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Theory of length-scale dependent relaxation moduli and stress fluctuations in

glass-forming and viscoelastic liquids

L.Klochko, J.Baschnagel, J.P.Wittmer, H.Meyer, O.Benzerara, A.N.Semenova)1

Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess,

BP 84047, 67034 Strasbourg Cedex 2, France

(Dated: 5 April 2022)

The spacio-temporal correlations of the local stress tensor in supercooled liquids are stud-

ied both theoretically and by MD simulations of a two-dimensional (2D) polydisperse

Lennard-Jones system. Asymptotically exact theoretical equations defining the dynamical

structure factor and all components of the stress correlation tensor for low wave-vector q

are presented in terms of the generalized (q-dependent) shear and longitudinal relaxation

moduli, G(q, t) and K(q, t). We developed a rigorous approach (valid for low q) to calcu-

late K(q, t) in terms of certain bulk correlation functions (for q = 0), the static structure

factor S(q) and thermal conductivity κ . The proposed approach takes into account both

the thermostatting effect and the effect of polydispersity. The theoretical results for the

(q, t)-dependent stress correlation functions are compared with our simulation data, and an

excellent agreement is found for qb̄ . 0.5 (with b̄, the mean particle diameter) both above

and below the glass transition without any fitting parameters. Our data are consistent with

recently predicted (both theoretically and by simulations) long-range correlations of the

shear stress quenched in heterogeneous glassy structures.

a) Author to whom correspondence should be addressed: al.ni.semenov@gmail.com
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I. INTRODUCTION

Mechanical stress governs the flow and deformation dynamics in liquids or amorphous solids

(glasses).1,2 The stress correlation functions therefore provide important information on dynami-

cal properties of amorphous materials.3 In particular, it is well-known that time-dependent corre-

lations of the shear stress σ(t) are related to the shear relaxation modulus, G(t),4–10 which is one

of the central rheological functions of a material:

〈

σ(t + t ′)σ(t ′)
〉

=
T

V
G(t)+ const (1)

where V is the system volume and T is its temperature in energy units (T = kBTabs where Tabs is the

standard absolute temperature), and ‘const ’ is a constant5,6,9,10,12 that vanishes in an equilibrium

liquid, but may take a non-zero value for systems with finite (quasi-) static shear modulus. A

similar relation between the correlation function, Cp(t), of instantaneous pressure p(t), and the

bulk compression modulus K0(t) was recently discussed10 (see also Refs. 7, 8, 16, and 17). K0(t)

defines the pressure response after a small uniform compression of the system volume (V →
V (1− ε), ε ≪ 1) at t = 0:

∆p(t) = εK0(t), t > 0 (2)

In addition to K0(t), there are two other response functions related to compression and useful for

many purposes10: (i) The adiabatic compression modulus KA(t) characterizes a thermally isolated

system whose energy and entropy are constant at t > 0 (no heat exchange with its environment).

(ii) The isothermal compression modulus KT (t) is relevant to the ideal case when the system tem-

perature is kept perfectly constant. These two functions characterize the system as such, whereas

the pressure correlation function Cp(t) depends also on the thermostatting conditions, and so it is

non-universal in this respect (see note62).

In particular, such dependence on the thermostatting mechanism applies to most of molecular

dynamics (MD) simulation studies.10 This effect is akin to the well-known fact that static correla-

tors (like Cp(0)) generally depend on the statistical ensemble.18 It is possible, however, to obtain

the universal (thermostat-independent) material functions, KA(t) and KT (t), based on cross- and

auto-correlation functions of pressure and temperature. Some recipes on how to do it are described

in Ref. 10 (see also Ref. 11).

Complex and glass-forming liquids are known to be highly heterogeneous19, so the space-

resolved correlation functions are required to characterize their structure. Accordingly, in the
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present paper we study the stress correlation and response functions depending on both wave-

vector (q) and time (t). In particular, we consider all components of the tensorial correlation

function Cαβα ′β ′(q, t) (defined in eq. 69) for the q-dependent stress, σαβ (q, t). The latter is the

Fourier transform of the stress tensor field σαβ (r, t):

σαβ (q, t) = (1/V )

∫

σαβ (r, t)exp(−iq · r)ddr (3)

where α,β refer to Cartesian components and d is the space dimension. To simplify the anal-

ysis we consider here only strictly two-dimensional systems (2D, d = 2), although many results

obtained below are more general. The stress correlation functions are first predicted theoretically

(see section III B), and then the results are compared with our MD simulation data (section III C)

on a 2-dimensional polydisperse Lennard-Jones (pLJ) system described in Appendix A.

The theory of time-space resolved stress correlations was developed in several recent studies

using either the Zwanzig-Mori projection operator formalism14,20,21 or the fluctuation-dissipation

theorem (FDT)6. Both approaches considered isothermal systems (formally assuming infinite

thermal conductivity) and eventually specify the theories in the hydrodynamic limit of small q (in

2D in Ref. 6, and in arbitrary dimension d in Refs. 20 and 21). The results for the stress correlation

tensor obtained within these theories are in harmony with each other. In particular, both theories

predict a long-range power law tail (1/rd) for long-time shear stress correlations, Cxyxy(r, t), for

supercooled viscoelastic liquids and amorphous systems below the glass-transition temperature.

This prediction is in qualitative agreement with simulation data on stress correlations in 2D22 and

3D binary LJ models23. Recent theoretical, experimental and simulation studies of static strain

correlations in 2D colloidal glass-formers reveal an Eshelby-strain pattern with a characteristic

1/r2 long-range decay near the glass transition.58 A similar 1/r3 decay for strain correlations has

been also predicted and tested against simulations and experiments on 3D Brownian hard-sphere

colloids15. However, to the best of our knowledge, a full quantitative comparison of theoretical

and simulation results on q, t-resolved stress correlations has not been performed yet. Here we

present such a comparison in 2D. In doing so, we also extend the previous theory6 by including

the effects due to heat transport and particle-size polydispersity, both of which are important for a

quantitative analysis of the stress correlation tensor for the simulated glass-forming system.

In the next section we introduce the generalized q, t-dependent longitudinal modulus K(q, t)

and argue that for q 6= 0 it is essentially universal (independent of the ensemble/thermostat) in

contrast to K(0, t) and various correlation functions of volume-averaged quantities (section II C).
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A theoretical approach allowing to obtain K(q, t) based on standard time-dependent correlation

functions (at q = 0) is presented as well. We then describe a recipe for efficient numerical cal-

culation of K(q, t) taking into account both heat conduction and polydispersity of a molecular or

colloidal system (see sections II D, II E, II F), and finally obtain the longitudinal response function

for the (2D pLJ) model Lennard-Jones system defined in Appendix A. In the 3rd section it is first

explained how to obtain the dynamical structure factor S(q, t) based on K(q, t); the theoretical

approach is then verified by comparison with the simulation data for the 2D pLJ model. Fur-

thermore, in section III B we present the basic relations (mostly coming from the FDT) defining

the stress-correlation tensor Cαβα ′β ′(q, t) in terms of the generalized shear (G(q, t)) and longitu-

dinal (K(q, t)) moduli. All independent components of the stress-correlation tensor are then cal-

culated numerically as described therein. The theoretical and simulation results for Cαβα ′β ′(q, t)

are compared in section III C followed by a further discussion of the generalized elastic moduli in

section IV revealing long-range spacio-temporal stress correlations. The main results are summa-

rized in section V. Finally, Appendix B describes the theory for the temperature autocorrelation

function used to determine the thermal conductivity κ .

II. THE Q-DEPENDENT RELAXATION MODULI

A. Uniform deformations, q = 0

In the present study we are mostly interested in two relaxation moduli, G(q, t) and K(q, t)

corresponding to shear and longitudinal deformation, respectively.4,24,25,27 Their definition for q =

0 is well-known: G(0, t)≡ G(t) is the classical shear relaxation modulus related to the (ensemble-

averaged) shear stress response, ∆σxy(t), upon a canonical-affine xy-shear deformation γ when the

coordinates (r) and velocities (v) of all particles are instantly changed at t = 0 as

ry → ry + γrx, vx → vx − γvy (4)

(for shear along y-axis with gradient in x-direction):

∆σxy(t) = G(t)γ (5)

for γ → 0. G(t) is therefore the linear response function (quadratic and higher-order terms in γ

and other perturbation magnitudes are neglected here and in what follows).
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The longitudinal modulus K(0, t)≡ KL(t) is defined in a similar way as a response of longitu-

dinal pressure, pxx =−σxx, to a small uniaxial compression ε =−εxx of the system at t = 0 (while

the transverse area, i.e. the cross-section perpendicular to the deformation axis, is kept constant),

rx → rx (1− ε) , vx → vx(1+ ε) (6)

The ensemble-averaged longitudinal pressure increment is then

∆pxx(t) = KL(t)ε (7)

It is well-known that in isotropic systems the two moduli fully define the stress response to any

affine deformation28,29. In particular, eq. 7, can be supplemented with

∆pyy(t) = M(t)ε

where M(t) = KL(t)− 2G(t) is the transverse modulus. The bulk compression modulus K0(t)

(cf. Ref. 10) is therefore related to KL:

KL(t) = K0(t)+(2−2/d)G(t) (8)

where d is the space dimension.

The moduli G(t) and M(t) can be thought of as time-dependent generalizations of the elastic

coefficients of isotropic solids28,29: G(t) corresponds to the shear modulus µ and M(t) to the

Lamé coefficient λ . With this correspondence the longitudinal modulus KL(t) = M(t)+ 2G(t)

agrees with the known relation from the linear elasticity (KL = λ +2µ) and the bulk compression

modulus K0(t) with that for the classical static bulk modulus (K0 = λ +2µ/d).

B. Non-uniform deformations, q 6= 0

In this section we formulate a microscopic definition of the generalized q-dependent relaxation

moduli (which is alternative to the usually adopted way to define them based on phenomenological

hydrodynamic equations3,24).

It is well-known that in the general case the deformation rate is defined by the flow velocity field

v(r, t).31 The microscopic definition of its Fourier transform, v(q, t)=V−1
∫

v(r, t)exp
(

−iq · r
)

ddr,

is:

v(q, t) = J(q, t)/ρ (9)
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where ρ = ∑a ma/V is mean mass density, J is momentum density,

J(q, t) =V−1 ∑
a

mava(t)exp
(

−iq · ra(t)
)

(10)

a = 1, . . . ,N is the label of a particle, and ma, va and ra are the mass, velocity and position of the

a-th particle, respectively. The deformation rate is related to the tensor of velocity gradients

γ̇αβ =
∂vβ (r, t)

∂ rα
= ∑

q

iqαvβ (q, t)exp
(

iq · r
)

(11)

where the sum runs over all q-modes defined by the system size, and α , β are Cartesian compo-

nents. Here we assume that the system boundaries are fixed (undeformed),13 and that is why there

is no deformation at q = 0.

Let us consider a single deformation mode with q 6= 0. Without loss of generality we can

assume that q is parallel to the x-axis. Then γ̇xy = γ̇eiqx (with γ̇ = iqvy) is the generalized shear

deformation rate, and ε̇xx = −ε̇eiqx with ε̇ = −iqvx correspond to the generalized longitudinal

deformation. An instant shear deformation mode with amplitude γ is emerged at t = 0 if γ̇ =

γδ (t) is imposed by means of an external force field; this deformation is equivalent to imposing

vy = −iγδ (t)/q, where δ is the Dirac’s δ -function. Similarly, an instant external longitudinal

deformation with amplitude ε corresponds to vx = iεδ (t)/q. The resultant particle displacement

field is

u(r) =
i

q
(ε x̂− γ ŷ)eiqx (12)

where x̂ is the unit vector along the x-axis and ŷ along the y-axis. To render the whole deformation

canonical the particle velocities should be changed accordingly (cf. eqs. 4, 6):

v → v+ x̂eiqx (εvx − γvy) (13)

Note that at q = 0 the above equation agrees with eqs. 4, 6.

