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Dynamics of dilute polymer solutions at the final stages of capillary thinning

The dynamics of capillary break-up of a fluid thread of a dilute polymer solution near the Θpoint is studied using a molecular approach. Several regimes arising during the development of capillary instability have been identified and investigated. We show that in the course of thread thinning the macromolecules can undergo a coil-stretch transition and analyze its kinetics. In the process of chain stretching, the inertial regime turns into a viscoelastic stage and then a highly viscous quasi-Newtonian regime with almost completely stretched macromolecules. In the viscoelastic regime the hydrodynamic friction force is proportional to the chain extension, and the radius of the thread decreases according to a power law. This differs from the experimentally observed exponential law arising from the linear dependence of the friction force on the contour length of the chain. A possible physical mechanism giving rise to an exponential thinning of the thread formed by dilute polymer solution is discussed. We further established that once the thread radius becomes smaller than the chain contour length after the end of the viscoelastic regime, such ultrafine thread becomes unstable with respect to the development of annular solvent droplets. It is predicted that formation of the droplets occurs with no energy barrier, so a "beads-on-string" structure emerges readily as a result.

I.

INTRODUCTION

The dynamics of polymer jets is one of the important areas of polymer rheology with long history of development, which continues to attract a significant scientific interest due to widespread use of such jets for spinning fibers, printing and spraying. [START_REF] Denn | Continuous Drawing of Liquids to Form Fibers[END_REF][START_REF] Daristotle | A Review of the Fundamental Principles and Applications of Solution Blow Spinning[END_REF][START_REF] Xue | Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications[END_REF] The property of polymers to form fibers is well known in living nature and is associated with the ability of polymer solutions and melts to undergo large elastic deformations. This process is usually associated with the transition of macromolecules from coiled to stretched state. However, many aspects of jet thinning and fiber formation still remain poorly understood. Importantly, the jet behavior is often accompanied with various types of instabilities. [START_REF] Malkin | Some conditions for rupture of polymer liquids in extension[END_REF][START_REF] Mckinley | Visco-elasto-capillary thinning and break-up of complex fluids[END_REF][START_REF] Malkin | Polymer extension flows and instabilities[END_REF][START_REF] Boger | Rheological Phenomena in Focus[END_REF] A noticeable progress has been achieved in the study of flows of Newtonian fluids with a free surface. [START_REF] Eggers | Physics of liquid jets[END_REF][START_REF] Basaran | Small-Scale Free Surface Flows with Breakup: Drop Formation and Emerging Applications[END_REF][START_REF] Chen | Computational and experimental analysis of pinch-off and scaling[END_REF][START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF][START_REF] Driessen | Stability of viscous long liquid filaments[END_REF][START_REF] Castrejón-Pita | Plethora of transitions during breakup of liquid filaments[END_REF][START_REF] Li | Capillary breakup of a liquid bridge: identifying regimes and transitions[END_REF][START_REF] Keller | Surface Tension Driven Flows[END_REF][START_REF] Chen | Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge[END_REF][START_REF] Papageorgiou | On the breakup of viscous liquid threads[END_REF][START_REF] Papageorgiou | Analytical description of the breakup of liquid jets[END_REF][START_REF] Lister | Capillary breakup of a viscous thread surrounded by another viscous fluid[END_REF] To some extent it can serve as a basis to study also the liquid bridges and jets formed by polymer solutions. The dynamical behavior of a Newtonian fluid thread is related to its Ohnesorge number Oh / a    , where a is the radius,  is density of the liquid,  is its viscosity and  is its surface tension. This number reflects the ratio of two timescales, (for Oh 1) the thread behavior is governed primarily by viscous and capillary forces (visco- capillary regime or V-regime) and the neck radius decreases linearly in time,

 

() b a t t t  . [START_REF] Li | Capillary breakup of a liquid bridge: identifying regimes and transitions[END_REF] It is well-known that capillary forces constitute a generic mechanism leading to instability of liquid cylindrical threads, [START_REF] Rayleigh | Instability of jets[END_REF][START_REF] Weber | Zum Zerfall eines Flussigkeitsstrahle[END_REF] inherent in both Newtonian and polymer fluids, and to the eventual thread breakup. However, the break-up of a polymer solution string proceeds in a much more complicated way due to viscoelastic behavior. Early experimental [START_REF] Bazilevskii | Orientation effects in the breakup of jets and threads of dilute polymer solutions[END_REF][START_REF] Bazilevskii | Failure of polymer solution filaments[END_REF] and theoretical [START_REF] Yarin | Free liquid jets and films: hydrodynamics and rheology[END_REF][START_REF] Entov | Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid[END_REF] studies of pinching-off have revealed an important role of elasticity associated with the transition of polymer chains to an elongated state. Instead of breaking up into individual droplets, a beadon-string structure is often formed, in which the droplets are connected by long-lived bridges.

The emergence of such long-lived bridges depends on the relationship between the longest characteristic relaxation time of the quiescent polymer solution and the timescales

I  and V  .
Since the times I  and V  decrease as the thread gets thinner and is constant unfolding of polymer chains must occur at a certain finite diameter of the thread (when

  max , IV    ).
During thinning of a thread formed by a solution of high-molecular weight polymers in a lowviscosity solvent, a transition from the inertial-capillary to the elasto-capillary regime can occur even at very low polymer concentrations. [START_REF] Amarouchene | Inhibition of the Finite-Time Singularity during Droplet Fission of a Polymeric Fluid[END_REF][START_REF] Deblais | Self-similarity in the breakup of very dilute viscoelastic solutions[END_REF] The theoretical analysis of the elasto-capillary regime was carried out based on a balance of the viscoelastic and capillary forces, while the polymer viscoelasticity was taken into account mainly by using the classical constitutive equations of Maxwell, Oldroyd-B and FENE-P models, [START_REF] Chang | Iterated stretching of viscoelastic jets[END_REF][START_REF] Li | Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study[END_REF][START_REF] Bhat | Dynamics of viscoelastic liquid filaments: Low capillary number flows[END_REF][START_REF] Bhat | Formation of beads-on-a-string structures during break-up of viscoelastic filaments[END_REF][START_REF] Stelter | Validation and application of a novel elongational device for polymer solutions[END_REF][START_REF] Stelter | Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer[END_REF][START_REF] Bazilevskii | Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions[END_REF] which are based on a dumbbell model with constant friction. According to these theories the radius of the thread a decreases as /3 ()

