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Abstract

This paper presents SMITH, the working prototype of a new code which significantly im-
proves the accuracy of thermodynamic diagrams thanks to the highly performant numerical
technologies including differential homotopy and automatic differentiation.

1 Introduction

Extraction of singular compounds from multi-component mixtures through the separation process
is the most commonly used technology in chemical, pharmaceutical and food-processing industries
(Petlyuk, 2004). Analysis of the thermodynamic diagrams describing the fundamental physical prop-
erties of complex mixtures is a crucial step in the conceptual design of industrial process involving
separation technologies. In very many cases the topology of these diagrams is non-trivial even for
ternary mixtures. In particular, this concerns the computation of certain characteristic curves like
univolatity curves, distillation profiles, the phase separation curves, the pinch-point curves, etc. Dif-
ferent types of diagrams are accessible via professional packages, but often they are incomplete or
lack in precision, as in the example shown in Fig. 1 about univolatility curves used when designing
extractive distillation process.

  1     1

2 22

133 3

α12
α13

α23

α23

α12
α13

α23
α23

α13

α12

Az23
1

Az23
2

Az13

Az12Az12

Az13Az13

Az12

ASPEN Plus, v.8® ResidueCurve® Mathematica 9® 

Figure 1: Hexane (1) - Benzene (2) - Hexafluorobenzene (3) at 1.2 atm (generalized NRTL). Univolatility curves
computed by ASPEN Plus v.8 ®, ResidueCurve®, and Mathematica 9®. Here αij are the univolatility curves of i
and j compounds, Azij are binary azeotropes. Both professional codes fail to identify the pair of binary azeotropes
Az23, ASPEN Plus® ignores the azeotrope-free branch of the curve α23. ResidueCurve® lacks in precision.
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The insufficiency of the professional softwares creates serious obstacles for the technological
transfer from academic research to industrial implementation, so the search of new algorithmic
solutions to improve computational efficiency are important for the process engineering community.

The major part of existing algorithms to compute characteristic curves of thermodynamic dia-
grams use the Newton-Raphson like procedures over the composition space. This implies an impor-
tant computational effort to access the acceptable precision and requires an a-priori knowledge of
the topology of the diagram in order to provide a good initial approximation. On the other hand,
algorithms based on the differential homotopy principle provide a very promising alternative to the
Newton-Raphson method for path following computations (Allgower and Georg, 2003; Caillau et al.,
2012). In process engineering, this approach was proposed by several authors to compute distillation
profiles, pinch point curves, univolatilility curves (Poellmann and Blass, 1994; Feldbab, 2012; Ski-
borowski et al., 2016) and phase separation boundaries (Deiters, 2016). Although these codes showed
excellent results in comparison with the Newton-Raphson based analogs, still they form a marginal
branch in the process engineering computing. The main reason of this poor success is the access to
the derivatives of the thermodynamic models required by these methods. Indeed, using analytical
expressions of the model and its derivatives significantly increase precision and numerical stability
of computations, but their implementation is technically difficult and may form an additional source
of error.

In this paper we present SMITH (Separation of Mixtures In Thermodynamics by Homotopy)
(SMITH, 2020), a working prototype of a new code allowing highly precise and efficient computa-
tion of different types of curves of ternary diagrams. In contrast with codes cited above SMITH
realizes the differential homotopy algorithm in coupling with automatic differentiation of the ther-
modynamic models. Such a coupling allows to easily implement a large class of thermodynamic
models, and access the high numerical performance with less computational effort. The current
version of SMITH is limited to compute the univolatility curves of ternary mixtures, without an
a-priory knowedge of the topological structure of the underlying VLE diagram and independently
of the precence of azeotropes. The same computational approach can be developed for many other
types of thermodynamic diagrams.

In Section 2 we briefly recall the geometric model of the univolatility curves introduced in
Shcherbakova et al. (2017). Section 3 describes the main features of the SMITH code. The pa-
per is concluded with a series of illustrating examples.

2 Geometrical model of univolatility curves

Univolatility curves αij are the sets of points on the ternary residue curve map (RCM) where the pair
of compounds i and j have the same relative volatility. They are used as the feasibility indicators
in the distillation process design. In extractive distillation, the placement and the terminal points
of the univolatility curve on the composition triangle edges determine the order of the withdrawn
products as well as the proper column configuration (Gerbaud and Rodriguez-Donis, 2014).