The generalized moduli can then be defined via the ensemble-averaged stress responses to the

specified instant shear and longitudinal deformations at a wave-vector q:

∆σxy(q, t) = G(q, t)γ, ∆pxx(q, t) = K(q, t)ε (14)

The above equations are valid provided that no further deformation occurs at t > 0:

J(q, t)≡ 0 at t > 0 (15)
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However, the very stress generated by the initial deformation at t = 0 would lead to a flow giving

rise to further deformations of the system. This flow is governed by the fundamental momentum

equation3,6

∂Jα(q, t)

∂ t
= iqβ σαβ (q, t) (16)

Therefore, in the general case the stress response comes as a linear superposition of contributions

from all the previous small deformations. So, for example, the first eq. 14 should be replaced by31

∆σxy(q, t) = G(q, t)γ(0)+

∫ t

0+
G(q, t − t ′)dγ(t ′) (17)

where dγ(t ′)/dt ′ is the deformation rate defined by v(q, t). To avoid this complication, one can

apply a perturbative external force F(q, t) to the system (adding it to the rhs of eq. 16) in order

to prevent any deformation at t > 0 (that is, to render eq. 15 valid at all times after the initial

deformation). In real space this is equivalent to application of an external force field with

Fa(t) = maA(t)eiq·ra (18)

being the force on the a-th particle. Here A(t) is proportional to F(q, t). (Indeed, recalling the

definition of the Fourier transform we get F(q, t) = 1
V ∑a Fa(t)e

−iq·ra = ρA(t)). Obviously, the

forces Fa(t) provide a coherent acceleration of all particles (with amplitude A(t)).26

Since physical variables like ra(t), va(t) are necessarily real, changing q to −q always leads to

complex conjugation of q-dependent variables. Hence, for example, σαβ (−q, t) = σ∗
αβ (q, t) (cf.

eq. 3). Therefrom we get G∗(q, t) = G(−q, t), K∗(q, t) = K(−q, t). Besides, the isotropy of the

system also ensures that these response functions depend only on |q|, hence they must be real.

C. Low-q regime for G(q, t) and K(q, t)

Having defined the generalized relaxation moduli, we now turn to the problem of their calcu-

lation. G(q, t) at q = 0 is a central rheological function, and there are well-known techniques to

obtain it either experimentally31 or based on simulation data.4,5,7–10,32 A commonly employed ef-

ficient way to calculate G(t) is to use eq. 1. As for the q-dependence of G, we stick to the idea that

G(q, t) is uniformly continuous at q → 03,6,20, hence the following approximation is reasonable:

G(q, t)≃ G(t) for λ ≫ b̄ (19)

where λ = 2π/q is the wavelength, and b̄ is the molecular size (i.e., the mean particle diameter for

the pLJ system we consider). Moreover, we are confident that the q-dependence of G is regular,
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so the deviation of G(q, t) from G(t) is proportional to q2. For molecular systems with finite

interaction range this can be rigorously proved for t = 0 (details to be given elsewhere). For t > 0

a weak q-dependence of G(q, t) at low q’s comes from the following physical argument: let’s

divide the system in cells of size l, b̄ ≪ l ≪ λ ; within each cell the deformation is almost uniform,

so the stress response is nearly given by G(t); any effect of stress relaxation in a distant cell cannot

be transferred to a given cell because any deformation (at t > 0) is forbidden by definition of

G(q, t), so there is no mechanism by which a structural relaxation of a given cell can be coupled

with that in a distant cell (the locality principle).

It may seem that the above argument is also applicable to the longitudinal modulus K(q, t),

which would imply the relation K(q, t)≃ K(q = 0, t) = KL(t). However, this approximation does

not hold. On the one hand, it is well known that fluctuations of volume-averaged (i.e., q = 0)

variables, like longitudinal stress σxx(t) or pressure p(t), depend on the statistical ensemble27,32.

On the other hand, the related moduli KL(t) and K0(t) also depend on whether the dynamics is

energy-conserving or thermostatted and thus, in the latter case, on the nature and parameters of

the thermostat used in the simulation.10 This is so because a compression of the system leads to

a temperature rise whose evolution is controlled by the thermostat, and thus entails a thermostat-

dependent pressure response.10 By contrast, the longitudinal modulus K(q, t) for q> 0 is universal:

it does not depend on the statistical ensemble or the presence of a thermostat. The main reason

for this is that fluctuations of physical fields at q > 0 are not coupled with volume-averaged (i.e.,

q= 0) fluctuations of the mean T which are controlled by the thermostat. Therefore, limq→0 K(q, t)

is universal, while K(q = 0, t) = KL(t) is not. As a result, K(q, t) can be discontinuous at q = 0.30

Noteworthily, the effects considered just above are not relevant for G(t) since the shear stress σxy

is not coupled with any scalar field (in particular, temperature fluctuations) for symmetry reasons.

Hence, it does not matter for G(t) whether the dynamics is energy-conserving or thermostatted.

To sum up, G(q, t) just weakly (negligibly in the regime qb̄≪ 1) depends on q because the local

shear stress response to a prescribed shear deformation depends on the local structure only. By

contrast, the longitudinal stress response to a small inhomogeneous extension ε (at a small wave-

vector q) can significantly depend on q since such a response (associated with K(q, t)) depends

not only on the deformation ε , but also on the deformation-induced temperature (T ) increment

which is (essentially) a slow conserved variable whose relaxation dynamics is non-local. As a

result K(q, t) gets non-local dynamically, i.e., at t > 0, due to the stress-temperature coupling (by

contrast K(q, t = 0) can be approximated by its q → 0 limit just like G(q, t)).
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D. Calculation of K(q, t) for monodisperse systems

In the previous section we showed that a relation like eq. 19 does not work for the longitudinal

modulus K(q, t). Is it possible at all to find K(q, t) based on correlation functions at q = 0? The

answer is positive, but the problem is not exactly trivial as clarified below.

Recently10 we showed how to obtain two universal bulk compression relaxation moduli, KA(t)

for adiabatic compression and KT (t) for isothermic compression, based on correlation data from

thermostatted simulations. We also described how to calculate two other universal functions: the

time dependent isochoric heat capacity per particle, cv(t), and the thermal pressure pT (t).
10,11 The

latter function is defined via the isochoric pressure response (at constant volume), ∆p(t), to an

instant small temperature rise, ∆T , at t = 0:

∆p(t) = pT (t)∆T (20)

Its static limit is a thermodynamic derivative: pT (∞) = (∂ p/∂T )V . As shown below, K(q, t) at low

q can be expressed in terms of these functions. The result also depends on the thermal conductivity

κ of the system. If κ = 0, there is no heat transfer, so K(q, t) must be nearly equal to the adiabatic

longitudinal modulus KAL(t) (here we apply the same locality principle as for G(q, t)):

K(q, t)≃ KAL(t), λ ≡ 2π/q ≫ b̄ (21)

where

KAL(t) = KA(t)+(2−2/d)G(t) (22)

by virtue of eq. 8.

In the general case (finite κ) the modulus K(q, t) is lower. To obtain it we note that in addition

to the adiabatic deformation of a cell applied at t = 0 (with compression strain ε = −εxx), some

heat h(t) can be transferred to it later on (at t > 0) by thermal conduction. The heat itself leads to

a pressure increment

∆p(h)(t) =

∫ t

−∞

dh(t ′)
dt ′

χ(t − t ′)dt ′ (23)

where χ(t) is the relevant response function, and h(t) is the heat (per particle) injected into the

cell by the time t (the heat injected during a time-period between t and t +∆t therefore equals

h(t +∆t)−h(t)). Therefore, the total longitudinal pressure increment is

∆pxx(t) = KAL(t)ε +∆p(h)(t) (24)
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where the first term in the rhs is due to adiabatic xx-compression, and the last term is the stress

increment due to thermal conductivity leading to the energy increment h(t). Here and below we

assume for simplicity that the wave-vector q is oriented along the x-axis, so the x-dependence of

pressure increment ∆pxx (and other variables: ∆T , h, ε) is given by the factor eiqx which is sys-

tematically omitted. (Note that the heat-induced stress tensor change is ∆σ
(h)
αβ

(t) =−∆p(h)(t)δαβ

since energy is a scalar variable.)

In order to find χ(t) we note that the heat h(t) leads to a temperature perturbation, ∆T (h)(t),

such that

h(t) =

∫ t

−∞
cv(t − t ′)

d

dt ′
∆T (h)(t ′)dt ′ (25)

where cv(t) is time-dependent isochoric heat capacity per particle. Eqs. 23, 25 can be simplified by

using a modified Laplace transform10,11 referred to in what follows as ‘s-transform’ and defined

for a function X(t) as

X(t) → X(s) = s

∫ ∞

0
X(t)e−stdt (26)

Eqs. 23, 25, 20 then read in terms of s-transforms:

∆p(h)(s) = h(s)χ(s) (27)

h(s) = cv(s)∆T (h)(s) (28)

∆p(h)(s) = pT (s)∆T (h)(s) (29)

The above equations lead to

χ(s) = pT (s)/cv(s) (30)

and (cf. eq. 24)

∆pxx(s) = KAL(s)ε +h(s)pT (s)/cv(s) (31)

It therefore remains to find h(s). It is defined by the heat transport equation

n0
∂h(t)

∂ t
= κ∇2T =−κq2∆T (32)

where n0 = N/V is the mean concentration, and the Laplacian ∇2 is replaced with −q2 in view of

the harmonic dependence of all perturbations given by the factor eiq·r. Here

∆T (t) = ∆T (i)(t)+∆T (h)(t) (33)
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is the total temperature increment due to two effects: (i) initial instant adiabatic compression,

ε =−εxx, at t = 0; (ii) the heat conduction. Applying the FDT to an energy-conserving canonical

ensemble we get:

∆T (i)(t) = ε
T

n0
χ(t) (34)

(The latter equation can be obtained by using eqs. (B2), (B9) of Ref. 10 and noting that ∆T in eq.

(B2) is actually ∆T (i), and that the 2nd term in the 1st eq. (B9) represents ∆p(h) with h = εvT .)

Physically, eq. 34 comes from the fact that ∆p(h) as predicted by the FDT is proportional to

CpT (t) =
N

T 2

〈

δ p(t + t ′)δT (t ′)
〉

(35)

while ∆T (i) must be proportional to CT p(t) which is equal to CpT (t).
33 In the static limit, t → ∞,

eq. 34 simply comes from eq. 27 and the thermodynamic relation: T (∂ p/∂E)V = −(∂T/∂V )S,

where E, S are total energy and entropy, respectively.

As a result, using eqs. 28, 34 we get:

∆T (s) =

[

ε
T

n0
pT (s)+h(s)

]

/cv(s) (36)

Next, we use the above equation, eq. 31, and eq. 32 whose s-transform reads sh(s)=−(κ/n0)q
2∆T (s),

to obtain ∆pxx(t) = K(q, t)ε with

K(q,s) = KAL(s)−
T

n0

pT (s)
2

cv(s)

[

1+ sn0cv(s)/
(

κq2
)]−1

(37)

We anticipate that this equation is valid at low q’s with relative accuracy of ∼ (b̄/λ )2 (cf. eq. 19

for G(q, t)). Still the sign ‘ =’ is used here and below to simplify equations (whose approximate

nature must be kept in mind). For κ → 0 the 2nd term in the above equation vanishes, so the

modulus K(q, t) becomes purely adiabatic and eq. 21 is recovered. By contrast, for κ → ∞ eq. 37

becomes

K(q,s) = KAL(s)−
T

n0

pT (s)
2

cv(s)
≡ KT L(s) (38)

In this case K(q, t)=KT L(t), where KT L(t)= KT (t)+(2−2/d)G(t) is the isothermic longitudinal

modulus defined in eq. 38. Note that the difference KAL(t)−KTL(t) is equal to KA(t)−KT (t) (cf.

eq. (D23) of Ref. 10) as it should be. The general eq. 37 can be rewritten in terms of the isothermic

relaxation modulus KT L:

K(q,s) = KT L(s)+T pT (s)
2/

[

n0cv(s)+κq2/s
]

(39)
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Finally, the relaxation modulus K(q, t) can be obtained by doing an inverse s-transform of eq. 37

or eq. 39 provided that the response functions KAL(s), pT (s), cv(s) are known. A rigorous way

to obtain these functions based on correlation data from thermostatted simulations was described

recently10,11. Noteworthily, the approach to obtain the general relations between time and wave-

vector dependent response functions and correlation functions developed here and in refs. 10 and

11 is similar to the generalized hydrodynamic theory38,47. The main differences are that (i) we

now adapt the theory rendering it applicable to the thermostatted simulations with imperfect tem-

perature control, so that the universal (thermostat independent) response functions can be calcu-

lated based on non-universal dynamical correlation functions, and (ii) we systematically use the

s-transform (instead of merely the Laplace transform of time-dependent functions) which renders

many dynamical relations between response functions look pretty similar to their static counter-

parts (see, e.g., eqs. (D23) and (D25) of ref. 10, or eq. 77 below).