t a t e   
in the elasto-capillary regime. This exponential law was observed in many experiments with dilute, semi-dilute and concentrated solutions without entanglements, [START_REF] Bhat | Formation of beads-on-a-string structures during break-up of viscoelastic filaments[END_REF][START_REF] Stelter | Validation and application of a novel elongational device for polymer solutions[END_REF][START_REF] Stelter | Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer[END_REF][START_REF] Bazilevskii | Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions[END_REF][START_REF] Christanti | Surface tension driven jet break up of strain-hardening polymer solutions[END_REF][START_REF] Clasen | The beads-on-string structure of viscoelastic threads[END_REF][START_REF] Tirtaatmadja | Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration[END_REF][START_REF] Dinic | Extensional Relaxation Time of Dilute, Aqueous, Polymer Solutions[END_REF][START_REF] Dinic | Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids[END_REF][START_REF] Jimenez | Extensional Relaxation Time, Pinch-Off Dynamics, and Printability of Semidilute Polyelectrolyte Solutions[END_REF][START_REF] Dinic | Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions[END_REF][START_REF] Keshavarz | Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER)[END_REF][START_REF] Mathues | CaBER vs ROJER -Different time scales for the thinning of a weakly elastic jet[END_REF] in which the methods of CaBER [START_REF] Mckinley | Visco-elasto-capillary thinning and break-up of complex fluids[END_REF][START_REF] Bazilevskii | Failure of polymer solution filaments[END_REF][START_REF] Bazilevskii | Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions[END_REF] , DoS [START_REF] Dinic | Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids[END_REF] and ROJER [START_REF] Keshavarz | Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER)[END_REF][START_REF] Mathues | CaBER vs ROJER -Different time scales for the thinning of a weakly elastic jet[END_REF] rheometry with visualization of pinch-off dynamics were used. The study of extension and breakup of polymer filaments at very high strain rates (high Weissenberg number) was made possible by using a double piston stretching apparatus. [START_REF] Mackley | The observation and evaluation of extensional filament deformation and breakup profiles for Non Newtonian fluids using a high strain rate double piston apparatus[END_REF] At the end of the elasto-capillary (viscoelastic) regime the polymer chains are almost fully elongated, and the polymer solution starts to behave like a quasi-Newtonian liquid of high viscosity associated with the complete stretching of the chains. [START_REF] Stelter | Validation and application of a novel elongational device for polymer solutions[END_REF][START_REF] Dinic | Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions[END_REF] As an important effect it was found experimentally that the apparent relaxation time coming from fitting () at with an exponential significantly increases with concentration in the dilute solution regime (c < c*). 39,40,46-49 This result is at odds with the Rouse-Zimm theory for dilute solutions, in which the relaxation time depends only on the molecular weight, but not on the concentration.

This contradiction triggered questions on how to define a dilute solution and how interchain interactions, including hydrodynamic ones, affect the rheology of solutions in extensional flow. [START_REF] Clasen | How dilute are dilute solutions in extensional flows?[END_REF][START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF][START_REF] Prabhakar | Effect of stretchinginduced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions[END_REF] The Plateau-Rayleigh capillary instability was also observed in thin filaments formed by solid gels. [START_REF] Anna | Elasto-capillary thinning and breakup of model elastic liquids[END_REF] As follows from a comparison of elastic and surface energies, the instability arises when the radius of the filament decreases below the length scale / G   where G is the elastic shear modulus of the solid. [START_REF] Mora | Capillarity driven instability of a soft solid[END_REF][START_REF] Snoeijer | The relationship between viscoelasticity and elasticity[END_REF][START_REF] Pandey | Elastic Rayleigh-Plateau instability: dynamical selection of nonlinear states[END_REF] As a result, two types of morphology have been identified: cylinders on a string and beads on a string. [START_REF] Pandey | Elastic Rayleigh-Plateau instability: dynamical selection of nonlinear states[END_REF] Another type of instability arising in polymer solution strings is associated with the formation of blistering patterns or pearling patterns at the end of the exponential thinning regime, when the polymer chains are highly stretched, [START_REF] Christanti | Surface tension driven jet break up of strain-hardening polymer solutions[END_REF][START_REF] Oliveira | Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[END_REF][START_REF] Oliveira | Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solution[END_REF][START_REF] Sattler | Blistering Pattern and Formation of Nanofibers in Capillary Thinning of Polymer Solutions[END_REF][START_REF] Sattler | The final stages of capillary break-up of polymer solutions[END_REF][START_REF] Bazilevskii | Dynamics of the Capillary Breakup of a Bridge in an Elastic Fluid[END_REF][START_REF] Deblais | Pearling Instabilities of a Viscoelastic Thread[END_REF][START_REF] Kibbelaar | Capillary thinning of elastic and viscoelastic threads: From elastocapillarity to phase separation[END_REF] or with phase separation accompanied by the emergence of small solvent droplets onto the jet surface during a flow-induced extension. [START_REF] Semakov | On the nature of phase separation of polymer solutions at high extension rates[END_REF][START_REF] Malkin | Spinnability of Dilute Polymer Solutions[END_REF][START_REF] Kulichikhin | A novel technique for fiber formation: Mechanotropic spinning -principle and realization[END_REF] These types of instabilities differ from the classical Plateau-Rayleigh pinching. Two mechanisms have been proposed to explain this behavior, namely, the migration of macromolecules into thinner regions with a higher concentration due to the stress-concentration coupling effect [START_REF] Eggers | Instability of a polymeric thread[END_REF][START_REF] Helfand | Large fluctuations in polymer solutions under shear[END_REF][START_REF] Doi | Dynamic coupling between stress and composition in polymer solutions and blends[END_REF][START_REF] Milner | Dynamical theory of concentration fluctuations in polymer solutions under shear[END_REF] , and the flow-induced phase separation leading to the formation of nano-fibrils, which subsequently condense in the jet core pressing the solvent out to the surface. [START_REF] Subbotin | Phase Separation in Dilute Polymer Solutions at High-Rate Extension[END_REF][START_REF] Semenov | Phase Separation Kinetics in Unentangled Polymer Solutions Under High-Rate Extension[END_REF][START_REF] Subbotin | Phase Separation in Polymer Solutions under Extension[END_REF] While the first approach uses phenomenological equations for the dynamics of a polymer solution, the second approach is based on molecular concepts. Note that in both cases the instability results in an inhomogeneous distribution of polymer in the jet.

In the present paper we focus on the final stages of capillary thinning of a liquid bridge of dilute polymer solution when the bridge diameter gets smaller than the contour length of macromolecules (section III). Such a regime can also appear in a jet that is stretched under the action of an electric force in the process of electrospinning or under the action of an external force applied to the free end of the jet upon fiber spinning. Recently we studied the behavior of fine threads formed by solutions of rigid rods. [START_REF] Subbotin | Capillary-induced Phase Separation in Ultrathin Jets of Rigid-chain Polymer Solutions[END_REF][START_REF] Subbotin | Multiple droplets formation in ultrathin bridges of rigid rod dispersions[END_REF] It has been shown that capillary forces are responsible for the extrusion of the solvent to the surface, where it forms annular droplets, so that the rods are concentrated in the core of the thread (thus leading to the beads-on-string structure).

