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Abstract: 

The dynamics of capillary break-up of a fluid thread of a dilute polymer solution near the Θ-

point is studied using a molecular approach. Several regimes arising during the development of 

capillary instability have been identified and investigated. We show that in the course of thread 

thinning the macromolecules can undergo a coil-stretch transition and analyze its kinetics. In the 

process of chain stretching, the inertial regime turns into a viscoelastic stage and then a highly 

viscous quasi-Newtonian regime with almost completely stretched macromolecules. In the 

viscoelastic regime the hydrodynamic friction force is proportional to the chain extension, and 

the radius of the thread decreases according to a power law. This differs from the experimentally 

observed exponential law arising from the linear dependence of the friction force on the contour 

length of the chain. A possible physical mechanism giving rise to an exponential thinning of the 

thread formed by dilute polymer solution is discussed. We further established that once the 

thread radius becomes smaller than the chain contour length after the end of the viscoelastic 

regime, such ultrafine thread becomes unstable with respect to the development of annular 

solvent droplets. It is predicted that formation of the droplets occurs with no energy barrier, so a 

“beads-on-string” structure emerges readily as a result. 

 

 

I. INTRODUCTION 

 

The dynamics of polymer jets is one of the important areas of polymer rheology with long 

history of development, which continues to attract a significant scientific interest due to 

widespread use of such jets for spinning fibers, printing and spraying.
1-3

  The property of 

polymers to form fibers is well known in living nature and is associated with the ability of 

polymer solutions and melts to undergo large elastic deformations. This process is usually 
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associated with the transition of macromolecules from coiled to stretched state. However, many 

aspects of jet thinning and fiber formation still remain poorly understood. Importantly, the jet 

behavior is often accompanied with various types of instabilities.
4-7

  

A noticeable progress has been achieved in the study of flows of Newtonian fluids with a 

free surface.
8-19

 To some extent it can serve as a basis to study also the liquid bridges and jets 

formed by polymer solutions. The dynamical behavior of a Newtonian fluid thread is related to 

its Ohnesorge number Oh / a  , where a  is the radius,   is density of the liquid,   is its 

viscosity and   is its surface tension. This number reflects the ratio of two timescales,    

   √       and 6 /V a   , which are associated with the Plateau-Rayleigh capillary 

instability of a thread of radius a  and correspond to predominantly inertial and viscous forces, 

respectively: Oh 0.5 /V I  . If the thread is thick enough so that Oh 1, the inertial and 

capillary forces dominate (inertia-capillary regime or I-regime) and the radius of the thread neck 

follows the 2/3 scaling law  
2/3

( ) ba t t t   ,
20

 where bt  is the putative breakup time. Otherwise 

(for Oh 1) the thread behavior is governed primarily by viscous and capillary forces (visco-

capillary regime or V-regime) and the neck radius decreases linearly in time,  ( ) ba t t t  .
14 

It is well-known that capillary forces constitute a generic mechanism leading to instability 

of liquid cylindrical threads,
21,22

 inherent in both Newtonian and polymer fluids, and to the 

eventual thread breakup. However, the break-up of a polymer solution string proceeds in a much 

more complicated way due to viscoelastic behavior. Early experimental
23,24

 and theoretical
25,26

 

studies of pinching-off have revealed an important role of elasticity associated with the transition 

of polymer chains to an elongated state. Instead of breaking up into individual droplets, a bead-

on-string structure is often formed, in which the droplets are connected by long-lived bridges. 

The emergence of such long-lived bridges depends on the relationship between the longest 

characteristic relaxation time   of the quiescent polymer solution and the timescales I  and V . 
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Since the times I  and V decrease as the thread gets thinner and   is constant unfolding of  

polymer chains must occur at a certain finite diameter of the thread (when  max ,I V   ). 

During thinning of a thread formed by a solution of high-molecular weight polymers in a low-

viscosity solvent, a transition from the inertial-capillary to the elasto-capillary regime  can occur 

even at very low polymer concentrations.
27,28

 The theoretical analysis of the elasto-capillary 

regime was carried out based on a balance of the viscoelastic and capillary forces, while the 

polymer viscoelasticity was taken into account mainly  by using the classical constitutive 

equations of Maxwell, Oldroyd-B and FENE-P models,
29-35

 which are based on a dumbbell 

model with constant friction. According to these theories the radius of the thread a decreases as 

/3( ) ta t e   in the elasto-capillary regime. This exponential law was observed in many 

experiments with dilute, semi-dilute and concentrated solutions without entanglements,
32-44

 in 

which the methods of CaBER
5,24,35

, DoS
40

 and ROJER
43,44

 rheometry with visualization of 

pinch-off dynamics were used. The study of extension and breakup of polymer filaments at very 

high strain rates (high Weissenberg number) was made possible by using a double piston 

stretching apparatus.
45

 At the end of the elasto-capillary (viscoelastic)  regime the polymer 

chains are almost fully elongated, and the polymer solution starts to behave like a quasi-

Newtonian liquid of  high viscosity associated with the complete stretching of the chains.
33,42

 As 

an important effect it was found experimentally that the apparent relaxation time   coming from 

fitting ( )a t  with an exponential significantly increases with concentration in the dilute solution 

regime (c < c*). 
39,40,46-49

 This result is at odds with the Rouse-Zimm theory for dilute solutions, 

in which the relaxation time depends only on the molecular weight, but not on the concentration.  

This contradiction triggered questions on how to define a dilute solution and how interchain 

interactions, including hydrodynamic ones, affect the rheology of solutions in extensional 

flow.
47-49 



5 

 

The Plateau-Rayleigh capillary instability was also observed in thin filaments formed by 

solid gels.
50

 As follows from a comparison of elastic and surface energies, the instability arises 

when the radius of the filament decreases below the length scale / G  where G  is the elastic 

shear modulus of the solid.
51-53

 As a result, two types of morphology have been identified: 

cylinders on a string and beads on a string.
53

  

Another type of instability arising in polymer solution strings is associated with the 

formation of blistering patterns or pearling patterns at the end of the exponential thinning regime, 

when the polymer chains are highly stretched,
36,54-60

 or with phase separation accompanied by 

the emergence of small solvent droplets onto the jet surface during a flow-induced extension.
61-63

 

These types of instabilities differ from the classical Plateau-Rayleigh pinching. Two mechanisms 

have been proposed to explain this behavior, namely, the migration of macromolecules into 

thinner regions with a higher concentration due to the stress-concentration coupling effect
64-67

 , 

and the flow-induced phase separation leading to the formation of nano-fibrils, which 

subsequently condense in the jet core pressing the solvent out to the surface.
68-70

  While the first 

approach uses phenomenological equations for the dynamics of a polymer solution, the second 

approach is based on molecular concepts. Note that in both cases the instability results in an 

inhomogeneous distribution of polymer in the jet. 

In the present paper we focus on the final stages of capillary thinning of a liquid bridge of 

dilute polymer solution when the bridge diameter gets smaller than the contour length of 

macromolecules (section III). Such a regime can also appear in a jet that is stretched under the 

action of an electric force in the process of electrospinning or under the action of an external 

force applied to the free end of the jet upon fiber spinning. Recently we studied the behavior of 

fine threads formed by solutions of rigid rods.
71,72

 It has been shown that capillary forces are 

responsible for the extrusion of the solvent to the surface, where it forms annular droplets, so that 

the rods are concentrated in the core of the thread (thus leading to the beads-on-string structure). 

