satisfies

E {Vn(Xn)} = inf E [G“ \/Vn+1 (F*(Xn))]7

acA,

< inf E[G“ IV Vsa (FUX0) = 6™ (Xa) \/ Vit (F (Xa))| + -

Thus, using max(a,b) — max(c,d) < max(a — ¢, b — d), we have

\/ Vn+1 Ga" \/ Vn+1 " :L’
< &ﬁé@@%ﬂ*MW%»V(WHUWWD*WHKF%@D>
< (goax [l = Y5 1) V (Vs (F @) = Vi (F* (2)))-

We use the decomposition and following bounds

Vot (F*(@)) = Via (F™ (@)
= (Vs (P (@) = Vora (F*(@))) + (Vs (F*(@)) = Vasa (F (1))

) -
< (Ve (F(@) = Vasr (F*(@))) + Vo] () = F™ ()],
We deduce from the previous estimates

% - < a_ _yan
Mm&>mmﬂgxwﬂggnaxhn

}

+]E[(Vn-&-l - Vn-i-l)(Fa(Xn))} + [Vn+1] E“Fa(Xn) — Fn (Xn)|]> + Nn

< aigg (E[(VW — Vo) (FU(X0))] + Cr([g] + [Var1)ALE [Ja(Xy,) — an(Xn)l]> +

where the estimate of Lemma 5.4(ii) has been used for the last inequality.
Then by using the change of variable Lemma 7.1, we obtain

en < ilg <Cn,At6dc[fa]AtE[(Vn+l - Vn+1)(Xn+l)} + Cr([g] + [Vn+1])AtEUa(Xn) - &n(Xn)H> +
ac n
< inf Crepy1 + (E% + nn)
acA,

18

where €2 := Cr([g] + [Vat1]) AtIE“a(Xn) —an(X,)|| and C? := O, arelf" 1A By induction, and using
the fact that ey = 0 because Vy = Vi, we obtain (for given coefficients g, >0, k =n,...,N —1):

en < inf (enm +nn) + Cor (e 4+ 1) + -+ Cpm - O (e +v-1)
<aw,,.,.,aN_1>e®g;;Ak[i Nz (et J-

However, we can improve this bound. For a given a,, € ./Zln, we have a constant C2~ which depends of the
Lipschitz constant [a,]. We can chose a coefficient 7,41 = nn41([an]) > 0 (which may have a dependency
over [a,]), and proceed in the same way. By Prop. 4.1, there exists @1 € A, 11, Lipschitz continuous, such
that

|E[Vn+1(Xn)] —E[G** v Vn+2(Fa”+1(Xn+1))” < Nnt1([an])-
Then we obtain the bound

en < nf ((ezwnn) o (6555 + maa (an])) + O OO +)

(an, 7an+1)eAn X An+1

At the next step, we can chose a coefficient 7,12 = Nny2([an], [an+1]), and so on. By induction, we conclude
to the desired bound. O

8 Numerical results

In the following d-dimensional examples (where d > 2), two-dimensional "local” and ”global” errors are
computed in the following way. Depending on the example, a two-dimensional plane of reference P =
Vect (w1, wy) is set (passing through the origin), where wy, wo are chosen vectors of R?, and a uniform grid
mesh z = a;wy + bjwsy (for k = (4,7), |ail, [bj| < Rmax for a given Rpax > 0) is chosen in the plane P in
order to compute the exact solution and to compare with the numerical solution.

Given a threshold i > 0, the errors are computed at the last iteration by

> w0, 2;) — Vo(zs)l

{z;€Qy} ~
ez% = z : and €] = {zrineaé,} [v(0, x;) — Vo(a;)|
{Ii eQn}
where v(0, -) is the analytical solution at time ¢ = 0, Vo is its approximation by the scheme used, Q,, = {z €
O, Jv(0,z)| < n}, and Q is the bounded computational domain. Notice that

v(0, .
O IMeven o o(0, 2],

er1 ~
K 11z (e, T e,

The global errors, corresponding to the case = 400, will be denoted ez and er (i.e., 2, = Q). Unless
otherwise stated, the local errors are computed with n = 0.1, and denoted e L. and ere .

We use feedforward neural networks with ReLu activation function on the inner 1ayerb Some other
activation functions were also tested, including the sigmoid and the tanh functions. We found that ReLu
was performing better on our cases, and we report only these results. If not otherwise stated, the output
activation function is the identity, and the Heun scheme is used for Fa;, with p = 5 substeps (excepted for
Example 1 where p =1 and p = 5 are compared).

Implementation of neural networks uses python TensorFlow 2, with Adam optimizer (see [1]), and the
architecture is an Intel Xeon Gold 6140 Processor with 2 CPUs and a total of 36 cores.

19

8.1 Example 1 : Rotation with obstacle

This first problem is a two-dimensional example. We aim at computing the backward reachable set of a
target disk Z(za,ro) before time T', while avoiding the region Z(zp,r1) with the following parameters

za=(1,0), zp=(0,1), r0=0.5, r =025 andT =04
(see Fig. 1). The dynamics f(x,a) with controls a € [—1,1] is given by
fl(z1,22),a) :=2wa(—xze,x1) with a € A :=[-1,1]
and corresponds to a clockwise to counter-clockwise rotation. We set
o(x) = [lz —zallz =70 and g(z) :=r1 — [z — 25>

The value v(t,z) of this problem problem (as defined in (1), with ¢ € [0,T] and = € R?) is also solution of
the following HJB equation with an obstacle term

min(—wv; + aen[l_afl] f(zya) - Vv, v—g(x)) =0, tel0,T], (53)
o(T, z) = max(p(x), g(x)). (54)

Here, the control networks use the sigmoid output activation function, with value in [0, 1], and is converted
to [—1,1] by a linear transformation.