We now extend this theory to the case of thin threads of dilute solutions of long flexible or semi-flexible macromolecules. It is shown that for aqueous solutions of PEO with M w ~10 6 the beaded structure can emerge for the filament thickness of order or below 1m. Such beads-on-string structures have been indeed observed experimentally [START_REF] Christanti | Surface tension driven jet break up of strain-hardening polymer solutions[END_REF][START_REF] Tirtaatmadja | Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration[END_REF][START_REF] Oliveira | Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[END_REF][START_REF] Oliveira | Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solution[END_REF][START_REF] Sattler | Blistering Pattern and Formation of Nanofibers in Capillary Thinning of Polymer Solutions[END_REF][START_REF] Sattler | The final stages of capillary break-up of polymer solutions[END_REF][START_REF] Bazilevskii | Dynamics of the Capillary Breakup of a Bridge in an Elastic Fluid[END_REF][START_REF] Deblais | Pearling Instabilities of a Viscoelastic Thread[END_REF][START_REF] Kibbelaar | Capillary thinning of elastic and viscoelastic threads: From elastocapillarity to phase separation[END_REF] . It is noteworthy, however, that it is hard to optically resolve the evolution of these features on a submicron scale, so an improvement of experimental visualization techniques may be required to fully test our predictions.

In the next section II we first discuss the relevant static and dynamical properties the bulk polymer solutions, and then present the basic dynamical equations for capillary thinning of a polymer solution thread. We then turn to the viscoelastic (elasto-capillary) regime associated with the extension-flow induced coil-stretch transition. We show that in dilute theta-solutions the polymer elongation dynamics is strongly affected by hydrodynamic interactions giving rise to a power-law time dependence of the filament radius 2 () a t t   . Such power law for () at was already predicted [START_REF] Mathues | CaBER vs ROJER -Different time scales for the thinning of a weakly elastic jet[END_REF] based on similar ideas. We remind however that most experimental data 33- 44,46 rather point to an exponential decay of () at even in the dilute solution regime. To tentatively explain this contradiction, we propose a new physical mechanism which can change the thinning law back to the exponential decay (see end of section II). Furthermore, in section V we also discuss a couple of other physical effects which may modify the thinning law rendering it closer to a single-exponential decay.

II. THE DYNAMICS OF POLYMER SOLUTION THREAD

Let us consider a solution of semiflexible macromolecules of contour length L , Kuhn segment length l and diameter d , d l L . The number of repeat monomer units in the macromolecules is N , the monomer length equals to 1 / l L N  and the statistical segment length , so the solution is isotropic (no tendency for nematic ordering).

The free energy of interactions between polymer segments generally depends on their orientations; per unit volume it is given by [START_REF] Subbotin | Phase Separation in Dilute Polymer Solutions at High-Rate Extension[END_REF][START_REF] Semenov | Phase Separation Kinetics in Unentangled Polymer Solutions Under High-Rate Extension[END_REF][START_REF] Semenov | Statistical physics of liquid-crystalline polymers[END_REF]    

2 int ln 1 / / 2 T f Bc I T     (1) 
where

2 1 2 B l d   , B abs T k T  is temperature in energy units ( B k is the Boltzmann constant), and
 is the theta-temperature for isotropic dilute solution. The orientational factor 4 sin

I      ,
where  is the angle between two interacting polymer segments. [START_REF] Semenov | Statistical physics of liquid-crystalline polymers[END_REF] For the trial orientational distributions defined in eq. 8 of ref. 68 the factor I depends solely on the orientational order parameter cos s  

, where  is the angle between a polymer segment and the axis of preferred orientation and averaging is performed over the orientations of all segments. The graph of the function () Is is shown in Figure 1. We then consider a liquid bridge formed by a drop of the solution placed between two parallel plates and stretched by moving the plates a certain distance apart from each other. After the plate motion is stopped the bridge thickness decreases due to capillary forces. The elongational flow inside the bridge is characterized by the extension rate

z z    
 where z  is the flow velocity along the jet axis z . This velocity is connected with the radius of the bridge ( , ) a t z through the volume conservation equation

  2 2 0 z a a tz     ( 2 
)
where it is assumed that v z is uniform in a cross-section of the jet.

At sufficiently high extension rate  the chains begin to stretch along the stream. [START_REF] Semenov | Phase Separation Kinetics in Unentangled Polymer Solutions Under High-Rate Extension[END_REF][START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF] The unfolding of the chains in this case occurs as a sharp coil-stretch transition, [START_REF] Subbotin | Phase Separation in Dilute Polymer Solutions at High-Rate Extension[END_REF][START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF] which is accompanied by a significant hysteresis. [START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF][START_REF] Prabhakar | Effect of stretchinginduced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions[END_REF] Three polymer solution states of stretched chains can be distinguished. When stretching is not too strong, 0 

  1/2 * 1 nn R R l c  
it exceeds the average concentration c , so the extended chains become non- overlapping again: In this regime the average distance between two neighboring chains exceeds n R , i.e. the polymer solution is similar to a dilute solution of strongly oriented rigid rods.

To study the dynamics of a stretched chain we first assume that there is no flow, 0

  .
Then the stretched macromolecule will relax to an equilibrium coiled state and this process can be described using the energy-dissipation balance equation implying that the accumulated elastic energy of a chain transforms into heat (as no external work is done on the system):

0 el dF D dt  (3) 
where el F is the elastic free energy of a chain and D is the rate of energy dissipation.

Introducing the orientational parameter cos /

z s R L  
, the elastic energy is written as [START_REF] Malkin | Spinnability of Dilute Polymer Solutions[END_REF][START_REF] Subbotin | Capillary-induced Phase Separation in Ultrathin Jets of Rigid-chain Polymer Solutions[END_REF]  

coth 1 2 el TL F A A l  , coth 1/ s A A  (4a) 
In what follows we will approximate equation (4a) by   

To find the rate of dissipation D first note that the friction force acting on a polymer chain in a flow depends on the chain conformations and interchain interactions. [START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF] In the dilute solution case the friction force f is proportional to z R (rather than to N) due to unscreened hydrodynamic interactions. This idea, which is known as the linear drag model, was proposed long ago [START_REF] Hinch | Mechanical models of dilute polymer-solutions in strong flows[END_REF][START_REF] Dunlap | Dilute polystyrene solutions in extensional flows: birefringence and flow modification[END_REF] and further elaborated more recently [START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF][START_REF] Prabhakar | Effect of stretchinginduced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions[END_REF] . The reason for such linear dependence ( z fR  ) is that a stretched chain can be considered as a sequence of Pincus blobs (elastic or tension blobs) [START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF][START_REF] Pincus | Excluded Volume Effects and Stretched Polymer Chains[END_REF] whose volume fraction is always small for c <c* , so the blobs never overlap.

