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We consider a deterministic optimal control problem with a maximum running cost functional, in a finite horizon context, and propose deep neural network approximations for Bellman's dynamic programming principle, corresponding also to some first order Hamilton-Jacobi-Bellman equation. This work follows the lines of Huré et al. (SIAM J. Numer. Anal., vol. 59 (1), 2021, pp. 525-557) where algorithms are proposed in a stochastic context. However we need to develop a completely new approach in order to deal with the propagation of errors in the deterministic setting, where no diffusion is present in the dynamics. Our analysis gives precise error estimates in an average norm. The study is then illustrated on several academic numerical examples related to front propagations models in presence of obstacle constraints, showing the relevance of the approach for average dimensions (e.g. from 2 to 8), even for non smooth value functions.

Introduction

In this work we are interested by the approximation of a deterministic optimal control problem with finite horizon involving a maximum running cost, defined as

v(t, x) = inf a(•)∈A [t,T ] max max θ∈[t,T ]
g(y a x (θ)), ϕ(y a x (T )) ,

where the state x belongs to R d and t ∈ [0, T ] for some T ≥ 0. Here the trajectory y(s) = y a x (s) obeys the following dynamics ẏ(s) = f (y(s), a(s)), a.e. s ∈ [t, T ],

(

with initial condition y(t) = x, and control a ∈ A [t,T ] := L ∞ ([t, T ], A). It is assumed that A is a non-empty compact subset of R κ (κ ≥ 1) and (f , ϕ, g) are Lipschitz continuous. The value v is solution of the following Hamilton-Jacobi-Bellman (HJB) partial differential equation, in the viscosity sense (see for instance [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF])

min -v t + max a∈A (-f (x, a) • ∇ x v), v -g(x) = 0, t ∈ [0, T ] (3a) 
v(T, x) = max(ϕ(x), g(x)).

(3b)

Tremendous numerical efforts have been made in order to propose efficient algorithms for solving problem related to [START_REF] Abadin | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF], or the corresponding HJB equation [START_REF] Alla | A tree structure algorithm for optimal control problems with state constraints[END_REF]. Precise numerical methods have been developed, using approximations on grids, such as Markov Chains approximations [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF], finite difference schemes (monotone schemes [START_REF] Crandall | Two approximations of solutions of hamilton-jacobi equations[END_REF], semi-Lagrangian schemes (see e.g. [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully non-linear Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Falcone | Numerical methods for Hamilton-Jacobi type equations[END_REF]) ENO or WENO higher-order schemes [START_REF] Osher | High essentially nonoscillatory schemes for Hamilton-Jacobi equations[END_REF][START_REF] Shu | High order ENO and WENO schemes for computational fluid dynamics[END_REF], finite element methods (see [START_REF] Jensen | On the convergence of finite element methods for Hamilton-Jacobi-Bellman equations[END_REF]), discontinuous Galerkin methods [START_REF] Hu | A discontinuous Galerkin finite element method for Hamilton-Jacobi equations[END_REF][START_REF] Li | Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations[END_REF], and in particular [START_REF] Bokanowski | A discontinuous Galerkin scheme for front propagation with obstacles[END_REF][START_REF] Bokanowski | Convergence of discontinuous Galerkin schemes for front propagation with obstacles[END_REF] for [START_REF] Alla | A tree structure algorithm for optimal control problems with state constraints[END_REF], see also [START_REF] Smears | Discontinuous Galerkin finite element methods for time-dependent Hamilton-Jacobi-Bellman equations with Cordes coefficients[END_REF], or max-plus approaches [START_REF] Akian | The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis[END_REF]). However, grid-based methods are limited to low dimensions because of the well-known curse of dimensionality. In order to tackle this difficulty, various approaches are studied, such as spare grids methods [START_REF] Bokanowski | An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations[END_REF][START_REF] Garcke | Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids[END_REF], tree structure approximation algorithm (see e.g. [START_REF] Alla | A tree structure algorithm for optimal control problems with state constraints[END_REF]), tensor decomposition methods [START_REF] Dolgov | Tensor Decomposition Methods for High-dimensional Hamilton-Jacobi-Bellman Equations[END_REF], max-plus approaches in [START_REF] Mceneaney | Curse-of-complexity attenuation in the curseof-dimensionality-free method for hjb pdes[END_REF].

In the deterministic context, problem (1) is motivated by deterministic optimal control with state constraints (see e.g. [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF] and [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear stateconstrained control problems[END_REF]). In [START_REF] Somil | DeepReach: A Deep Learning Approach to High-Dimensional Reachability[END_REF], the HJB equation ( 3) is approximated by deep neural networks (DNN) for solving state constrained reachability control problems of dimension up to d = 10. In [START_REF] Bokanowski | Optimistic Planning Algorithms For State-Constrained Optimal Control Problems[END_REF] or in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. Application to an abort landing problem[END_REF], formulation [START_REF] Abadin | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF] is used to solve an abort landing problem (using different numerical approaches); in [START_REF] Bokanowski | Payload optimization for multi-stage launchers using hjb approach and application to a sso mission[END_REF], equations such as [START_REF] Alla | A tree structure algorithm for optimal control problems with state constraints[END_REF] are used to solve an aircraft payload optimization problem; a multi-vehicle safe trajectory planning is considered in [START_REF] Bansal | Provably safe and scalable multi-vehicle trajectory planning[END_REF].

On the other hand, for stochastic control, DNN approximations were already used for gas storage optimization in [START_REF] Barrera-Esteve | Numerical methods for the pricing of swing options: a stochastic control approach[END_REF], where the control approximated by a neural network was the amount of gas injected or withdrawn in the storage. This approach has been adapted and popularized recently for the resolution of BSDE in [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] (deep BSDE algorithm). For a convergence study of such algorithms in a more general context, see [START_REF] Han | Convergence of the Deep BSDE Method for Coupled FBSDEs[END_REF].

In this work, we study some neural networks approximations for [START_REF] Abadin | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF]. We are particularly interested for the obtention of a rigorous error analysis of such approximations. We follow the approach of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] (and its companion paper [START_REF] Bachouch | Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Numerical Applications[END_REF]), combining neural networks approximations and Bellman's dynamic programming principle. We obtain precise error estimates in an average norm.

Note that the work of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] is developed in the stochastic context, where an error analysis is given. However this error analysis somehow relies strongly on a diffusion assumption of the model (transition probabilities with densities are assumed to exists). In our case, we would need to assume that the deterministic process admits a density, which is not the case (see remark 6.5). Therefore the proof of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] does not apply to the deterministic context. Here we propose a new approach for the convergence analysis, leading to new error estimates. We chose to present the algorithm on a running cost optimal control problem, but the approach can be generalized to Bolza or Mayer problems (see e.g. [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear stateconstrained control problems[END_REF][START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. Application to an abort landing problem[END_REF]).

For sake of completeness, let us notice that the ideas of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] are related to methods already proposed in [START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF] and [START_REF] Bender | A forward scheme for backward sdes[END_REF] for the resolution of Backward Stochastic Differential Equations (BSDE), where the control function is calculated by regression on a space of some basis functions (the Hybrid-Now algorithm is related to [START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF], and the performance iteration algorithm is related to an improved algorithm in [START_REF] Bender | A forward scheme for backward sdes[END_REF]). For recent developments, see [START_REF] Gobet | Linear regression mdp scheme for discrete backward stochastic differential equations under general conditions[END_REF] using classical linear regressions, and [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF] and [START_REF] Germain | Approximation error analysis of some deep backward schemes for nonlinear pdes[END_REF] for BSDE approximations using neural networks.

From the numerical point of view, we illustrate our algorithms on some academic front-propagation problems with or without obstacles. We focus on a "Lagrangian scheme" (a deterministic equivalent of the performance iteration scheme of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF]), and also compare with other algorithms : a "semi-Lagrangian algorithm" (similar to the Hybrid-Now algorithm of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF]) and an hybrid algorithm combining the two previous, involving successive projection of the value function on neural network spaces.

The plan of the paper is the following. In section 2 we define a semi-discrete value approximation for (1), with controlled error with respect to the continuous value, using piecewise constant controls. In section 3, equivalent reformulations of the problem are given using feedback controls and dynamic programming. In section 4, an approximation result of the discrete value function by using Lipschitz continuous feedback controls is given. In section 5 we present three numerical schemes using neural networks approximations (for the approximation of feedback controls and/or for the value), using general Runge Kutta schemes for the approximation of the controlled dynamics. Section 6 contains our main convergence result for one of the proposed scheme (the Lagrangian scheme) which involves only approximations of the feedback controls, and section 7 focuses on the proof of our main result. Section 8 is devoted to some numerical academic examples of front-propagation problems with or without an obstacle term (state constraints), for average dimensions, showing the potential of the proposed algorithms in this context, and also giving comparisons between the different algorithms introduced. An appendix contains some details for computing reference solutions for some of the considered examples.

Notations. Unless otherwise precised, the norm |.| on R q (q ≥ 1) is the max norm |x| = x ∞ = max 1≤i≤q |x i |. The notation p, q = {p, p + 1, . . . , q} is used, for any integers p ≤ q. For any function α : R p → R q for some p, q ≥ 1, [α] := sup y =x

|α(y)-α(x)| |y-x|
denotes the corresponding Lipschitz constant. We also denote a ∨ b := max(a, b) for any a, b ∈ R. The set of "feedback" controls is defined as A := {a : R d → A, a(.) measurable}.

Semi-discrete approximation with piecewise constant controls

In this section, we first aim to define a semi-discrete approximation of (1) in time.

Let the following assumptions hold on the set A and functions f, g, ϕ.

(H0) A is a non-empty compact subset of R κ (κ ≥ 1), and is a convex set.