In the next section we propose rather simple approximate ways to obtain K(q,s) which largely

avoid the need to do direct or inverse Laplace transforms.

E. Approximate relations for K(q, t)

In most thermostatted simulation schemes the isothermicity condition only holds at long

enough time-scales, t ≫ τdamp, where τdamp is the characteristic damping time associated with

the thermostat employed in the simulations. As a result, a simple linear relation between, say, the

dynamical heat capacity, cv(t), and the energy autocorrelation function gets violated, so one has to

resort to more complicated equations10,11. A simple way out is to set the thermostat parameters so

as to decrease the characteristic time τdamp below the time-scales of interest. We adopted this way

in simulations of the 2D pLJ system involving the Nosé-Hoover thermostat (see Appendix A):

the chosen thermostat-related Nosé time, τdamp ∼ 0.01, ensured that T ≈ const at t & 0.1, which

means that all the correlation data (with the sampling time-step of δ t = 0.05) are nearly isother-

mic, maybe except for t = 0, 0.05.34 Then, all correlations involving temperature fluctuations can

be neglected, and it is reasonable to approximate cv(t) with cv0(t) =CE(0)−CE(t),
35 pT (t) with

pT 0(t) = CpE(0)−CpE(t), and KT (t) with K0(t) =
T
n0
[Cp(t)−Cp(0)]+ηA, where (see Refs. 10

and 11 for details)

Cp(t) =
N

T 2

〈

δ p(t + t ′)δ p(t ′)
〉

(40)

12



CpE(t) =
1

T 2

〈

δ p(t + t ′)δE(t ′)
〉

, CE(t) =
1

T 2N

〈

δE(t + t ′)δE(t ′)
〉

(41)

Here E is the total energy of the system, ηA = K0(0) is its affine compression modulus, δX(t) =

X(t)−〈X〉, and 〈X〉 means time and ensemble average of a variable X . Applying these approxi-

mations in eq. 39 leads to

K(q,s)≃ K∗(q,s)≡ KL(s)+T pT 0(s)
2/

[

n0cv0(s)+κq2/s
]

(42)

where KL(s) = K0(s)+ (2−2/d)G(s). Using simulation data on the correlation functions for the

system described in Appendix A we established that the approximation, eq. 42, works remarkably

well: it is asymptotically exact both at short and long t, and at intermediate times its relative error

is . 0.1%, which is comparable to (or smaller than) the statistical error bar of our data.

Eq. 42 can be used to obtain the longitudinal modulus in the time domain:

K(q, t)≈ K∗(q, t)≡ KL(t)+∆K∗(q, t) (43)

where the 1st term is KL(t) = K0(t)+(2−2/d)G(t)≈ KT L(t), and the s-transform of the 2nd term

is

∆K∗(q,s) =
T

n0

pT 0(s)
2

ψ(s)
, ψ(s)≡ cv0(s)+

κ

n0
q2/s (44)

It leads to the following equation for ∆K∗(q, t):

∫ t

0
∆K∗(q, t − t ′)dψ(t ′) =

T

n0

∫ t

0
pT 0(t − t ′)dpT0(t

′) (45)

where

ψ(t) = cv0(t)+
κ

n0
q2t (46)

Eq. 45 is similar to eq. (D7) of Ref. 10 and can be solved numerically in the same way. The

results for our 2D pLJ model system at q = qmin ≡ 2π/L (L is the system box size) and T =

0.4, 0.3, 0.26, 0.24, 0.2 are shown in Fig. 1 (black curves from bottom to top). The reduced

thermal conductivity, κ∗ = κq2
min

/n0 = (2π)2 κ/N, was obtained based on temperature auto-

correlation data as described in Appendix B: κ∗ = 0.0426, 0.0474, 0.0466, 0.0471, 0.0490 for

T = 0.4, 0.3, 0.26, 0.24, 0.2, respectively. It is apparent that κ increases just slightly as T is

decreased.

A simple approximate expression for ∆K∗(q, t) can be obtained by assuming that pT 0 and cv0

are constants, then doing analytically the inverse s-transform of eq. 44, and then replacing pT 0 and
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cv0 with time-dependent functions:

∆K∗(q, t)≈
T

n0

pT 0(t)
2

cv0(t)
exp

(

− κq2t

n0cv0(t)

)

(47)

This equation is analogous to eq. (A5) of Ref. 10. The above approximation of ∆K∗(q, t) was used

to calculate K(q, t)≈ KL(t)+∆K∗(q, t). The results are also shown in Fig. 1 by red curves. One

can observe that the approximation, eq. 47, works very well in a wide T -range (both above and

below the glass transition temperature Tg ≈ 0.26).39 The relative error is . 1% for T = 0.4, 0.3

and . 0.25% for T = 0.26, 0.24, 0.2.

Eqs. 43, 47 were therefore employed to calculate K(q, t) as described in the next sections.

F. Polydispersity effects for K(q, t)

At long times comparable with the total sampling time ∆tmax (cf. Appendix A), t ∼ ∆tmax

(more precisely, at t ≫ τT , beyond the temperature wave relaxation time τT = n0cvs/
(

κq2
)

, where

cvs = cv(t → ∞) is the static heat capacity per particle) the correction ∆K∗ vanishes, so K(q, t)≃
KL(t), and the isothermic static limit of the longitudinal modulus, KT Ls = KT L(t → ∞), can be

approximated as

KT Ls ≃ KL(t ∼ ∆tmax)≃ KT L(t ∼ ∆tmax) (48)

On the other hand, the equilibrium static modulus Ke(q) can be obtained from the generalized

compressibility equation24,27,36

S(q) = n0T/Ke(q) (49)

where

S(q) =
1

N

〈

∣

∣

∣

∣

∑
n

eiq·rn

∣

∣

∣

∣

2
〉

(50)

is the static structure factor. Using the S(q) data for the 2D pLJ system we found that Ke(q) from

eq. 49 (= n0T/S(q)) is significantly lower than the static modulus defined in eq. 48 even in the

liquid regime, ∆tmax ≫ τα , where τα is the structural α-relaxation time.

What is the reason for such a contradiction? In fact, it is related to the well-known matter that

the standard compressibility equation3 is violated in polydisperse systems, so

lim
q→0

S(q) 6= n0T/KT Ls (51)

where the long-time limit of the isothermic longitudinal modulus KT L(t), KT Ls ≃ limt→∞ KT L(t),

defines the isothermic compressibility κT in the liquid regime: κT ≃ 1/KTLs. Physically this
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discrepancy is due a coupling of composition fluctuations (which are absent in monodisperse sys-

tems) with fluctuations of the total concentration field n(r) at any (however small) wave-vector

q. The mechanism of such coupling was elucidated in Ref. 36. To illustrate it let us consider a

bidisperse mixture of small and large particles. A small longitudinal deformation ε of the system

would lead to a concentration wave δn(x) = n0εeiqx. Initially such deformation does not change

the local composition of the system (the number fraction of small particles) which remains ho-

mogeneous, so δn(x) implies a perturbation of the particle volume fraction δφ(x)≈ εeiqx leading

to a high free energy cost which is proportional to ε2KT Ls with high static modulus KT Ls for a

nearly incompressible system. However, an exchange of small and large particles leading to a

higher fraction of small particles in denser regions (and higher fraction of large particles in less

dense regions) can significantly reduce δφ leading to a lower energy cost. As a result, the emerg-

ing compositional wave gives rise to a significant decrease of K(q, t) at long times from KT Ls to

Ke(q) = n0T/S(q), since S(q) significantly increases with the polydispersity degree.36

An analogous process of compositional relaxation leads to the terminal relaxation stage of the

dynamical structure factor S(q, t) in polydisperse systems:36 (see also note59)

S(q, t)≃ (S(q)−n0T/KT Ls)exp
(

−q2tDs

)

, t ≫ τT ,τα (52)

where the α-relaxation time τα normally coincides with the terminal relaxation time for G(t).

The time-scale of this process is defined by the mean inter-diffusion coefficient Dinter of the par-

ticles, which nearly equals their self-diffusion coefficient Ds, Dinter ≈ Ds, in weakly polydisperse

systems.36 The terminal relaxation time of K(q, t) is related to Ds as well, but there is an impor-

tant difference: while the terminal relaxation of S(q, t), eq. 52, is mostly driven by the ideal-gas

entropy of mixing of polydisperse particles, the K(q, t) relaxation process is driven by the much

higher elastic free energy of the longitudinal deformation which is proportional to KT Ls. More

precisely, according to the FDT36, the function S(q, t) defines the concentration response δnq(t)

to a weak external field U(r, t) =Uqeiq·r applied to the system at t ≥ 0:

δnq(t) =
n0

T
Uq [S(q)−S(q, t)] (53)

(ensemble-averaging as assumed in the l.h.s. of the above equation). Importantly, the definition

of K(q, t) implies that an analogous field (denoted as U∗
q in this case) is applied to the system

to keep the longitudinal deformation (at wave-vector q) constant (i.e., independent of time), so

that the concentration perturbation δn∗q(t) = ndef is constant as well. The difference between the
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two cases is that Uq in eq. 53 is constant (at t ≥ 0), while U∗
q is time-dependent. A meaningful

comparison between the two cases demands that the terminal δnq(t → ∞) in eq. 53 must be equal

to ndef (to ensure that all particle components are eventually distributed in the same way in both

cases). Therefore we get

Uq =
ndefT

n0S(q)
(54)

Let us consider the very beginning of the particle interdiffusion process (τT ,τα ≪ t ≪ 1/(q2Ds)).

The interdiffusion rate is then driven by the external field Uq (in the case of eq. 53) and by U∗
q in

the case of longitudinal relaxation modulus, hence

D∗/Ds =U∗
q /Uq (55)

where D∗ is the effective interdiffusion constant relevant for K(q, t). The amplitude U∗
q can be

found by minimization of the effective free energy

1

2
KT Ls

(

δn∗q/n0

)2 −U∗
q δn∗q

leading to

U∗
q = KT Lsn

def/n2
0 (56)

Using eqs. 54, 55, 56 we get the effective diffusion constant for the terminal relaxation of the

longitudinal modulus:

D∗ = DsKT Ls/Ke(q) (57)

The terminal compositional relaxation stage of K(q, t) is therefore given by the following equation

(an alternative derivation of eq. 58 is presented in section IV):

K(q, t)≃ KT Ls +(Ke(q)−KTLs)
[

1− exp
(

−q2tDsKT Ls/Ke(q)
)]

, t ≫ τT ,τα (58)

This equation assumes that the self-diffusion is Fickian. In the general case (in particular, at

T . Tg) it is the mean-square particle displacement (MSD) that matters, so tDs must be replaced

with

h0(t) =
1

2d

〈

∣

∣ra(t + t ′)− ra(t
′)
∣

∣

2
〉

(59)

where averaging over all particles (index a) is assumed in the rhs Combining thus modified eq. 58

with eqs. 47, 43 we get the final approximate result:

K(q, t)≈ KL(t)+
T

n0

pT 0(t)
2

cv0(t)
exp

(

− κq2t

n0cv0(t)

)

+
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+(Ke(q)−KTLs)
[

1− exp
(

−q2h0(t)KTLs/Ke(q)
)]

(60)

This equation is used in the next section to predict different q, t-resolved correlation functions.

The functions entering the rhs of eq. 60 have been considered above: The longitudinal modulus

KL(t) is defined in eq. 8, the bulk shear modulus G(t) is obtained based on the stress-fluctuation

relation;10 the bulk compression modulus K0(t), the thermal pressure pT 0(t) and the heat capacity

cv0(t) are obtain based on pressure and energy auto- and cross-correlation functions as described

in ref. 10. h0(t) comes from the particle MSD; Ke(q) is defined by the standard structure factor

S(q) using eq. 49. Finally the heat conductivity κ is obtained as described in Appendix B. The

eventual time-dependence of K(q, t) at T = 0.4 and 0.3 is illustrated in Fig. 2.