In Fig 1, we compare the SL-scheme, the H-scheme and the L-scheme. Errors are given in Table 1.

We first investigate the influence of the substeps (p > 1). We choose F}, as the Heun scheme, with N =5
time steps (At = T'/N), and compare the results using p = 1 or p = 5 (recall that p is the number of substeps
in order to approximate the caracteristic with a constant control a on a given time interval [ty, t; + At]).

The results, for all schemes, are clearly in favor of using p = 5 (better characteristic approximation)
which benefit from the regions of regularity of the control. Hence, for the forthcoming examples, we will
always use the Heun scheme with p = 5.

Notice that for this low-dimensional example (d = 2), only a small number of stochastic gradient iterations
is enough to obtain reasonable results, and in particular to observe the contribution of p.

We also compare the three schemes for p = 5, looking at the relative errors. We observe that the L-scheme
gives the best results, the H-scheme gives intermediate results and the SL-scheme is less precise. Here we
observe that a local L! relative error less or equal to 10~2 corresponds to an almost perfect result to the eye.

Scheme Parameters Global errors Local errors CPU time
N lay. neur. M S.G.it. Lo L1 rel. Lo L rel. (s.)

SL(p=1)| 5 3 40 1000 1000 2.23e-01 5.23e-02 | 1.07e-01 3.14e-02 133.00
SL(p=5)| 5 3 40 1000 1000 1.22e-01 1.72e-02 | 1.02e-01 1.19e-02 182.94
H(p=1) | 5 3 40 1000 1000 2.12e-01 5.39e-02 | 1.13e-01 2.58e-02 180.18
H(pp=5) | 5 3 40 1000 1000 1.20e-01 7.96e-03 | 7.83e-02 7.93e-03 285.84
L(p=1) 5 3 40 1000 1000 5.99e-01 4.74e-02 | 5.01e-01 2.55e-02 54.42
L(p=5) 5 3 40 1000 1000 2.10e-01 3.22e-03 | 2.00e-01 4.08e-03 106.46

Table 1: (Example 1) Comparison of schemes

Finally, on this example, we have also tested a direct method (the DGM approach of [39]), where a
global space-time DNN is used in order to approximate the value (¢,x) — v(t, z) solution of the PDE (53).
However, in our experiments, we found that the DNN in general fails to see the obstacle part of the solution.
A typical illustration is given in Figure 2, where 3 simulations with increasing final time 7" are presented.
We considered neural networks with tanh activation function, both in the inner and output layers. In the
presented results, the network uses 3 inner layers of 40 neurons. At each iteration of the minimization,
the stochastic gradient draws 10,000 points in the space-time domain and 1000 points on the border ¢t =T
(100, 000 iterations of stochastic gradient used).

20

8.2 Example 2 : eikonal equation

Next we consider a d-dimensional problem, with no obstacle term, for various dimensions d = 6,7,8 (the
next examples will consider obstacles). o
More precisely the dynamics is f(x,a) := a with a € A = (0, 1), the closed unit ball of R? (for the

0-level set, dim=2 (t= 0.00) 0-level set, dim=2 (t= 0.00) 0-level set, dim=2 (t= 0.00)

/

\ , N N\ ,

III 2=s
' «f))
7

— Exact —

°
L

\ "/

— Exact - — Exact \—-/

| === sL (p=1) 1 === H (p=1)] ==r L (p=1)
—=—- Obstacle —=—- Obstacle —=—- Obstacle
1

3 5 M o 1 2

T T T T T
2 -1 1 2) EY

0-level set, dim=2 (t= 0.00) 0-level set, dim=2 (t= 0.00) 0-level set, dim=2 (t= 0.00)

\ A
)

i
\
N _/
— Exact

°

NN
) s

N

f‘;
C

\ "/
\ 7/

4 N
— Exact S~ — Exact —
.| == sL (p=5) Ll == H (p=5) L1 == L (p=5)

1 -=- obstacle —=—- Obstacle —=—- Obstacle

T T T T T T
-2 -1 -1 -2 -1 [1 2

°

()
I N

Figure 1: (Example 1) The SL-scheme (left), the H-scheme (middle) and the L-scheme (right) are tested
with Euler scheme with p = 1 (top) and Heun scheme with p = 5 (middle/bottom). The bottom figures
corresponds to the surface plots of z = v(0, z,y) (blue), the plot of the obstacle function (orange), and the
0-level set (red line). Networks uses 3 hidden layers, 40 neurons, with N = 5 time steps.

21

Euclidean norm). The function ¢ is
o(z) := min <||x —xzAlla — 7o, ||z —2zB]]2 — 7"0)

with 24 = (1,0,...,0) and zp = (—1,0,...,0), and parameters T = 1.0 and ro = 0.5. Hence the value
is defined as the solution of (1) (with g := —o0). The analytical solution is known and given by v(t,z) =
min (([lz = zalls = (T — 1))+ =70, ([l —2pl2 — (T = 1))+ —70).