(H1) f : R d × A → R d is Lipschitz continuous and we denote [f ] 1 , [f ] 2 ≥ 0 constants such that |f (x, a) -f (x , a )| ≤ [f ] 1 |x -x | + [f ] 2 |a -a |, ∀(x, x ) ∈ (R d ) 2 , ∀(a, a ) ∈ A 2 . (H2) g : R d → R is Lipschitz continuous. (H3) ϕ : R d → R is Lipschitz continuous.
Let T > 0 be the horizon, let N ∈ N * be a number of iterations, and (t k ) k∈ 0,N ⊂ [0, T ] be a time mesh with t 0 = 0 and t N = T . To simplify the presentation, we restrict ourselves to the uniform mesh t k = k∆t with ∆t = T N , but the arguments would carry over unchanged with a non-uniform time mesh. Let us consider F h : R d ×A → R d (for a given h > 0), corresponding to some one time step approximation of y a x (h) (starting from y a x (0) = x). For instance, we may consider the Euler scheme F h (x, a) = x + hf (x, a), or the Heun scheme F h (x, a) = x + h 2 (f (x, a) + f (x + hf (x, a), a)), and so on. General Runge Kutta schemes are considered later on in section 5.2. Assumptions on F h will be made precise when needed.

For a given sequence a := (a n , a n+1 , . . . , a N -1 ) ∈ A N -n (with n ∈ 0, N -1 ), which corresponds to a piecewise constant control approximation, and a given integer p ≥ 1, we define two levels of approximations for the trajectories.

The fine approximation involves time step h = ∆t p , is denoted Y a k j,x (for a fixed control a k , ∀0 ≤ j ≤ p), and is defined recursively by

Y a k 0,x = x (4a) Y a k j+1,x = F h (Y a k j,x , a k ), j = 0, . . . , p -1, (4b) 
which also corresponds to j iterates of y → F h (y, a k ), starting from y = x, with the same control a k . This fine level will be used to obtain approximation of the trajectory at intermediate time steps

t k + jh which lie into [t k , t k+1 ].
The coarse approximation with time step ∆t is denoted (X a k,x ) n≤k≤N and is defined recursively by

X a n,x := x (5a) X a k+1,x = Y a k p,X a k,x , k = n, . . . , N -1. ( 5b 
)
Notations. We will often use the notations, for a given a ∈ A, F (•, a) ≡ F a (•) := Y a p,. and the fact that (5b) can also be written

X a k+1,x = F (X a k,x , a k ), k = n, . . . , N -1.
We can now define the following cost functional, for

x ∈ R d , a ∈ A N -n and n ∈ 0, N J n (x, a) := max n≤k<N max 0≤j<p g(Y a k j,X a k,x ) (g ∨ ϕ)(X a N,x ), x ∈ R d , a ∈ A N -n , (6) 
and the following semi-discrete version of (1), for x ∈ R d and n ∈ 0, N V n (x) := min

a∈A N -n J n (x, a). (7) 
(for n = N , we have V N (x) = J N (x) = g(x)∨ϕ(x)). It will be also useful to introduce the following notation, for a ∈ A and

x ∈ R d , G a (x) := max 0≤j<p g(Y a j,x ). ( 8 
)
The values (V n ) 0≤n≤N satisfy also V N (x) = g(x)∨ϕ(x), and the following dynamic programming principle (DPP) for n = 0, . . . , N -1:

V n (x) = inf a∈A G a (x) ∨ V n+1 (F (x, a)), x ∈ R d . (9) 
Let us notice that the case p = 1 leads to the following simplifications:

h = ∆t, F (x, a) = F ∆t (x, a), G a (x) = g(x), J n (x) = max n≤k≤N g(X a k,x ) ∨ ϕ(X a N,x ), as well as V N (x) = g(x) ∨ ϕ(x) and the DPP V n (x) = inf a∈A g(x) ∨ V n+1 (F ∆t (x, a)) (0 ≤ n ≤ N -1).
The motivation behind the introduction of the finer level of approximation (Y a k j,x ) 0≤j≤p is first numerical. It enables a better evaluation of the running cost term g(.) along the trajectory, without the computational cost of more intermediate controls. The numerical improvement is illustrated in the examples of section 8.1. Furthermore, from the theoretical point of view, the convergence analysis in our main result will strongly use the fact that x → F h (x, a) is a change of variable for h sufficiently small (i.e., p sufficiently large).

We start by showing some uniform Lipschitz bounds. Proof. (i) Notice that 1 + ch ≤ e ch . Then for a ∈ A and for the j-th iterate

F (j) h (., a) of F h , we obtain |Y a j,x -Y a j,y | = |F (j) h (x, a) -F (j)
h (y, a)| ≤ e jch |x -y| ≤ e c∆t |x -y| for any 0 ≤ j ≤ p (by recursion). Hence also sup a∈A [F (., a)] ≤ e c∆t , from which we deduce for any a = (a n , . . . , a N -1 ) (ii) As a direct consequence of (i) and the definition of V n .

∈ A N -n and n ≤ k ≤ N , |X a k,x -X a k,y | ≤ e c(k-n)∆t |x -y| ≤ e cT |x -
The following result shows that V n (x) is a first order approximation of v(t n , x) in time.

Theorem 2.2. Assume (H0)-(H3), and that there exists h 0 > 0 such that -F h is consistent with the dynamics f in the following sense:

∃C ≥ 0, ∀(x, a, h) ∈ R d × A × (0, h 0 ), |F h (x, a) -(x + hf (x, a))| ≤ Ch 2 (1 + |x|), (10) 
-for all h ∈]0, h 0 ], sup a∈A [F h (., a)] ≤ 1 + ch for some constant c ≥ 0 (c may depends on [f ]),

-f (x, A) is convex for all x ∈ R d . Let h = ∆t p ≤ h 0 (with p ≥ 1). Then max 0≤n≤N |V n (x) -v(t n , x)| ≤ C∆t(1 + |x|) (11) 
for some constant C ≥ 0 independent of x, ∆t, p (and N ).

Proof. This follows from the arguments of Theorem B.1. in [START_REF] Bokanowski | Optimistic Planning Algorithms For State-Constrained Optimal Control Problems[END_REF].

Corollary 2.3. In particular, if F h is a consistent RK scheme (see definition 5.2) and f (x, A) is convex for all x, then by Lemma 5.6, (10) holds and therefore the error estimate (11) also holds.

Our aim is now to propose numerical schemes for the approximation of V n (.).

Reformulation with feedback controls

In this section, equivalent definitions for V n are given using feedback controls in A (the set of measurable functions a : R d → A). These formulations will lead to the numerical schemes. First, for a given a k ∈ A, the fine approximation Y a k x,j (with time step h = ∆t p ) is defined by

Y a k x,j := Y a k (x)
x,j using definition (4). This corresponds also to

Y a k 0,x = x (12) Y a k j+1,x = F h (Y a k j,x , a k (x)), j = 0, . . . , p -1 (13) 
(that is, j iterates of y → F h (y, a k (x)), starting from y = x, with the fixed control a k (x)). Then, for a given sequence a := (a n , . . . , a N -1 ) ∈ A N -n , the coarse approximation is defined by

X a n,x = x (14a) X a k+1 = F a k (X a k,x ) ≡ F X a k,x , a k (X a k,x ) , k = n, . . . , N -1. (14b) 
(with notation F a k (x) = F (x, a k (x)). We also extend the definition of J n to the feedback space, for x ∈ R d and a ∈ A N -n , as follows

J n (x, a) := max n≤k≤N G a k (X a k,x ) ϕ(X a N,x ) (15) 
where now, for a given control a ∈ A, we extend the definition of (8) by

G a (x) := max 0≤j<p g(Y a(x) j,x ) (16) 
(this also corresponds to define G a (x) as G a(x) (x)). With this definitions, we have the following results.

Proposition 3.1. (i) V n (x)
is the minimum of J n (x, .) over feedback controls:

V n (x) = min a∈A N -n J n (x, a), x ∈ R d .
(ii) For all 0 ≤ n ≤ N -1, V n satisfies the following dynamic programming principle over feedback controls

V n (x) = min a∈A G a (x) V n+1 (F a (x)), x ∈ R d , n = 0, . . . , N -1 ( 17 
)
and in particular, the infimum is reached by some some ān ∈ A.

Proof. The problem is to show the existence of a measurable feedback control. By using a measurable selection procedure (see for instance Lemmas 2A, 3A p. 161 of [START_REF] Lee | Foundations of Optimal Control Theory[END_REF]), since A is compact and G (such that G a (x) = G(x, a(x))), V n+1 and F (such that F a (x) = F (x, a(x))) are continuous, we may choose ān measurable in [START_REF] Crandall | Two approximations of solutions of hamilton-jacobi equations[END_REF].

The following well-known result links pointwise minimization over open-loop controls a ∈ A and minimization of an averaged value over feedback controls a ∈ A. Lemma 3.2. Let X be a random variable with values in R d which admits a density ρ, and such that E[|X|] < ∞. Then for any measurable Ω ⊂ R d such that ρ(x) > 0 a.e. x ∈ Ω, and n ∈ 0, N -1 ,

ān (.) ∈ argmin a∈A E 1I Ω (X) G a (X) ∨ V n+1 (F a (X)) ⇐⇒ āh (x) ∈ argmin a∈A G a (x) ∨ V n+1 (F a (x)) , a.e. x ∈ Ω .
We now introduce a new assumption on a sequence of sets Ω n , densities ρ n (supported in Ωn ) and associated random variables X n (with associated probability densities ρ n ).

(H4) The functions ρ k ∈ L 1 (R d ) and open sets Ω k ⊂ R d , 0 ≤ k ≤ N , are such that ρ k (x) > 0 on Ω k , and supp(ρ k ) ⊂ Ω k , ∀k = 0, . . . , N (18a) 
F (Ω k , a) ⊂ Ω k+1 , ∀a ∈ A, ∀k = 0, . . . , N -1 (18b) C k,∆t := sup x∈Ω k sup a∈A ρ k (x) ρ k+1 (F (x, a)) < ∞, ∀k = 0, . . . , N -1. (18c) 
Furthermore, we consider random variables (X k ) 0≤k≤N on some probability space, with values in R d , absolutely continuous with respect to Lebesgue's measure and admitting (ρ k ) 0≤k≤N as associated densities.

From the definitions we have E[φ(X k )] = Ω k φ(x)ρ k (x)dx for any measurable bounded function φ.

The technical assumption (18c) is not important in this section but will be needed for the main result later on. Before going on, we give some examples where (H4) holds:

• case Ω 0 is a bounded subset of R d , Ω k = Ω 0 + B(0, ck∆t f ∞ ) (where B(0, r) is the ball of radius r, f ∞ is a bound for |f | on Ω N × A, and assuming |F h (x)| ≤ |x| + ch f ∞ as it will be the case for RK schemes as in (5.2)(i)), and (ρ k (.)) k is any set of bounded functions such that ρ k (x) ≥ η, ∀x ∈ Ω k+1 , ∀k = 0, . . . , N -1, for some η > 0.