III. THEORY FOR q, t-RESOLVED TENSORIAL STRESS CORRELATION

FUNCTIONS

A. The dynamical structure factor

Before turning to stress correlations we chose to verify the basic result of the previous section,

eq. 60. To this end let us consider the dynamical structure factor

S(q, t) =
1

N
∑
a,a′

〈

exp
(

iq ·
(

ra(t + t ′)− ra′(t
′)
))〉

(61)

where a,a′ run over all particles in the system, and an averaging over t ′ is assumed. For macro-

scopically isotropic systems only the magnitude of q is relevant,55 so S(q, t) can be averaged over

orientations of q. The linear response theory leads to the following rigorous relation24,27 between

K(q, t) and S(q, t):

S(q)−S(q,s) = T
[

ms2/q2 +K(q,s)/n0

]−1
(62)

where S(q,s) is the modified Laplace transform (defined in eq. 26) of S(q, t). The above equation

shows that
∂S(q,t)

∂ t
= 0 and

∂ 2S(q,t)
∂ t2 =−T

m
q2 at t = 0.

The relation, eq. 62, comes from the FDT (or the Zwanzig-Mori projection operator formal-

ism)3,4,37; it is general and exact provided that all particles have the same mass. It allows to predict

S(q, t) based on the known K(q, t). The latter was calculated using eq. 60 and the classical time-

dependent correlation functions for q = 0 involved in it (like KL(t), cv0(t), h0(t)) obtained using

simulation data for the 2D pLJ system (Appendix A). A multi-exponential approximation was then
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applied to the function K(q, t) at a given q (cf. point 6 of section IV for further discussion):

K(q, t) = ∑
i

Kie
−γit (63)

Here i = 0,1, . . . , im, with non-negative γi and real Ki, γ0 = 0 and K0 > 0. K0 = Ke(q)≡ n0T/S(q)

in the liquid regime (T > Tg) when a full relaxation of the system can be achieved. (The number

of modes in eq. 63 and in the analogous eq. 76 was around 25.) At low temperatures, T . Tg, K0

should be treated as a quasi-static longitudinal modulus at t ∼ ∆tmax, K0 = KT Ls (here ∆tmax is

the total sampling time, see Appendix A). The s-transform of K therefore is

K(q,s) = ∑
i

Ki
s

s+ γi
(64)

The general expressions for S(q, t) and S(q,s) can be then deduced from eqs. 62, 64:

S(q,s) = Y0 +∑
k

Yk

s

s− rk

, S(q, t) = Y0 +∑
k

Yk exp(rkt) (65)

where k = 1,2, . . . , im +2, rk are the roots of the equation smn0/q2 +K(q,s)/s = 0 (hence, rk are

roots of a polynomial of order im + 2) and Y0, Yk are constants. Furthermore, using again eq. 62

and eq. 65 we get:

S(q,s) =Y0 +∑
k

Yk +∑
k

Ykrk

s− rk

, Y0 = S(q)−∑
k

Yk (66)

where

Yk =
n0T

r2
k

[

∑
i

Ki

(rk + γi)
2
− mn0

q2

]−1

(67)

Hence, finally the dynamical structure factor becomes

S(q, t) = S(q)+∑
k

Yk [exp(rkt)−1] (68)

The theoretical predictions based on eq. 68 are compared in Fig. 3 with the simulation data for

S(q, t) obtained directly using its definition, eq. 61 (the amplitudes Ki involved in eq. 67 have been

obtained by minimization of the mean-square deviation between the prescribed K(q, t) and its

multi-exponential approximation, eq. 63). A good agreement between the theory and simulation

data for S(q, t) is obvious, which means that the basic approximation, eq. 60, works well both

above and below Tg.44
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B. Stress correlation functions

The time-space resolved stress correlation tensor is defined as

Cαβα ′β ′(q, t) =
V

T

〈

δσαβ

(

q, t + t ′)
)

δσα ′β ′
(

−q, t ′)
)〉

(69)

where δσαβ

(

q, t
)

= σαβ

(

q, t
)

−
〈

σαβ

(

q, t ′
)〉

(note that
〈

σαβ

〉

= 0 for q 6= 0). In two dimensions

the full correlation tensor Cαβα ′β ′ of a macroscopically isotropic system is completely defined

by four independent components6: C1212 ≡ Cs, C1111 ≡ C‖, C1122 ≡ C⊥, and C2222 ≡ C2, where

axis ‘1’ is chosen to be parallel to q, while axis ‘2’ is perpendicular to it (cf. eq. 103). As

shown elsewhere3,4,24,37,38 the first two correlation functions (Cs and C‖) are directly related to the

generalized moduli considered above:

Cs(q,s) =
ρs2G(q,s)

ρs2 +q2G(q,s)
(70)

C‖(q,s) =
ρs2K(q,s)

ρs2 +q2K(q,s)
(71)

where (as before) ρ = mn0 is the mean mass density, s is the Laplace parameter conjugate to time,

and the functions Cs(q,s), etc. are the s-transforms defined in eq. 26. These equations come from

the FDT (the linear response theory) or from the Zwanzig-Mori projection operator formalism;

they are exact as such in the thermodynamic limit. An analogous equation for C⊥(q,s) comes

from the FDT as well6:

C⊥(q,s) =
ρs2M(q,s)

ρs2 +q2K(q,s)
(72)

Here M(q,s) is the s-transform of the transverse modulus M(q, t) defined by the normal stress

response in the direction perpendicular to the elongation axis

M(q, t) = lim
ε11→0

∆σ22(q, t)

ε11
(73)

where ε11 is the elongation strain applied at t = 0. At q = 0 this modulus is directly related to the

shear and longitudinal moduli:

M(0, t) = K(0, t)−2G(0, t) = KL(t)−2G(t)

due to the global isotropy of the system. This relation stays approximately valid also at low q 6= 0

since a shear response is local (cf. section II C), while the relevant non-local (conserved) fields
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(like energy density and composition) that affect the normal pressure are scalar and hence provide

equal contributions to M(q, t) and K(q, t), so

M(q, t)≃ K(q, t)−2G(q, t), 2π/q ≫ b̄ (74)

This approximation is used in the next section.

The 4th relation involving C2 was derived in Refs. 6, 20, and 21 for monodisperse isothermic

systems (i.e., for the limit κ → ∞). Following the argument of Ref. 6 (based on the concept

of structural stress noise) we show that in the general case (including polydisperse systems) the

relation between C2 and relaxation moduli reads

C2(q,s)≃ K(q,s)− q2M(q,s)2

ρs2 +q2K(q,s)
(75)

At this point it is worth stressing again that in the general case (when the longitudinal stress

relaxation is coupled with ‘conserved’ scalar fields like energy and composition), it is important to

take into account the q-dependence of the moduli. Eq. 75 is approximate: it is valid asymptotically

at low q’s (i.e., in the hydrodynamic regime λ = 2π/q ≫ b̄).

The above four relations for the stress correlation functions are verified below based on our

simulation data for the 2D pLJ system.

C. Comparison with simulation data

The stress correlation functions can be predicted using the relations of the previous section

involving two generalized relaxation moduli, G(q, t) and K(q, t). These relaxation functions are

approximately defined in eqs. 19, 60. The function C‖(q, t) can be obtained based on the known

K(q, t) in exactly the same way as the dynamical structure factor, cf. section III A. Cs(q, t) was

obtained analogously starting with the multi-exponential approximation of G(q, t), cf. eq. 63:

G(q, t)≃ G(t) = ∑
i

Gie
−γit (76)

with real Gi and positive γi, leading eventually to a similar representation of Cs(q, t), but generally

with complex amplitudes and rates, cf. eq. 68. We checked that different approximations of G(t)

(different choices of the relaxation rate set {γi}) lead to virtually identical results for Cs(q, t).

The remaining two relations, eqs. 72, 75, can be used to obtain C⊥(q, t) and C2(q, t) in a sim-

ilar fashion. The theoretical predictions for all the four stress correlation functions are compared
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with our simulation data at different temperatures T and wave-vectors q. The results are shown in

Figs. 4, 5, 6, 7. At T = 0.4, 0.3 (above the glass transition) there is a complete agreement for all cor-

relation data (the black theoretical curve is virtually invisible at t > 6 being completely overlapped

by the red data curve, see Fig. 4(a),(b)). The shear stress correlations Cs show a few decaying

oscillations reflecting transient shear acoustic waves. As for the correlations of normal stresses

(C‖, C⊥, C2), they show much more pronounced oscillations which decay more slowly. These

oscillations correspond to longitudinal sound waves. Their decay time (∼ 100÷ 200) increases

as the temperature is lowered. Turning to the autocorrelation function C2, we note a remarkable

feature emerged at T = 0.3: the oscillations are now significantly asymmetric pointing to a mono-

tonic slowly decaying process. This slow process is even more apparent at T = Tg = 0.26, where it

persists beyond the oscillation relaxation time. The relaxation time of the slow process at T = 0.26

is τslow ∼ 104. By contrast, the total sampling time ∆tmax = 105 is not enough for its relaxation

at T = 0.24. Furthermore, at T = 0.2 (well below the glass transition) any relaxation of C2(q, t) is

hardly visible for t & 500 (cf. Fig. 4(e)). As for all other correlation functions (C‖, C⊥, Cs), they

always relax during a time τatn . 500 which is nearly the same for all the 3 functions at T ≤ Tg.

Apparently τatn is the attenuation time for the relevant sound waves (both shear and longitudinal,

cf. points 4 and 8 of section IV for further discussion), while τslow is proportional to the structural

α-relaxation time τα . Overall, for q = qmin ≡ 2π/L we observe an excellent agreement between

the theory and simulation data for all the stress correlation functions, all temperatures and in the

whole sampling time range. A close inspection of the graphs at low T ’s reveals some disagree-

ment in a time range around t ∼ 200. This feature may seem surprising given the agreement at

both shorter and longer times t. However, there is a simple reason for it: the stress correlation

functions based on the simulation data were smoothed at t & 100 to accelerate their calculation,

and this procedure led to a reduction of the oscillation amplitude as can be observed in Figs. 4

(d),(e) (see red curves there).

The effect of the wave-vector q is demonstrated in Figs. 5, 6, 7. Generally, the oscillation regime

becomes shorter and with higher frequency, as expected, for larger q. Beyond this regime the

stress correlations vanish except for autocorrelations of the second normal stress, C2. At T = 0.3

the positive monotonic long-time tail of C2 becomes more pronounced at higher q (see Fig. 5

(b),(c)). It appears that the theory slightly underestimates the terminal relaxation time of C2 at

the highest q’s (see Fig. 5(c)). Otherwise the agreement between the theory and simulations stays

quite good up to q ∼ 8qmin corresponding to qb̄ ∼ 0.5. Below the glass transition, at T = 0.24, the
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agreement is nearly as good for Cs, C‖, C⊥ (see Fig. 6). However, to get a similar agreement for

the autocorrelation function of transverse stress, C2, for the highest q’s we had to vertically shift

the theoretical curve by a constant ∆: C2 →C2 +∆, with ∆ = 1.9 for nq2 ≡
(

q/qmin

)2
= 32, and

∆ = 2 for nq2 = 64. Such a shift was also applied at T = 0.20 (see Fig. 7): ∆ = 4.7 for nq2 = 8,

∆ = 1.2 for nq2 = 32 and ∆ = 1.13 for nq2 = 64. The origin of this shift is discussed in point 12 of

section IV. Moreover, Fig. 6 indicates that the terminal relaxation time of the simulated C2 slightly

increases at the highest q’s (nq2 = 32, 64) at T = 0.24 (see Fig. 6). To sum up, it would be fair

to say that the agreement between the theory and simulations is very good for the functions Cs,

C‖ at all temperatures and wave-vectors with nq2 ≤ 64 (which corresponds to qb̄ . 0.5). A small

discrepancy (with relative error typically within 5%) can be observed for C2(q, t) in the terminal

relaxation regime for the highest q’s at low T .

IV. DISCUSSION

1. As we pointed out in section II C, while the bulk longitudinal modulus KL(t) depends on

the thermostatting method, the generalized longitudinal modulus K(q, t) is universal, that is inde-

pendent of a coupling of the system with a thermostat. Such universality also holds for the bulk

adiabatic and isothermic moduli, KAL(t) and KT L(t), which can be obtained using the theoretical

approach proposed in Ref. 10. For low q the generalized modulus K(q, t) of a monodisperse system

can be expressed in terms of KAL(t) or KT L(t) and other bulk response functions, cf. eqs. 37, 39.