Therefore, the hydrodynamic interactions within a blob are not screened, so a sequence of blobs is hydrodynamically similar to a long rod of length z R . Next we employ the usual logarithmic approximation for the hydrodynamic drag (cf. Appendix 8.1 of ref. 79). The relative velocity (in z-direction) between a chain segment n and the quiescent solvent is 1 2

z dR n dt N    
, where 0 nN  . Therefore, the dissipation function due to polymer/solvent friction is given by Substitution of eqs 4b, 5 in eq 3 yields 

2 22 0 1 26 z R sz z z z zH R dR R dR D dx x R dt k dt                       (5) Here / z x nR N  , 2/ sH k    is
    2 2 4 2 1 1 1 2 3 R ds s s s dt       (6) 
( ) / R s t s t   , i.e. the relaxation time of R z =sL from an initial value R z0 > R 0 to the equilibrium (R z ~ R 0 ) is 00 ( ) / z R z R R L . If R z0 ~ R 0 , we arrive at the Zimm relaxation time 3 0 / 18 s Z R K NR T   
. [START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF][START_REF] Dunlap | Dilute polystyrene solutions in extensional flows: birefringence and flow modification[END_REF] The relaxation behavior of macromolecules gets more complex in the presence of a flow whose effect can be taken into account by including the convective term   

    2 2 4 2 1 1 1 2 3 R ds s s s s dt           (7) 
Initially the orientational parameter is

0 / 1/ 1 K s R L N .
The stresses generated in a polymer solution under flow include contributions from the solvent, s σ , and polymer, p σ , i.e. sp  σ σ σ . In the case of a uniaxial flow with extension rate  the normal stress difference due to Newtonian solvent is 3

ss s zz rr s        
. The polymer component p zz  of the stress tensor is determined in the usual way by averaging the product of a polymer chain longitudinal size and the corresponding tension force

el z z F f R    : 79     2 2 4 1 2 2 32 1 p zz z z s s s l c R f cT Nl s     (8) 
As for the radial component p rr  of the polymer stress tensor, it is relatively small, pp rr zz  , since the chain size in the radial direction, n R , is much shorter than its longitudinal size, zn RR

. Therefore, the polymer normal stress difference is

p p p p zz rr zz      .
The dynamics of the thread in the scope of the slender body approximation ( /1 az 

) is described by the general momentum equation

  2 2 2 2 30 z z z s p C a a a t z z z                            (9a)
Here the radius a and velocity z  depend on the axial coordinate z and time t. The total curvature of the thread surface reads 

    1/2 3/2 2 2 1 1 1 zz z z a C a a a        (9b) so that the Laplace pressure is C  ( / z a da dz   ,
is the characteristic length separating inertia dominating and viscosity dominating regimes, the bridge dynamics is determined by the inertial terms in eq 9a. In this regime   



. From eq 2 we obtain  in the neck region (where / az  is small and can be neglected):

2 da a dt   (12) 
Thus, we get using eqs. 11, 12:

41 3 t   , leading to 3 0 18 s Z tR T    
and the critical thread radius a cs at the coil-stretch transition,

  1/3 * 4 2 0 / cs T a a l R  (13) 
where

/ T lT    (note that 0.2nm T l  for water). Obviously * cs aa if   1/3 *2 0 T R a l  (14) 
which means that the polymer chain is long, 1

K N . The subsequent flow-induced coil- stretching at () cs a a t a  is defined primarily by convection, / zz dR dt R   . Therefore   2 0 / z cs R R a a ( 15 
)
where () a a t  is still defined in eq 13 for the inertial regime.

It is important, however, that the inertial regime breaks as soon as the normal stress difference,   (assuming that the chains are far from the full extension, z RL ). Eqs 7, 8 can be simplified as

z z R dR L R dt    (18)   2 0 3/ pz cT RR N  (19)
Solving these equations, we find
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where
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)
is independent of molecular weight , where the prefactor  is inversely proportional to the polymer concentration and depends on the polymer chain parameters. Importantly, the prefactor does not depend on the initial radius of the thread. Hence, as soon as the bridge enters the viscoelastic regime, it must become nearly uniform over a long axial segment (with ( , ) ( )

neck a t z a t 
), which is in agreement with experimental results. [START_REF] Dinic | Extensional Relaxation Time of Dilute, Aqueous, Polymer Solutions[END_REF][START_REF] Sur | Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity[END_REF][START_REF] Clasen | How dilute are dilute solutions in extensional flows?[END_REF] Noteworthily, the 3 scaling dependences in eq. ( 20) are in full agreement with the results of a detailed theoretical study [START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF] (cf. eq. 57 in ref. 48 and the text below it) taking into account a partial screening of hydrodynamic interactions in dilute solutions (this screening, however, is weak and leads to just logarithmic corrections to the scaling laws).

The power law . For consistency with thermodynamic polymer solubility, we have to demand that these bonds are difficult to dissociate, but also equally difficult to create, so that the statistical weight of a bond is similar to that of a simple contact.

The increase of the relaxation time * R  with the polymer concentration is in qualitative agreement with the experiment; however, experimentally, a weaker dependence is observed. [START_REF] Bazilevskii | Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions[END_REF][START_REF] Tirtaatmadja | Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration[END_REF][START_REF] Dinic | Extensional Relaxation Time of Dilute, Aqueous, Polymer Solutions[END_REF][START_REF] Dinic | Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions[END_REF][START_REF] Sur | Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity[END_REF][START_REF] Clasen | How dilute are dilute solutions in extensional flows?[END_REF] Such bonds are possible, for example, in PEO/water systems which are often used in experiments. They originate from attractive hydrophobic interactions of CH 2 groups in PEO, and by hydrogen bonding between PEO units mediated by water molecules. [START_REF] Ho | Clustering of Poly(ethylene oxide) in Water Revisited[END_REF] These interactions lead to the well-known phenomenon of clustering in aqueous PEO solutions. [START_REF] Hammouda | SANS from Poly(ethylene oxide)/Water Systems[END_REF] Such reversible bonds may be also expected in aqueous solutions of polyacrylamide (PAM). [START_REF] Stelter | Validation and application of a novel elongational device for polymer solutions[END_REF][START_REF] Stelter | Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer[END_REF] They can also lead to formation of microscopic strands, which are responsible for significant non-Newtonian effects in dilute polymer solutions during extension. [START_REF] James | Extensional flow of dilute polymer solutions[END_REF] Thus, the thinning behavior of filaments of a polymer solution generally depends on the chemical nature of the chains, their concentration, and interchain interactions, which are affected by the extension flow.

Note however that our approach based on the hydrodynamic description is quite general and does not rely on the chemical nature of macromolecules.

Noteworthily, deviations from the exponential thinning law in very dilute solutions have been observed experimentally, [START_REF] Dinic | Extensional Relaxation Time of Dilute, Aqueous, Polymer Solutions[END_REF][START_REF] Sur | Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity[END_REF][START_REF] Clasen | How dilute are dilute solutions in extensional flows?[END_REF] for example, in aqueous PEO solutions (M w =10 6 g/mol)

with concentration c ≤ 0.03 wt % < c * = 0.17 wt %. [START_REF] Tirtaatmadja | Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration[END_REF] As far as we know a detailed analysis of the thinning law for jets of very dilute polymer solutions has not yet been performed

experimentally. (In our opinion the experimentally probed viscoelastic regime which spans only about a half of an order of magnitude in time is insufficient to unambiguously distinguish between the exponential and the power law of jet thinningcf. Figs. 

where the second term dominates (i.e., we assume  

1 * 2 2 1/ Rb N     
. From here we find 0 / bs a    . It is interesting to note that this radius is independent of the number of monomers in the chain.