A useful example is the case of Ω k := B(0, L 0 + ck∆t f ∞ ), ∀k ≥ 0, with uniform densities ρ k compactly supported on Ω k . In that case we notice that

C k,∆t = |Ω k+1 | |Ω k | = L0+c(k+1)∆t f ∞ L0+ck∆t f ∞ d and
also the following uniform estimate holds:

max 0≤k<N N -1 k=n C k,∆t ≤ L 0 + cT f ∞ L 0 d . ( 19 
)
• case Ω k = R d and ρ k (x)
|x|→∞ ∼ e -q k |x| with q k > 0, ∀k.

• case Ω k = Ω and ρ k = ρ, ∀k, where Ω is bounded, assuming furthermore that Ω is invariant by the dynamics, i.e., F a h (Ω) ⊂ Ω for all a ∈ A and h ≥ 0.

We can now give the following equivalent properties for V n .

Proposition 3.3. Let n ∈ 0, N -1 and (Ω n , ρ n ) as in (H4) (with associated random variables X n ). Then V n satisfies the following dynamic programming principle

V n (x) = G ān (x) V n+1 (F ān (x)), ∀x ∈ Ω n (20) 
for any

ān (.) ∈ argmin a∈A E G a (X n ) ∨ V n+1 (F a (X n )) . (21) 
In particular, we have

E[V n (X n )] = E G ān (X n ) V n+1 (F ān (X n )) = inf a∈A E G a (X n ) ∨ V n+1 (F a (X n )) . ( 22 
)
Proof. The proof follows from Lemma 3.2 and the dynamic programming principle of Proposition 3.1.

The above reformulation with an averaging criteria is motivated by numerical aspects: the problem can then be relaxed with an approximation  of the control space A, for instance by neural networks. However, in general, ān is no more than measurable. To circumvent this difficulty, we first approximate problem ( 22) by more regular feedback controls.

Approximation by Lipschitz continuous feedback controls

We aim to approximate ( 22) by using by Lipschitz continuous feedback controls. Note that in Krylov [START_REF] Krylov | of Stochastic Modelling and Applied Probability[END_REF], some approximations using feedback controls are given, yet in a different context with stochastic differential equations and for non-degenerate diffusions.

Let ρ ∈ C 1 R d , R be a smooth function such that supp(ρ) ⊂ B(0, 1), and

R d ρ(x)dx = 1. Let (ρ ε ) ε>0 be the mollifying sequence such that ρ ε (x) := 1 ε d ρ( x ε ).
For any sequence a := (a 0 , . . . , a N -1 ) ∈ A N , we associate the regularization by convolution

a ε k := ρ ε * a k . ( 23 
)
Therefore a ε k is Lipschitz continuous, and

∇a ε k L ∞ = (∇ρ ε ) * a k L ∞ ≤ 1 ε ∇ρ L 1 a k L ∞ . By classical arguments, lim ε→0 a ε (x) = a(x) a.e x ∈ R d .
In this section the following assumptions on F h will be needed.

(H5) The function F h satisfies:

• there exists a constant C > 0 and h 0 > 0 such that, for all 0 < h ≤ h 0 :

|F h (x, a)| ≤ |x| + Ch(1 + |x|), x ∈ R d , a ∈ A, (24) 
• F h satisfies a continuity property (for all 0 < h ≤ h 0 ):

∀x ∈ R d , a ∈ A → F h (x, a) ∈ R d is continuous. ( 25 
)
Such assumptions are naturally satisfied by Euler or Heun schemes already mentioned, and will be satisfied by more general RK schemes.

The following result will be used later on in order to obtain a regularized sequence of controls (for the approximation of the dynamic programming principle) which will be more and more precise as k varies from k = n to k = N -1.

Proposition 4.1. Let k ∈ 0, N . Assume (H0)-(H4) and ( 24)- [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF]. Then

lim ε→0 + E[V k (X k )] -E[G āε k (X k ) V k+1 (F (X k , āε k ))] = 0 (26) 
(with āk as in [START_REF] Garcke | Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids[END_REF] and āε k as in (23)).

Lemma 4.2. Assume [START_REF] Gobet | Linear regression mdp scheme for discrete backward stochastic differential equations under general conditions[END_REF]. There exists constant α, β independent of p ≥ 1, such that In order to simplify the presentation, we consider the case of p = 1 (G a (x) = g(x)), the proof being similar in the general case p ≥ 1. The optimal control ān (.) satisfies

∀(x, a) ∈ R d × A, |F (x, a)| ≤ α|x| + β.
V n (x) = g(x) ∨ V n+1 (F (x, ān (x))) a.e. x ∈ Ω n , hence E[V n (X n )] = E[g(X n ) ∨ V n+1 (F (X n , ān ))].
By assumption ( 25) of (H5), and the pointwise convergence of āε n (x), we deduce that lim ε→0 F (x, āε n (x)) = F (x, ān (x)) a.e. On the other hand, by using Lemma 4.2 and the fact that g is Lipschitz continuous, there exists constants α ,

β such that |g(x) ∨ F (x, āε n (x))| ≤ α |x| + β ∀x ∈ R d .
Therefore, the result is obtained by Lebesgue's dominated convergence theorem, the continuity of (x, y) → g(x) ∨ V n+1 (y) and the integrability assumption on X n .

We give also an other approximation result of V n by J n . Proposition 4.3. Let N ≥ 1 be given, assume (H0)-(H4), and (24)- [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF]. Then Hence

lim ε→0 max 0≤n≤N -1 E |J n X n , (ā ε n , . . . , āε N -1 ) -V n (X n )| = 0.
|J n (x, a)| ≤ max n≤k≤N |g(0)| + [g] X a k,x |ϕ(0)| + [ϕ] X a N,x ≤ K 0 + K 1 (|x| + CT )
where

K 0 := |g(0)| ∨ |ϕ(0)| and K 1 := ([g] ∨ [ϕ])e CT . In particular E (|J n (X, a)|) < ∞.
In the same way, we can also obtain, for any k ≤ n ∈ [0, N ], a Lipschitz bound of the form

|G a (x) ∨ G a (X a k+1,x )... ∨ G a (X a n,x ) ∨ V n+1 (X a n+1,x ))| ≤ α |x| + β .
(for some constant α , β ). In order to simplify the presentation, we consider again the case p = 1 (G a (x) = g(x)), the proof being similar in the general case p ≥ 1. Let η > 0. Consider the optimal control sequence ā and its regularization āε . Let n ∈ [0, . . . , N -1]. By using the optimality of ān , we have V n (x) = g(x) ∨ V n+1 (F ān (x)), and as in Proposition 4.1, for ε > 0 small enough,

E[V n (X n )] -E[g(X n ) ∨ V n+1 (F āε n (X n )] ≤ η N .
Then we remark that V n+1 (F

āε n (x)) = g(F āε n (x)) ∨ V n+2 (F ān+1 (F āε n (x))).
Hence by the same argument as before, for ε > 0 small enough,

E[V n (X n )] -E[g(X n ) ∨ g(F āε n (X n )) ∨ V n+2 (F āε n+1 (F āε n (X n )))] ≤ 2 η N .
Iterating this argument we deduce the existence of Lipschitz continuous controls āε := (ā ε n , . . . , āε

N -1 ) such that E[V n (X n )] -E[J n (X n , āε )] ≤ (N -n) η N ≤ η. (27) 
This concludes the proof.

5 Numerical schemes

Dynamic programming schemes

It is natural to consider approximation schemes that mimic the dynamic programming principle ( 20) -( 21). We see that (9) (or ( 17)) has been relaxed by ( 21) by minimizing a certain expectation over a set of feedback controls.

We consider three schemes. Two of them may be seen as deterministic counterparts of the "value iteration" scheme (Huré et al. [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] or the BSDE scheme of [START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF]) and the "performance iteration" scheme (Huré et al. [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] or the BSDE scheme of [START_REF] Bender | A forward scheme for backward sdes[END_REF]), hereafter denoted the "SL-scheme" and the "L-scheme", respectively.

The third one is an hybrid combination of both paradigm (hereafter denoted the "H-scheme"). The set of measurable functions A will be approximated by finite-dimensional spaces ( Ân ) n , with Ân typically a neural network space. When needed, neural networks will also be used in order to approximate value functions: in this case, we will denote by Vn ⊂ C (Ω, R) a finite-dimensional space for the approximation of Vn .

Let (ρ n ) 0≤n≤N be a sequence of densities supported in domains (Ω n ) 0≤n≤N , as in (H4), with associated random variables (X n ) 0≤n≤N . Recall that, for feedback controls a ∈ A, F a (x) and G a (x) are defined at the beginning of section 3 in terms of the approximate dynamics F h (., .) (F a (x) corresponds to p iterates of y → F h (y, a(x)) starting from y = x, and G a (x) corresponds to the maximum of g(.) taken at the first previous p iterates).

Semi-Lagrangian scheme (or "SL-scheme") Let ( Ân ) n∈ 0,N -1 and ( Vn ) n∈ 0,N -1 be two given sequences of finite-dimensional spaces. Set VN := g ∨ ϕ. Then, for n = N -1, . . . , 0:

-compute a feedback control ân according to

ân ∈ argmin a∈ Ân E G a (X n ) Vn+1 (F a (X n )) (28a) -set Vn := argmin V ∈ Vn E V (X n ) -G ân (X n ) Vn+1 F ân (X n ) 2 . ( 28b 
)
The approximations ( Vn ) n∈ 0,N -1 are stored, and only Vn+1 is used at iteration n. This explains the "semi-Lagrangian" terminology. Owing to these projections, the computational cost is in O(N ), where N is the number of time steps.