The corresponding HIJB equation (for z € R?), using max,ca f(z,a) - Voo = ||[V,v||, is the following
eikonal equation

o+ ||V =0, te0,T) (55)
(T, z) = p(z). (56)

Here, we choose the control networks to take their values in R?. The results are then converted from R?
to the unit ball %(0,1) of R? by using the map p m. (Numerical tests showed that the choice
of the map may affect the results, and the results may deteriorate in particular when using an anisotropic
map.) Errors are given in Table 2 for dimensions d = 6,7, 8, and some illustrations are given in Fig. 3 for
dimension d = 8 (results for d € {6,7} are indistinguishable to the eye from the case d = 8, and they are
not included). Errors and figures are computed in the plane P generated by the first two vectors e, es of
the canonical basis of R,

In particular we observe that the L-scheme performs well (numerical and exact 0-level sets are indistin-
guisable to the eye), as long as a sufficient number of SG iterations is used, and that the control map from
R? to %(0,1) is well chosen.

Scheme Parameters Global errors Local errors CPU
d N layers neurons M S.G it. Lo Ly rel. L Ly rel. time
L 6 4 3 40 1000 100000 | 2.16e-02 1.96e-03 | 4.06e-04 1.58e-04 | 1h26
L 7 4 3 40 1000 200000 | 5.00e-02 3.41e-03 | 1.51e-02 1.26e-04 | 3h55
L 8 4 3 40 1000 400000 | 1.99e-01 1.81e-02 | 4.39e-04 2.19e-04 | 10h31
Table 2: (Example 2) L-scheme, dimensions d = 6,7,8
O-level set, dim=2 (T=0.10) 0-level set, dim=2 (T=0.25) 0-level set, dim=2 (T=0.40)

14 (::,‘ 14 . 14
— Exact — Exact — Exact ===

| ==+ DGM —--- DGM —--- DGM

I Obstacle 1 --- Obstacle 1 --- Obstacle

-2 -1 4 1 2 -2 -1 0 1 2 -2 -1 0 1 2

Figure 2: (Example 1) DGM direct method in dimension d = 2 (the computation is done in dimension d + 1
to include time). Results are given at ¢ = 0. Final time is set to ' = 0.1 (left), T' = 0.25 (middle) and
T = 0.4 (right).

22

0-level set, dim=8 (t= 2.00)

0-level set, dim=8 (t= 1.00)

0-level set, dim=8 (t= 0.00)

O O

| — Exact
—=- L-scheme

| = Exact

—=- L-scheme

| — Exact

—=- L-scheme

T T T T T T T T T T T T T T T
-4 -2) 2 4 -4 -2 [2 4 -4 -2 [2 4

Figure 3: (Example 2) Eikonal equation, L-scheme, dimension d = 8, at time ¢ = T = 2.0 (left, terminal
condition), t = 1.0 (center), ¢t = 0.0 (right). Networks of 3 hidden layers and 40 neurons; N = 4 time steps.

8.3 Example 3: d-dimensional advection with obstacle

We now consider an elementary d-dimensional advection problem with an obstacle term, and compare the
SL-scheme, the H-scheme and the L-scheme. The problem is to reach the target {¢(z) < 0}, while avoiding
an obstacle {g(z) < 0}, with linear dynamics f(z,a) := —ae where e € R? and the control a lies in A = [0, 1].
The corresponding HJB equation is

min < — v + aIél[%’)i] ae - Vv, v — g(x)) =0, tel0,T] (57)
o(T', z) = max(p(x), g(x)). (58)

Equivalently, max,cp1](ae - Vv) = max(0,e - Vo). The reachable set at time ¢ is given by {v(t,-) <0}
(corresponding to the set of points that can reach the target before time ¢). The target function ¢ and the
obstacle function g are defined by

o(x) = [l — Aol =70 and g(z) =11 — ||z — A12

so that {¢(z) < 0} = %B(Ag,70), and {g(x) > 0} = B(A1, 7). The following parameters are considered:

e=(1,1,..,1)/Vd, Ay=—(1,1,..,1)/vVd, Ay =(0,0,...,0), ro=0.5, r =0.25.

Here, the exact solution can be computed as v(t,z) = ¢(p(z,t)) V g(g(x)), where

p(z,t) =z — max (0,min ((x — Ag,e), T —t))e and q(z) =2z — max({x — Aj,e),0)e.

For the control networks we use the sigmoid as the output activation function (output in [0, 1]). For the
figure and error computations, we have chosen a grid in the 2-dimensional plane P = Vect(u,v) where

w=e=(1,1,...,1)/Vd, v=(1,-1,0,...,0)/V2.

(Notice that for such parameters the exact 0-level set is the same independently of the dimension d). In
order to perform the SG iterations, the size of the random batch points is set to M = 2000 (as well as for
the value approximation by neural networks, step (i7) of SL-scheme). Results are given in Table 3 and in
Figure 4, for dimension d = 6 (the difference between the schemes is more clear when the dimension is not
too small).