We now extend this theory to the case of thin threads of dilute solutions of long flexible or semi-
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flexible macromolecules. It is shown that for aqueous solutions of PEO with Mw~10
6
 the beaded 

structure can emerge for the filament thickness of order or below 1m. Such beads-on-string 

structures have been indeed observed experimentally
36,38,54-60

. It is noteworthy, however, that it is 

hard to optically resolve the evolution of these features on a submicron scale, so an improvement 

of experimental visualization techniques may be required to fully test our predictions.   

In the next section II we first discuss the relevant static and dynamical properties the bulk 

polymer solutions, and then present the basic dynamical equations for capillary thinning of a 

polymer solution thread. We then turn to the viscoelastic (elasto-capillary) regime associated 

with the extension-flow induced coil-stretch transition. We show that in dilute theta-solutions the 

polymer elongation dynamics is strongly affected by hydrodynamic interactions giving rise to a 

power-law time dependence of the filament radius 
2( )a t t  .  Such power law for ( )a t  was 

already predicted
44

 based on similar ideas. We remind however that most experimental data
33-

44,46
 rather point to an exponential decay of ( )a t  even in the dilute solution regime. To 

tentatively explain this contradiction, we propose a new physical mechanism which can change 

the thinning law back to the exponential decay (see end of section II). Furthermore, in section V 

we also discuss a couple of other physical effects which may modify the thinning law rendering 

it closer to a single-exponential decay.  

 

II. THE DYNAMICS OF POLYMER SOLUTION THREAD  

 

Let us consider a solution of semiflexible macromolecules of contour length L , Kuhn 

segment length l  and diameter d , d l L . The number of repeat monomer units in the 

macromolecules is N , the monomer length equals to 1 /l L N  and the statistical segment length 

is 1sb ll . The equilibrium size of the polymer coils is 0 sR lL b N  . We assume that the 

concentration of monomer units in solution, c , is less than the coil overlap concentration
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* 3

02 /c N R .
73

  For long chains, / 1KN L l , the condition *c c  ensures that the polymer 

volume fraction is small, 2

1 / 4 /l d c d l  , so the solution is isotropic (no tendency for 

nematic ordering).  

The free energy of interactions between polymer segments generally depends on their 

orientations; per unit volume it is given by
68,69,74

  

  2

int ln 1 / /
2

T
f Bc I T                                               (1)  

where 
2

1
2

B l d


 , B absT k T  is temperature in energy units ( Bk  is the Boltzmann constant), and 

  is the theta-temperature for isotropic dilute solution. The orientational factor 
4

sinI 


   , 

where   is the angle between two interacting polymer segments.
74

 For the trial orientational 

distributions defined in eq. 8 of ref. 68 the factor I  depends solely on the orientational order 

parameter coss  , where   is the angle between a polymer segment and the axis of 

preferred orientation and averaging is performed over the orientations of all segments. The graph 

of the function ( )I s  is shown in Figure 1.  

 

 

Figure 1. The orientational factor ( )I s . 
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We then consider a liquid bridge formed by a drop of the solution placed between two 

parallel plates and stretched by moving the plates a certain distance apart from each other. After 

the plate motion is stopped the bridge thickness decreases due to capillary forces. The 

elongational flow inside the bridge is characterized by the extension rate z

z








 where z  is 

the flow velocity along the jet axis z . This velocity is connected with the radius of the bridge 

( , )a t z  through the volume conservation equation  

 
2

2 0z

a
a

t z


 
 

 
                                                       (2) 

 where it is assumed that vz is uniform in a cross-section of the jet.  

At sufficiently high extension rate   the chains begin to stretch along the stream. At low 

concentrations 
*c c  a chain stretching is possible if 1Z  , where 3

0 /Z sR T   is the Zimm 

time.
69,75

 The unfolding of the chains in this case occurs as a sharp coil-stretch transition,
68,75

 

which is accompanied by a significant hysteresis.
48,49

 Three polymer solution states of stretched 

chains can be distinguished.  When stretching is not too strong, 0 zR R L ,  where zR  is the 

end-to-end distance of the chain along the thread axis, the stretched coils in  solvent can be 

approximated by a cylinder of length zR  and radius 0R . The average concentration of 

monomers inside the stretched coils is  2

0( ) /st z zc R N R R . It decreases with increasing value 

of zR ; therefore, for some *

z zR R  the coils must begin to overlap. The onset of this regime is 

defined by the condition * *( )st st zc c R c , leading to  
* 2

*

0
4

z

d
R R

l



 
 (

* 2 3/d l L  ). 

Thus, at *

0 z zR R R    the system can be considered as a dilute solution of extended coils, 

whereas at *

z zR R L  the solution of stretched chains is semidilute. When the chains are 

stretched very strongly, zR L , and the tension force of  a chain /T l ,  its transverse 
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fluctuation size nR  begins to decrease ( 0nR R ). The monomer concentration inside the 

fluctuation volume of such stretched chain,  2/st nc N R L , increases as a result, and at 

 
1/2*

1n nR R l c


  it exceeds the average concentration c , so the extended chains become non-

overlapping again: In this regime the average distance between two  neighboring chains exceeds 

nR  , i.e. the polymer solution is similar to a  dilute solution of strongly oriented rigid rods. 

To study the dynamics of a stretched chain we first assume that there is no flow, 0  . 

Then the stretched macromolecule will relax to an equilibrium coiled state and this process can 

be described using the energy-dissipation balance equation implying that the accumulated elastic 

energy of a chain transforms into heat (as no external work is done on the system):  

0eldF
D

dt
                                                            (3) 

where elF  is the elastic free energy of a chain and D  is the rate of energy dissipation. 

Introducing the orientational parameter cos /zs R L  , the elastic energy is written as
62,71

  

                    coth 1
2

el

TL
F A A

l
  ,            coth 1/s A A                                  (4a) 

In what follows we will approximate equation (4a) by  

                   
 2 2

2

3

2 1
el

s sTL
F

l s




                                                       (4b) 

To find the rate of dissipation D  first note that the friction force acting on a polymer 

chain in a flow depends on the chain conformations and interchain interactions.
48

 In the dilute 

solution  case the friction force f is proportional to zR  (rather than to N) due to unscreened 

hydrodynamic interactions. This idea, which is known as the linear drag model, was proposed 

long ago
76,77

 and further elaborated more recently
48,49

 . The reason for such linear dependence (

zf R )
  

is that a stretched chain can be considered as a sequence of Pincus blobs (elastic or 

tension blobs)
75,78

 whose volume fraction is always small for c <c* , so the blobs never overlap. 
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Therefore, the hydrodynamic interactions within a blob are not screened, so a sequence of blobs 

is hydrodynamically similar to a long rod of length zR . Next we employ the usual logarithmic 

approximation for the hydrodynamic drag (cf. Appendix 8.1 of ref. 79). The relative velocity (in 

z-direction) between a chain segment n and the quiescent solvent is  
1

2

zdR n

dt N

 
 