Lagrangian scheme (or "L-scheme") Let ( Ân ) n∈ 0,N -1 be a given sequence of finite-dimensional spaces. Set VN := g ∨ ϕ. Then, for n = N -1, . . . , 0:

-compute a feedback control ân according to ân ∈ argmin

a∈ Ân E G a (X n ) Vn+1 (F a (X n )) (29a) -set Vn (x) := G ân (x) Vn+1 F ân (x) ≡ J n (x, (â n , . . . , âN-1 )). ( 29b 
)
In this algorithm, only the feedback controls (â k ) are stored ( Vn is not stored). Each evaluation of the value Vn+1 (x) uses the previous controls (â n+1 , . . . , âN-1 ) to compute the approximated characteristic, in a full Lagrangian philosophy. Therefore the overall computational cost is then of order O(N 2 ). This scheme completely avoids projections of the value on functional subspace.

Remark 5.1. From a computational point of view, an approximation of the minimum (29a) is obtained by using a stochastic gradient algorithm (see numerical section for details). Hence the optimality of âk in (29a) should therefore be replaced by some approximation âk such that

E G âk (X k ) Vn+1 (F âk (X k )) ≤ min a∈ Âk E G a (X k ) Vn+1 (F a (X k )) + γ k ( 30 
)
for some γ k ≥ 0 (which takes into account some error on the optimal feedback control). Then an error analysis still holds (see Corollary 6.7) showing some robustness of the approach.

Hybrid scheme (or "H-scheme") Let ( Ân ) n∈ 0,N -1 and ( Vn ) n∈ 0,N -1 be two given sequences of finite-dimensional spaces. Set VN := g ∨ ϕ as well as

V [tmp] N := g ∨ ϕ.
Then, for n = N -1, . . . , 0:

-compute a feedback control ân according to ân ∈ argmin

a∈ Ân E G a (X n ) V [tmp] n+1 (F a (X n )) (31a) -if n ≥ 1, compute V [tmp]
n ∈ Vn (in prevision of the computation of ân-1 ), such that

V [tmp] n := argmin V ∈ Vn E V (X n ) -Vn (X n ) 2 , ( 31b 
)
where Vn is such that

Vn (x) := G ân (x) Vn+1 F ân (x) ≡ J n (x, (â n , . . . , âN-1 )). ( 31c 
)
The sequence of controls (â 0 , . . . , âN-1 ) is the output of the algorithm, and Vn (x) can be recovered using (31c). At each iteration 1 ≤ n ≤ N , Vn is projected on the space Vn , and its projection

V [tmp]
n is used to compute ân-1 . In this hybrid method, we still avoid some of the projection errors, by computing Vn from the feedback controls in (31c). Each evaluation of Vn costs N -n evaluations of the controls mappings, leading to an overall quadratic cost in O(N 2 ). However, in the minimization procedure for (31a), we can directly access to the values of V [tmp] n (.), which is less costly that computing Vn (.). In the present work, only the convergence of the L-scheme is analyzed. However, the three proposed schemes will be compared on several examples in the numerical section (see in particular Sec. 8.1).

Runge Kutta schemes

In this section, we consider a particular class of Runge-Kutta (RK) schemes for the definition of F h (x, a) which will corresponds to some approximation of the characteristics for a given control a.

For given c = (c i ) 1≤j≤q , B =∈ R q×q , let us denote

|c| 1 := q j=1 |c i |, B ∞ := max i j |b ij |
and let also

C f := |f (0, A)| := max a∈A |f (0, a)|.
Definition 5.2 (Runge-Kutta scheme). (i) For a given a ∈ A, we say that x → F h (x, a) is a Runge-Kutta scheme for ẏ = f (y, a) with time step h > 0, if there exists q ∈ N * , (b ij ) i,j ∈ R q×q and (c i ) i ∈ R q such that

y i (x) = x + h q j=1 b ij f (y j (x), a) ∀i ∈ 1, q and 
F h (x, a) = x + h q i=1 c i f (y i (x), a).
(ii) The scheme is said to be consistent if

q i=1 c i = 1. (iii)
The scheme is said to be explicit if b ij = 0 for all j ≥ i.

Remark 5.3. (a) Note that a consistent RK scheme satisfies F h (x, a) = x+hf (x, a)+O(h 2 ) for h sufficiently small. This is made precise in Lemma 5.6.

(b) Also, for any given value a ∈ A, y i := x + h q i=1 b ij f (y j , a) can be solved by a fixed point argument in (R d ) q , as soon as h B ∞ [f ] 1 < 1. Hence for h small enough such that h B ∞ [f ] 1 < 1, the RK scheme is well defined. Explicit RK schemes are always well defined.

(c) Note that in the above definition, the value of the control a 0 = a(x) is frozen at the foot of the characteristic. Hence we consider an RK approximation of ẏ(t) = f (y(t), a(x)) on [t n , t n+1 ] with y(t n ) = x and fixed a(x), rather than an approximation of ẏ(t) = f (y(t), a(y(t))).

We now give some estimates that will be useful later on. The following lemma gives an estimate between two trajectories led by different controls.

Lemma 5.4. Assume h B ∞ [f ] 1 ≤ 1 2 , and (a, ā) ∈ A 2 . (i) |F h (x, a(x)) -F h (y, ā(y))| ≤ e 2h|c|1[f ]1 |x -y| + 2h|c| 1 [f ] 2 |a(x) -ā(y)|. ( 32 
) (ii) ∀ 0 ≤ j ≤ p, |(F a h ) (j) (x) -(F ā h ) (j) (x)| ≤ C F ∆t|a(x) -ā(x)| (33) 
(where (F a h ) (j) (x) corresponds to j iterates of y → F h (y, a(x)) starting from y = x), where C F is a constant independent of ∆t and such that

2|c| 1 [f ] 2 e 2∆t|c|1[f ]1 ≤ C F . (34) 
In particular, denoting F a (x) = F (x, a(x)), we have also

|F a (x) -F ā(x)| ≤ C F ∆t|a(x) -ā(x)| (35) 
(recall that F a (x) corresponds to p iterates of y → F h (y, a(x)) starting with y = x, and h = ∆t/p).

(iii) More generally,

|F a (x) -F ā(y)| ≤ e C1∆t (|x -y| + C 2 ∆t|a(x) -ā(y)|) ( 36 
)
where

C 1 := 2|c| 1 [f ] 1 and C 2 := 2|c| 1 [f ] 2 .
Proof. (i) From the definitions, denoting a 0 = a(x) and ā0 = ā(y), we have

F h (x, a 0 ) -F h (y, ā0 ) ≤ |x -y| + h 1≤j≤q |c j ||f (y a j (x), a 0 ) -f (y ā j (y), ā0 )| ≤ |x -y| + h|c| 1 [f ] 1 Y a -Y ā ∞ + h|c| 1 [f ] 2 |a 0 -ā0 | ( 37 
)
where the intermediate values of the RK schemes are denoted Y a = (y a j (x)) 1≤j≤q and Y ā = (y ā j (y)) 1≤j≤q , and satisfy Y a = X + hBf (Y a , a 0 ) and Y ā = Y + hBf (Y ā, ā0 ) (with X = (x, . . . , x) and Y = (y, . . . , y)).

Hence we have also

Y a -Y ā ∞ ≤ |x -y| + h B ∞ [f ] 1 Y a -Y ā ∞ + h B ∞ [f ] 2 |a 0 -ā0 |,
from which we deduce, using the assumption of the present Lemma,

Y a -Y ā ∞ ≤ 2 |x -y| + h B ∞ [f ] 2 |a 0 -ā0 | .
Combining with [START_REF] Osher | High essentially nonoscillatory schemes for Hamilton-Jacobi equations[END_REF], we obtain

F h (x, a 0 ) -F h (y, ā0 ) ≤ e 2h|c|1[f ]1 |x -y| + 2h|c| 1 [f ] 2 |a 0 -ā0 |.
(ii)-(iii) From the previous bound, denoting e j := (F a0 h ) (j) (x) -(F ā0 h ) (j) (y) ≡ Y a0 j,x -Y ā0 j,y , we have

e j+1 ≤ e 2h|c|1[f ]1 e j + 2h|c| 1 [f ] 2 |a 0 -ā0 |,
and, by recursion,

e j ≤ e 2jh|c|1[f ]1 (e 0 + 2jh|c| 1 [f ] 2 |a 0 -ā0 |), 0 ≤ j ≤ p.
This concludes to (iii), and also for (ii) using y = x, e 0 = 0 and jh ≤ ∆t.

Lemma 5.5. Assume h B ∞ [f ] 1 ≤ 1 2
and let F h be an RK scheme. (i) For a ∈ A and x ∈ R d :

|F h (x, a)| ≤ |x| + 2h|c| 1 (C f ∨ [f ] 1 )(|x| + 1). (ii) Let a in A and denote F a h (x) := F h (x, a(x)), then it holds [F a h -i d ] ≤ 2|c| 1 ([f ] 1 + [f ] 2 [a]) h. ( 38 
)
Proof. We start by proving (ii). As in the proof of Lemma 5.4(ii), with ā = a, we obtain

|(F a (x, a(x)) -F a (y, a(y))) -(x -y)| ≤ h|c| 1 [f ] 1 (2|x -y| + 2h B ∞ [f ] 2 [a]|x -y|) + h|c| 1 [f ] 2 [a]|x -y|.
Combining with the assumption that 2h

B ∞ [f ] 1 ≤ 1 2
, we obtain the desired bound. For the proof of (i), for any a in A we have

[f a ] = [f ] 1 and |F a h (x)| ≤ |F a h (0)| + [F a h ]|x| ≤ |F a h (0)| + (1 + 2h|c| 1 [f ] 1 ])|x|.
By direct bounds we have also |F a h (0)| ≤ 2h|c| 1 C f , from which we deduce the desired bound.

Lemma 5.6. Assume h|B| ∞ [f ] 1 ≤ 1 2 and let F a h be a consistent RK scheme. Then F h is consistent with f in the following sense:

∃C ≥ 0, ∃h 0 > 0, ∀(x, a, h) ∈ R d × A × (0, h 0 ), |F h (x, a) -(x + hf (x, a))| ≤ Ch 2 (1 + |x|), (39) 
Proof. We use

|f (y j , a)| ≤ [f ] 1 |y j | + C f where C f = max a∈A |f (0, a)| to obtain in the RK scheme |y i -x| ≤ h j |b ij |([f ] 1 |y j | + C f ), hence max i |y i -x| ≤ h B ∞ [f ] 1 (max i |y i |) + h B ∞ C f . (40) 
By using the assumption we then get max

i |y i | ≤ 2|x| + 2h B ∞ C f . Let h ∈]0, h 0 ] with h 0 such that h 0 B ∞ [f ] 1 = 1 2 . Using (40) (and the fact that h B ∞ [f ] 1 ≤ 1 2 ), we obtain max i |y i -x| ≤ h B ∞ [f ] 1 |x| + 2h B ∞ C f = Ch(1 + |x|) (41) 
for some constant C ≥ 0. Then

F h (x, a) = x + h q j=1 c j f (y j , a) = x + h q j=1 c j f (x + O(h(1 + |x|)), a) = x + h q j=1 c j f (x, a) + O(h(1 + |x|)) = x + hf (x, a) + O(h 2 (1 + |x|))
which is the desired result.

