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Abstract—The tensor-based anomaly detection (AD) model
has attracted increasing interest in the hyperspectral image (HSI)
community. Since it is powerful in maintaining spatial and
spectral structures, an HSI is essentially a third-order tensor.
In this article, we propose a novel AD method based on a low-
rank background linear mixing model of the scene background.
The obtained abundance maps possess more distinctive features
than the raw data, which is beneficial for identifying an anomaly
from the background. Specifically, the low-rank tensor back-
ground is approximated as the mode-3 product of an abundance
tensor and endmember matrix. Due to the spatial sparse and
smooth natures of abundance maps, the ℓ1-norm is introduced
to enforce sparseness, and the total variation (TV) regularizer is
adopted to encourage spatial smoothness. Moreover, the typical
great correlation among abundance vectors implies the low-rank
structure of abundance maps. Compared with the rigorous low-
rank constraint, a soft low-rank regularization is imposed on
the background in order to leverage its spatial homogeneity. Its
strictness is controlled by scalar parameters. For the anomaly
part, the anomaly spectra account for a small part of the whole
scene, and therefore, an ℓ1,1,2-norm is defined to characterize its
tube-wise sparsity. Notably, Gaussian noise is integrated into the
model to suppress confusion with the anomaly. The experimental
results on five real datasets demonstrate the outstanding perfor-
mance of our proposed method.

Index Terms—Anomaly detection, low-rank background
linear mixing model, mode-3 product, third-order abundance
tensor, TV regularizer, ℓ1,1,2-norm.

I. Introduction

D IFFERENT from multispectral sensors, hyperspectral
sensors enable hundreds of narrow and contiguous bands

to be obtained to characterize each pixel in a real scene. They
have attracted a great deal of attention from researchers in
signal and image processing fields, as hyperspectral images
(HSIs) contain valuable spatial and spectral information. Over
the past decades, hyperspectral images have been applied in
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various areas [1], such as data fusion, unmixing, classification,
and target detection [2]–[7].

Anomaly detection (AD) aims to detect interests and to
label each pixel as a target or background, such as natural
materials, man-made targets, and other interferers. This is
one of the most important research fields in HSI processing
[8]. Specifically, it is assumed that the spectral signatures
of an anomaly are different from those of their surrounding
neighbors, which makes it feasible to distinguish anomalies
from the background. In essence, AD is an unsupervised
classification problem without prior knowledge of the anomaly
or background, leading to an incredibly challenging detection
task.

To date, a large number of AD methods have been
proposed for HSIs, grouped into three main categories: deep
learning-based, statistical-based, and geometric modeling-
based methods. Deep learning-based AD algorithms usually
use deep neural networks to mine deep features of spectra
in HSIs. Since no prior information can be exploited in AD,
many researchers train the deep model in an unsupervised way
for AD tasks [9]–[11]. However, the deep model for off-the-
shelf HSI still takes a lot of time to train while exhibiting
limited generalization ability. Reed-Xiaoli (RX) [12], a bench-
mark statistical-based method, assumes that the background
follows a Gaussian distribution, and accomplishes AD via the
generalized likelihood ratio test (GLRT). In particular, the
Mahalanobis distance between a pixel being tested and the
surrounding background is calculated to determine whether
the pixel is an anomaly. Specifically, many RX-based methods
have been developed in [13]–[18]. For example, the global RX
(GRX) [13] and local RX (LRX) [14] methods are two typical
versions, and they estimate the background statistical variables
using the entire image or the surrounding neighbors, respec-
tively. The above methods suffer the limitation of relying on
the assumption that the background obeys a single distribution,
which is difficult to satisfy in real hyperspectral scenes. There-
after, the kernel-RX algorithm [15], [16] employs a kernel
function and maps the data into a higher-dimensional feature
space to characterize non-Gaussian distributions. Geometric
modeling-based methods [19]–[28] are another category of AD
methods. Representation-based methods [19]–[21] have been
successfully applied to AD because they do not need a specific
distribution assumption, but they fail to capitalize on the
high spectral correlation of HSIs. Afterward, robust principal
component analysis (RPCA) assumes that the background
is represented by a single subspace aiming to recover low-
rank background and separate a sparse anomaly from an
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observed HSI [22], [23].Nevertheless, the low-rank represen-
tation (LRR)-based model assumes that the data lie in multiple
subspaces since most pixels are mixed pixels, which yielded
the exploration of other methods for HSI AD [24], [25]. An
accurate background dictionary construction for LRR is still
a challenging task. Thereafter, linear mixing model (LMM)
[29]-based methods have attracted considerable attention in
AD fields due to their explicit physical descriptions found
with background modeling and their ability to avoid advanced
background model estimation [26]–[28]. Here, the background
mixed pixels can be linearly represented by pure material
signatures, which is normally addressed by nonnegative matrix
factorization (NMF) [30] and can be approximately written as
the product of two nonnegative matrices: an endmember ma-
trix and an abundance matrix. Initially, Qu et al. [26] applied
spectral unmixing to model original HSI data and regard the
obtained abundance maps as the input for LRR. To enhance the
HSI spatial structure smoothness, most recently, [28] proposed
an enhanced total variation (ETV) model with an endmember
background dictionary (EBD) by applying ETV to the row
vectors of the representation coefficient matrix. The above-
referred methods both achieved promising performance with
respect to background modeling using the LMM; whereas,
they are matrix-based methods that reshape the 3D HSI into
a 2D matrix, and cannot avoid destroying the spatial or the
spectral structure of the HSI.