 
, where 

0 n N  .  Therefore, the dissipation function due to polymer/solvent friction is given by 

2 2 2

0

1

2 6

zR

s zz z z

z H

RdR R dR
D dx x

R dt k dt




     
       

    
                                (5) 

Here /zx nR N , 2 /s Hk   is the parallel component of the friction coefficient per unit 

length of the stretched chain, s  is the solvent viscosity, and Hk  is the hydrodynamic factor,
69

 

   ln / 0.5ln 1/H Hk d  , where 1/2

H d   is the hydrodynamic screening length.
79,80

 

Substitution of eqs 4b, 5 in eq 3  yields 

   
2

2 4 21
1 1 2

3
R

ds
s s s

dt
                                                   (6) 

where 
2

18

s
R

H

lL

k T


   is the Rouse relaxation time.  This equation gives  for 1s  : 

0( ) / Rs t s t   , i.e. the relaxation time of Rz=sL from an initial value  Rz0 > R0 to the 

equilibrium (Rz ~ R0) is 0 0( ) /z R zR R L  . If  Rz0 ~ R0, we arrive at the Zimm relaxation time 

3

0/
18

s
Z R KN R

T


  .

75,77 

The relaxation behavior of macromolecules gets more complex in the presence of a flow 

whose effect can be taken into account by including the convective term  
conv

s s  in eqs 6 

:
81,82 

   
2

2 4 21
1 1 2

3
R

ds
s s s s

dt
 

 
      

 
                                     (7) 



11 

 

Initially the orientational parameter is 0 / 1/ 1Ks R L N .  

 The stresses generated in a polymer solution under flow include contributions from the 

solvent, s
σ , and polymer, p

σ , i.e. s p σ σ σ . In the case of a uniaxial flow with extension rate 

  the normal stress difference due to Newtonian solvent is 3s s

s zz rr s       .  The polymer 

component p

zz  of the stress tensor is determined in the usual way by averaging the product of a 

polymer chain longitudinal size and the corresponding tension force el
z

z

F
f

R





:
79 

   
 

 

2 2 4

1

2
2

3 2

1

p

zz z z

s s slc
R f cT

N l s


 
 


                                         (8) 

As for the radial component p

rr  of the polymer stress tensor, it is relatively small, p p

rr zz  , 

since the chain size in the radial direction, nR , is much shorter than its longitudinal size, z nR R

. Therefore, the polymer normal stress difference is p p p

p zz rr zz     . 

The dynamics of the thread in the scope of the slender body approximation ( / 1a z  ) 

is described by the general momentum equation 

 2 2 2 23 0z
z z s p

C
a a a

t z z z


     

     
      

     
                      (9a) 

Here the radius a  and velocity z  depend on the axial coordinate z and time t. The total 

curvature of the thread surface reads  

 

   
1/2 3/2

2 2

1

1 1

zz

z z

a
C

a a a


 

  
                                             (9b) 

so that the Laplace pressure is C  ( /za da dz  , 
2 2/zza d a dz  ). Based on eqs 7, 8, 9a,b we 

can describe the dynamics of the thread prior the breakup event. Let us focus on the thinnest part 

of the bridge (the thread neck of radius necka a ) assuming the dilute solution regime 
*c c . If 

initially 
*a a  where  
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2
* sa




                                                                (10) 

is the characteristic length separating inertia dominating and viscosity dominating regimes, the 

bridge dynamics is determined by the inertial terms in eq 9a. In this regime  

 
1/3 2/3( ) /a a t t                                                       (11) 

where bt t t    is the time left to the breakup ( bt  is the breakup time).
15,16

 Typically the neck 

length zL  (defined as the region where the jet radius is close to necka ) is short, zL a , in the 

inertial regime. With no polymer the thinning law of eq 11 would approximately hold until a  

becomes smaller than *a  (note that * 10nma  for water). The case of polymer solution is 

different: here the effective viscosity increases due to coil-stretching transition at 1Z . From 

eq 2 we obtain   in the neck region (where /a z   is small and can be neglected): 

2 da

a dt
                                                          (12) 

Thus, we get using eqs. 11, 12: 
4 1

3 t



,  leading to 

3

0
18

s
Zt R

T


   and the critical thread 

radius acs at the coil-stretch transition, 

 
1/3

* 4 2

0/cs Ta a l R                                                     (13) 

where /Tl T   (note that 0.2nmTl  for water).  Obviously *

csa a  if  

 
1/3

* 2

0 TR a l                                                       (14) 

which means that the polymer chain is long, 1KN . The subsequent flow-induced coil-

stretching at ( ) csa a t a   is defined primarily by convection,  /z zdR dt R . Therefore 

 
2

0 /z csR R a a                                                     (15) 

where ( )a a t  is still defined in eq 13 for the inertial regime.  
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It is important, however, that the inertial regime breaks as soon as the normal stress 

difference,  
2

0

3
/p p p

p zz rr zz z

cT
R R

N
     , becomes comparable to the capillary pressure 

/ a  (cf. eq 9a). This happens at va a  

1/3

5/3 *4/9 10/9

0*v T

c
a R a l

c


 
 
 

                                                    (16) 

At va a  the thread dynamics is defined by a competition of viscoelastic and capillary 

forces. Neglecting the inertial effects in this regime, the force balance implies that 

/zz rr a   .
73

 Furthermore, here we can also neglect the solvent contribution to the total 

normal stress difference since *

va a  (which is valid due to the assumed condition, eq 14). This 

leads to the following important relation  

      /p a                                                            (17) 

Note, that for a Newtonian fluid 3zz rr    is typically 0.425 / a  in the viscosity-

dominated regime (called the viscous regime in ref. 17).
83 

Remarkably, the purely convective 

stretching, eq 15, can not work in this new viscoelastic regime (at va a ): otherwise the balance 

between 
p  and / a  would be destroyed. Moreover, the “inertial” eq 11 for thread thinning 

also fails in this regime.  

To obtain both ( )a t  and ( )zR t  here we use eqs 7, 8, 12, 17 in the regime 1s  

(assuming that the chains are far from the full extension, zR L ). Eqs  7, 8 can be simplified as
 

z
z

R

dR L
R

dt



                                                         (18) 

             
2

03 /p z

cT
R R

N
                                                    (19) 

Solving these equations, we find 
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 /
3

z R

L
R t  ,      

2

0 /Ra a t ,     4 / t ,         Rt                             (20) 

where 

 
* 2

2

0 0

3 3
/

2 4
T

c ld
a l l R

c T


 


  .                                                     (21) 

is independent of molecular weight wM L . In fact, 0a  is defined by the relation 1R  where 

2

R wM   and the thinning time 01/ /V a     is proportional to the effective viscosity   

which, in turn, also scales as 2

wM  in the stretched-chain regime, zR L  (see eq  below). The 2 

effects thus compensate each other yielding an Mw -independent 0a . On the other hand, the 

viscosity due to highly stretched chains is proportional to their concentration,   , hence 

0 1/a   since R  is virtually independent of  . It is therefore found that the thread thinning 

follows a power law, 
2a t  , where the prefactor   is inversely proportional to the polymer 

concentration and depends on the polymer chain parameters. Importantly, the prefactor does not 

depend on the initial radius of the thread. Hence, as soon as the bridge enters the viscoelastic 

regime, it must become nearly uniform over a long axial segment (with ( , ) ( )necka t z a t ), which 

is in agreement with experimental results.
39,46,47  

Noteworthily, the 3 scaling dependences in eq. 