Neural network spaces

Neural networks are functions build by compositions of other "simple" functions. They are widely used for their approximating capabilities, and are known to be dense in the class of continuous multivariate functions under mild hypotheses (see or instance Lemma 16.1 of [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF]). We restrict ourselves to so-called feedforward neural networks, in the following sense. 

R(x) = σ L • L L • • • • • σ 1 • L 1 (x)
where L k : R d k-1 → R d k is an affine transformation, σ k : R d k → R d k is a nonlinear activation function which acts coordinate by coordinate:

σ k (x) = (σ k (x 1 ), σk (x 2 ), . . . , σk (x d k ))
for x ∈ R d k and for a certain σk : R → R.

Each affine transformation is represented by a weight matrix

ω k ∈ R d k ×(d k-1 +1) , with L k (x) = ω k x 1 .
Classical examples of activation functions include the sigmoid function σ(x) = 1 1+e -x , the rectified linear unit (ReLU) σ(x) = max(0, x), etc... The last activation function, σL , may be set to the identity function, or σ L may be a more complex function (so that σ L (.) ∈ A for the control approximation) depending on the example.

We may now define the sets  and V as (recall that A ⊂ R In our numerical examples, we will always choose ReLU for the inner layer activation functions. The last activation function σ L will vary to fit the definition of A for the given problem (see the numerical section). We also choose to set

d 1 = • • • = d L-1 =: N e , i.
e., the same number of neurons for each layer, to simplify the set of parameters.

Main result

In this section, we focus on proving the convergence of the Lagrangian scheme [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF]. This algorithm only uses approximations of feedback controls. Since our estimates will need Lipschitz continuous controls, and since the exact optimal solution in general does not involve such regular controls, we first introduce η-weak approximations as follows. Definition 6.1. For a given sequence η = (η n , η n+1 , . . . , η N -1 ) ∈ (R * + ) N -n , we say â = (â n , . . . , âN-1 ) ∈ A N -n is an η-weak approximation of (V k ) n≤k≤N if (i) (â n , . . . , âN-1 ) are Lipschitz continuous controls,

(ii) E[V k (X k )] -E[G âk (X k ) ∨ V k+1 (F âk (X k ))] ≤ η k , for all k ∈ n, N -1 .
Notice that by using Prop. 4.1, it is possible to construct η-weak approximations. By recursion, it is furthermore possible to construct the controls such that, for all k ∈ n, N -1

E[V k (X k )] -E[G âk (X k ) ∨ V k+1 (F âk (X k ))] ≤ η k ([ā εn n ], [ā εn+1 n+1 ], . . . , [ā ε k-1 k-1 ]), (42) 
for given strictly positive functions η k (i.e., η k > 0, η k+1 (x k ) > 0, . . . , η N -1 (x k , . . . , x N -2 ) > 0). We now state our last assumption that will be needed on the approximate dynamics F h . First assumptions where already introduced in (H5). The new assumption is the following. In what follows, we denote f a (x) := f (x, a(x)) and recall that [f a ] is the Lipschitz constant of f a .

(H6) There exist a constant δ > 0, for any Lipschitz continuous function a(•) ∈ A and h > 0 such that h[f a ] ≤ δ, x → F h (x, a(x)) is one-to-one and onto on R d , Lipschitz continuous, with Lipschitz bound

[F h (., a(.)) -i d ] ≤ c ([f ] 1 + [f ] 2 [a]) h (43) 
(where i d (x) := x), where c ≥ 0 is a universal constant (independent of a, h). Assumption (H6) will needed in order to use a change of variables formula (for y = F a (x), corresponding to p iterates of y → F h (y, a(x)) starting from y = x). Remark 6.2. Lemma 5.5 shows that (H5)-(H6) are satisfied for Runge Kutta schemes as defined in 5.2. For instance, dynamics F h such as the Euler scheme F h (x, a) = x + hf (x, a), or the Heun scheme F h (x, a) = x + h 2 (f (x, a) + f (x + hf (x, a), a)) satisfy (H5)-(H6). Higher order schemes, or implicit schemes, could be used as well. Remark 6.3. Assumption (H6) is satisfied by the exact characteristics. Indeed, for any regular control a ∈ A, the map x → F a h (x) := y a x (h) (where y(s) = y a x (s) is the solution of ẏ(s) = f a (y(s)) with y(0) = x) is one-to-one and onto on R d and satisfies

DF a h (x) = exp B h with B h = h 0 Df a (y a x (s))ds. Then denoting DF a h ∞ = sup x∈R d DF a h (x) ∞ , we have [F a h -i d ] = DF a h -I ∞ ≤ e B h ∞ -1 ≤ 2 B h ∞ as soon as for instance B h ∞ ≤ 1 2 , with also B h ∞ ≤ h Df a ∞ = h[f a ], hence ( 
43) holds true with c = 2 and δ = 1 2 . When a is only Lipschitz regular, the same bound is obtained by a regularization argument. Remark 6.4. Assumption (43) implies the following bounds:

DF a h (x) ∞ ≤ [F a h ] ≤ 1 + c[f a ]h ≤ e c[f a ]h , a.e. x ∈ R d (44) 
from which we can deduce

| det(DF a h (x))| ≤ e dc[f a ]h , a.e. x ∈ R d . ( 45 
)
This estimate will be used in the change of variable Lemma 7.1. Note also that (H6) and max a∈A |F (0, a)| ≤ Ch for some constant C, implies the bound (24) of (H5).

Remark 6.5. In [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF], an assumption on the controlled transition probability of a stochastic process (say x = X k → x = X a k+1 for a given control a) is made, which is to be measure of the form r(x, a; x )µ(dx ),

for some measure µ which has a finite first order moment, and assuming a uniform bound r ∞ < ∞. However this assumption cannot be satisfied in our deterministic context (where, typically, x = x + ∆tf (x, a)).

Instead, assumption (H6) will be used (in the change of variable Lemma 7.1) in order to get a recursive error bound estimate.

In the following, we recall that ( Vk ) 0≤k≤N corresponds to the Lagrangian scheme [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF]. Also we have Vk (x) ≥ V k (x), and therefore we look for an upper bound of Vk (x) -V k (x). Theorem 6.6. Assume (H0)-(H6), N ≥ 1, and let n ∈ 0, N . For k = n, . . . , N -1, let η k : R n-k → R * + be given functions (η n > 0 is a constant, η n+1 > 0 is a function of one variable, and so on). Let ā = (ā 0 , . . . , āN-1 ) be an η-weak approximation in the sense of [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF]. Then

E ( Vn -V n )(X n ) ≤ inf (an...,a N -1 )∈ N -1 k=n Âk (ε an n + η n ) + C an n (ε an+1 n+1 + η n+1 ([a n ]) + • • • + C a k k • • • C a N -2 N -2 (ε a N -1 N -1 + η N -1 ([a n ], . . . , [a N -2 ]))
where C a k := C k,∆t e dc[f a ]∆t (with c ≥ 0 is as in (H6), and C k,∆t as in (H4)),

ε a k := C F ([g] + [V k+1 ]) ∆t E k |a(X k ) -ā(X k )| , (46) 
and [V k+1 ] is bounded as in Lemma 2.1, C F satisfies [START_REF] Lee | Foundations of Optimal Control Theory[END_REF].

Note that the consistency of the scheme (with respect to the dynamics f , as in [START_REF] Bender | A forward scheme for backward sdes[END_REF]) is not needed in the previous Theorem, because the result only focuses on the error between the semi-discrete problem and its approximation by a Lagrangian scheme. Corollary 6.7. In the same way, for the perturbed algorithm (30) the same error bound holds where each term (ε

a k k + η k ) is replaced by (ε a k k + η k + γ k ).
The proof of Theorem 6.6 is postponed to section 7 (the proof of Corollary 6.7 follows exactly the same lines). We now give two corollaries of the previous theorem. Corollary 6.8. Assume (H0)-(H6), and N ≥ 1. Let ÂΘ n denote the control approximation space at time t n , with explicit dependency over the size Θ. We denote by Θ → ∞ the limit when some parameters go to infinity (for instance the number of neurons of a neural network). We assume that for any n = 0, . . . , N -1, any Lipschitz continuous function ā ∈ A can be approximated by some function of a ∈ ÂΘ n up to any arbitrary precision, which we write as

lim Θ→∞ inf a∈ ÂΘ n E[|a(X n ) -ā(X n )|] = 0. ( 47 
)
Let ( V Θ n ) be the corresponding L-scheme values associated with sets

(A Θn n , A Θn+1 n+1 , . . . , A Θ N -1 N -1 ). Then lim Θ→∞ max 0≤n≤N E[ V Θ n (X n ) -V n (X n )] = 0.
(where Θ → ∞ means here that Θ k → ∞ for all k = n, . . . , N -1).