Noteworthily, the isothermic longitudinal modulus KT L(t) can be defined via the normal pres-

sure (pxx) response to a small compression in the x-direction, ε =−εxx (more precisely, a canonic

affine transformation of coordinates and velocities of all particles defined in eq. 6) at constant

transverse area (of the cross-section perpendicular to the deformation axis) and constant temper-

ature: ∆pxx(t) = KT L(t)ε . The adiabatic longitudinal modulus KAL(t) is defined in a similar way:

KAL(t) = limε→0 ∆pxx(t)/ε , where it is the total energy E that is kept constant after the canonic-

affine uniaxial compression at t = 0. In a similar fashion, cpL(t) (cf. Appendix B) is the heat

capacity at constant longitudinal normal pressure pxx and constant transverse area (no deforma-

tion in the plane perpendicular to the x-axis). cpL(t) is different from the standard isobaric heat

capacity cp(t); it is related to cv(t):

cpL(s) = cv(s)/

[

1− T

n0

pT (s)
2

cv(s)KAL(s)

]

= cv(s)
KAL(s)

KTL(s)
(77)
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The above equation involve s-transforms of the time-dependent functions; it was obtained in anal-

ogy with the argument considered in section II D. Therefore cpL(s)/cv(s) = KAL(s)/KTL(s); this

equation is analogous to the more standard relation cp(s)/cv(s) = KA(s)/KT (s) (cf. eqs. (D23),

(D25) in Ref. 10).

2. The generalized longitudinal modulus K(q, t) for monodisperse systems is defined in

eqs. 37, 39. It is remarkable that these equations can be obtained rather easily by first assum-

ing that all response functions (KAL, pT , cv) are constants and therefore can be expressed via

the thermodynamic derivatives. Then, in the final relation each constant must be replaced by a

function of the Laplace parameter s, i.e., by the modified Laplace transform (cf. eq. 26) of the

corresponding response function. We emphasize that this trick, which was already hinted at10,38,

works precisely with the modified Laplace transforms, and generally not in the time domain.

3. It is noteworthy that the heat conductivity κ (involved in eqs. 37, 39) was obtained by fitting

the simulation data for the autocorrelation function of temperature, CT (q, t), with the theoretical

equation coming from the generalized hydrodynamics (see Appendix B). It turns out that κ is

nearly constant (independent of q) at low q, λ = 2π/q ≫ b̄. We found however that κ somewhat

decreases with q for qb̄ & 0.5. The frequency dependence of the conductivity κ (or it dependence

on the Laplace parameter s) can be totally neglected for low q (λ ≫ b̄) since the microscopic

time ∼ τv relevant for the heat conduction (here τv is the time of particle velocity relaxation by

collisions and vibrations) is much shorter than the characteristic time of thermal diffusion process,

τT = 1/
(

DT q2
)

, cf. eq. 78.

4. The generalized longitudinal modulus K(q, t) shows a shoulder at t ∼ τT . 10÷ 100 cor-

responding to the transition from adiabatic to isothermic response due to heat conduction (cf.

Figs. 1, 2). The characteristic time of this process, τT = 1/
(

DT q2
)

, is defined by the isochoric

thermal diffusivity

DT =
κ

n0cvs
(78)

which is relevant here since K(q, t) is a response to a small strain (ε) kept constant at t > 0 is the

equilibrium specific heat). All the three parameters involved in the above equation (thermal con-

ductivity κ , particle concentration n0 and the heat capacity per particle, cv)45 just weakly depend

on temperature T for the 2D pLJ system we studied. Therefore, the thermal diffusion time τT is

almost independent of T : τT ∼ 50 for q = qmin (cf. Fig. 1). Well above Tg ≈ 0.26 the time τT

for q = qmin is longer than the structural relaxation τα as defined by the shear relaxation modulus
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G(t), however, τα exceeds τT at T . 0.3 (cf. Fig. 10 in Ref. 10).

Remarkably, the attenuation time τL of oscillations in the dynamical structure factor S(q, t)

and the stress-correlation functions (C‖(q, t), C⊥(q, t), C2(q, t)) shows a similar q-dependence as

τT (see eq. 84). However, the attenuation time τL is longer than τT and the ratio τL/τT ∼ 2÷ 5

increases at low T (cf. Figs. 3, 4). A comparison of eqs. 84 and 78 shows that this effect is due

to a decrease of the nondimensional ratio ηL/(κm) on cooling below Tg, where ηL is the relevant

(for attenuation) longitudinal viscosity (cf. the text around eq. 84).

5. The terminal stage of relaxation for the dynamical structure factor S(q, t) of a polydisperse

system is defined in eq. 52; it is related to composition fluctuations (cf. Ref. 36). Eq. 52 is based

on the assumption that the free energy cost of a relevant (‘soft’) composition fluctuation mainly

comes from the ideal-gas entropy, hence the relevant interdiffusion constant is close to the self-

diffusivity Ds of the particles. This assumption is generally valid for systems with sufficiently

weak polydispersity. It was verified for the 2D pLJ system we studied.36

Furthermore, the terminal relaxation of the longitudinal modulus K(q, t), eq. 58, can be derived

from eq. 52 based on the general eq. 62: For t ≫ τL the term ms2/q2 in the rhs of eq. 62 can be

neglected (since the attenuation time of oscillations in K(q, t) is much longer than the oscillation

period), hence we get

K(q,s)≃ n0T

S(q)−S(q,s)
, S(q,s)≃ (S(q)−n0T/KT Ls)

s

s+q2Ds

The above equations lead to eq. 58 upon doing the inverse s-Laplace transform.

Finally, the validity of eq. 52 at t & 100, and the relevance of composition fluctuations is

demonstrated in Fig. 10, where we plot the dynamical structure factor, S(q, t), based on our simu-

lation data, its long-time approximation of eq. 52 and the dynamical composition structure factor,

Sψ(q, t), again directly obtained by simulations. Here Sψ(q, t) is defined analogously to eq. 61

but with the prefactor κaκa′ before the exponential, where κa = b2
a/b2 − 1 is positive for large

and negative for small particles. The function Sψ(q, t) is thus related to the correlation function

of the composition order parameter ψ(r, t) = ∑a κaδ (r− ra) which equals to zero on the average.

Fig. 10 clearly shows that the long-time relaxation of S(q, t) is an interdiffusion process following

the decay of composition fluctuations quantified by Sψ(q, t).

6. To facilitate direct and inverse Laplace transformations of the stress-correlation functions (cf.

eqs. 70, 71) involving the generalized moduli, G(q, t), K(q, t), we employed multi-exponential ap-

proximations of their time-dependencies (see eqs. 76, 63). This approach formally corresponds
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to the generalized Maxwell model31 for the shear relaxation modulus G(t). Noteworthily, the

Maxwell model implicitly assumes that inertial effects are negligible for the structural dynamics.

In this case the generalized Brownian dynamics (involving stochastic moves in the configurational

space) are applicable, and the detailed balance dictates that all amplitudes in eq. 76 must be pos-

itive, so the relaxation function G(q, t) must monotonically decrease in time. Such relaxation

behavior is exhibited, in particular, with the MC dynamics. A similar behavior is expected for

K(q, t). The molecular dynamics (MD) employed in the present study does account for inertial

effects (which are normally important at short t), hence negative amplitudes (Gi or Ki) must be

allowed as well. Note that in this general case the relaxation moduli can still be uniformly approx-

imated with multi-exponentials to an arbitrarily high precision as follows from the Weierstrass-

Bernstein approximation theorem.

7. Using eqs. 70, 71, 72, 74, 75 one can easily get the stress correlations at t = 0 (at no time-

shift):

Cs(q,0) = GA(q), C‖(q,0) = KAL(q) (79)

C⊥(q,0)≃ KAL(q)−2GA(q), C2(q,0)≃ KAL(q) (80)

where GA(q)=G(q,0) and KAL(q)=K(q,0) are q-dependent generalizations of affine (bulk) shear

modulus µA and longitudinal modulus ηAL ≡ ηA +(2−2/d)µA, and µA = G(0), ηAL = KAL(0).
46

The moduli GA(q) and KAL(q) define the immediate stress response to the generalized shear (γ > 0,

ε = 0) and longitudinal (γ = 0, ε < 0) deformations, eqs. 12, 13. These deformations are not affine

for q 6= 0, but they are always adiabatic. Note that eqs. 79 are exact, while eqs. 80 are expected

to be approximately valid for 2π/q ≫ b̄. Their precision can be assessed using simulation data

for the stress correlation functions at t = 0. Note that the adiabatic moduli KAL(q) = K(q,0) and

KAL(t) = K(q → 0, t) are different functions, but KAL(q → 0) = KAL(t → 0).

8. Turning to the stress correlation function at t > 0, we observe that initial shear (σ21) and

longitudinal (σ11) stresses generate body forces f on the system elements:

f2 = iqσ12eiqx, f1 = iqσ11eiqx (81)

(here we assume for simplicity that the wave-vector q and therefore axis 1 are parallel to the x-

axis). These forces in turn generate shear and longitudinal sound waves. Their frequencies ωs, ωL

are defined by the relevant shear, cs, and longitudinal, cL, sound velocities:

ωs = qcs, ωL = qcL; cs ≃
√

G′(q,ωs)/ρ , cL ≃
√

K′(q,ωL)/ρ (82)
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where G′(q,ω) is the storage shear modulus equal to the real part of G(q,s = iω):

G(q,s = iω) = G′(q,ω)+ iG′′(q,ω) (83)

The longitudinal storage modulus K′(q,ω) is related to K(q,s) (the s-transform of K(q, t)) in a

similar way. The shear oscillations with frequency ωs are reflected in the time-dependence of

Cs(q, t), while the longitudinal frequency ωL is relevant for C‖(q, t), but also for the dynamical

structure factor S(q, t) (cf. Fig. 3) and auto- and cross-correlations of normal stresses, C2(q, t),

C⊥(q, t) (cf. Fig. 4). With the data for the pLJ system at hand (cf. Ref. 10 and Fig. 1) we estimate

cs ∼ 2÷ 4, cL ∼ 8÷ 9 using eqs. 82 in the most interesting temperature regime T = 0.3÷ 0.2

(around the glass transition at Tg ≈ 0.26). These estimates correspond to the oscillation periods

for q = qmin, 2π
ωs

∼ 40÷25, 2π
ωL

∼ 12, in agreement with the data shown in Fig. 4. The attenuation

times of these oscillations (τs for Cs(q, t), and τL for other functions) are defined by effective

viscosities ηs, ηL:

1/τs ≃
ηs

2ρ
q2, 1/τL ≃ ηL

2ρ
q2 (84)

where the relevant viscosities are related to the dynamical loss moduli, G′′(q,ω) and K′′(q,ω)50

ηs = G′′(q,ωs)/ωs, ηL = K′′(q,ωL)/ωL (85)

Note that the viscosities defined in the above equation are dynamical in nature; they are gener-

ally different from the classical viscosities obtained in the low-frequency limit. The correlation

functions presented in Fig. 4 show comparable sound attenuation times, τs ∼ τL, in the regime

0.2 ≤ T ≤ 0.3; the times increase from τL ∼ 100 to τL ∼ 300 on cooling. This means that the rele-

vant effective viscosities are also comparable and decrease as the system is cooled below the glass

transition. The dynamic viscosities ηs, ηL therefore show an opposite temperature dependence as

compared to the steady shear viscosity which is proportional to the α-relaxation time.

Interestingly, the low-frequency (s→ 0) limit of the longitudinal compression modulus K(q,s),

obtained using eqs. 43, 44, is:

Khydro-limit(q,s)≃ KT Ls+ s

[

ζ +2

(

1− 1

d

)

η +
KT Ls(γ −1)

s+DT q2

]

, (86)

where KT Ls (= ηA−TCp(0)/n0) is the isothermal compression modulus, γ = cps/cvs with cps and

cvs being respectively the equilibrium specific heat at constant pressure and at constant volume,

DT = κ/(n0cvs), the thermal diffusivity, and ζ and η the bulk and shear viscosity, respectively.
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The viscosities are defined by

ζ =
T

n0

∫ ∞

0
Cp(t)dt, η =

∫ ∞

0
G(t)dt (87)

Noteworthily, on the one hand Eq. 86 is consistent with the results obtained for d = 3 and κ →∞ in

Ref. 27 (see text below eq. (12) there). On the other hand, for finite κ the term in square brackets

of Eq. 86 agrees with Eq. (3.104b) in Götze’s book37.