In the next section we focus on the thread dynamics in the high-viscosity regime where the basic characteristic timescale of thread thinning is defined by

R  or * R  .

III. JET INSTABILITY AND EMERGENCE OF ANNULAR SOLVENT

DROPLETS

Let us consider the mid-part of the bridge in the "final" regime, where the bridge is thin ( 0 a a L  , Figure 2b) and rather uniform axially (so, it can be approximated as a cylinder). As . As already mentioned, the strongly stretched polymer chains seem to be rheologically equivalent to rodlike macromolecules. Assuming this equivalence one can try to describe the late stages of thread thinning using the results for solutions of rigid rods [START_REF] Subbotin | Capillary-induced Phase Separation in Ultrathin Jets of Rigid-chain Polymer Solutions[END_REF][START_REF] Subbotin | Multiple droplets formation in ultrathin bridges of rigid rod dispersions[END_REF] showing that the thread in the regime aL can get unstable with respect to solvent release in the form of annular droplets. It is important to note, however, that in the case of rodlike macromolecules the droplets can not emerge spontaneously: their formation is an activated process taking place if the polymeric osmotic pressure is much weaker than the capillary pressure, 0 / a   . In the case of semiflexible polymers the osmotic pressure in the solution is [START_REF] Subbotin | Phase Separation in Polymer Solutions under Extension[END_REF][START_REF] Subbotin | Multiple droplets formation in ultrathin bridges of rigid rod dispersions[END_REF] 1 1 ( ) 21

Is cT Bc NT             (26) 
Here the first term in brackets is due to translational energy and the second term is due to interactions ( B -is the second virial coefficient, see eq 1). In what follows we will assume that the system is close to the  -point, i.e. 

The total curvature of the droplet can be represented as

  2 2 1 2 d m m V C a a   (29) 
The free energy changes as the solvent is squeezed from the thread core to the surface forming a droplet of volume 

and

  2 0 2 2 22 d d m V V a      (31) 
The energy

  d V  shows a maximum at   2 *2 0 2/ d d m V V a     (32) 
which corresponds to the activation energy . It is shown below that the latter condition is irrelevant for the case of (semi-)flexible chains.

In fact, there is a significant difference between the droplet formation process for rod-like macromolecules and flexible chains: rigid rods have to stay inside the cylindrical core, the chains may bend and (at least partially) penetrate into the emerging annular droplet, Figure 3b.

The driving force for such penetration is of osmotic nature. It is opposed by the bending force due to chain tension . In turn is maintained by the extensional flow which keeps the chains in the stretched state:

  ), so the stretching energy per Kuhn segment is T . (Note that s=R z /L can be considered as the degree of stretching.) The bending force per unit length along the chain is

fC  
where C is now the chain curvature. The force f  is oriented perpendicular to the chain (that is, in the radial direction). The coarse-grained chain trajectory can be defined as 00 ( , ) r r h r z  where 0 r is the distance between the chain and the jet axis far away from the droplet region ( za ). For weak deformation,

1 h z  
, the curvature 

Using eq 24 and neglecting the ideal-gas pressure, *

 can be estimated as

  * 2 2 11 dl k dl   (38)
The system gets diluted if h increases with r :

0 // c c h r    ( 39 
)
where we assumed that hr , so that 0 r r h  is always close to 0 r and 0 cc  . The osmotic force (per unit volume) in the radial direction reads (on using eqs 36, 39)

2 2 osm h Fk rr      ( 40 
)
where

*2 0 k T c    (41) 
The force balance, It should be compared with the capillary energy gain (cf. eq 28):

2 2 2 cap surf H     ( 46 
)
Here H is the undulation amplitude (cf. Figure 2b), Since the formation of droplets occurs without a barrier, it is of interest to obtain the dispersion relation and to identify the fastest growing mode. This is done below using the volume conservation equation ( 2) and the momentum equation (9a), where we neglect the contribution of the solvent viscous stress and inertial forces (which are weaker than capillary forces). The average number of chains in a cross-section of the filament is 

      22 00 00 1 q a q a am      (50) 
It leads to the following characteristics of the fastest-growing mode

* 0 1 2 q a  ,       22 * * * 00 00 1 q a q a am      (51) 
It is interesting to note that the period  of the fastest growing mode coincides with the similar period for an inviscid liquid even if the friction is large. Thus, the period of the growing structure

is * 00 2 2 2 aa    . The characteristic growth time is 00 * 1/ ma    .
The droplet formation time can also be estimated by considering a gradual growth of a single solvent annulus of thickness () Ja  is the solvent current through the thread cross-section, factor 2 means that the liquid enters the droplet from both sides and  is the solvent axial velocity in the thread core near the droplet (at /2 z

H

 

). Using eq 52 we get ( ) / dH t dt  . The rate-of-change of the droplet height () Ht can be found using the energy-dissipation balance equation:

0 surf d dt   (53) 
where surf  is defined in eq 30, and we neglected the subdominant polymer deformation energy (cf. eq 45) since 1  (cf. eq 48). The total rate of energy dissipation, , arises due to friction between solvent and polymer segments in the jet section of length  around the droplet. It reads

2 2 2 0 0 1 0 a c l m      (54) 
where m 0 is defined in eq 25. Using eqs 30, 53, 54 we find the linearized master equation for the

droplet height: * 1 dH H dt   (55) 
where the characteristic time *

 is 0 *3 0 2 s m a d      (56) 
Note that *  , eq 56, agrees with 

IV. THE FINAL STAGE OF DROPLETS GROWTH

The exponential growth of the droplets ends up when the height H becomes comparable with 0 a defined in eq 21 (note that, as shown in the previous section, the initial thread radius at the onset of the growth process is 0 aa ). At this point roughly half of the solvent is already squeezed into the droplets while another half remains in the polymer strings connecting the droplets. The core thinning driven by the capillary forces continues in the nonlinear regime (where 0 aa and ln dH dt depends on time) which is considered below. The thinning of a string stops when the capillary pressure becomes equal to the osmotic pressure  defined in eq 26:

  2 3 4 T k ad       (58) 
(here we neglected the ideal-gas pressure and assumed that  <<1; a is the string radius). Taking into account that in the nonlinear regime 

Recalling that 0 a is defined in eq 21, we find that

  0 /1 dl  and 2/5   , 1/5 00 aa    (60)
where a  is the minimum string radius and

  1/5 1/5 2 00 /1 ld      .
In the regime of thin polymer strings ( 

  along the string ( 0 x    ) is   /2 1 x     
. 72 The rate  can be obtained using the energy-dissipation balance equation.

The dissipation rate s now reads , and setting 0 mm  (m 0 is defined in eq 23),

which is true since L >>  (cf. also the note below eq. 66), we transform eq 63 as

5/2 1 / d dt         , 2 1 12 d T     (64) 
Solving eq 64 we find the following asymptotic regimes: 

                               (65b)
Here t is the time passed since the beginning of the droplet formation.