(20) are in full agreement with the results of a detailed theoretical study
48

 (cf. eq. 57 in ref. 48 

and the text below it) taking into account a partial screening of hydrodynamic interactions in 

dilute solutions (this screening, however, is weak and leads to just logarithmic corrections to the 

scaling laws).  

  The power law 
2a t  arises due to a linear dependence of the friction force on the 

longitudinal size of the chains. This behavior is a consequence of hydrodynamic interactions 

which should prevail for low polymer volume fraction 
*  . It clearly differs from the 

exponential thinning law typically observed in experiments with polymer solution threads. Such 

an exponential behavior, which is not expected for dilute solutions according to our theory, can 
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be explained by the following physical effect: When the stretched chains are in a semidilute 

regime there are contacts between monomers of different chains. If we assume that the 

monomers (or a group of monomers) can form transient bonds between the chains,  so that the 

lifetime b  of a bond is long, 3 /b sd T  , then the polymer chain dynamics can change 

drastically
84

: in this case it can become Rouse-like with a high effective friction per chain, 
* , 

which is proportional to the bond lifetime and the number of bonds bn .  The bond number per 

chain is bn N , i.e. it is proportional to the number of monomers, therefore the chain 

relaxation time * 2 2

R b RN     and eq (18) should be replaced by the Rouse type equation 

*

z z
z

R

dR R
R

dt



  . The joint solution of this equation and eqs (8), (12), (19) leads to exponential 

thinning of the thread, 
*

2
exp

3 R

t
a



 
  

 
. For consistency with thermodynamic polymer 

solubility, we have to demand that these bonds are difficult to dissociate, but also equally 

difficult to create, so that the statistical weight of a bond is similar to that of a simple contact. 

The increase  of the relaxation time *

R  with the polymer concentration is in qualitative 

agreement with the experiment; however,  experimentally, a weaker dependence is 

observed.
35,38,39,42,46,47

 Such bonds are possible, for example, in PEO/water systems which are 

often used in experiments. They originate from attractive hydrophobic interactions of CH2 

groups in PEO, and by hydrogen bonding between PEO units mediated by water molecules.
85

 

These interactions lead to the well-known phenomenon of clustering in aqueous PEO solutions.
86

 

Such reversible bonds may be also expected in aqueous solutions of polyacrylamide (PAM).
33,34

 

They can also lead to formation of microscopic strands, which are responsible for significant 

non-Newtonian effects in dilute polymer solutions during extension.
87

 Thus, the thinning 

behavior of filaments  of a polymer solution generally depends on the chemical nature of the 

chains, their concentration, and interchain interactions, which are affected by the extension flow. 
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Note however that our approach based on the hydrodynamic description is quite general and 

does not rely on the chemical nature of macromolecules.  

  Noteworthily, deviations from the exponential thinning law in very dilute solutions have 

been observed experimentally,
39,46,47

  for example, in aqueous PEO solutions (Mw=10
6 

g/mol) 

with concentration c ≤ 0.03 wt % < c
*
 = 0.17 wt %.

38
  As far as we know a detailed analysis of 

the thinning law for jets of very dilute polymer solutions has not yet been performed 

experimentally. (In our opinion the experimentally probed viscoelastic regime which spans only 

about a half of an order of magnitude in time is insufficient to unambiguously distinguish 

between the exponential and the power law of jet thinning – cf. Figs. 2,5 in ref. 46). 

 Note that 0a  is larger than the Gaussian coil size 0R  since typically Tl l  and 
*c c . 

On the other hand, 0a  is smaller than the total chain length L if 
* 2 1/2/ ( / )T Kc c l l N

 , i.e. 

minc c , where the minimum concentration 

 2

min 12 2

1

1
1/ ( )K T

T

l
c N l l

N l l




                                                        (22) 

corresponds to a really dilute regime, cmin << c* for NK  >> 1. For example, the value of 0a  for 

PEO/water solution is 0 6nm (1/ )a   ( 0.8nml  , / 2l d  , 73mN/m  ), for PAN/DMSO 

solution 0 17nm (1/ )a   ( 2.5nml  , / 5l d  , 46mN/m  ), and for DNA/water solution 

0 10μm (1/ )a   ( 100nml  , / 20l d  , 73mN/m  ). Therefore, a0 ~ 1m for dilute 

solutions ( 1%  ) of flexible polymers (PEO, PAN), and it is much larger for semirigid 

polymers like DNA.   

At longer times Rt   the polymer chains become nearly fully stretched, zR L , and the 

bridge enters the „final‟ stage of capillary thinning, which proceeds according to the classical 

law:
33,34 

   
6

a t



 ,                   0a a                                               (23) 
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with a renormalized viscosity
62,71,77

  

31
18

s z

H

c
R

k N


 

 
 

 
                                                           (24) 

where the second term dominates (i.e., we assume 3 3/2/ ~ */ Kc N L c N , which is compatible 

with *c c ). Note, that eqs 23, 24 can be derived based on eqs 8, 9, 17, and that 0a a  

corresponds to Rt  . Note also that – from the polymer stress point of view – the extended 

chains behave as rigid rods of the same length in the „final‟ regime, 0a a . Based on the above 

results, in Figure 2a we present a schematic evolution of the thread (neck) radius, in which 

inertial-capillary, viscoelastic and high-viscosity regime are identified. 

 

             

 

Figure 2. (a) Schematic plot of the thread radius evolution in which 3 main stages are identified, 

namely the inertia-capillary regime,  
2/3

( ) bia t t t   where bit  is the inertial breaking time, the 

viscoelastic regime, 
2( ) 1/a t t , and the highly viscous regime,  ( ) ba t t t  . (b) Diagram in 

coordinates ( , a) showing the region of droplet formation in the highly viscous regime (shaded 

area). Here min 1/ L   is the minimum volume fraction and * 1/ L   is the coil overlap 

volume fraction.  
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Let us turn to analysis of a polymer string in which the formation of interchain transient 

bonds is the dominant friction mechanism. In this case the transition from the regime with 

exponential thinning to the quasi-Newtonian regime occurs at the radius of the thread 0a , which 

is determined from the condition 0/ a  , where 2

s N    is the renormalized viscosity 

(see eq 24) and  
1

* 2 21/ R b N   


. From here we find  0 /b sa    . It is interesting to note 

that this radius is independent of the number of monomers in the chain. 

In the next section we focus on the thread dynamics in the high-viscosity regime where the 

basic characteristic timescale of thread thinning is defined by R  or *

R .  