9. It is obvious from Figs. 4 - 7 that all stress correlation functions except C2(q, t) rapidly

vanish beyond the attenuation time τs or τL. By contrast, C2(q, t) shows a long-time monotonically

decaying tail. What is the origin of this difference? Firstly, we observe that the 3 correlation

functions, Cs, C‖, C⊥ involve shear or longitudinal stresses, σ12 = σ21 and σ11, which generate

a body force (cf. eq. 81). Therefore their long-time presence (for t ≫ τs, τL) would contradict

mechanical equilibrium of the system, hence these stresses must rapidly vanish also in the glassy

regime, T < Tg. As for the function C2(q, t), it involves only the transverse normal stress σ22

which does not generate any fluid motion (the body force associated with this component of stress

field is identically zero since q is normal to axis 2), so σ22(q, t) may stay unchanged for a long

time. Generally, the long-time tail of σ22(q, t) is defined by the structural processes reflected also

in the relaxation moduli G(q, t)≃ G(t) and K(q, t); it may persist virtually forever in amorphous

systems at low T . We therefore arrive at the concept of a quenched (or frozen) stress, which is

equal to the mean stress σ̄αβ (q) (=time-average of σαβ (q, t)): The stress tensor in a glassy state

(i.e., a metabasin of the free energy landscape) can be therefore written as

δσαβ (q, t) = σ̃αβ (q, t)+ σ̄αβ (q) (88)

where σ̃αβ (q, t) is the fluctuation part whose time-average is zero. Eq. 88 obviously implies that

lim
t→∞

Cαβα ′β ′(q, t) =
V

T

〈

σ̄αβ (q)σ̄α ′β ′(−q)
〉

(89)

From the above discussion it is clear that the only non-zero component of σ̄αβ (q) is σ̄22(q) (recall

that we consider 2D systems in the present paper). Therefore, C2 tends to a finite limit at long

time,

C2(q, t)→
〈

V

T

∣

∣σ̄22(q)
∣

∣

2
〉

≡ θ(q), t → ∞ (90)

in the amorphous solid regime well below Tg (where the relaxation time τα can be considered

as infinite). The 〈...〉 brackets here imply also averaging over different orientations of q. Such

behaviour can be indeed observed in Figs. 4 - 7.
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10. As discussed above the stress correlation functions C‖(q, t), C⊥(q, t),Cs(q, t) rapidly vanish

for t & τL. The behavior of the transverse normal stress autocorrelation function C2(q, t) is different

at T . Tg: it shows a slow monotonic decay at t & 2τL (the time τL is defined in eq. 84). This

monotonic regime can be analyzed using eq. 75 leading to the following approximate result:

C2(q, t)≈ 4G(t)

[

1− G(t)

K(q, t)

]

, t & 2τL (91)

We verified that the above equation does a fair job at t & 2τL and qb̄ . 0.5 and agrees with the

results of the full numerical analysis based on eq. 75 (cf. section III C) within an accuracy of ∼ 1%.

Moreover, we found that K(q, t) in eq. 91 can be replaced with just KT L(t) since the terminal decay

of K(q, t) (by the interdiffusion process) occurs at times longer than the relaxation time τα of G(t)

for the studied range of wavevector q. Hence (with accuracy of ∼ 5%)

C2(q, t)≈ 4G(t)

[

1− G(t)

KT L(t)

]

, t & 2τL (92)

This equation shows that the relaxation time of C2(q, t) is comparable with τα .

11. The FDT relations, eqs. 70, 71, 72, and the relation 75, are based on the linear response

theory, and are valid for equilibrium systems. The latter condition is not a problem in the liquid

state, but amorphous systems (supercooled liquids below Tg) are normally out of the thermody-

namic equilibrium. Are the quoted equations useful in this case? The answer is yes. The reason

is that while amorphous systems are distributed over the glassy states in a non-equilibrium (and

often unknown) way, they can still be well-equilibrated within each metabasin (glassy state).9 In

this case the dynamical (FDT-like) relations stay valid provided that a (generally unknown) time-

independent constant is added in the rhs5,9 (this constant term accounts for an unknown relation

between the partition function in a glassy state and in its deformed counterpart). Eq. 89 ensures

that the correlation functions Cs, C‖, C⊥ must tend to 0 at long times, so the additional constant

must vanish for the corresponding FDT eqs. 70, 71, 72, which therefore stay unchanged also below

Tg (note that the t → ∞ limit of the theoretical rhs in any of these equations corresponds to s → 0,

so the rhs must tend to 0 in this limit). It is only eq. 75 that should be amended as

C2(q,s)≃ K(q,s)− q2M(q,s)2

ρs2 +q2K(q,s)
+∆(q) (93)

to be generally valid also in the glassy regime.

Remarkably, the need for the ∆-correction for C2 below Tg was demonstrated by the data shown

in Figs. 6, 7 (with a vertical shift of the theoretical C2 in some cases). It is tempting therefore
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to attribute this correction simply to a non-equilibrium character of our systems below Tg. We,

however, do not support this explanation because we are confident that our swap-equilibrated

systems must be close to the global thermodynamic equilibrium in a wide T -range including T ≥
0.2 as argued in Ref. 10. If so, what could possibly be the reason for the ∆-shift effect? We see

two possibilities: (i) it could be due to a systematic discrepancy between theory and simulations at

higher q’s (recall that the theory is valid up to a relative correction of O(qb̄)2), (ii) or it is simply

due to stochastic variations of θ(q) (cf. eq. 90) within the ensemble. Below we show that the

lion’s share of ∆ seems to be due to the second effect. To find the shift ∆(q) we apply (the inverse

s-transform of) eq. 93 in the most relevant long-time regime, t > 2τL:

∆(q) = θ(q)−θth(q) (94)

where θ(q) is the long-time plateau of C2(q, t) corresponding to the low−s limit of C2(q,s) (cf.

the lhs of eq. 93), and θth(q) is the theoretical prediction for θ(q) corresponding to the rhs of

eq. 75 at low s. More precisely,

θ(q)≡
〈

V

T

∣

∣σ̄22(q)
∣

∣

2

〉

=
2

(∆tmax)
2

∫ ∆tmax

0
C2(q, t)(∆tmax− t)dt (95)

(cf. eq. 90) where 〈...〉 brackets here mean averaging over many (m) independent systems and

Nq independent orientations of q (with the same
∣

∣q
∣

∣). Similar relations involving the volume- and

time-averaged shear stress have been employed in Refs. 5, 9, and 12. The mean stress σ̄ is defined

as51

σ̄22(q) =
1

∆tmax

∫ ∆tmax

0
σ22(q, t)dt (96)

The working definition of θth(q) is given by the rhs of eq. 95 with the only change: the simulation-

based C2(q, t) there should be replaced with the theoretical C2th(q, t) defined as the inverse s-

transform of the rhs of eq. 75. Our analysis shows (see the previous point) that for t > 2τL the

function C
2th(q, t) can be approximated with eq. 92, so we get in analogy with eq. 95:56

θth(q)≃
2

(∆tmax)
2

∫ ∆tmax

0
4G(t)

[

1− G(t)

KT L(t)

]

(∆tmax− t)dt (97)

Thus, the theoretical θth(q) is actually predicted to be nearly independent of q for small q, qb̄ ≪ 1.

Obviously θth is closely related to µs f (cf. eq. 18 in Ref. 10), and, in any case, θth is independent

of any quenched stress, either at q = 0 or at q > 0 (recall that the latter property is inherent in both

G(t) and KT L(t) as defined in eqs. (2) and (16) of Ref. 10). It is therefore likely that the statistical
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fluctuations of θ(q) and θth within the ensemble are independent. As a result we can write (cf.

eq. 94):

var(∆(q))≃ var(θ(q))+var(θth) (98)

for any chosen q and T . Here var(θ(q)) is the variance of θ(q) averaged over the ensemble of m

independent systems and Nq orientations of q. Assuming Gaussian statistics of σ̄22(q) (cf. ref. 9),

it is easy to show that the relative standard deviation of
∣

∣σ̄22(q)
∣

∣

2
is just 1, which means that the

relative standard deviation of θ(q) (which is averaged over mNq independent values) is

δθ(q)/θ(q)≈ 1/
√

mNq (99)

where δθ(q) =
√

var(θ(q)) (here we also used the natural property that σ̄22(q) for different wave-

vectors q are not correlated). The rhs of the above equation for m = 100 and Nq = 2 (valid for

0.2 ≤ T ≤ 0.3 and all q’s we considered) is 1/
√

mNq ≈ 0.071. Furthermore, taking into account

that KT L(t) is nearly constant at long t and low temperatures, T ≤ 0.24, with KT L/G & 5, and

using eq. 97 we estimate the relative standard deviation of θth as

δθth/θth ∼ 1√
m

δ µs f

µs f

(100)

where the shear modulus µs f and its standard deviation δ µs f have been calculated at different

temperatures in ref. 10. It is more convenient to consider the ratio X(q)≡∆(q)/θth = θ(q)/θth−1

as a variable of interest. Taking into account that both δθ(q)/θ(q) and δθth/θth are small and

that θ(q)≈ θth, we get (based on eqs. 98)

δ (∆(q)/θth)≈
[

(δθ(q)/θ(q))2 +
(

δθth/θth

)2
]1/2

(101)

Finally, we take into account a systematic difference between θ(q) and θth leading to a non-zero

Xsys(q) = 〈X〉. Thus we get

〈

X2
〉

≈
(

Xsys(q)
)2

+
(

δ (∆(q)/θth)
)2

(102)

We then calculated the average
〈

X2
〉

based on the simulation results for q = qmin, T = 0.2, 0.21,

0.22, 0.23, 024: this way we get the root-mean-square (RMS) of X , RMS
(

∆(q)/θth

)

≈ 0.092.

On the other hand, the similar RMS average of δ (∆(q)/θth), calculated using eqs. 99, 100, 101 is

δ (∆(q)/θth)≈ 0.08 which is close to δθ(q)/θ(q)≈ 1/
√

mNq. It means that the systematic term

Xsys is relatively small, and that the observed ∆ can be largely explained by the inevitable statistical
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error due to a random distribution of σ̄22(q). Considering, in addition, all (T,q) combinations with

nq2 =
(

q/qmin

)2
= 8, 32, 64 and T = 0.24, 0.2 (cf. Figs. 6, 7) we get RMS

(

∆/θth

)

≈ 0.086,

that is a smaller deviation which is closer to the lower bound of RMS(X), 1/
√

mNq ≈ 0.071 (the

fact that RMS(X)≥ 1/
√

mNq follows from eqs. 99, 101, 102).57

These results clearly show that the systematic deviation Xsys is not resolved here (it is masked

by the stochastic part of X = ∆/θth): were Xsys mattered, its effect would increase with q, while

we detected an opposite trend. Therefore, the vertical shift ∆ seems to be mostly a stochastic effect

due a limited size of the ensemble.