A ternary RCM may contain up to three families of univolatility curves according by their
respective index, even in zeotropic case. The topology of univolatility curves is intrinsically related
to the topology of the underlying RCM (Kiva et al., 2003; Shcherbakova et al., 2017). Indeed,
three univolatility curves of different index intersect at ternary azeotropic points, and each binary
azeotrope gives rise to a univolatility curve. Multiple binary and ternary azeotropy can occur. Note
that the presence of azeotropes is sufficient but non necessary for the existence of the univolatility
curves. A RCM may contain azeotrope-free curves and multiple curves of the same index may
coexist. If the topological structure of the RCM is known, the computation of univolatility curves
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starting at azeotropes is straightforward, while the detection of univolatility curves not associated
with azeotropes is a more complicated and time-consuming process, especially in the case of zeotropic
mixture.

Consider an open evaporation of a ternary mixture kept at thermodynamic equilibrium at
constant pressure. Denote xi, yi, i = 1, 2, 3 the mole fractions in the liquid and in the va-
por phases, and T the temperature of the system. In the absence of chemical reactions a two-
phase ternary mixture has three independent state variables. By choosing x1, x2 and T , the
complete state space of the system is M = {(x̄, T ) : T ∈ [Tmin, Tmax], x̄i ∈ Ω, i = 1, 2},
where Tmin and Tmax are the minimum and maximum boiling temperatures of the mixture and
Ω = {x̄ = (x1, x2) : xi ∈ [0, 1] with x1 +x2 ≤ 1, i = 1, 2} is the composition space parameterized by
the mole fractions of the first two compounds, while x3 = 1− x1 − x2. The distribution coefficients
Ki : M → R are the functions over M that describe the vapor-liquid equilibrium (VLE) in terms of

molar fractions in the vapor and liquid phases: yi = Ki(x̄, T )xi for i = 1, 2, 3. Since
3∑

i=1

yi = 1, the

following equilibrium condition holds:

Φ(x̄, T ) =

3∑
i=1

Ki(x̄, T )xi − 1 = 0. (1)

In 3D state space M , Eq.(1) defines a smooth hyper-surface referred as the boiling temperature
surface, namely W -surface. Along with W -surface, M contains three univolatility hypersurfaces
defined by equations

Ψij(x̄, T ) = Ki(x̄, T )−Kj(x̄, T ) = 0. (2)

Possible intersections of the W -surface with univolatility hypersurfaces are smooth curves Γij ∈M
called the generalized univolatility curves (Shcherbakova et al., 2017). Univolatility curves αij ∈ Ω
are the orthogonal projections of the curves Γij ∈ M to the composition space Ω. Since ∇Φ and
∇Ψij define the normal vector fields to the 2D surfaces defined by Eqs.(1, 2), the vector field
U ij = ∇Φ × ∇Ψij is tangent to the generalized univolatility curve Γij . In other words, the curve
Γij is a solution to the following system of ordinary differential equations in M :

ẋ1 = U ij
1 (x1, x2, T ), ẋ2 = U ij

2 (x1, x2, T ), Ṫ = U ij
3 (x1, x2, T ). (3)

In order to compute generalized univolatility curves it is enough to detect their end-points over the
border of the composition triangle and use them as the initial points for the numerical integration
of Eq.(3). This can be done solving Eqs.(1, 2) on the boundary of the composition triangle ∂Ω in
the reduced 2D space. For the sake of completeness we remark, that in some cases αim curve starts
from the binary edge i, j of the triangle where m compound is missing (see for instance the α12

curve in Fig. 1). In this case, as it was proposed in (Kiva et al., 2003), the distribution coefficient
Km must be replaced by the distribution coefficient at infinite dilution, which can be obtained from
the ternary distribution coefficient by setting xm = 0:

Ki,j,∞
m = lim

xm→0
m 6=i,j

Km(x̄, T ) (4)

This generalization enables to compute complete univolatility diagrams independently of the
presence of azeotropes.
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3 SMITH algorithm

3.1 Differential homotopy method

The core of SMITH code uses the differential homotopy method with arc-length parameterization
to solve the systems of algebraic equations. This approach is based on the following mathematical
result (see in Allgower and Georg (2003) for more details).

Let F : RN+1 → RN , F (q, λ), denote the homotopic function where λ denotes the homotopy
parameter. Under certain regularity assumptions, the solution to the equation F (q, λ) = 0 forms a
one-dimensional manifold. Indeed, if F is a continuously differentiable function such that

F (q0, λ0) = 0, rank
∂F

∂λ
(q0, λ0) = N

for some q0 and λ0, and if zero is a regular value of F , then a continuously differentiable curve
starting from (q0, λ0) exists and it is either diffeomorphic to a circle or to the real line. The different
branches of F−1({0}) form disjoint smooth curves.