 

III. JET INSTABILITY AND EMERGENCE OF ANNULAR SOLVENT 

DROPLETS  

 

Let us consider the mid-part of the bridge in the „final‟ regime, where the bridge is thin (

0a a L , Figure 2b) and rather uniform axially (so, it can be approximated as a cylinder). As 

shown above the chains are stretched almost completely along the thread axis. The number of 

chains in the cross-section is  

3*
2 1/2

0 4

9
/

2

s

T

b lc
m a Lc N N

c l


                                                   (25) 

for 0a a  ( sb  is statistical segment). This number is large both for 
*~c c  and 

*c c  since 

1N . As already mentioned, the strongly stretched polymer chains seem to be rheologically 

equivalent to rodlike macromolecules. Assuming this equivalence one can try to describe the late 

stages of thread thinning using the results for solutions of rigid rods
71,72

  showing that the thread 

in the regime a L  can get unstable with respect to solvent release in the form of annular 

droplets. It is important to note, however, that in the case of rodlike macromolecules the droplets 
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can not emerge spontaneously: their formation is an activated process taking place if the 

polymeric osmotic pressure is much weaker than the capillary pressure, 0 / a . In the case 

of semiflexible polymers the osmotic pressure in the solution is
70,72

  

1 1 ( )

2 1

I s
cT Bc

N T

  
    

  
                                            (26) 

Here the first term in brackets is due to translational energy and the second term is due to 

interactions ( B  -is the second virial coefficient, see eq 1). In what follows we will assume that 

the system is close to the  -point, i.e. 1 / 1T  and 0k   , where ( ) /k I s T   (

1k ). Hence, for 1/ /N d l  and 0a a ,  / 3 / 3 / 1p a k l d l L       .  

The activation energy of an annular solvent droplet in the case of rods has been calculated 

in refs. 71,72. The activation state for a droplet nucleation involves a finite deformation of the 

cylindrical thread adopting a slightly perturbed axially symmetric shape with radius ( )a a z  

weakly deviating from the mean radius ma  (equal to the thread radius far from the droplet): 

m ma a a  (see Figure 3a).  
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Figure 3. (a) Thread deformation for a solution of rodlike macromolecules. H a a    is 

the annular droplet height,   is its length along the axis. (b) Illustration of the thread structure 

with a single annular solvent droplet for a solution of semiflexible chains involving their bending 

and partial penetration into the droplet. The characteristic length of the annulus is 2 ma   and 

its thickness is H .  

 

The annular droplet of solvent is located in the region / 2 / 2z     (  is the droplet 

length, ma L ). The rods are confined inside the core of radius ( )corea z  ( ( ) ( )corea z a z  

outside the droplet region, / 2z  , and ( )corea z a  for / 2z  ). The optimum shape of the 

droplet is found by minimization of the excess surface area 

/2

2

/2

2 ( ) 1 2d zA a z a dz a





  



    at 

the fixed core radius a  and droplet volume 

/2

2 2

/2

( )dV a z dz a





  



  . It corresponds to a 

surface of a constant curvature C , defined by the differential equation  

      2

2

2

1 z

a
a a a

C a
   


,        2 /a a C                                          (27) 

where ( )a a z , ma a  is the jet radius outside the droplet region, and a  defines the height 

(thickness) H  of the solvent droplet: H a a   . Equation (27) follows from eq (9b) upon 

integration. Thus, the total curvature of the droplet surface is 

1

1
1

2

H
C

a a



 

 
  

 
. For weak 

perturbations, mH a , the length  , the surface area dA  and the volume dV  of the annular 

droplet are found by solving  eq 27 and can be written as expansions for small / mH a   

2 1
2

m

m

H
a

a
 

 
 

 
,      2 24 1d m

m

H
A a

a


 
 

 
,       2 2 3

2 1
2

d m

m

H
V a H

a


 
 

 
           (28) 

The total curvature of the droplet can be represented as  
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 
2

2

1

2

d

m m

V
C

a a
                                                        (29) 

The free energy changes as the solvent is squeezed from the thread core to the surface 

forming a droplet of volume dV . The total free energy change (minimal work required to form 

the droplet) is represented as a sum of osmotic and capillary terms 
surf   . The 

osmotic increment can be found from ( ) dd dV   . During the process the local 

concentration of polymer in the thread core changes only slightly, so the osmotic pressure is 

nearly constant, 0  , so 0 dV  . The surface energy 
surf  varies with dV  as 

 surf dd C dV    , where  1/ mC C a   ,  therefore  

  2 2 / 2surf H                                                          (30) 

and 

   

 

2

0 2
22 2

d
d

m

V
V

a




                                                   (31) 

The energy  dV  shows a maximum at  

 
2

* 2

02 /d d mV V a                                                      (32) 

which corresponds to the activation energy  

                                    2 4 2

02 /bar mF a                                                          (33) 

The analysis given in refs. 71, 72 shows that the nucleation energy barrier barF  can stay high (

barF T ) even for ma L   leading to a very low droplet nucleation rate unless the thread radius 

falls below a threshold ca : m ca a L . It is shown below that the latter condition is irrelevant 

for the case of (semi-)flexible chains.  

In fact, there is a significant difference between the droplet formation process for rod-like 

macromolecules and flexible chains: while rigid rods have to stay inside the cylindrical core, the 
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chains may bend and (at least partially) penetrate into the emerging annular droplet, Figure 3b. 

The driving force for such penetration is of osmotic nature. It is opposed by the bending force 

due to chain tension . In turn  is maintained by the extensional flow which keeps the 

chains in the stretched state:  

 
12

1L cl
a


 


                                                     (34) 

(cf. section III; 1/ 1/ Rt   for 0a a ). The above equations gives /T l  for 0a a , as 

it should be since at 0a a  the chains are stretched almost completely (with 0.5s ), so the 

stretching energy per Kuhn segment is T . (Note that s=Rz /L can be considered as the degree 

of stretching.) The bending force per unit length along the chain is  

f C   

where C is now the chain curvature. The force f  is oriented perpendicular to the chain (that is, 

in the radial direction).  The coarse-grained chain trajectory can be defined as 

0 0( , )r r h r z   

where 0r  is the distance between the chain and the jet axis far away from the droplet region (

z a ). For weak deformation, 1
h

z




, the curvature  

2

2

h
C

z




, and the bending force per unit 

volume is 

 
2 2

1 1 2 2bend

h h
F cl f cl

z a z




 
 

 
                                                     (35) 

Let us turn to the osmotic force. The local osmotic pressure increment is  

*

0T c c                                                               (36) 

where 0c  is the mean concentration far from the droplet region, c  is the local concentration 

increment, 0c c , and    
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*

0

1

TTc c


 
  

 
       at   0c c                                                  (37) 

Using eq 24 and neglecting the ideal-gas pressure, 
*  can be estimated as 

   * 2 2

1 1dl k dl                                                            (38) 

The system gets diluted if h  increases with r : 

0/ /c c h r                                                               (39) 

where we assumed that h r , so that 0r r h    is always close to 0r  and 0c c . The 

osmotic force (per unit volume) in the radial direction reads (on using eqs 36, 39) 

2

2osm

h
F k

r r


 

 

                                                     (40) 

where 

* 2

0k T c                                                            (41) 

The force balance, bend osmF F , then gives 

 
2 2

2 2
0

h h
k

a z r




 
 

 
                                                         (42) 

This linear elliptic equation must be supplemented by the boundary condition ( , ) ( )m mh a z h z , 

where ( ) ( )m mh z a z a  . It can be easily solved using the Fourier transform for z variable. For a 

perturbation ( )mh z  localized within / 2z   (for example  ( ) (0) 1 cos( )m mh z h qz  with 