12. As mentioned in section III B (see also Refs. 6 and 21) the four stress correlation func-

tions analyzed in the present paper define the full time-space resolved tensorial stress correlation

function, Cαβα ′β ′(q, t), eq. 69, for 2D systems (cf. eq. (24) in Ref. 6):

Cαβα ′β ′(q, t) = (C2(q, t)−2Cs(q, t))δαβ δα ′β ′ +(C⊥(q, t)−C2(q, t)+2Cs(q, t))×

(

qαqβ δα ′β ′ +qα ′qβ ′δαβ

)

/q2 +Cs(q, t)
(

δαα ′δββ ′ +δαβ ′δβα ′
)

+

(

C‖(q, t)+C2(q, t)−2C⊥(q, t)−4Cs(q, t)
)

qαqβ qα ′qβ ′/q4 (103)

In particular, the autocorrelation function of the shear stress (in the fixed coordinate frame, x,y)

is6,21

Cxyxy(q, t) =Cs(q, t)+
(

C‖(q, t)+C2(q, t)−2C⊥(q, t)−4Cs(q, t)
)

q2
xq2

y/q4 (104)

The above eqs. 103 and 104 are exactly valid provided that the system is perfectly isotropic. We

have already established10 that bulk properties of our pLJ systems are isotropic to a high precision

at T > Tf ≈ 0.16 after statistical averaging over a large ensemble. A similar statement concerning

the wave-vector q (or distance r) correlation functions is less trivial because here the finite box

size (FBS) and the periodic boundary conditions (PBC) can affect correlation functions at large r

or low q. We defer to a separate publication a discussion of these and related effects for the stress

correlation functions resolved in real and q-space. Here, instead, we limit the discussion to the

results for an extended ensemble including (in addition to the original independent configurations)

also the ‘rotated configurations’ obtained by turning the simulation box as a whole over an angle

φ with uniform distribution of φ from 0 to 360◦. Such an extended ensemble is perfectly isotropic

by construction (that is, all directions are statistically equivalent there), so eqs. 103 and 104 are

mathematically exact for it. Obviously, if some anisotropies (like preferential orientation of vectors

connecting neighboring particles along the box sides) were present in the original configurations,
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they get wiped out by the angular averaging implied by the extended sampling. Note, however,

that the functions Cs(q, t), C2(q, t), etc. are obtained here by averaging the corresponding stress

correlators over all possible orientations of the wave-vector q (for a given
∣

∣q
∣

∣), hence they remain

the same for the extended ensemble.

At sufficiently long time, t & 2τL, the only surviving correlation is C2(q, t). At T < Tg

the function C2(q, t) shows a long-time slowly decaying tail which is nearly independent of q

(cp. Figs. 4(d), 6(a), (b) and (c)). Therefore our direct simulation data point to a non-analytical

q-dependence of the shear stress correlation function at long times (and small q) according to

Cxyxy(q, t) ∝ q2
xq2

y/q4, which indicates that correlations of shear stress in real space are long-range

(see below). Moreover, using the theoretical eqs. 75, 92 we can predict the time-dependence of

the shear-stress correlations (for t & 2τL) based on the bulk relaxation moduli:

Cxyxy(q, t)≈ 4G(t)

[

1− G(t)

KT L(t)

]

q2
xq2

y/q4 (105)

Doing its inverse Fourier transform to real space (cf. Refs. 6, 20, and 21) we get for r ≪ L (the

latter condition is needed to avoid the FBS effects):

Cxyxy(r, t)≈− 1

π

1

r2
cos(4θ)G(t)

[

1− G(t)

KT L(t)

]

, t ≫ τL ∼ 2ρ

ηL

r2 (106)

where θ is the polar angle between the distance vector r and the x-axis. It means that for any

t, τv ≪ t . τα , there is a wide range of distances where the 1/r2 power law, eq. 106, is valid

(recall that τv is the microscopic time for particle velocity relaxation by collisions and vibrations).

This result is in harmony with the theories6,20,21 predicting the 1/rd power-law stress-correlation

tail for isotropic glass-forming liquids. Note that strictly speaking eq. 106 is justified here for an

extended ensemble described above.

13. In the present study we neglected a q-dependence of the generalized shear relaxation

modulus G(q, t), cf. eq. 19. By contrast, some theoretical and simulation studies25,40–43 report

a rather significant q-dependence of G(q, t). There are two main reasons for this effect: (i) It is

present in polymer systems25,40,43 where it is simply due to a large size of macromolecular coil: the

size b̄ is then b̄ = Rcoil &
√

Nmlm, where Nm ≫ 1 is the polymerization degree and lm is monomer

size. (ii) It was also detected in glass-forming liquids near the glass transition, Tg.41–43 More

precisely, they considered a q-dependence of the generalized shear viscosity η(q) which is related

to G(q, t): η(q) =
∫ ∞

0 G(q, t)dt (cf. eq. 87). Quite naturally they found41–43 that η(q) becomes

significantly lower than η(0) (say, by a factor of 2) at sufficiently large q ∼ 1/ξη , where ξη is the
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viscosity-based correlation length. Still, at lower q’s, qξη ≪ 1, the q-dependence of η(q) can be

neglected. The simulation studies41,42 deal with a 3D binary mixture of soft spheres and show that

the length ξη ∼ bm/3 (bm is molecular size) is low well above Tg, but it increases to ξη ∼ 4bm

on cooling below Tg. Simulations of liquid butane43 reveal a similar trend with ξη/bm ∼ 3÷ 5.

We emphasize that the systems studied in refs. 41–43 are quite different from our system which

is both polydisperse and two-dimensional. To assess the q-dependence of G(q, t) for our system

we chose to consider the correlation function C2(q, t) well below the glass transition, at the lowest

T = 0.2 (where the q-effect is expected to be stronger). In this regime C2(q, t) shows a long-time

plateau, C2(q, t) ≈ θ(q) (cf. eq. 90) which, by virtue of eq. 75, is related to the plateau levels,

Gs(q) and Ks(q) of G(q, t) and K(q, t), respectively: θ(q)≈ 4Gs(q) [1−Gs(q)/Ks(q)] (cf. eq. 91).

Therefore, the q-dependence of θ is expected to provide an idea on the behavior of the long-time

shear relaxation modulus. Somewhat surprisingly, our simulation data point to θ(q) ≈ 45 which

is nearly independent of q in a rather wide q-range, for qb̄ < 2.5 (recall that the data considered

in the present paper correspond to a more narrow range, qb̄ < 0.5). Furthermore, we found that

G(q, t) at t = 0 also stays virtually independent of q for qb̄ < 0.5 (this conclusion is based on

the stress-correlation data and the exact relation, G(q, t) = Cs(q, t) at t = 0, which comes from

eq. 70). Thus, for the 2D pLJ system considered here we do not observe any indication of a q-

dependence of G(q, t) in the studied q-range, qb̄ . 0.5. This statement is also backed by a very

good agreement between the shear stress correlation function Cs(q, t) obtained by simulations and

its theoretical prediction based on the exact eq. 70 and involving the approximation G(q, t)≈ G(t)

(cf. Figs. 4 - 7).

V. SUMMARY AND CONCLUSIONS

1. In the present paper we analyzed spacio-temporal correlations of mechanical stress and

other variables both theoretically and by MD simulations of a two-dimensional polydisperse sys-

tem of LJ particles (2D pLJ) described in Appendix A. The theory is based on the FDT relations,

eqs. 62, 70, 71, 72, 75, between the wave-vector (q) dependent correlation functions and the gen-

eralized relaxation moduli, G(q, t) and K(q, t), for shear and longitudinal stress, respectively. We

argue that at low q (when the wave-length λ = 2π/q strongly exceeds the particle size b̄) the mod-

ulus G(q, t) can be approximated with the classical bulk shear relaxation modulus G(t), that is, a

q-dependence of G(q, t) can be neglected at low q (cf. section II C). By contrast, we show that a
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similar approximation for the longitudinal modulus, K(q, t) (which was adopted before6,20,21) is

not valid in practice since the bulk modulus K(0, t)=KL(t) is not universal: it depends on the ther-

mostat employed in simulations10, hence K(q, t) may be discontinuous at q = 0 (cf. section II C).

To overcome this issue a theoretical approach was developed (cf. section II D) which allows to ob-

tain K(q, t) in terms of the bulk modulus KL(t), bulk correlation functions of energy and pressure,

the particle MSD, h0(t), the static structure factor S(q) and the heat conductivity κ . Our theory is

akin to the generalized hydrodynamic approach38,47.

2. We elucidate that the generalized longitudinal modulus K(q, t) at q → 0 cannot be uni-

formly approximated by a function of time only, and so, in particular, limq→0 limt→∞ K(q, t) <

limt→∞ limq→0 K(q, t). Moreover, in polydisperse systems the first limit can be much smaller than

the second, and none of these limits is related to the isothermic bulk compressibility of the system.

The time dependence of K(q, t) for a low q above Tg is illustrated in Fig. 8. It involves a strong

decrease of K(q, t) at short times, t . τv (with τv, the vibration/collision time), due to an initial

relaxation of the system structure and particle velocities, a further structural relaxation (at nearly

constant energy density) followed by an adiabatic shoulder (quasi-plateau), then a further decrease

of K(q, t) due to heat transport with characteristic time τT = n0cvs/
(

κq2
)

defined by the thermal

conductivity κ and wavevector q (the thermal diffusion stage). The thermal process is followed by

the isothermic shoulder with K(q, t)≈KT L(t)≈KT Ls, and the terminal relaxation by particle inter-

diffusion leading a significant decrease of K(q, t) from the bulk longitudinal isothermic modulus

KT L to the equilibrium level K(q,∞) = n0T/S(q) defined by the static structure factor S(q). The

characteristic time of the latter process is τinter = 1/
(

Dinterq
2
)

, where the interdiffusion constant

Dinter is close to the particle self-diffusivity Ds (for the 2D pLJ system we studied, see Appendix

A).

3. The terminal interdiffusion stage for K(q, t) is clearly reflected in the dynamical structure

factor, S(q, t), for T = 0.3 shown in Fig. 3. This figure also demonstrates a very good agreement

between the direct simulation data for S(q, t) and the theoretical results based on the predicted

K(q, t) and the general relation, eq. 62. The proposed theoretical approach to calculate K(q, t) is

thus validated numerically. It is noteworthy that well below Tg the structure factor S(q, t) exhibits

a long-time plateau, S(q, t)≈ S(q)−n0T/KT Ls for t & 2τL (see Fig. 9), which corresponds to the

isothermic quasi-plateau of the longitudinal modulus, K(q, t) ≈ KT Ls (this plateau occurs before

the interdiffusion stage which is not visible since the sampling time ∆tmax ≪ τinter). The long-

time plateau of S(q, t) is related to the polydispersity of the studied system, as discussed in Ref. 36.
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4. The obtained theoretical longitudinal modulus K(q, t) was used to predict all components of

the stress correlation tensor, Cαβα ′β ′(q, t), based on the general relations, eqs. 70, 71, 72, 75. The

results are compared with our simulation data on the 2D pLJ system in Figs. 4, 5, 6, 7. Most of the

predicted results are in excellent agreement with the simulation data for q/qmin ≤ 8, i.e. qb̄ . 0.5

(see Figs. 4, 5, 6). The agreement gets slightly worse well below the glass transition temperature

Tg for the highest q’s we studied.

5. The theoretical approach to calculate the time-space resolved stress correlations6,20,21 was

developed for the monodisperse isothermal systems (with infinite thermal conductivity κ). In the

present paper the theory is generalized to the case of a polydisperse system with finite κ . The

generalized theory we developed is asymptotically exact for q → 0; at finite q it works within a

relative error of O(qb̄)2.

6. As demonstrated in Figs. 4, 5, 6, 7, the basic stress-correlation functions, Cs, C‖, C⊥, vanish

beyond the sound attenuation time τL. By contrast, the autocorrelation function of the transverse

normal stress, C2(q, t), shows a shoulder at t > τL near and below Tg (the shoulder transforms to

a plateau well below Tg). As discussed in section IV this feature leads to long-range dynamical

correlations of the local shear stress σxy = σxy(r) according to the power law, 1/r2 for 2D sys-

tems (where r = |r1 − r2| is the distance between two points) in agreement with theoretical6,20,21

and simulation22,23 results. Note that this power law is justified in the present paper for an ex-

tended ensemble described in point 12 of section IV. The long-range correlations characterize the

(transiently) quenched stress field in a glassy system.

7. The plateau of C2(q, t) persists until t ∼ τα . Interestingly, our stress correlation data indicate

that the terminal relaxation of C2(q, t) gets slower at higher q’s, qb̄ & 0.5, with relaxation time

longer than τα based on G(t). This effect becomes stronger as q increases up to qb̄ ∼ 2.