Remark 6.9. Notice that Group Sort neural networks satisfies furthermore (see [START_REF] Anil | Sorting out lipschitz function approximation[END_REF][START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF]):

lim Θ→∞ inf a∈ ÂΘ n , [a]≤[ā] E[|a(X n ) -ā(X n )|] = 0. ( 48 
)
Proof of Corollary 6.8. Let ε > 0. Let η n := ε/(2N ). By assumption (47),

lim Θ→∞ inf a k ∈ ÂΘ k E k+1 [|a k -âk |] = 0 ∀n ≤ k ≤ N -1 and therefore lim Θ→∞ inf a k ∈ ÂΘ k ε a k k = 0
, where ε a k is defined in (46). Hence we can find a n ∈ ÂΘn n (for Θ n , the size of Ân , large enough) such that ε an n ≤ ε 2N , and therefore

ε an n + η n ≤ ε N .
Then let η n+1 ([a n ]) := ε/(2N C an n ). There exists a n+1 ∈ ÂΘn+1 n+1 (for Θ n+1 large enough) such that

C an n (ε an+1 n+1 + η n+1 ([a n ])) ≤ ε N ,
and so on, until we chose

η N -1 ([a n ], . . . , [a N -2 ]) := ε/(2N C an n C an+1 n+1 • • • C a N -2 N -2 ) and then find a N -1 ∈ ÂΘ N -1 N -1 such that C an n C an+1 n+1 • • • C a N -2 N -2 ε a N -1 N -1 + η N -1 ([a n ], . . . , [a N -2 ]) ≤
ε N (we have N -n such bounds). By using the bound of Theorem 6.6, the sum of all error terms is bounded by (N -n) ε N , and therefore

E[ Vn (X n ) -V n (X n )] ≤ ε.
This shows that lim

Θ→∞ E[ V Θ n (X n )-V n (X n )] = 0.
The desired result follows since we have only a finite number N of such terms.

Notice that in the previous result N ≥ 1 is given. This does not give in general a convergence result as N → ∞, because of the uncontrolled Lipschitz constants that appear in the bounds of Theorem 6.6.

However, in the case the optimal controls (ā n ) n can be shown to be Lipschitz continuous with a uniform Lipschitz constant, we may improve the result. We suppose that the numerical feedback space  can be restricted to Lipschitz functions with a controlled Lipschitz constant. For instance, if  is a neural network space, one could choose the GroupSort activation function and bound the weights to obtain this estimate (see [START_REF] Anil | Sorting out lipschitz function approximation[END_REF][START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF]). Corollary 6.10. Assume (H0)-(H6), N ≥ 1, and that there exists a sequence of optimal feedback control (denoted ā) which are Lipschitz continuous:

∃L ≥ 0, ∀0 ≤ k ≤ N -1, [ā k ] ≤ L. Then max 0≤n<N E[ Vn (X n ) -V n (X n )] ≤ K N inf (a0...,a N -1 )∈ N -1 k=0 Âk , [a k ]≤[ā k ] ∀k ∆t N -1 k=0 E k |a k (X k ) -āk (X k )| ,
where

K N := 2C F ([g] ∨ [ϕ])e (d+1)c([f ]1+L[f ]2)T max 0≤n<N N -1 k=n C k,∆t . (49) 
Furthermore, in the case of uniform densities, we can use the estimate [START_REF] Dolgov | Tensor Decomposition Methods for High-dimensional Hamilton-Jacobi-Bellman Equations[END_REF] to deduce a bound for K N which is independent of N (other situations could also lead to a uniform bound for K N ).

Proof of Corollary 6.10. We make use of the bound of Theorem 6.6 with

η k = 0, ∀k. Notice that [f āk ] ≤ [f ] 1 + L[f ] 2 , and also, with [a k ] ≤ [ā k ] ≤ L, we have [f a k ] ≤ [f ] 1 + L[f ] 2 . Then n≤k≤N -1 C āk ≤ n≤k≤N -1 C k,∆t e dc N -1 k=n [f āk ]∆t ≤ n≤k≤N -1 C k,∆t e dc([f ]1+L[f ]2)T as well as [V k+1 ] ≤ ([g] ∨ [ϕ])e c([f ]1+L[f ]2)
T and therefore (using also

[g] ≤ [g] ∨ [ϕ]) ε a k k ≤ 2C F ([g] ∨ [ϕ])e c([f ]1+L[f ]2)T ∆t E k |a k (X k ) -āk (X k )| .
The desired result follows.

7 Proof of Theorem 6.6

We first state a change of variable Lemma, giving a statement for either an exact characteristic (x → y a t,x ) or for an approximate one (x → F a (x)). Only the second statement will be used in the convergence analysis. (i) Let t → y a t,x denotes the characteristic associated with dynamics x → f a (x) and such that y a 0,x = x. We assume the following analogue of (H4) in the continuous case:

y a ∆t,Ω k ⊂ Ω k+1 , ∀k = 0, . . . , N -1,
and

C k,∆t := max 0≤k≤N -1 sup x∈Ω k ρ k (x) ρ k+1 (y a ∆t,x ) < ∞.
Then for any non-negative measurable function Φ :

Ω k+1 → R, E k [Φ(y a ∆t,X k )] ≤ C k,∆t e d[f a ]∆t E k+1 [Φ(X k+1 )]. (50) 
(ii) Suppose (H5), (H6) and (H4). Assume p ≥ 1 is such that h[f a ] ≤ δ, where h = ∆t p . Then for any non-negative measurable function Φ :

Ω k+1 → R, E k [Φ(F a (X k ))] ≤ C k,∆t e dc[f a ]∆t E k+1 [Φ(X k+1 )] (51) 
where c ≥ 0 is as in (H6), C k,∆t is as in (H4).

Proof of Lemma 7.1. (i) Let y t,x be the solution at time t of the differential equation ẏt,x = f a (y t,x ) for t ∈ R, with y 0,x = x. Then for any function Φ ≥ 0 and t ≥ 0,

E k [Φ(y t,X k )] = Ω k Φ(y t,x )ρ k (x) dx ≤ e d[f a ]t yt,Ω k Φ(x )ρ k (y -t,x )dx
(the Jacobian of the change of variable, as well as its inverse, is bounded by e d[f a ]t for t ≥ 0). Since the r.v. X k has density law ρ k (x)dx, we deduce

E k [Φ(y t,X k )] ≤ e d[f a ]t yt,Ω k Φ(x ) ρ k (y -t,x ) ρ k+1 (x ) ρ k+1 (x )dx . (52) 
Let t = ∆t, we have y a t,Ω k ⊂ Ω k+1 by assumption (18b). Also, for any x = y a ∆t,x ∈ y a ∆t,Ω k , we have ρ k (y a -∆t,x )/ρ k+1 (x ) = ρ k (x)/ρ k+1 (y a ∆t,x ) ≤ C k,∆t by assumption (18c). Together with (52) this allows to conclude to the desired bound.

(ii) The proof is completely similar to (i).

We are now in position to prove the main result.

Proof of Theorem 6.6. Our aim is to bound recursively the quantity

e n := E[ Vn (X n ) -V n (X n )].
Let η n > 0. By Prop. 4.1, there exists ān ∈ A n , Lipschitz continuous, such that

E[V n (X n )] -E[G ān ∨ V n+1 (F ān (X n ))] ≤ η n .
Recall that Vn satisfies

E Vn (X n ) = inf a∈ Ân E G a (X n ) Vn+1 (F a (X n )) , hence E Vn (X n ) -V n (X n ) ≤ inf a∈ Ân E G a (X n ) Vn+1 (F a (X n )) -G ān (X n ) V n+1 (F ān (X n )) + η n . Thus, using max(a, b) -max(c, d) ≤ max(a -c, b -d), we have G a (x) Vn+1 (F a (x)) -G ān (x) V n+1 (F ān (x)) ≤ max 0≤j<p (g(Y a j,x ) -g(Y ān j,x )) Vn+1 (F a (x)) -V n+1 (F ān (x)) ≤ max 0≤j<p [g]|Y a j,x -Y ān j,x | Vn+1 (F a (x)) -V n+1 (F ān (x)) .
We use the decomposition and following bounds

Vn+1 (F a (x)) -V n+1 (F ān (x)) = Vn+1 (F a (x)) -V n+1 (F a (x)) + V n+1 (F a (x)) -V n+1 (F ān (x)) ≤ Vn+1 (F a (x)) -V n+1 (F a (x)) + [V n+1 ]|F a (x) -F ān (x)|.
We deduce from the previous estimates

E Vn (X n ) -V n (X n ) ≤ inf a∈ Â [g] E max 0≤j≤p Y a j,Xn -Y ān j,Xn + E ( Vn+1 -V n+1 )(F a (X n )) + [V n+1 ] E |F a (X n ) -F ān (X n )| + η n ≤ inf a∈ Â E ( Vn+1 -V n+1 )(F a (X n )) + C F ([g] + [V n+1 ])∆tE |a(X n ) -ān (X n )| + η n
where the estimate of Lemma 5.4(ii) has been used for the last inequality.

Then by using the change of variable Lemma 7.1, we obtain

e n ≤ inf a∈ Ân C n,∆t e dc[f a ]∆t E ( Vn+1 -V n+1 )(X n+1 ) + C F ([g] + [V n+1 ])∆tE |a(X n ) -ān (X n )| + η n ≤ inf a∈ Ân C a n e n+1 + ε a n + η n where ε a n := C F ([g] + [V n+1 ]) ∆t E |a(X n ) -ān (X n )| and C a n := C n,∆t e dc[f a ]∆t
. By induction, and using the fact that e N = 0 because VN = V N , we obtain (for given coefficients η k > 0, k = n, . . . , N -1):

e n ≤ inf (an,...,a N -1 )∈ N -1 k=n Âk (ε an n + η n ) + C an n (ε an+1 n+1 + η n+1 ) + • • • + C an n • • • C a N -2 N -2 (ε a N -1 N -1 + η N -1
) .

However, we can improve this bound. For a given a n ∈ Ân , we have a constant C an n which depends of the Lipschitz constant [a n ]. We can chose a coefficient η n+1 = η n+1 ([a n ]) > 0 (which may have a dependency over [a n ]), and proceed in the same way. By Prop. 4.1, there exists ān+1

∈ A n+1 , Lipschitz continuous, such that E[V n+1 (X n )] -E[G ān+1 ∨ V n+2 (F ān+1 (X n+1 ))] ≤ η n+1 ([a n ]).
Then we obtain the bound

e n ≤ inf (an,an+1)∈ Ân× Ân+1 ε an n + η n + C an n ε an+1 n+1 + η n+1 ([a n ]) + C an n C an+1 n+1 e n+2 .
At the next step, we can chose a coefficient

η n+2 = η n+2 ([a n ], [a n+1 ]
), and so on. By induction, we conclude to the desired bound.