2 /q   ) we get 

0 0( )/

0( , ) ( ) ra r l

mh r z h z e
 

                                                    (43) 

where  2 2/rl k a q 

 , 1/q a  (recall that 2 a  , cf. eq 28), so 

rl a ,       /k a                                                      (44) 
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Eq 43 is applicable if rl a , i.e. 1 . It means that the polymer concentration is perturbed in 

a narrow skin-zone of thickness rl . The condition 0c c  in this zone is satisfied if 

max (0)m rh h l  since 0/ ~ /m rc c h l  . In this case the total (bending and osmotic) polymer 

deformation energy def   is  

    
2

maxdef h                                                             (45) 

It should be compared with the capillary energy gain (cf. eq 28): 

    
2

2 
2

cap surf H


                                                      (46) 

Here H  is the undulation amplitude (cf. Figure 2b), maxH h . It is therefore clear that for      

1const   the deformation energy is subdominant, so the droplet formation is favorable and 

occurs without any energy barrier. This condition is corroborated by the following argument: for 

max rh l  the concentration decrement at the polymer core boundary, ( )m mr a h z  , is 

comparable to 0c , so the total concentration tend to vanish in this regime. The condition 0c   

obviously means that polymer chains can not move further into the solvent droplet, in other 

words this condition defines the boundary of the polymer accessible zone (core/solvent interface, 

cf. Figure 2b). Therefore maxh  can not significantly exceed rl  ( max rh l ), so the polymer 

deformation energy cannot increase any more once the droplet grows beyond rH l . As a result, 

the total energy cap def  keeps decreasing also in the regime rH l . 

 To resume, we established the following condition of spontaneous droplet formation  (cf. 

eqs 41, 44):   

 2 * 2

0 / 1T c a const                                                        (47) 

Let us verify the above condition for 0a a . Taking into account eqs 19, 37 we get 

2 / 1l d                                                            (48) 
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Therefore the condition (47) is always valid in the extended chain regime, 0a a  (recall the 

condition /d l  established at the beginning of section II). In other words, the spontaneous 

droplet formation is predicted to start as soon as the chains become strongly extended. At that 

point many droplets can grow simultaneously with a minimal separation 02 a  .  

Since the formation of droplets occurs without a barrier, it is of interest to obtain the 

dispersion relation and to identify the fastest growing mode. This is done below using the 

volume conservation equation (2) and the momentum equation (9a), where we neglect the 

contribution of the solvent viscous stress and inertial forces (which are weaker than capillary 

forces).  The average number of chains in a cross-section of the filament is 2

0 0 /m a Lc N . 

Assuming that the chains do not move along z-axis (since they are strongly stretched and the 

wave-length <<L) and taking into account that the friction force per unit length of the thread is 

0 zm   the momentum equation is written as 

2

0 0z

C
m a

z
  


 


                                                       (49) 

Here we omitted the viscous term ~ 2 2

0/s z zv a m v    ; it is negligible since  > a and 0 1m

. Using the relevant formula for the total curvature 
2

2

1 a
C

a z





 and performing the linear 

stability analysis assuming  
0 1

t iqza a e    , 
2

t iqz

z e     where q=2 and 1 2,   are small 

amplitudes of perturbations one finds the dispersion relation: 

    2 2

0 0

0 0

1q a q a
a m




                                           (50) 

It leads to the following characteristics of the fastest-growing mode  

*

0

1

2
q

a
 ,               2 2

* * *

0 0

0 0

1q a q a
a m




                            (51) 
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It is interesting to note that the period  of the fastest growing mode coincides with the similar 

period for an inviscid liquid even if the friction is large. Thus, the period of the growing structure 

is  *

0 02 2 2a a   . The characteristic growth time is  
0 0*1/

m a


 .  

The droplet formation time can also be estimated by considering a gradual growth of a 

single solvent annulus of thickness ( )H H t , 0H a , and volume 2 2

0( ) 2 ( )V t a H t  around 

the thread core (cf. eq. 28). The growth kinetics of the droplet volume is governed by the 

following equation 

2
dV

J
dt

                                                                (52) 

where 2

0J a   is the solvent current through the thread cross-section, factor 2 means that the 

liquid enters the droplet from both sides  and   is the solvent axial velocity in the thread core 

near the droplet (at / 2z   ). Using eq 52 we get ( ) /dH t dt  .  The rate-of-change of the 

droplet height ( )H t  can be found using the energy-dissipation balance equation:  

0
surfd

dt


                                                               (53) 

where 
surf  is defined in eq 30, and we neglected the subdominant polymer deformation 

energy (cf. eq 45) since 1  (cf. eq 48). The total rate of energy dissipation, ,  arises due to 

friction between solvent and polymer segments in the jet section of length   around the 

droplet. It reads  

2 2 2

0 0 1 0a c l m                                                   (54) 

where m0 is defined in eq 25. Using eqs 30, 53, 54 we find the linearized master equation for the 

droplet height: 

 
*

1dH
H

dt 
                                                                    (55)  
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where the characteristic time *  is  

0* 3

02

s
m

a
d

   


 
                                                            (56) 

 Note that * , eq 56, agrees with  
0 0*1/

m a


  estimated below eq 51.  Thus, the droplet 

height grows nearly exponentially  

   *

0( ) exp( / )H t h t                                                      (57)  

where 0h  is the initial amplitude. The time 
* 1   is much shorter than both the Rouse time R  

and the thread thinning time 6 /a  , which (for 0a a ) is comparable to R : 

 * 2

0/ ~ ( / ) 1R a L    if  minc c  (cf. eq 23). 

 

IV. THE FINAL STAGE OF DROPLETS GROWTH  

 

The exponential growth of the droplets ends up when the height H  becomes comparable 

with 0a  defined in eq 21 (note that, as shown in the previous section, the initial thread radius at 

the onset of the growth process is 0a a ). At this point roughly half of the solvent is already 

squeezed into the droplets while another half remains in the polymer strings connecting the 

droplets. The core thinning driven by the capillary forces continues in the nonlinear regime 

(where 0a a   and 
lnd H

dt
 depends on time) which is considered below. The thinning of a 

string stops when the capillary pressure becomes equal to the osmotic pressure   defined in eq 

26: 

  2

3

4 T
k

a d


 


                                               (58) 
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(here we neglected the ideal-gas pressure and assumed that  <<1; a  is the string radius). Taking 

into account that in the nonlinear regime 2 2

0 0 /a a   and 0k  , where 0  is the initial 

polymer concentration before the droplet formation, we arrive at the following maximum 

polymer volume fraction in the string  : 

5/2 
,     

3

0 0
4

d

Ta

 



                                              (59) 

Recalling that 0a  is defined in eq 21, we find that  0 / 1d l   and  

  2/5 
,              

1/5

0 0a a   

                                                (60) 

where a  is the minimum string radius and  
1/5

1/5 2

0 0 / 1l d    . 

 In the regime of thin polymer strings ( 0( )a t a ) the characteristic size H  of solvent 

droplets is much larger than the string thickness, H a , hence the droplets are nearly spherical 

with radius 0R H a . As a result, the droplet capillary pressure, / R , can be neglected in 

comparison with the capillary pressure in the strings, /capP a . The droplets are connected by 

string segments of length   ( -string) which is found from the volume conservation 

   2 3 2

0 2 4 / 3a R R a      , i.e., 0a for 0R a  (Figure 4).  