8. Below the glass transition, T < Tg, we detected a small discrepancy between the predicted

C2(q, t) (cf. the rhs of eq. 75) and the direct simulation data on C2. This discrepancy, ∆(q), takes

positive or negative values depending on T and q. However, as we demonstrated numerically (cf.

point 11 of the Discussion), its relative root-mean-square value (denoted as RMS(∆(q)/θth)) is

largely accounted for by the statistics of the time-averaged quenched stress whose relative disper-

sion is defined by the size of the statistical ensemble. Therefore, the vertical shift ∆ is mostly a

stochastic effect due a limited size of the ensemble, which is constant for the considered tempera-

ture range. Other contributions to the RMS(∆(q)/θth), including that due to the systematic error

of the predicted C2(q, t), appear to be small. We anticipate, however, that the latter (systematic)
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contribution may become significant for large wave-vectors (q/qmin ≫ 8).
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Appendix A: 2D pLJ system and simulation algorithm

We study a 2-dimensional (2D) system of polydisperse Lennard-Jones (pLJ) particles with the

same mass m.10,11,17,36,48 The particle diameters are uniformly distributed around the mean diam-

eter b̄, between 0.8b̄ and 1.2b̄. The particle size polydispersity index is b2/b̄2 −1 ≈ 0.013. Each

pair of particles (l = (a,a′)) interacts with the energy uLJ(s = r/bl), where the interaction range

bl is defined by the Lorentz rule, bl = (ba +ba′)/2, and the LJ potential uLJ(s) = 4ε
(

s−12 − s−6
)

was truncated at scut = 27/6 and shifted to avoid discontinuity at s = scut . All quantities are given

in LJ units: m, b̄, ε and the Boltzmann constant kB are set to 1.

We used the standard molecular dynamics (MD) simulations (velocity-Verlet algorithm with

MD time-step tMD = 0.005) with periodic boundary conditions as implemented in the LAMMPS

code.49 The system of N = 104 particles was first tempered well in the liquid regime, at constant

temperature T0 = 1 and pressure p0 = 2 using the Nosé-Hoover thermostat and barostat to pre-

pare m = 100 well-equilibrated independent configurations which were then continuously cooled

down with rate dT/dt = −10−5 at p0 = 2. These slow cooling runs allowed us to estimate the

dilatometric glass-transition temperature, Tg ≈ 0.26, in agreement with the previous studies17.

To better equilibrate the quenched configurations at T ≤ 0.5 we used a hybrid approach in-

volving Monte-Carlo (MC) dynamics. The MC part involves a combination of local particle dis-

placements and non-local particle swaps.52 The system volume fluctuations (controlled by an MC

barostat53 to impose p0 = 2) were allowed as well. This way an ensemble of m independent con-

figurations (m = 100 for 0.2 ≤ T ≤ 0.3, m = 50 for T > 0.3, m = 20 for T < 0.2) was tempered

over 107 MC steps at constant pressure. Then the instantaneous volume was fixed and the system
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equilibrated further at constant volume over 107 MC steps (with local and swap moves), and over

the same time with local moves only. This MC approach was successful in equilibrating the pLJ

system below Tg, down to Tf = 0.16 below which particle demixing occurs.10 Each configuration

was then tempered for 2 · 105 LJ time units with MD Nosé-Hoover (NH) dynamics at constant

pressure p0 = 2 to equilibrate the velocities, and then over the same time at constant volume.

Finally, the production runs (served to obtain all correlation functions) were performed in the

NVT ensemble during the total sampling time ∆tmax = 105. The time space between the data

entries was δ t = 0.2 for q-dependent variables, and δ t = 0.05 for all other variables. The ther-

mal mass parameter Q of the NH thermostat was Q = 10T/3 corresponding to a high Nosé

frequency ωQ = (2T Nd/Q)1/2 ∼ 110 and a short thermostat relaxation time (the Nosé time)

τdamp =
√

2/ωQ ≪ δ t. The linear dimension of the simulation box is L ∼ 100, the system volume

V = L2, and the mean concentration n0 = N/V ∼ 1 in all the cases.

Appendix B: Temperature autocorrelation function and the heat conduction coefficient

The q−dependent temperature autocorrelation function can be defined as

CT (q, t) =
N

T 2

〈

δTq(t + t ′)δT−q(t
′)
〉

(B1)

where 〈...〉 imply the ensemble and time-shift averaging (over t ′), and

δTq(t) = Tq(t)−
〈

Tq(t)
〉

, T q(t) =
1

N
∑
a

δTa(t)exp
(

−iq · ra(t)
)

(B2)

is a Fourier component of the temperature fluctuation field (the index a runs over all particles).

Here

δTa(t) = mava(t)
2/d −T0 (B3)

is the excess kinetic temperature of particle a, T0 is the mean temperature of the system (which is

prescribed by the thermostat), and d is the space dimension. Note that 〈δTa(t)〉= 0 and
〈

Tq(t)
〉

=

0, hence δTq(t) = Tq(t) for q 6= 0. Note also a direct way to calculate CT (q, t) based on simulation

data:

CT (q, t) =
1

NT 2
0

∑
a,a′

〈

δTa(t + t ′)δTa′(t
′)exp

(

−iq ·
(

ra(t + t ′)− ra′(t
′)
))〉

(B4)

which is analogous to the standard definition of the dynamical structure factor S(q, t) (see eq. 61).
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By virtue of the FDT (i.e., the linear response theory3) the correlation function CT is related

to the temperature response ∆Tq(t) = T q(t)− T q(0
−) induced by a heat wave generated by the

following perturbation of particle velocities applied at t = 0 (cf. eq. 4):

v → v
(

1+ exp
(

iq · r
)

εv/d
)

(B5)

Namely,

∆Tq(t)/εv = TCT (q, t), t > 0 (B6)

where T = T0 and εv → 0. Using the above equation one immediately gets

CT (q,0
+) = 2/d (B7)

The time dependence of CT can be obtained for low q’s using the generalized hydrodynamic ap-

proach (cf. section II D). The longitudinal pressure increment we get (cf. eq. 31):

∆pxx(s) = KAL(s)ε(s)+χ(s)h(s) (B8)

where εxx = −ε is the longitudinal strain eventually generated by the initial heat wave, and h =

hi +ht is the heat per particle including the initial heat hi = εvT injected in the system at t = 0 (as

follows from eq. B5) and the heat ht transferred into a cell by thermal conductivity. Note that here,

as before, we assume that the wave-vector q is oriented along the x-axis, and the phase factor eiqx

is omitted. The time-dependence of ht is given by eq. 32, where the temperature increment ∆T is

(cf. eq. 36):

∆T (s) =
T

n0
χ(s)ε(s)+

h(s)

cv(s)
(B9)

Another relation defining the strain ε = ε(t) in terms of pressure pxx is given by two equations

corresponding to mass and momentum conservation:

∂n

∂ t
=−∇ · j, mn0

∂vx

∂ t
=−∂ pxx

∂x
=−iq∆pxx (B10)

where n = n(x, t) = n0(1+ε(t)eiqx) and j = nv ≃ n0v. Using the above equations we find ∆T (s)≡
∆Tq(s) and finally, on using eq. B6, the s-transform of CT (q, t):

CT (q,s) =

[

cv(s)+
κq2

n0s
+

T

n0

pT (s)
2

KT L(s)+mn0s2/q2

]−1

(B11)

This equation agrees with eq. (18) of Ref. 54 provided that the bulk modulus KB there is identi-

fied with the isothermic longitudinal modulus (KT L). Eq. B11 can be also obtained in a simpler

heuristic way following the approach outlined in point 2 of the Discussion.
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The time-dependence of CT (q, t) obtained directly from our simulation data typically shows a

decay superimposed with decaying oscillations. Such a behavior also follows from eq. B11. Doing

inverse s-transform and applying approximations similar to those that led to eq. 47 we obtain

CT (q, t)≈
1

cpL(t)

{

(r(t)−1)cos(ω(t)t)exp
(

−q2tΓ(t)
)

+ exp

(

−q2t
κ

n0cpL(t)

)}

(B12)

where

cpL(t)≈ cv(t)r(t), r(t) = KAL(t)/KTL(t),

ω(t)≈
[

KAL(t)

mn0

]1/2

, Γ(t)≈ 1

2mn0

∫ t

0

[

KAL(t
′)−KAL(t)

]

dt ′

Here cpL(t) is the heat capacity at constant longitudinal normal pressure pxx and constant trans-

verse area (i.e. at no deformation in the plane perpendicular to the x-axis, cf. eq. 77). Note that

eq. B12 at t = 0 agrees with eq. B7 since cv(t = 0) = d/2.11

Eq. B12 for CT (q, t) was used to obtain the thermal conductivity κ at different temperatures by

fitting it to the simulation data (the approximations like cv(t)≈ cv0(t), valid because the relevant

time is sufficiently long, t ≫ τdamp, were used to this end). The results are quoted in section II E.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author

upon reasonable request.

REFERENCES

1M. Fuchs, Adv. Polym. Sci. 36, 55 (2010).

2A. Nicolas, E.E. Ferrero, K. Martens, and J.-L. Barrat, Rev. Mod. Phys. 90, 045006 (2018).

3J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, NY, 2006.

4D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Fluctuations, Ben-

jamin Cummings, London, 1983.

5I. Kriuchevskyi, J. P. Wittmer, H. Meyer, O. Benzerara and J. Baschnagel, Phys. Rev. E, 2018,

97, 012502.

6L. Klochko, J. Baschnagel, J. P. Wittmer and A. N. Semenov, Soft Matter, 2018, 14, 6835.
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are insensitive to small T -variations.
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FIGURE CAPTIONS

FIG. 1. Longitudinal relaxation modulus K(qmin, t) for T = 0.4, 0.3, 0.26, 0.24, 0.2 calculated

using eqs. 43, 45 (black curves from bottom to top) and its approximation, eqs. 47, 43 (red

curves). Note that the black curves superimpose almost completely onto the corresponding red

curves at t & 100.

FIG. 2. Longitudinal modulus K(q, t) (black curve), adiabatic modulus KAL(t) (red curve) and

isothermic modulus KT L(t) (blue curve). Upper panel: T = 0.4, q = qmin; lower panel: T =

0.3, q =
√

8qmin.

FIG. 3. The dynamical structure factor S(q, t) vs. t for T = 0.3, q = qmin (upper left panel),

T = 0.3, q =
√

8qmin (upper right), T = 0.26, q = qmin (lower left), T = 0.24, q =
√

8qmin

(lower right). Simulation results based on eq. 61 are shown with red curves; theoretical results,

eqs. 68, 67 – black curves.

FIG. 4. Time dependence of correlation functions for shear stress, Cs(q, t) (upper left panel); lon-

gitudinal stress, C‖(q, t) (upper right); normal stress cross-correlations, C⊥(q, t) (lower left);

second normal stress, C2(q, t) (lower right) for q = qmin ≡ 2π/L. Black curves – theory, red

symbols and curves – simulation data. We show symbols only for short times (t ≤ 6) for clarity.

The temperature T = 0.4 (a), 0.3 (b), 0.26 (c), 0.24 (d), 0.2 (e).

FIG. 5. Same functions (as in Fig. 4) for T = 0.3 and nq2 ≡
(

q/qmin

)2
= 8 (a), nq2 = 32 (b), 64

(c).

FIG. 6. Same functions (as in Fig. 4) for T = 0.24 and nq2 ≡
(

q/qmin

)2
= 8 (a), nq2 = 32 (b), 64

(c). The theoretical data for C2 are vertically shifted by ∆ = 1.9 for nq2 = 32, and ∆ = 2 for

nq2 = 64.

FIG. 7. Same functions (as in Fig. 4) for T = 0.2 and nq2 ≡
(

q/qmin

)2
= 8 (a), nq2 = 32 (b),

64 (c). The theoretical data for C2 are vertically shifted by ∆ = 4.7 for nq2 = 8, ∆ = 1.2 for

nq2 = 32, and ∆ = 1.13 for nq2 = 64.

FIG. 8. The time dependence of K(qmin, t), the generalized longitudinal modulus, at T = 0.4

showing all relaxation stages as described in the text.
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FIG. 9. The dynamical structure factor S(q, t) for T = 0.2, q = qmin. Simulation results based

on eq. 61 (red curve), theoretical results, eqs. 68, 67 (black curve). The blue horizontal line

indicates the long-time isothermic plateau level = S(q)−n0T/KT Ls.

FIG. 10. The dynamical structure factor S(q, t) based on simulation data (black line), its exponen-

tial approximation, eq. 52 (blue curve), and the correlation function of composition fluctuations,

1.33Sψ(q, t), obtained by simulations (red curve). T = 0.4 and q =
√

8qmin for all the curves.
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