Numerical results

In the following d-dimensional examples (where d ≥ 2), two-dimensional "local" and "global" errors are computed in the following way. Depending on the example, a two-dimensional plane of reference P = Vect(w 1 , w 2 ) is set (passing through the origin), where w 1 , w 2 are chosen vectors of R d , and a uniform grid mesh x k = a i w 1 + b j w 2 (for k = (i, j), |a i |, |b j | ≤ R max for a given R max > 0) is chosen in the plane P in order to compute the exact solution and to compare with the numerical solution.

Given a threshold η > 0, the errors are computed at the last iteration by where v(0, •) is the analytical solution at time t = 0, V0 is its approximation by the scheme used, Ω η := {x ∈ Ω, |v(0, x)| ≤ η}, and Ω is the bounded computational domain. Notice that

e L 1 η v(0, .) L 1 (Ωη) 1 L 1 (Ωη) , e L ∞ η max x∈Ωη |v(0, x)|.
The global errors, corresponding to the case η = +∞, will be denoted e L 1 and e L ∞ (i.e., Ω η = Ω). Unless otherwise stated, the local errors are computed with η = 0.1, and denoted e L 1 loc and e L ∞ loc . We use feedforward neural networks with ReLu activation function on the inner layers. Some other activation functions were also tested, including the sigmoid and the tanh functions. We found that ReLu was performing better on our cases, and we report only these results. If not otherwise stated, the output activation function is the identity, and the Heun scheme is used for F ∆t , with p = 5 substeps (excepted for Example 1 where p = 1 and p = 5 are compared).

Implementation of neural networks uses python TensorFlow 2, with Adam optimizer (see [START_REF] Abadin | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF]), and the architecture is an Intel Xeon Gold 6140 Processor with 2 CPUs and a total of 36 cores. Euclidean norm). The function ϕ is ϕ(x) := min x -x A 2 -r 0 , x -x B 2 -r 0 with x A = (1, 0, . . . , 0) and x B = (-1, 0, . . . , 0), and parameters T = 1.0 and r 0 = 0.5. Hence the value is defined as the solution of (1) (with g := -∞). The analytical solution is known and given by v(t, x) = min ( x -

x A 2 -(T -t)) + -r 0 , ( x -x B 2 -(T -t)) + -r 0 .
The corresponding HJB equation (for x R d ), using max a∈A f (x, a) • ∇ x v = ∇ x v , is the following eikonal equation

-v t + ∇ x v = 0, t ∈ [0, T ] (55) v(T, x) = ϕ(x). (56) 
Here, we choose the control networks to take their values in R d . The results are then converted from R d to the unit ball B(0, 1) of R d by using the map p → p max(1, p ) . (Numerical tests showed that the choice of the map may affect the results, and the results may deteriorate in particular when using an anisotropic map.) Errors are given in Table 2 for dimensions d = 6, 7, 8, and some illustrations are given in Fig. 3 for dimension d = 8 (results for d ∈ {6, 7} are indistinguishable to the eye from the case d = 8, and they are not included). Errors and figures are computed in the plane P generated by the first two vectors e 1 , e 2 of the canonical basis of R d .

In particular we observe that the L-scheme performs well (numerical and exact 0-level sets are indistinguisable to the eye), as long as a sufficient number of SG iterations is used, and that the control map from R d to B(0, 1) is well chosen. Here, the exact solution can be computed as v(t, x) = ϕ(p(x, t)) ∨ g(q(x)), where p(x, t) := x -max (0, min ( x -A 0 , e , T -t)) e and q(x) = x -max ( x -A 1 , e , 0) e.

-v t + max a∈[0,1] ae • ∇ x v, v -g(x) = 0, t ∈ [0, T ] (57) v(T, x) = max(ϕ(x), g(x)). (58) 
For the control networks we use the sigmoid as the output activation function (output in [0, 1]). For the figure and error computations, we have chosen a grid in the 2-dimensional plane P = V ect(u, v) where

u = e ≡ (1, 1, . . . , 1)/ √ d, v = (1, -1, 0, . . . , 0)/ √ 2.
(Notice that for such parameters the exact 0-level set is the same independently of the dimension d). In order to perform the SG iterations, the size of the random batch points is set to M = 2000 (as well as for the value approximation by neural networks, step (ii) of SL-scheme). Results are given in Table 3 and in Figure 4, for dimension d = 6 (the difference between the schemes is more clear when the dimension is not too small).

The CPU time reflects the computational cost of the projection of the value function that is present in the SL-scheme and the H-scheme. Both the SL-scheme and the H-scheme need to optimize two networks per time step (one for the control and one for the value), whereas the L-scheme needs only one (for the control). Additionnally, the H-scheme computes the whole characteristics, leading to a higher CPU time than the SL-scheme. (However, if the number of time steps N grows, the L-scheme may become more expensive than the SL-scheme.)

Looking in particular at the figures in Figure 4, this example shows some kind of numerical diffusion that we may encounter with the SL-scheme (and with the H-scheme, to a lesser extent).

In this example, we have also numerically observed that an increasing number of stochastic gradient iterations were needed as the dimension increases. 

Scheme

Example 4: eikonal advection equation with obstacle, large drift

We consider now a mixed d-dimensional eikonal/advection equation with an obstacle term:

min -v t + max a∈A f (x, a) • ∇ x v, v -g(x) = 0, t ∈ [0, T ] (59) v(T, x) = max(ϕ(x), g(x)). (60) 
with f (x, a) = be 1 + ca, where e 1 = (1, 0, ..., 0) t ∈ R d , the control a belongs to A := S d-1 the unit ball of R d , b ∈ R is a coefficient corresponding to the "drift", and c ≥ 0 is a speed coefficient for the eikonal part of the equation. Equivalently,

max a∈A (f (x, a) • ∇v) = b • ∂v ∂x 1 + c ∇ x v .
The obstacle term and terminal condition are defined as

g(x) := min (g max -c e |x 1 -g c | , c x |x ⊥ | + g min ) , ϕ(x) := x + α min ,
where c e , c x , g c , g max g min and α min are coefficients, and, for a given x = (x 1 , . . . , x d ) t ∈ R d , x ⊥ := (0, x 2 , . . . , x d ) t (the orthogonal projection of x on vect(e 2 , . . . , e d )). Note that this obstacle term correspond to a wall obstacle with a tube opening centered around the e 1 axis (see for instance the green dotted line in Fig. 6).

The exact solution can be computed. Details are given in Appendix A. In this example, more precisely, the following parameters are considered

g max = 2, g min = -2, c e = 1, c x = 1.5, g c = 4, b = 1, c = 0.5, α min = -1.
Here in particular |b| > c: the drift is dominant, which corresponds to a non-controllable situation.

Comparison of schemes in dimension d = 4. First, the SL-, H-and L-schemes are compared. Neural networks with 3 layers of 60 neurons are chosen, and each simulation uses 100,000 stochastic gradient step. 4.

The SL-scheme approximates both the control and the value function by neural networks. The projection of the latter is a source of errors, that accumulates during the simulation. This drawback is avoided with the H-scheme and L-scheme, where the value function is computed as a composition of the (exact) target function ϕ and the approximated controls. Again, for the error, the H-scheme and L-scheme behave better than the SL-scheme.

Furthermore, for the H-scheme and the L-scheme, when N varies from 8 to 16, we observe very roughly that the L 1 (global and local) errors are divided by a factor two (this is less clear for the L ∞ errors). This is not the case for the SL-scheme, for which errors have a tendency to accumulate more with time iterations. Test of the L-scheme for increasing dimensions. Next, the L-scheme is tested for several dimensions d ∈ {2, 4, 6, 8}, and results are given in Table 5. The neural network size is kept constant, with 3 layers of 60 neurons, as for the number of time iterations (N = 8). In order to reach comparable precision, we have observed that the number of stochastic gradient iterations has to grow with d (as the dimension increases, more iterations are needed to explore the whole region of interest). Otherwise, the scheme is relatively robust with respect to the physical dimension of the problem (see Fig. 6).

We observe for dimension d = 8 some defects in the numerical solution (some oscillations appears). Because of CPU time limitations, we did not attempt using more S.G. iterations, although in principle (as observed for lower dimensions) this should enable a better optimization and solve the problem. We now turn on a similar example as in example 4, excepted for the coefficients which are now c = 1, b = 0.5.

Scheme

Results obtained with the L-scheme are given in Table 6 and Fig. 7. Here |b| < c, the drift is small (this corresponds to a controllable situation). We observe that the front has to negociate a sharper angle near the boundary of the tube (see Fig. 7).

As in example 4, the results are rather robust with respect to dimension, provided the number of stochastic gradient iterations is large enough. A Semi-analytical solution for examples 4 and 5

Scheme

We briefly describe how to compute the exact values for examples 4 and 5, that is, in order to compute v = v(t, x) for given values t and x. We consider the case of data ϕ(x) = x + α min , for a α min ∈ R.

For α ∈ [g min , g max ], notice that the level set {g = α} corresponds to a wall pierced by a square door (see figure 8). First, by using the symmetries of the problem around the e 1 axis, and an orthogonal axis along x -x 1 e 1 , it is possible to set back the problem into a 2-dimensional problem.

If no obstacle term is present (or if it does not modify the value v), for a given point x ∈ R d , and for a given (level-set) value v, it is possible to compute the minimal time to reach x from the initial level set front (corresponding to some point on the level set {ϕ(x) = v}). More precisely, the optimal trajectory is a straight segment and the value satisfies v(t, x) = ( x -be 1 t -ct) + + α min , and t is also the time for the front {ϕ(.) = v} to reach the point x.

In the more complex situation when the optimal trajectory from {ϕ(.) = v} to point x is not a straight segment, it will be composed of two segments (one starting from some point on {ϕ(.) = v} to reach some point y on the level set {g(y) = v}, the other one starting from y to x -as depicted in Fig. 8-right). Then the minimal time t (associated to some value v = v(t, x)) is the sum of two minimal times t 1 , t 2 such that t = t 1 + t 2 (61a) y -be 1 t 1 2 = (ct 1 + v -α min ) 2 (61b)

x -(y + be 1 t 2 ) 2 = (ct 2 ) 2 . (61c)

Note that t 1 is the time for the level set {ϕ(.) = v} to reach y on {g(.) = v}, t 2 is the time to reach x from y. Then, for a given value v, y = y(v) is known (it has an affine analytic expression in term of v). Times t 1 = t 1 (v) and t 2 = t 2 (v) are obtained as root solutions of (61b) and (61c). Then, for given (t, x), the value v is obtained through a Newton algorithm for solving system (61). Note that on regions not attained by the front, we consider the complex roots t 1 (v) or t 2 (v) in the Newton algorithm (in order to always have well-defined and continuous reaching times).