As we showed in Section 2, the generalized univolatility curve Γij is a ”path of zeros” of the
function Fij = (Φ(q, λ),Ψij(q, λ)) with q = (x1, T ) and λ = x2. SMITH uses a predictor-corrector
algorithm via the nutopy package with a high order step-size control Runge-Kutta scheme for the
prediction, and with a classical simplified Newton method for the correction. The key point of success
is the efficient computation of the Jacobian matrix of the homotopic function Fij , which reduces to
the computation of the derivatives of the distribution coefficients Ki, i = 1, 2, 3. In SMITH code
these derivatives are computed via the automatic differentiation tool tapenade (Hasco and Pascual,
2012), which drastically simplifies numerical implementation of the homotopic method.

3.2 Initial points computation

To start the homotopy, the path-following method needs to be initialized at points (q0, λ0) verifying
F (q0, λ0) = 0. Such points can be chosen on the border of the composition triangle Ω. In fact,
according to the index i, j of the couple of compounds, each edge of ∂Ω may contain up to three
types of extremity points verifying univolatility condition, moreover, several points of the same index
may co-exist. Such points may be found by applying a standard Newton-Raphson procedure over
the border of the composition triangle. SMITH realizes a much more efficient method, based on the
following observation. Any edge I of the triangle ∂Ω can be parameterized by the mole fraction of one
of the compounds xi = a ∈ [0, 1], i ∈ 1, 2. Denote φ(a, T ) = Φ(x̄, T )|x̄∈I , ψij(a, T ) = Φij(x̄, T )|x̄∈I .
Then initial points for the curve αij are zeros of the function Eij : R2 → R2 defined by Eij(a, T ) =
(φ(a, T ), ψij(a, T )). Due to the uniqueness of the boiling temperature T of a homogeneous mixture,
equation φ(a, T ) = 0 defines a smooth graph in the 2D plan with coordinates a and T . According
to the Implicit Function Theorem, it can be solved in order to express T = T (a). Then the zeros of
the function Eij can be detected by finding zeros of the scalar function ψij(a, T (a)).

SMITH implements the above idea as follows. In order to capture multiple solutions, each edge
of ∂Ω is divided into K sub-intervals [ak, ak+1], k = 0, . . . ,K − 1 with a0 = 0 and aK = 1. T (0)
is computed by Brent’s method in the interval [Tmin, Tmax], and going further around the edge,
T (ak) is computed via a standard Newton method using T (ak−1) as the initial guess. The sign of
ψij(ak, T (ak)) is checked at each k. The change of the sign of ψij at k-th step means the existence
of a zero of this function in the interval [ak−1, ak], which can be then found by a standard Newton-
Raphson procedure. Realizing such a scheme along every edge of the triangle for all three families of
equations (including the equations associated to the compound at infinite dilution) allows to build
the complete set of initial points. Observe, that binary azeotropes can be detected a-posteriori by
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Figure 2: Univolatility diagrams of different Serafimov’s VLE topological classes computed by
SMITH: a) 0.0-1; b) 1.0-2; c) 3.1-4; d) 3.1-2.

checking the condition Ki = Kj = 1 over the computed set of points. The binary bi-azeotropy can
be easily detected.

3.3 Examples

The actual version of SMITH code allows computations using NRTL and UNIQUAC models for
activity coefficients, and Antoine’s and DPPR equations for vapor pressure computations at various
value of process pressure. Fig. 2 shows four examples of ternary univolatility diagrams of different
topological classes (see in Kiva et al. (2003) for Serafimov’s ternary VLE classes). They were com-
puted at standard atmospheric pressure using NRTL model for activity coefficients and Antoine’s
equation for vapor pressure calculation. The black points indicate the position of azeotropes. Di-
agram a) provides an example of a purely zeotropic mixture (Serafimov class 0.0-1) which has one
univolatility curve. Diagram b) contains two univolatility curves of different indexes, one of them
is azeotrope-free. These two azeotrope-free univolatility curves cannot be detected by ASPEN Plus
v.8®. Cases c) and d) provide examples of diagrams of three curves of different index, the essential
difference is the type of ternary azeotrope: a saddle in c) and an unstable node in d) cases. The
intersection points of the uni-volatility curves were used to find the ternary azeotropes.

4 Further perspectives

The current version of SMITH (SMITH, 2020) works on Unix systems. We are no working on
the Windows version. Although the current version implements only the standard NRTL model,
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other thermodynamical models are under development. Soon they will be available, as well as a
more efficient method of initial points localization using homotopy. In a long term perspective,
we plan to develop new applications to compute phase separation boundaries, pinch point curves,
etc. The described mathematical and numerical approach can be easily adapted to these types of
computation.
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