The CPU time reflects the computational cost of the projection of the value function that is present in
the SL-scheme and the H-scheme. Both the SL-scheme and the H-scheme need to optimize two networks per

23

time step (one for the control and one for the value), whereas the L-scheme needs only one (for the control).
Additionnally, the H-scheme computes the whole characteristics, leading to a higher CPU time than the
SL-scheme. (However, if the number of time steps N grows, the L-scheme may become more expensive than
the SL-scheme.)

Looking in particular at the figures in Figure 4, this example shows some kind of numerical diffusion that
we may encounter with the SL-scheme (and with the H-scheme, to a lesser extent).

In this example, we have also numerically observed that an increasing number of stochastic gradient
iterations were needed as the dimension increases.

Scheme Parameters Global errors Local errors CPU
d N lay. neur. M S.G. it. Lo Ly rel. Lo Ly rel. time

SL 6 5 3 40 2000 200000 | 9.08¢-02 1.84e-02 | 5.77e-02 1.29¢-02 | 6h41
H 6 5 3 40 2000 200000 | 9.47e-02 1.50e-02 | 6.42e-02 1.08e-02 | 8h31

L 6 5 3 40 2000 200000 | 2.14e-03 9.58e-05 | 1.79¢-03 9.54e-05 | 4h59

Table 3: (Example 3) Advection with obstacle, comparison of schemes

24

0-level set, dim=6 (t= 1.60) 0-level set, dim=6 (t= 0.80) 0-level set, dim=6 (t= 0.00)

— Exact — Exact — Exact
I et SL-scheme N el SL-scheme I Ml SL-scheme
—=—- Obstacle —=—- Obstacle —=—- Obstacle

2 Rt 0 1 2 2 1 0 1 2 -2 1 0 1 2

0-level set, dim=6 (t= 1.60) 0-level set, dim=6 (t= 0.80) 0-level set, dim=6 (t= 0.00)

— Exact — Exact — Exact
N e H-scheme L H-scheme Ll H-scheme
——- Obstacle ——- Obstacle —=—- Obstacle

T T T T T T T T T T T T T T T
2 1 0 1 2 -2 1] 1 2 -2 R] 1 2

0-level set, dim=6 (t= 1.60) 0-level set, dim=6 (t= 0.80) 0-level set, dim=6 (t= 0.00)

2 24 24

— Exact — Exact — Exact
it L-scheme I ke L-scheme N ity L-scheme
——- Obstacle ——- Obstacle ——- Obstacle

Figure 4: (Example 3) Results obtained with H-scheme (row (a)), SL-scheme (row (b)), and L-scheme (row

(c)) respectively. Dimension d = 6, N = 5 time steps, neural networks of 3 layers and 40 neurons.

8.4 Example 4: eikonal advection equation with obstacle, large drift

We consider now a mixed d-dimensional eikonal/advection equation with an obstacle term:

min (— v+ max f(z,a) Vv, v— g(x)) =0, te€]0,T] (59)
(T, x) = max(p(x), g(x))- (60)

with f(z,a) = bey + ca, where e; = (1,0, ...,0)* € R%, the control a belongs to A := S?~! the unit ball of RY,
b € R is a coefficient corresponding to the ”drift”, and ¢ > 0 is a speed coeflicient for the eikonal part of the
equation. Equivalently,

Ov
r;leai((f(m,a) -Vo)=b- B + ||Vl

25

The obstacle term and terminal condition are defined as

g(z) := min (gmax — e [21 = gel s |T1| + gmin) » ©(@) = [|z]| + Qmin,
where ¢, Czy ey Gmax Gmin and ami, are coefficients, and, for a given xz = (zq,... ,md)t € Rd, T, =
(0,2, ...,74)" (the orthogonal projection of x on vect(es,...,eq)). Note that this obstacle term correspond

to a wall obstacle with a tube opening centered around the e; axis (see for instance the green dotted line in
Fig. 6).

The exact solution can be computed. Details are given in Appendix A. In this example, more precisely,
the following parameters are considered

Gmax — 27 Jmin = _27 Ce = 17 Cy = 157 ge = 47 b= 17 c= 057 Omin = —1.

Here in particular |b] > ¢: the drift is dominant, which corresponds to a non-controllable situation.

Comparison of schemes in dimension d = 4. First, the SL-, H- and L-schemes are compared. Neural
networks with 3 layers of 60 neurons are chosen, and each simulation uses 100,000 stochastic gradient step.
Figure (5) displays the error |Vy(x) — v(0,)| in fonction of space, with N € {8,16} number of time steps.
Results are shown in Table 4.

The SL-scheme approximates both the control and the value function by neural networks. The projection
of the latter is a source of errors, that accumulates during the simulation. This drawback is avoided with
the H-scheme and L-scheme, where the value function is computed as a composition of the (exact) target
function ¢ and the approximated controls. Again, for the error, the H-scheme and L-scheme behave better
than the SL-scheme.

Furthermore, for the H-scheme and the L-scheme, when N varies from 8 to 16, we observe very roughly
that the L! (global and local) errors are divided by a factor two (this is less clear for the L errors). This is
not the case for the SL-scheme, for which errors have a tendency to accumulate more with time iterations.