 

 

 

Figure 4: Illustration of a beads-on-string structure involving partial penetration of the 

macromolecules into the droplets of radius R. h  is the characteristic lateral size of the 

penetration zone and   is the characteristic length of the strings. 
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 In the transient regime, 0a a a  , a high pressure 
capP  inside a  -string generates the 

solvent flow towards its ends leading to the string thinning due to extensional solvent flow with 

rate 
2 da

a dt
   . The solvent velocity ( , )x t   along the string ( 0 x   ) is  

 / 2
1

x








.
72

 The rate   can be obtained using the energy-dissipation balance equation. 

The dissipation rate 
s
 now reads 

2

2 3

0

1
( )

12 1
s m t dz m


  




 

   
 

                                              (61) 

where 2 /s Hk   is the polymer/solvent friction constant, and m is the number of chains in a 

string cross-section. The free energy 


 of the string is a sum of the surface energy and the 

interaction energy, 2

int2 a a f      , where fint is defined in eq 1. Therefore, the energy-

dissipation balance reads 

2

s

d
a

dt a


   
     

 
                                               (62) 

Eqs 61, 62 lead to 

 
22

3

2 3

12 1 4a T

m a d

  
 

 

  
  

  
                                             (63) 

Taking into account that /   , 2 2

0 0 / 1a a  , and setting 0m m  (m0 is defined in eq 23), 

which is true since L >>  (cf. also the note below eq. 66), we  transform eq 63 as  

5/2

1 /d dt        ,            

2

1
12

d

T





                                     (64) 

Solving eq 64 we find the following asymptotic regimes:  
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2

2

0 1

1

4/5 2

1

1

,                       /
2

5
1 exp ,      /

2

t
t

t
t


  




   




 

 
  
 


       
  

,                                       (65a) 

1

2

0 1

1 0

4/5 2

1

1

1 ,                      /
2

5
1 0.5exp ,      /

2

t
a t

a

t
a t


 

 

  






 

  
  

   

   

     
   

                                  (65b) 

Here t is the time passed since the beginning of the droplet formation. 

The characteristic thinning time th  therefore is 

1/2
3

2 0 0
1 2

0

/ s
th

a

d

  
  

 




 
  

 
                                         (66) 

It is longer than the linear growth time *  (cf. eq. 56), but shorter than the Rouse time 

* 2

0~ ( / )R L a  : 
*

0 /th th R      . Therefore, the longitudinal size of an extended 

polymer  chain, ~zR L ,  changes just slightly for ~ tht   (since th R  ). Hence 0m m  in this 

regime.  

 The polymer chains are stretched and confined inside the  -strings, however, they must 

be somewhat swollen laterally inside the droplet regions due to repulsion of polymer segments 

(cf. Figure 4). The corresponding characteristic lateral size h , by which the chains deviate from 

the straight line in the radial direction inside the droplet regions, can be estimated in analogy 

with the case considered above. For simplicity we consider the regime of thin strings, 0a a . At 

a given chain tension , the bending force after deviation of the chain in the radial direction on 

the length 
0h a  reads (per unit length of the chain) 

2

0/f C b a   (the curvature in this 

case is 2

0/C h a ).  Polymer segments occupy the volume 2

0a h  in the droplet zone ( | | / 2z 

), hence their concentration there is 
2 2

0 0 /bc c a h  and the osmotic pressure equals to 
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* 20.5 bT c . The radial osmotic force * 2 4 5 4 5

0 0 0/ / /osmF h T c a h k a h    must be 

compensated by the bending force 
1 0 12 /bc l f c l h

. Therefrom we find 

1/4

0

0 1

k
h a

c l


 
 
 

. For 

/T l  we find 1/2

0 0h a a  (cf. eq. 48),  which means that the polymer swelling effect is 

not significant in the droplet zones (since b R , cf. Figure 4). 

 To sum up, we have shown that the structure of a “beads-on-string” can appear on the 

final stage of thinning when the polymer chains in the thread are strongly stretched and the 

radius of the thread is less than the contour length of macromolecules. As mentioned in the 

introduction, the secondary beads-on-string structures are often observed after the elasto-

capillary regime for PEO solutions.
36,54-60

 A simple estimation for PEO having Mw ~ 10
6 

g/mol 

(with the chain contour length  0 1/ 10μmwL M M l , where 0 44M   and 1 0.4nml  ) shows 

that the maximum critical radius 0a  which is found from the condition 
02 2a L    should 

be around 1μm. The critical radius of the thread for PEO with Mw =410
6 

g/mol found in 

experiment is estimated as a0 10 μm
57

 or even more.
54,55,59

 This value is somewhat greater than 

that predicted by our theory (
0 4μma ). Nevertheless, the predicted fastest growing wavelength 

02 2a   is in agreement with the experiments.
56,57

 This discrepancy can be explained by the 

existence of another mechanism, namely, the phase separation of PEO solutions caused by 

stretching.
62,70

 The possibility of a phase separation under extension of PEO solutions had been 

proposed many years ago.
88

 Recently, it was shown that temperature significantly affects the 

dynamics of thread thinning and the onset of pearling instability, which confirms the idea of 

phase separation.
59

 In addition, computer simulations using molecular dynamics methods show 

that stretching of PEO oligomers in an aqueous solution leads to the formation of fibrillar 

structures due to a decrease in the number of hydrogen bonds between PEO and water.
89

 

However, it should be noted that droplet formation associated with capillary forces can still be 
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significant in the later stages of thread thinning since the Laplace pressure should compress the 

polymer core until the osmotic pressure of polymer chains stops capillary compression. The 

capillary mechanism of the pearling instability can be important for PAM solutions whose 

thinning does not depend on temperature in contrast to PEO solutions.
59

 The contour length of 

PAM having Mw ~ 1510
6 

g/mol is L ~ 80μm ( 1 0.4nml  ), therefore the critical radius should 

be of order or below 8μm . 

 

V. CONCLUDING REMARKS 

 

We analyzed the capillary thinning dynamics of a dilute polymer solution thread for 

marginal or Θ solvents. Starting with a liquid bridge which tends to break in the inertial regime 

due to capillary forces, we focused on the thread dynamics in viscoelastic regimes where 

polymer chains have undergone a coil-stretch transition and a bead-on-string structure can 

emerge. At first, the thinning of the thread follows the well-known “inertial” law 

   
1/3 2/3

( ) / ba t t t   , where bt  is the putative breakup time. However, after a partial 

stretching of the chains, the viscoelastic forces begin to dominate leading to thread thinning 

according to a power law  
2

0( ) /Ra t a t . Such behavior differs from the exponential thinning 

law observed in polymer strings formed from dilute solutions. Note that our result for ( )a t  is 

related to taking into account the essentially unscreened hydrodynamic interactions inherent in 

dilute solutions and leading  to a linear dependence of the hydrodynamic friction force on chain 

elongation (cf. the text below eq. (4b)).  Noteworthily, recent theoretical studies
48,49

 on capillary 

thinning of dilute polymer solutions are based on a similar idea (the linear drag model
76,77

). By 

contrast, the friction force is proportional to the number of monomers in the case of screened 

hydrodynamic interactions. The latter assumption  serves as a cornerstone of the theories based 

on the constitutive equation of Maxwell/ Oldroyd,
81

 which was used, in particular, by Entov and 
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Hinch.
26

 This famous approach predicts an exponential thinning law with constant thinning time 

that does not depend on concentration in the dilute solution regime. The latter prediction turns 

out to be in contradiction with a number of experimental and theoretical studies
35,38,42,47

 on the 

subject  (this point is further discussed below).   