The characteristic thinning time

th  therefore is 1/2 3 2 00 1 2 0 / s th a d            (66) 
It is longer than the linear growth time *  (cf. eq. 56), but shorter than the Rouse time The polymer chains are stretched and confined inside the  -strings, however, they must be somewhat swollen laterally inside the droplet regions due to repulsion of polymer segments (cf. Figure 4). The corresponding characteristic lateral size h , by which the chains deviate from the straight line in the radial direction inside the droplet regions, can be estimated in analogy with the case considered above. For simplicity we consider the regime of thin strings, 48), which means that the polymer swelling effect is not significant in the droplet zones (since bR , cf. Figure 4).

To sum up, we have shown that the structure of a "beads-on-string" can appear on the final stage of thinning when the polymer chains in the thread are strongly stretched and the radius of the thread is less than the contour length of macromolecules. As mentioned in the introduction, the secondary beads-on-string structures are often observed after the elastocapillary regime for PEO solutions. 



 should be around 1μm. The critical radius of the thread for PEO with M w =410 6 g/mol found in experiment is estimated as a 0 10 μm 57 or even more. [START_REF] Oliveira | Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[END_REF][START_REF] Oliveira | Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solution[END_REF][START_REF] Deblais | Pearling Instabilities of a Viscoelastic Thread[END_REF] This value is somewhat greater than that predicted by our theory ( 0 4μm a ). Nevertheless, the predicted fastest growing wavelength 0 22 a  is in agreement with the experiments. [START_REF] Sattler | Blistering Pattern and Formation of Nanofibers in Capillary Thinning of Polymer Solutions[END_REF][START_REF] Sattler | The final stages of capillary break-up of polymer solutions[END_REF] This discrepancy can be explained by the existence of another mechanism, namely, the phase separation of PEO solutions caused by stretching. [START_REF] Malkin | Spinnability of Dilute Polymer Solutions[END_REF][START_REF] Subbotin | Phase Separation in Polymer Solutions under Extension[END_REF] The possibility of a phase separation under extension of PEO solutions had been proposed many years ago. [START_REF] Ferguson | Structural changes during elongation of polymer solutions[END_REF] Recently, it was shown that temperature significantly affects the dynamics of thread thinning and the onset of pearling instability, which confirms the idea of phase separation. [START_REF] Deblais | Pearling Instabilities of a Viscoelastic Thread[END_REF] In addition, computer simulations using molecular dynamics methods show that stretching of PEO oligomers in an aqueous solution leads to the formation of fibrillar structures due to a decrease in the number of hydrogen bonds between PEO and water. [START_REF] Donets | Molecular Dynamics Simulations of Strain-Induced Phase Transition of Poly(ethylene oxide) in Water[END_REF] However, it should be noted that droplet formation associated with capillary forces can still be significant in the later stages of thread thinning since the Laplace pressure should compress the polymer core until the osmotic pressure of polymer chains stops capillary compression. The capillary mechanism of the pearling instability can be important for PAM solutions whose thinning does not depend on temperature in contrast to PEO solutions. [START_REF] Deblais | Pearling Instabilities of a Viscoelastic Thread[END_REF] The contour length of PAM having M w ~ 1510 6 g/mol is L ~ 80μm ( 1 0.4nm l  ), therefore the critical radius should be of order or below 8μm .

V. CONCLUDING REMARKS

We analyzed the capillary thinning dynamics of a dilute polymer solution thread for marginal or Θ solvents. Starting with a liquid bridge which tends to break in the inertial regime due to capillary forces, we focused on the thread dynamics in viscoelastic regimes where polymer chains have undergone a coil-stretch transition and a bead-on-string structure can emerge. At first, the thinning of the thread follows the well-known "inertial" law

    1/3 2/3 ( ) / b a t t t  
, where b t is the putative breakup time. However, after a partial of the chains, the viscoelastic forces begin to dominate leading to thread thinning according to a power law

  2 0 ( ) / R a t a t 
. Such behavior differs from the exponential thinning law observed in polymer strings formed from dilute solutions. Note that our result for () at is related to taking into account the essentially unscreened hydrodynamic interactions inherent in dilute solutions and leading to a linear dependence of the hydrodynamic friction force on chain elongation (cf. the text below eq. ( 4b)). Noteworthily, recent theoretical studies [START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF][START_REF] Prabhakar | Effect of stretchinginduced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions[END_REF] on capillary thinning of dilute polymer solutions are based on a similar idea (the linear drag model [START_REF] Hinch | Mechanical models of dilute polymer-solutions in strong flows[END_REF][START_REF] Dunlap | Dilute polystyrene solutions in extensional flows: birefringence and flow modification[END_REF] ). By contrast, the friction force is proportional to the number of monomers in the case of screened hydrodynamic interactions. The latter assumption serves as a cornerstone of the theories based on the constitutive equation of Maxwell/ Oldroyd, [START_REF] Bird | Dynamics of Polymeric Fluids[END_REF] which was used, in particular, by Entov and Hinch. 26 This famous approach predicts an exponential thinning law with constant thinning time that does not depend on concentration in the dilute solution regime. The latter prediction turns out to be in contradiction with a number of experimental and theoretical studies [START_REF] Bazilevskii | Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions[END_REF][START_REF] Tirtaatmadja | Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration[END_REF][START_REF] Dinic | Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions[END_REF][START_REF] Clasen | How dilute are dilute solutions in extensional flows?[END_REF] on the subject (this point is further discussed below).

It is interesting to note that an additional friction mechanism related to the formation of interchain associative makes it possible to explain why the exponential law is observed experimentally, rather than a power law. Such a mechanism is expected to be relevant for solutions of some polymers like PEO or polyacrylamide (PAM) in water (see section II).

Experiments involving very dilute polymer solutions also indicate a non-exponential character of thread thinning. [START_REF] Dinic | Extensional Relaxation Time of Dilute, Aqueous, Polymer Solutions[END_REF][START_REF] Sur | Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity[END_REF][START_REF] Clasen | How dilute are dilute solutions in extensional flows?[END_REF] When the radius of the thread decreases down to 20). Such a non-monotonic behavior of the extension rate (and, therefore, the Weissenberg number) also follows from the theory of ref. 48. It is important to note that the classical theory of exponential thinning [START_REF] Entov | Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid[END_REF] as applied to the dilute solution regime, is not entirely consistent with the experimental data. [START_REF] Clasen | How dilute are dilute solutions in extensional flows?[END_REF][START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF] The characteristic time  of thinning is different from the equilibrium relaxation time   , and the ratio /  significantly depends on concentration in the dilute regime. This dependence was explained as (partially) an effect of hydrodynamic interactions. [START_REF] Prabhakar | Influence of stretching induced selfconcentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions[END_REF] Returning to the issue of discrepancy between the predictions given in eq. ( 20) and the experimental data for dilute systems, we can think of 2 other effects that can render the thinning law to become closer to an exponential decay. In the present paper we assumed the case of a theta-solvent. However, capillary thinning was also studied for polymers in good-solvent conditions like high-molecular weight dilute solutions of polyacrylamide (PAM) in water. [START_REF] Stelter | Validation and application of a novel elongational device for polymer solutions[END_REF][START_REF] Stelter | Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer[END_REF] The size of an unperturbed polymer coil in a dilute good-solvent regime scales as 0 RN   ,

where  is the Flory exponent. In this regime the tension force f of an elongated chain increases with the end-to-end distance R in a nonlinear fashion, / emerged. In a theta-solvent   while in good solvent   which is more than twice closer (than the theta-solvent value) to   = 0 required for the exponential thinning which would be formally predicted for  =2/3.