Error, dim=4 (t= 0.00) Error, dim=4 (t= 0.00) Error, dim=4 (t= 0.00)

0.25

Error, dim=4 (t= 0.00) Error, dim=4 (t= 0.00) Error, dim=4 (t= 0.00)

Figure 5: (Example 4) Comparison between SL-scheme (left), H-scheme (middle) and L-scheme (right), for
N =8 (top) and N = 16 (bottom).

26

Scheme Parameters Global errors Local errors CPU
d N lay. neur. M S.G. it. Lo Ly rel. Lo L4 rel. time

SL 4 8 3 60 4000 100000 | 8.60e-01 4.91e-02 | 1.98e-01 7.48e¢-02 | 6hl4
H 4 8 3 60 4000 100000 | 3.34e-01 1.58e-02 | 2.01e-01 4.61e-02 | 11h26

L 4 8 3 60 4000 100000 | 3.24e-01 6.68e-03 | 1.09e-01 2.56e-02 | 8h16
SL 4 16 3 60 4000 100000 | 1.07e+00 9.21e-02 | 2.92e-01 1.06e-01 | 12h29
H 4 16 3 60 4000 100000 | 3.32e-01 9.62e-03 | 1.54e-01 2.88e-02 | 34h26

L 4 16 3 60 4000 100000 | 1.85e-01 3.57e-03 | 8.85e-02 1.64e-02 | 28h08

Table 4: (Example 4) comparison between schemes

Test of the L-scheme for increasing dimensions. Next, the L-scheme is tested for several dimensions
d € {2,4,6,8}, and results are given in Table 5. The neural network size is kept constant, with 3 layers of
60 neurons, as for the number of time iterations (N = 8). In order to reach comparable precision, we have
observed that the number of stochastic gradient iterations has to grow with d (as the dimension increases,
more iterations are needed to explore the whole region of interest). Otherwise, the scheme is relatively robust
with respect to the physical dimension of the problem (see Fig. 6).

We observe for dimension d = 8 some defects in the numerical solution (some oscillations appears).
Because of CPU time limitations, we did not attempt using more S.G. iterations, although in principle (as
observed for lower dimensions) this should enable a better optimization and solve the problem.

Scheme Parameters Global errors Local errors CPU
d N lay. neur. M S.G. it. Lo L1 rel. Lo L1 rel. time

L 2 8 3 60 4000 50000 2.66e-01 5.99¢-03 | 1.19¢-01 4.61e-02 | 3h02

L 4 8 3 60 4000 100000 | 3.90e-01 6.77e-03 | 1.16e-01 2.69e-02 | 8h13

L 6 8 3 60 4000 400000 | 9.69e-01 1.09e-02 | 1.78e-01 2.88e-02 | 35h20

L 8 8 3 60 4000 600000 | 1.05e+00 3.75e-02 | 1.71e-01 2.95e-02 | 45h27

Table 5: (Example 4) L-scheme, dimensions d = 2,4, 6, 8

8.5 Example 5: eikonal advection equation with obstacle, small drift

We now turn on a similar example as in example 4, excepted for the coefficients which are now

Results obtained with the L-scheme are given in Table 6 and Fig. 7. Here |b| < ¢, the drift is small (this
corresponds to a controllable situation). We observe that the front has to negociate a sharper angle near the
boundary of the tube (see Fig. 7).

As in example 4, the results are rather robust with respect to dimension, provided the number of stochastic
gradient iterations is large enough.

Scheme Parameters Global errors Local errors Time
d N lay. neur. M S.G it. L Ly rel. L Ly rel.

L 2 8 3 60 4000 50000 | 1.24e-01 2.94e-03 | 8.81e-02 5.21e-03 | 3h09

L 4 8 3 60 4000 100000 | 2.49e-01 4.70e-03 | 8.67e-02 5.45¢-03 | 6h51

L 6 8 3 60 4000 400000 | 8.74e-01 3.70e-02 | 1.09¢-01 1.01e-02 | 35h07

Table 6: Errors for example 5

27

0-level set, dim=2 (t=16.00)

0-level set, dim=2 (t= 8.00)

0-level set, dim=2 (t= 0.00)