It is interesting to note that an additional friction mechanism related to the formation of 

interchain associative bonds makes it possible to explain why the exponential law is observed 

experimentally, rather than a power law.  Such a mechanism is expected to be relevant for 

solutions of some polymers like PEO or polyacrylamide (PAM) in water (see section II).  

Experiments involving very dilute polymer solutions also indicate a non-exponential 

character of thread thinning.
 39,46,47

 When the radius of the thread decreases down to 
2

0

ld
a

T




, 

the chains become strongly stretched and a further thinning proceeds according to the visco-

capillary law,  ( )
6

ba t t t



 , with a strongly enhanced (renormalized) viscosity 2

s N   . 

The rate of extension, ( )t , in the thinning process shows a non-monotonic time-dependence: it 

first increases as (4 / 3) / ( )bt t   in the inertial regime, but then decreases as 4 / t  in the 

viscoelastic regime (cf. eq. 20). Such a non-monotonic behavior of the extension rate (and, 

therefore, the Weissenberg number) also follows from the theory of ref. 48.  It is important to 

note that the classical theory of exponential thinning
26

 as applied to the dilute solution regime, is 

not entirely consistent with the experimental data.
47,48

 The characteristic time  of thinning is 

different from the equilibrium  relaxation time , and the ratio / significantly depends on 

concentration in the dilute regime. This dependence was explained as (partially) an effect of 

hydrodynamic interactions.
48

    

Returning to the issue of discrepancy between the predictions given in eq. (20) and the 

experimental data for dilute systems, we can think of 2 other effects that can render the thinning 

law to become closer to an exponential decay. In the present paper we assumed the case of a 
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theta-solvent. However, capillary thinning was also studied for polymers in good-solvent 

conditions like high-molecular weight dilute solutions of polyacrylamide (PAM) in water.
33,34

 

The size of an unperturbed polymer coil in a dilute good-solvent regime scales as 
0R N , 

where    is the Flory exponent. In this regime the tension force f of an elongated chain 

increases with the end-to-end distance R in a nonlinear fashion, /(1 )f R   for R << L. On the 

other hand, the polymer drag coefficient p remains proportional to R. What matters for the 

thinning law (in the viscoelastic regime) is the ratio / ( ) /pf R R R : if it is constant 

(independent of R), an exponential thinning is predicted. If, however, this ratio decreases with R 

as R


 (here (2 3 ) / (1 )     ) a power law    1
1/ 1 1/

( )a t R t
   

  , with 1 2 3   , is 

emerged.  In a theta-solvent while in good solvent which is more than twice 

closer (than the theta-solvent value) to  = 0 required for the exponential thinning which would 

be formally predicted for  =2/3.  

The last effect concerns the molecular weight polydispersity. In the present paper we 

assumed a monodisperse system.  In experimental systems the chains are always polydisperse, 

and this feature is known to be very important for polymer dynamics. This applies, in particular, 

to the coil-stretching kinetics during capillary thinning. In the polydisperse case shorter chains 

should be elongated less as they start their elongation later than chains of higher molecular 

weight. Moreover, as soon as the thinning rate drops at the transition to the viscoelastic regime 

(when the polymer stress starts to dominate the viscous stress due to the solvent), the shorter 

chains may start to contract thus diminishing the polymer stress and, therefore, leading to an 

increase of the thinning rate   (which is opposed by the polymer stress). As a result, the effect 

of hydrodynamic interactions (dictating a power-law decrease of  , see eq. (20)) may be (at 

least partially) counterbalanced. As a matter of fact, the macromolecular polydispersity was 

taken into account in the classical study
26

 showing that its effect (with no hydrodynamic 
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interactions) leads to a slower than exponential decrease of the filament thickness (a stretched 

exponential law).   

To resume this part, we stress that while the single-exponential thinning law was reported 

in all experimental studies on dilute, semidilute and concentrated unentangled polymer solutions 

we know of (which is slightly surprising as such since the classical paper of Entov and Hinch
26

 

predicts broadening of the filament thickness decay in the case of polydisperse polymers, cf. eqs. 

9, 10 in ref. 26), our theory does generically predict a power-law ( 2t ) thinning stage due to 

unscreened hydrodynamic interactions in dilute theta-solutions of monodisperse high-molecular 

weight linear polymers in the absence of associative reversible bonds between polymer 

segments.        

When the radius of the thread falls below a critical value a0 which is smaller than the 

macromolecular contour length L, another capillary-driven instability mechanism comes into 

play, which is accompanied by a release of the solvent onto the thread surface in the form of 

annular drops. Such a mechanism has already been considered for threads of solutions of rodlike 

macromolecules,
71,72

 where the droplet formation was found to be an activated process. By 

contrast, it is shown here that in threads of dilute solutions of semi-flexible polymers the droplet 

formation proceeds without any energy barrier. This leads to a fast formation of numerous 

annular droplets.  

It is remarkable that the critical radius a0 (cf. eq. 20) is independent of the polymer 

molecular weight, but is proportional to the Kuhn segment l of polymer chains, and is inversely 

proportional to polymer concentration, so a0 is larger in more dilute solutions of stiffer chains. It 

is also important that the droplet formation time  
*  (cf. eq. 53) is much shorter than both the 

polymer Rouse time R  and the Plateau-Rayleigh time ~ /PR a    of the classical capillary 

instability in the regime of high viscosity: the ratio 
* 2

0/ ~ ( / )PR L a   is proportional to the 

square of the polymer molecular weight.  This property ensures that in the regime 0a L  the 
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predicted development of solvent droplets is the dominant process, possibly preventing the 

thread breakup and leading to fiber formation. 

Thinning of polymer solution threads involving nonionic and ionic polyacrylamides of 

different chain rigidity in water and water/glycerol mixtures were studied experimentally in refs. 

33, 34. Interestingly, both viscoelastic and quasi-Newtonian regimes (with fully stretched chains 

in the latter) were detected. It was found, in particular, that the ratio of the terminal elongational 

viscosity E  to the corresponding relaxation time E  is higher for flexible (nonionic) 

macromolecules than for rigid-chain (ionic) samples.
34

 This difference may stem from the 

following simple effect:  the  viscosity E  is mainly defined by the total length of a stretched 

chain, while the relaxation time E  depends in addition on the chain tension; the chain tension in 

turn is inversely proportional to the rigidity (Kuhn) segment, so the relaxation time E  is directly 

proportional to it, hence the ratio /E E   is lower for a more rigid polymer. In addition to this 

effect, contact interactions between aligned rigid segments and their electrostatic interactions 

may play a significant role.     
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