Lemma 2 . 1 .

 21 Assume (H0)-(H3), and the Lipschitz bound sup a∈A [F h (., a)] ≤ 1+ch for some constant c ≥ 0. (i) The function J n (., a) is Lipschitz for all a ∈ A N -n , with uniform bound [J n (., a)] ≤ [g] ∨ [ϕ]e cT . (ii) In particular, the uniform bound max 0≤n≤N [V n ] ≤ [g] ∨ [ϕ]e cT holds.

  y|. The desired result follows from the definition of J n and repeated use of max(a, b) -max(c, d) ≤ max(a -c, b -d).

Proof.

  By using the bound |F h (x, a)| ≤ |x| + Ch(1 + |x|) ≤ e Ch |x| + Ch, by recursion (discrete Gronwall estimates) we obtain |F (x, a)| = |F (p) h (., a)| ≤ e Chp (|x| + pCh) ≤ e C∆t (|x| + C∆t). Proof of Proposition 4.1.

Proof.

  It suffices to prove the result for a given n. Let a ∈ A N -n be an arbitrary sequence. By Lemma 4.2 we have |X a k+1,x | ≤ e C∆t (|X a k,x | + C∆t). Then by similar estimates, we obtain |X a n,x | ≤ e Cn∆t (|x| + Cn∆t) ≤ e CT (|x| + CT ).

Definition 5 . 7 (

 57 Feedforward neural network). Let L ∈ N * (the number of layers), and (d k ) k∈ 0,L ⊂ N * be a sequence of dimensions. A neural network is a function R : R d0 → R d L of the form

  κ ) Â := {feedforward neural networks with d 0 = d and d L = κ} , V := {feedforward neural networks with d 0 = d and d L = 1} .

Lemma 7 . 1 (

 71 Change of variable). Let a : R d → R κ be a given Lipschitz continuous function.

  x i ) -V0 (x i )|

8. 2 Figure 1 :

 21 Figure 1: (Example 1) The SL-scheme (left), the H-scheme (middle) and the L-scheme (right) are tested with Euler scheme with p = 1 (top) and Heun scheme with p = 5 (middle/bottom). The bottom figures corresponds to the surface plots of z = v(0, x, y) (blue), the plot of the obstacle function (orange), and the 0-level set (red line). Networks uses 3 hidden layers, 40 neurons, with N = 5 time steps.

8 Figure 2 :

 82 Scheme Parameters Global errors Local errors CPU time d N layers neurons M S.G it. L ∞ L 1 rel. L ∞ L 1 rel. L 6 4 3 40 1000 100000 2.16e-02 1.96e-03 4.06e-04 1.58e-04 1h26 L 7 4 3 40 1000 200000 5.00e-02 3.41e-03 1.51e-02 1.26e-04 3h55 L 8 4 3 40 1000 400000 1.99e-01 1.81e-02 4.39e-04 2.19e-04 10h31Table 2: (Example 2) L-scheme, dimensions d = 6, 7, 8

Figure 3 :

 3 Figure 3: (Example 2) Eikonal equation, L-scheme, dimension d = 8, at time t = T = 2.0 (left, terminal condition), t = 1.0 (center), t = 0.0 (right). Networks of 3 hidden layers and 40 neurons; N = 4 time steps.

Equivalently, max a∈[0, 1 ]

 1 (ae • ∇v) = max(0, e • ∇v). The reachable set at time t is given by {v(t, •) ≤ 0} (corresponding to the set of points that can reach the target before time t). The target function ϕ and the obstacle function g are defined by ϕ(x) := x -A 0 2 -r 0 and g(x) := r 1 -x -A 1 2 so that {ϕ(x) ≤ 0} = B(A 0 , r 0 ), and {g(x) ≥ 0} = B(A 1 , r 1 ). The following parameters are considered: e = (1, 1, ..., 1)/ √ d, A 0 = -(1, 1, ..., 1)/ √ d, A 1 = (0, 0, . . . , 0), r 0 = 0.5, r 1 = 0.25.

Figure 4 :

 4 Figure 4: (Example 3) Results obtained with H-scheme (row (a)), SL-scheme (row (b)), and L-scheme (row (c)) respectively. Dimension d = 6, N = 5 time steps, neural networks of 3 layers and 40 neurons.

Figure ( 5 )

 5 displays the error | V0 (x) -v(0, x)| in fonction of space, with N ∈ {8, 16} number of time steps. Results are shown in Table

Figure 5 :

 5 Figure 5: (Example 4) Comparison between SL-scheme (left), H-scheme (middle) and L-scheme (right), for N = 8 (top) and N = 16 (bottom).

Figure 6 :

 6 Figure 6: (Example 4) L-scheme, dimensions 2,4,6,8, N = 8 time steps, networks : 3 layers of 60 neurons.

Figure 7 :

 7 Figure 7: (Example 5) L-scheme, dimensions 2, 4 and 6. Networks with 3 layers of 60 neurons, N = 8 time steps.

Figure 8 :

 8 Figure 8: Initial condition (in blue) and obstacle function (in green). Illustration of parameters. Exemple of a characteristics with obstacle in the case b = 0.

Table 3 :

 3 (Example 3) Advection with obstacle, comparison of schemes

Table 4 :

 4 (Example 4) comparison between schemes

	Scheme	Parameters d N lay. neur. M	S.G. it.	Global errors L ∞ L 1 rel.	Local errors L ∞ L 1 rel.	CPU time
	SL	4 8	3	60	4000 100000	8.60e-01 4.91e-02 1.98e-01 7.48e-02 6h14
	H	4 8	3	60	4000 100000	3.34e-01 1.58e-02 2.01e-01 4.61e-02 11h26
	L	4 8	3	60	4000 100000	3.24e-01 6.68e-03 1.09e-01 2.56e-02 8h16
	SL	4 16	3	60	4000 100000 1.07e+00 9.21e-02 2.92e-01 1.06e-01 12h29
	H	4 16	3	60	4000 100000	3.32e-01 9.62e-03 1.54e-01 2.88e-02 34h26
	L	4 16	3	60	4000 100000	1.85e-01 3.57e-03 8.85e-02 1.64e-02 28h08

Table 5 :

 5 (Example 4) L-scheme, dimensions d = 2, 4, 6, 8 8.5 Example 5: eikonal advection equation with obstacle, small drift

				Parameters		Global errors	Local errors	CPU
		d N lay. neur.	M	S.G. it.	L ∞	L 1 rel.	L ∞	L 1 rel.	time
	L	2 8	3	60	4000	50000	2.66e-01 5.99e-03 1.19e-01 4.61e-02 3h02
	L	4 8	3	60	4000 100000	3.90e-01 6.77e-03 1.16e-01 2.69e-02 8h13
	L	6 8	3	60	4000 400000	9.69e-01 1.09e-02 1.78e-01 2.88e-02 35h20
	L	8 8	3	60	4000 600000 1.05e+00 3.75e-02 1.71e-01 2.95e-02 45h27

Table 6 :

 6 Errors for example 5

		Parameters d N lay. neur. M	S.G it.	Global errors L ∞ L 1 rel.	Local errors L ∞ L 1 rel.	Time
	L	2 8	3	60	4000 50000 1.24e-01 2.94e-03 8.81e-02 5.21e-03 3h09
	L	4 8	3	60	4000 100000 2.49e-01 4.70e-03 8.67e-02 5.45e-03 6h51
	L	6 8	3	60	4000 400000 8.74e-01 3.70e-02 1.09e-01 1.01e-02 35h07

* This research benefited from the support of the FMJH Program PGMO and from the support to this program from EDF.

Example 1 : Rotation with obstacle

This first problem is a two-dimensional example. We aim at computing the backward reachable set of a target disk D(x A , r 0 ) before time T , while avoiding the region D(x B , r 1 ) with the following parameters x A = (1, 0), x B = (0, 1), r 0 = 0.5, r 1 = 0.25, and T = 0.4 (see Fig. 1). The dynamics f (x, a) with controls a ∈ [-1, 1] is given by

and corresponds to a clockwise to counter-clockwise rotation. We set

The value v(t, x) of this problem problem (as defined in (1), with t ∈ [0, T ] and x ∈ R 2 ) is also solution of the following HJB equation with an obstacle term min(-v t + max

Here, the control networks use the sigmoid output activation function, with value in [0, 1], and is converted to [-1, 1] by a linear transformation.

In Fig 1, we compare the SL-scheme, the H-scheme and the L-scheme. Errors are given in Table 1.

We first investigate the influence of the substeps (p ≥ 1). We choose F h as the Heun scheme, with N = 5 time steps (∆t = T /N ), and compare the results using p = 1 or p = 5 (recall that p is the number of substeps in order to approximate the caracteristic with a constant control a on a given time interval [t k , t k + ∆t]).

The results, for all schemes, are clearly in favor of using p = 5 (better characteristic approximation) which benefit from the regions of regularity of the control. Hence, for the forthcoming examples, we will always use the Heun scheme with p = 5.

Notice that for this low-dimensional example (d = 2), only a small number of stochastic gradient iterations is enough to obtain reasonable results, and in particular to observe the contribution of p.

We also compare the three schemes for p = 5, looking at the relative errors. We observe that the L-scheme gives the best results, the H-scheme gives intermediate results and the SL-scheme is less precise. Here we observe that a local L 1 relative error less or equal to 10 -2 corresponds to an almost perfect result to the eye. Finally, on this example, we have also tested a direct method (the DGM approach of [START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF]), where a global space-time DNN is used in order to approximate the value (t, x) → v(t, x) solution of the PDE (53). However, in our experiments, we found that the DNN in general fails to see the obstacle part of the solution. A typical illustration is given in Figure 2, where 3 simulations with increasing final time T are presented. We considered neural networks with tanh activation function, both in the inner and output layers. In the presented results, the network uses 3 inner layers of 40 neurons. At each iteration of the minimization, the stochastic gradient draws 10,000 points in the space-time domain and 1000 points on the border t = T (100, 000 iterations of stochastic gradient used).

Scheme