0.0 - 0.0 - -
' i Lo Lo
75 ! + 75 ! i 75 ! ¥
! 1 ! 1 ! 1
H 1 H 1 H 1
e i H s 1 1 s 1 1
H 1 H 1 H 1
H 1 H 1 H 1
25 — 25 i 25 —
s l'_"": s l'_ : 25 l'___-'
! 1 ! 1 ! 1
**1 — Exact ! **1 — Exact ! **1 — Exact !
;54 ==+ L-scheme | ;54 ==+ L-scheme | ;54 ==+ L-scheme ;
—=- Obstacle —=- Obstacle —=- Obstacle
-10.0 1 -10.0 1 -10.0 1
, o 5 o 5 M 2 a5 0 5 o 5 M 2 - 0 5 o 5 M 2
0-level set, dim=4 (t=16.00) 0-level set, dim=4 (t= 8.00) 0-level set, dim=4 (t= 0.00)
0.0 - 0.0 - 0.0 -
i H 1 H 1
7 i 1 75 ! 1 75 i
| H | H |
| H | H |
s 1 1 s 1 1 s I
| H | H |
| 1 | 1 |
25 — 25 = 25 i
25 " 25 — T 25 "
Lo Lo Lo
] — Exact |] — Exact |] — Exact |
5] === L-scheme | 5] === L-scheme | 5] === L-scheme |
—=—- Obstacle —=—- Obstacle —=—- Obstacle }
-10.0 1 -10.0 1 -10.0 1
0 4 o s o 1 0 4 o s o 1 s 0 4 o s 1 1
0-level set, dim=6 (t=16.00) 0-level set, dim=6 (t= 8.00) 0-level set, dim=6 (t= 0.00)
1.0 : 1.0 . 1.0 .
oo o oo
5 i ¥ 5 i ¥ 5 i 1
[[[
" 1 ! s 1 i 50 1 T
! 1 H 1 H 1
H 1 H 1 H 1
25 — 23 = 25 —
s i 2 R a5 =T
! 1 ! 1 ! 1
7 — Exact ! 7 — Exact !] — Exact |
s ==+ L-scheme s == L-scheme] == L-scheme
—=—- Obstacle } —=—- Obstacle } —=—- Obstacle }
-10.0 1 -10.0 1 -10.0 1
20 5 o 5 1 5 20 5 o s M 5 20 5 o H M 5
0-level set, dim=8 (t= 0.00) 0-level set, dim=8 (t= 8.00) 0-level set, dim=8 (t=16.00)
0.0 - .0 - 0.0 — -
[' i
7 75 ! i 7 ! 1
| 1 ! 1
| 1 H 1
| 1
50 50 I 50 I
| 1 ! 1
| i ! i
25 23 R 25 E ——1
00 00 00
2 25 = T 2.5 4
| | i |
H 1 ! 1
1 — Exact 7 — Exact 1 — Exact |
5] === Scheme 5] === Scheme 5] ==+ Scheme ;
—=- Obstacle #4000 - ObstacleI #4000 - Obstaclel‘ #4000
o qus -18 -5 L} s i) 15 e 15 -18 - L} s 0 15 —lﬂ 0713 10 B) 5 b 15

Figure 6: (Example 4) L-scheme, dimensions 2,4,6,8, N = 8 time steps, networks : 3 layers of 60 neurouns.

28

0-level set, dim=2 (t= 7.00) 0-level set, dim=2 (t= 2.62) 0-level set, dim=2 (t= 0.00)
w0 w00 w0 .

T [[]
1 1 1 1
1 1 1
T T e T
1 1 1
1 1
T
1
1

23 ¥ T 25 25
1 1 1
1 1 1
50 1 ' S0 I 5.0
— Exact i H — Exact | H — Exact H
.54 ===+ L-scheme : 1 .54 === L-scheme : 1 .54 === L-scheme | 1
1 1 1
—=- Obstacle | 1 —=- Obstacle | 1 —=- Obstacle | 1
-10.8 1 1 -10.0 1 1 -18.8 1 1
w5 se s me 25 se 73 1.0 e s se 25 08 25 s8 15 we w5 se 2s me 25 se 73 1.0

0-level set, dim=4 (t= 7.00) 0-level set, dim=4 (t= 2.62) 0-level set, dim=4 (t= 0.00)
o . o .

1
T
1
1
"n :D
25
X}
25
5.0

25 ¥ t s
1 1 1
1 1 1
50 1 ' 50 |
— Exact - - — Exact | i — Exact -
254 —=- L-scheme : 1 254 === L-scheme : 1 .54 ==+ L-scheme] 1
1 1 1
—=—- Obstacle | 1 ——- Obstacle | 1 ——- Obstacle | 1
18.0 1 1 10.0 ! 1 16.0 1 1
00 95 S0 25 0o 25 5o 75 10 we a5 se 25 o0 25 se 75 10 00 95 S0 25 0o 25 5o 75 10

0-level set, dim=6 (t= 7.00) 0-level set, dim=6 (t= 2.62) 0-level set, dim=6 (t= 0.00)
. . . .

]

T

I

1
5.0
25
X}
25
.0

O .

25 ¥ I 25
1 1 1
1 i 1
5.0 1 ' .0 '
— Exact ! | — Exact | | — Exact |
.54 ===+ L-scheme : 1 254 === L-scheme : 1 .54 ===+ L-scheme _} 1
1 1 1
—=- Obstacle | 1 —=- Obstacle | 1 —=- Obstacle | 1
-18.0. ! 1 -10.0 1 1 -18.0. ! 1
w95 s s se 25 se 75 1. e s se 25 s 25 sa 75 wme w95 s s se 25 se 75 1.

Figure 7: (Example 5) L-scheme, dimensions 2, 4 and 6. Networks with 3 layers of 60 neurons, N = 8 time
steps.

A Semi-analytical solution for examples 4 and 5

We briefly describe how to compute the exact values for examples 4 and 5, that is, in order to compute
v =v(t,z) for given values t and x. We consider the case of data ¢(x) = ||| + amin, for a ami, € R.

For & € [gimin, gmax), Notice that the level set {g = a} corresponds to a wall pierced by a square door (see
figure 8).

29

= Gmin
= Gmax

b
g
g

2 {p=a}

9max — Imin -
2 = y(x,)
0
(] L]

l Gmax = Imin .

Cx
10,0 -10.0 -1 0 1 2 3 4 5 6 7 8 -2 0 2 4 6

characteristic
reaching x

Figure 8: Initial condition (in blue) and obstacle function (in green). Illustration of parameters. Exemple
of a characteristics with obstacle in the case b = 0.