The last effect concerns the molecular weight polydispersity. In the present paper we assumed a monodisperse system. In experimental systems the chains are always polydisperse, and this feature is known to be very important for polymer dynamics. This applies, in particular, to the coil-stretching kinetics during capillary thinning. In the polydisperse case shorter chains should be elongated less as they start their elongation later than chains of higher molecular weight. Moreover, as soon as the thinning rate drops at the transition to the viscoelastic regime (when the polymer stress starts to dominate the viscous stress due to the solvent), the shorter chains may start to contract thus diminishing the polymer stress and, therefore, leading to an increase of the thinning rate  (which is opposed by the polymer stress). As a result, the effect of hydrodynamic interactions (dictating a power-law decrease of  , see eq. ( 20)) may be (at least partially) counterbalanced. As a matter of fact, the macromolecular polydispersity was taken into account in the classical study [START_REF] Entov | Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid[END_REF] showing that its effect (with no hydrodynamic interactions) leads to a slower than exponential decrease of the filament thickness (a stretched exponential law).

To resume this part, we stress that while the single-exponential thinning law was reported in all experimental studies on dilute, semidilute and concentrated unentangled polymer solutions we know of (which is slightly surprising as such since the classical paper of Entov and Hinch [START_REF] Entov | Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid[END_REF] predicts broadening of the filament thickness decay in the case of polydisperse polymers, cf. eqs. 9, 10 in ref. 26), our theory does generically predict a power-law ( 2 t  ) thinning stage due to unscreened hydrodynamic interactions in dilute theta-solutions of monodisperse high-molecular weight linear polymers in the absence of associative reversible bonds between polymer segments.

When the radius of the thread falls below a critical value a 0 which is smaller than the macromolecular contour length L, another capillary-driven instability mechanism comes into play, which is accompanied by a release of the solvent onto the thread surface in the form of annular drops. Such a mechanism has already been considered for threads of solutions of rodlike macromolecules, [START_REF] Subbotin | Capillary-induced Phase Separation in Ultrathin Jets of Rigid-chain Polymer Solutions[END_REF][START_REF] Subbotin | Multiple droplets formation in ultrathin bridges of rigid rod dispersions[END_REF] where the droplet formation was found to be an activated process. By contrast, it is shown here that in threads of dilute solutions of semi-flexible polymers the droplet formation proceeds without any energy barrier. This leads to a fast formation of numerous annular droplets.

It is remarkable that the critical radius a 0 (cf. eq. 20) is independent of the polymer molecular weight, but is proportional to the Kuhn segment l of polymer chains, and is inversely proportional to polymer concentration, so a 0 is larger in more dilute solutions of stiffer chains. It 

t

  associated with the Plateau-Rayleigh capillary instability of a thread of radius a and correspond to predominantly inertial and viscous forces, respectively: Oh 0.5 / VI  . If the thread is thick enough so that Oh 1, the inertial and capillary forces dominate (inertia-capillary regime or I-regime) and the radius of the thread neck follows the 2/3 scaling law is the putative breakup time. Otherwise

  equilibrium size of the polymer coils is 0 s R lL b N . We assume that the concentration of monomer units in solution, c , is less than the coil overlap concentration

Figure 1 .

 1 Figure 1. The orientational factor ()Is.

  end-to-end distance of the chain along the thread axis, the stretched coils in  solvent can be approximated by a cylinder of length be considered as a dilute solution of extended coils, whereas at * zz R R L the solution of stretched chains is semidilute. When the chains are stretched very strongly, z RL , and the tension force of a chain / Tl  , its transverse fluctuation size n R begins to decrease ( 0 n RR  ). The monomer concentration inside the fluctuation volume of such stretched chain,

  on eqs 7, 8, 9a,b we can describe the dynamics of the thread prior the breakup event. Let us focus on the thinnest part of the bridge (the thread neck of radius neck aa  ) assuming the dilute solution regime * cc  . If initially *

2 wM

 2 w ML  . In fact, 0 a is defined by the relation 1  is proportional to the effective viscosity  which, in turn, also scales as in the stretched-chain regime, z RL (see eq below). The 2 effects thus compensate each other yielding an M w -independent 0 a . On the other hand, the viscosity due to highly stretched chains is proportional to their concentration,   , hence is virtually independent of  . It is therefore found that the thread thinning follows a power law, 2 at   

  a linear dependence of the friction force on the longitudinal size of the chains. This behavior is a consequence of hydrodynamic interactions which should prevail for low polymer volume fraction *  . It clearly differs from the exponential thinning law typically observed in experiments with polymer solution threads. Such an exponential behavior, which is not expected for dilute solutions according to our theory, can be explained by the following physical effect: When the stretched chains are in a semidilute regime there are contacts between monomers of different chains. If we assume that the monomers (or a group of monomers) can form transient bonds between the chains, so that the lifetime b  of a bond is long, 3 / bs dT  , then the polymer chain dynamics can change drastically 84 : in this case it can become Rouse-like with a high effective friction per chain, *  , which is proportional to the bond lifetime and the number of bonds b n . The bond number per chain is b nN  , i.e. it is proportional to the number of monomers, therefore the chain relaxation time  and eq[START_REF] Papageorgiou | Analytical description of the breakup of liquid jets[END_REF] should be replaced by the Rouse type equation * . The joint solution of this equation and eqs (8), (12), (19) leads to exponential thinning of the thread,

  c N , which is compatible with * cc ). Note, that eqs 23, 24 can be derived based on eqs 8, 9, 17, thatfrom the polymer stress point of viewthe extended chains behave as rigid rods of the same length in the "final" regime, 0 aa  . Based on the above results, in Figure2awe present a schematic evolution of the thread (neck) radius, in which inertial-capillary, viscoelastic and high-viscosity regime are identified.

Figure 2 .

 2 Figure 2. (a) Schematic plot of the thread radius evolution in which 3 main stages are identified,

  shown above the chains are stretched almost completely along the thread axis. The number of chains in the cross-section is

ma

  (equal to the thread radius far from the droplet):
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 3 Figure 3. (a) Thread deformation for a solution of rodlike macromolecules. H a a   is

dV.