First, by using the symmetries of the problem around the e; axis, and an orthogonal axis along x — z1eq,
it is possible to set back the problem into a 2-dimensional problem.

If no obstacle term is present (or if it does not modify the value v), for a given point x € R?, and for
a given (level-set) value v, it is possible to compute the minimal time to reach x from the initial level set
front (corresponding to some point on the level set {¢(x) = v}). More precisely, the optimal trajectory is a
straight segment and the value satisfies

v(t,z) = (||l — bert|| — ct)+ + @min,

and t is also the time for the front {¢(.) = v} to reach the point x.

In the more complex situation when the optimal trajectory from {¢(.) = v} to point x is not a straight
segment, it will be composed of two segments (one starting from some point on {p(.) = v} to reach some
point y on the level set {g(y) = v}, the other one starting from y to z - as depicted in Fig. 8-right). Then
the minimal time ¢ (associated to some value v = v(t, z)) is the sum of two minimal times ¢, ¢ such that

L=t + 12 (61a)
ly = berta > = (ctr + v — amin)? (61b)
[z — (y + berta)||> = (cta)?. (61c)

Note that ¢; is the time for the level set {(.) = v} to reach y on {g(.) = v}, 3 is the time to reach z from
y. Then, for a given value v, y = y(v) is known (it has an affine analytic expression in term of v). Times
t1 = t1(v) and tg = t2(v) are obtained as root solutions of (61b) and (61c). Then, for given (¢, z), the value
v is obtained through a Newton algorithm for solving system (61). Note that on regions not attained by
the front, we consider the complex roots t1(v) or ¢2(v) in the Newton algorithm (in order to always have
well-defined and continuous reaching times).

References

[1] M. Abadin et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] M. Akian, S. Gaubert, and A. Lakhoua. The max-plus finite element method for solving determin-
istic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim.,
47(2):817-848, 2008.

[3] A. Alla, M. Falcone, and L. Saluzzi. A tree structure algorithm for optimal control problems with state
constraints. Rendiconti di Matematica e delle sue Applicazioni. Serie VII, 41(3-4):193-221, 2020.

30

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Altarovici, O. Bokanowski, and H. Zidani. A general Hamilton-Jacobi framework for non-linear state-
constrained control problems. ESAIM: Control, Optimisation and Calculus of Variations, 19(337-357),
2013.

C. Anil, J. Lucas, and R. Grosse. Sorting out lipschitz function approximation. In International
Conference on Machine Learning, pages 291-301. PMLR, 2019.

M. Assellaou, O. Bokanowski, A. Desilles, and H. Zidani. Value function and optimal trajectories for a
maximum running cost control problem with state constraints. Application to an abort landing problem.
ESAIM Math. Model. Numer. Anal., 52(1):305-335, 2018.

A. Bachouch, C. Huré, N. Langrené, and H. Pham. Deep Neural Networks Algorithms for Stochas-
tic Control Problems on Finite Horizon: Numerical Applications. Methodol. Comput. Appl. Probab.,
24(1):143-178, 2022.

S. Bansal, M. Chen, K. Tanabe, and C. Tomlin. Provably safe and scalable multi-vehicle trajectory
planning. IEEE Transactions on Control Systems Technology (TCST), 2021.

C. Barrera-Esteve, F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos, and D. Reboul-Salze.
Numerical methods for the pricing of swing options: a stochastic control approach. Methodology and
computing in applied probability, 8(4):517-540, 2006.

C. Bender and R. Denk. A forward scheme for backward sdes. Stochastic processes and their applications,
117(12):1793-1812, 2007.

O. Bokanowski, E. Bourgeois, A. Désilles, and H. Zidani. Payload optimization for multi-stage launchers
using hjb approach and application to a sso mission. In Proceedings, 20th IFAC, 2017.

O. Bokanowski, Y. Cheng, and C.-W. Shu. A discontinuous Galerkin scheme for front propagation with
obstacles. Numer. Math., 126(1):1-31, 2014.

O. Bokanowski, Y. Cheng, and C.-W. Shu. Convergence of discontinuous Galerkin schemes for front
propagation with obstacles. Math. Comp., 85(301):2131-2159, 2016.

O. Bokanowski, N. Forcadel, and H. Zidani. Reachability and minimal times for state constrained
nonlinear problems without any controllability assumption. SIAM J. Control Optim., 48(7):4292-4316,
2010.

O. Bokanowski, N. Gammoudi, and H. Zidani. Optimistic Planning Algorithms For State-Constrained
Optimal Control Problems. Computers & Mathematics with Applications, 109(1):158-179, 2022.

O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker. An adaptive sparse grid semi-Lagrangian
scheme for first order Hamilton-Jacobi Bellman equations. Journal of Scientific Computing, 55(3):575—
605, 2013.

M. G. Crandall and P. L. Lions. Two approximations of solutions of hamilton-jacobi equations. Math-
ematics of Computation, 43(167):1-19, 1984.

K. Debrabant and E. R. Jakobsen. Semi-Lagrangian schemes for linear and fully non-linear Hamilton-
Jacobi-Bellman equations. In Hyperbolic problems: theory, numerics, applications, volume 8 of AIMS
Ser. Appl. Math., pages 483-490. Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2014.

S. Dolgov, D. Kalise, and K. K. Kunisch. Tensor Decomposition Methods for High-dimensional
Hamilton—Jacobi-Bellman Equations. SIAM Journal on Scientific Computing, 43(3):A1625—-A1650,
Jan. 2021.

31

[20]

[30]

[31]

[32]

M. Falcone and R. Ferretti. Numerical methods for Hamilton-Jacobi type equations. In Handbook
of numerical methods for hyperbolic problems, volume 17 of Handb. Numer. Anal., pages 603—626.
Elsevier/North-Holland, Amsterdam, 2016.

J. Garcke and A. Kréner. Suboptimal feedback control of PDEs by solving HJB equations on adaptive
sparse grids. J. Sci. Comput., 70(1):1-28, 2017.

M. Germain, H. Pham, and X. Warin. Approximation error analysis of some deep backward schemes
for nonlinear pdes. SIAM Journal on Scientific Computing, 44(1):A28—-A56, 2022.

E. Gobet, J.-P. Lemor, and X. Warin. A regression-based monte carlo method to solve backward
stochastic differential equations. The Annals of Applied Probability, 15(3):2172-2202, 2005.

E. Gobet and P. Turkedjiev. Linear regression mdp scheme for discrete backward stochastic differential
equations under general conditions. Mathematics of Computation, 85(299):1359-1391, 2016.

L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution-Free Theory of Nonparametric Regres-
sion. Springer Series in Statistics. Springer New York, New York, NY, 2002.

J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using deep
learning. Proc. Natl. Acad. Sci. USA, 115(34):8505-8510, 2018.

J. Han and J. Long. Convergence of the Deep BSDE Method for Coupled FBSDEs. Probability,
Uncertainty and Quantitative Risk, 5(1):5, Dec. 2020. arXiv:1811.01165 [cs, math].

C. Hu and C.-W. Shu. A discontinuous Galerkin finite element method for Hamilton-Jacobi equations.
SIAM Journal on Scientific Computing, 21:666—690, 1999.

C. Huré, H. Pham, A. Bachouch, and N. Langrené. Deep neural networks algorithms for stochastic
control problems on finite horizon: convergence analysis. SIAM J. Numer. Anal., 59(1):525-557, 2021.

C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional nonlinear pdes. Math-
ematics of Computation, 89(324):1547-1579, 2020.

M. Jensen and I. Smears. On the convergence of finite element methods for Hamilton-Jacobi-Bellman
equations. SIAM J. Numer. Anal., 51(1):137-162, 2013.

N. V. Krylov. Controlled diffusion processes, volume 14 of Stochastic Modelling and Applied Probability.
Springer-Verlag, Berlin, 2009. Translated from the 1977 Russian original by A. B. Aries, Reprint of the
1980 edition.

H. J. Kushner and P. G. Dupuis. Numerical methods for stochastic control problems in continuous time,
volume 24 of Applications of mathematics. Springer, New York, 2001. Second edition.

E. B. Lee and L. Markus. Foundations of Optimal Control Theory. R.E. Krieger Pub. Co, Malabar,
Fla, 1986.

F. Li and C.-W. Shu. Reinterpretation and simplified implementation of a discontinuous Galerkin
method for Hamilton-Jacobi equations. Applied Mathematics Letters, 18:1204-1209, 2005.

W. M. McEneaney, A. Deshpande, and S. Gaubert. Curse-of-complexity attenuation in the curse-
of-dimensionality-free method for hjb pdes. In 2008 American Control Conference, pages 4684-4690,
2008.

S. Osher and C.-W. Shu. High essentially nonoscillatory schemes for Hamilton-Jacobi equations. STAM
J. Numer. Anal., 28(4):907-922, 1991.

32

[38]

C.-W. Shu. High order ENO and WENO schemes for computational fluid dynamics. In High-order
methods for computational physics, volume 9 of Lect. Notes Comput. Sci. Eng., pages 439-582. Springer,
Berlin, 1999.

J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of computational physics, 375:1339-1364, 2018.

I. Smears and E. Siili. Discontinuous Galerkin finite element methods for time-dependent Hamilton-
Jacobi-Bellman equations with Cordes coefficients. Numer. Math., 133(1):141-176, 2016.

B. Somil and J. T. Claire. DeepReach: A Deep Learning Approach to High-Dimensional Reachability.
In International Conference on Robotics and Automation (ICRA), 2021.

U. Tanielian, M. Sangnier, and G. Biau. Approximating Lipschitz continuous functions with GroupSort
neural networks. 2020, 2020.

33

	Introduction
	Semi-discrete approximation with piecewise constant controls
	Reformulation with feedback controls
	Approximation by Lipschitz continuous feedback controls
	Numerical schemes
	Dynamic programming schemes
	Runge Kutta schemes
	Neural network spaces

	Main result
	Proof of Theorem ??
	Numerical results
	Example 1 : Rotation with obstacle
	Example 2 : eikonal equation
	Example 3: d-dimensional advection with obstacle
	Example 4: eikonal advection equation with obstacle, large drift
	Example 5: eikonal advection equation with obstacle, small drift

	Semi-analytical solution for examples 4 and 5