  The total free energy change (minimal work required to form the droplet) is represented as a sum of osmotic and capillary terms process the local concentration of polymer in the thread core changes only slightly, so the osmotic pressure is

FFT ) even for m aL leading to a very low droplet nucleation rate unless the thread

  in refs. 71, 72 shows that the nucleation energy barrier bar can stay high ( bar

  maxHh . It is therefore clear that for1 const  the deformation energy is subdominant, so the droplet formation is favorable and occurs without any energy barrier. This condition is corroborated by the following argument: for max r hl the concentration decrement at the polymer core boundary, the total concentration tend to vanish in this regime. The condition 0 c  obviously means that polymer chains can not move further into the solvent droplet, in other words this condition defines the boundary of the polymer accessible zone (core/solvent interface, cf. Figure2b). Therefore max h can not significantly exceed r l ( max r hl ), so the polymer deformation energy cannot increase any more once the droplet grows beyond r Hl . As a result, the total energy cap def  keeps decreasing also in the regime r Hl .To resume, we established the following condition of spontaneous droplet formation (cf.Therefore the condition (47) is always valid in the extended chain regime, beginning of section II). In other words, the spontaneous droplet formation is predicted to start as soon as the chains become strongly extended. At that point many droplets can grow simultaneously with a minimal separation 0 2 a  .

1 m.where q=2 and 12 ,

 112 chains do not move along z-axis (since they are strongly stretched and the wave-length <<L) and taking into account that the friction force per unit length of the thread is negligible since  > a and 0 Using the relevant formula for the total curvature  are small amplitudes of perturbations one finds the dispersion relation:



  is much shorter than both the Rouse time R  and the thread thinning time 6/ a , which (for 0 aa ) is comparable to R

  where 0  is the initial polymer concentration before the droplet formation, we arrive at the following maximum polymer volume fraction in the string   :

  characteristic size H of solvent droplets is much larger than the string thickness, Ha , hence the droplets are nearly spherical with radius 0 R H a . As a result, the droplet capillary pressure, / R  , can be neglected in comparison with the capillary pressure in the strings, / cap Pa   . The droplets are connected by string segments of length  (  -string) which is found from the volume conservation
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 429 Figure 4: Illustration of a beads-on-string structure involving partial penetration of the

/

  tension , the bending force after deviation of the chain in the radial direction on the length 0 ha reads (per unit length of the chain) C h a ). Polymer segments occupy the volume 2 0 ah in the droplet zone (| | / 2 z   ), hence their concentration there is 22 00 / b c c a h and the osmotic pressure equals to 31



  strongly stretched and a further thinning proceeds according to the viscoextension, () t  , in the thinning process shows a non-monotonic time-dependence: in the inertial regime, but then decreases as 4/t  in the viscoelastic regime (cf. eq.

.

  is also important that the droplet formation time *  (cf. eq. 53) is much shorter than both the the classical capillary instability in the regime of high viscosity: the ratio *2 0 / ~( / ) PR La  is proportional to the square of the polymer molecular weight. This property ensures that in the regime 0 aL the (80) This equation for k H is valid for s ~ 1. In the general case (including s << 1) the equation should be modified as 0.5ln( / ) (1 ) ln( / ) The weak dependence of k H on s is neglected in what follows.

  

  the parallel component of the friction coefficient per unit length of the stretched chain,

	ln		/		  0.5ln 1/

s  is the solvent viscosity, and H k is the hydrodynamic factor, 69 HH kd  , where 1/2 H d   is the hydrodynamic screening length.
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  2,5 in ref. 46).

	with a renormalized viscosity 62,71,77
									3 sz 1 18 H c R kN     
		Note that 0 a is larger than the Gaussian coil size 0 R since typically	ll  	T	and
	On the other hand, 0 a is smaller than the total chain length L if	/ c c	*		2 TK 1/2 ( / ) l l N  	, i.e.
	min cc 	, where the minimum concentration
								min c	22 1 T l  N l l 1		1/ (	2 KT 1 N l l 	)	(22)
	corresponds to a really dilute regime, c min << c* for N K >> 1. For example, the value of 0 a for
	PEO/water solution is 0 6nm (1/ ) a  	( 0.8nm l 	, /2 ld  ,	 	73mN/m	), for PAN/DMSO
	solution 0 17nm (1/ ) a  	( 2.5nm l 	, /5 ld  ,	 	46mN/m	), and for DNA/water solution
	0 a	10μm (1/ )  	( 100nm l 	, / ld  , 20	 	73mN/m	). Therefore, a 0 ~ 1m for dilute
	solutions (	 	1%	) of flexible polymers (PEO, PAN), and it is much larger for semirigid
	polymers like DNA.	
		At longer times	t  	R	the polymer chains become nearly fully stretched, z RL , and the
	bridge enters the "final" stage of capillary thinning, which proceeds according to the classical
	law: 33,34				
								6 at    ,	0 aa 	(23)

* cc  .

  is the polymer/solvent friction constant, and m is the number of chains in a string cross-section. The free energy  of the string is a sum of the surface energy and the

					s	23 1 12 m t dz () m     0 1        	2	(61)
	where		2/ sH k 		
	interaction energy,		2 a     	2 a f  , where f int is defined in eq 1. Therefore, the energy-int
	dissipation balance reads	
						d dt 	2  a  	a        	s	(62)
	Eqs 61, 62 lead to		
						  23 2 1 4 T a d   2 12 a m     3    	(63)
	Taking into account that	/    	,	22 00 /1 aa  


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	(with the chain contour length	 L M M l  01 / w 	10μm	, where 0 44 M 	and 1 0.4nm l 	) shows
	that the maximum critical radius 0 a which is found from the condition	0 22 aL	

  ) On the other hand, the polymer drag coefficient  p remains proportional to R. What matters for the thinning law (in the viscoelastic regime) is the ratio

	/ ( f R  fR   ) / p R R (independent of R), an exponential thinning is predicted. If, however, this ratio decreases with R : if it is constant a t R t as R  (here (2 3 ) / (1 )       ) a power law   1 1/ 1 1/ ()      , with 1 23   , is



for R << L.

predicted development of solvent droplets is the dominant process, possibly preventing the thread breakup and leading to fiber formation.

Thinning of polymer solution threads involving nonionic and ionic polyacrylamides of different chain rigidity in water and water/glycerol mixtures were studied experimentally in refs. 33, 34. Interestingly, both viscoelastic and quasi-Newtonian regimes (with fully stretched chains in the latter) were detected. It was found, in particular, that the ratio of the terminal elongational viscosity E  to the corresponding relaxation time E  is higher for flexible (nonionic) macromolecules than for rigid-chain (ionic) samples. [START_REF] Stelter | Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer[END_REF] This difference may stem from the following simple effect: the viscosity E  is mainly defined by the total length of a stretched chain, while the relaxation time E  depends in addition on the chain tension; the chain tension in turn is inversely proportional to the rigidity (Kuhn) segment, so the relaxation time E  is directly proportional to it, hence the ratio /

EE

 is lower for a more rigid polymer. In addition to this effect, contact interactions between aligned rigid segments and their electrostatic interactions may play a significant role.