Since an HSI is essentially a cube, the aforementioned
matrix-based background modeling fails to explore its intrin-
sic multidimensional structure [31]. In comparison, the HSI
processing based on tensor decomposition can simultaneously
preserve the spatial and spectral structure information [32],
[33]. Recent developments in tensor-based AD methods have
heightened the need for inner structure preservation [34],
and exploration of tensor physical characteristics [35]–[37].
The spectral signatures of the background pixels in the ho-
mogeneous regions have a high correlation, resulting in the
background having a strong spatial linear correlation and
therefore admitting a low-rank characteristic. The conventional
low-rank tensor decomposition [38] includes the prior-based
tensor approximation, Canonical Polyadic (CP) decomposition
and Tucker decomposition. Recently, some new tensor decom-
position models [39]–[41] are proposed to capture the low-
rank structure information in a tensor manner. Li et al. [35]
proposed a prior-based tensor approximation (PTA) method
for hyperspectral AD assuming low rankness of the spectra
and piecewise-smoothness in the spatial domain. Note that
PTA actually operates on matrices and not tensors, as the
hyperspectral cube is unfolded in 2D structures. This does not
allow us to preserve the inner structure of the data with these
tensor-based approaches. Song et al. [36] employs an endmem-
ber extraction technology to yield an abundance map for AD.
Based on LRR, the dictionary of background is constructed
by Tucker decomposition. The endmember extraction methods
that are based on tensor have been successfully applied in
anomaly detection, whereas they lack the consideration of
prior information of the abundance map of backgrounds, such
as the spatial smoothness and structure low rankness.

In this paper, motivated by the abundance maps possess-

ing more distinctive features than the raw data, we propose
an abundance tensor regularization with low rankness and
smoothness based on sparse unmixing (ATLSS) for hyperspec-
tral AD. With proper modeling of the physical conditions, an
observed third-order tensor HSI can be decomposed into a
background tensor, an anomaly tensor, and Gaussian noise.
Motivated by the LMM, the background tensor is approxi-
mated as a mode-3 product of an abundance tensor and an
endmember matrix. The spectral signatures of the background
pixels in the homogeneous regions have a high correlation,
which yields a spatial linear correlation and therefore admits
a low-rank property. In [42], [43], the authors impose low-
rankness on the abundance tensor in order to effectively
capture the HSI’s low-dimensional structure. In our paper, the
abundance tensor is characterized by tensor regularization with
low rankness through CP decomposition.

Moreover, each pixel contains limited materials, and
neighboring pixels are constituted by similar materials, which
indicate sparsity and spatial smoothness properties. The
anomaly part accounts for a small amount of the whole scene,
and each tube-wise fiber (i.e., the spectral bands of each
pixel) contains few nonzero values, which indicates the tube-
wise sparsity of the anomaly tensor. In a real observed HSI,
the spectra are usually corrupted with noise that is caused
by precision limits of the imaging spectrometer and errors
in analog to digital conversion, this issue is dealt with by
modeling the noise as identically and independently distributed
Gaussian random variables [44]–[46]. Here, Gaussian noise
is modeled separately with anomalies to suppress the noise
confusion with the anomaly.

The main contributions of this paper can be summarized
as follows.

1) In view of the LMM, we propose a completely blind
tensor-based model where the background is decom-
posed using the mode-3 product of the abundance ten-
sor and endmember matrix. The abundance tensor of
the background is characterized by tensor regularization
with imposed low rankness through CP decomposition,
smoothness, and sparsity.

2) For the anomaly part of HSI AD, the ℓ1,1,2-norm is utilized
to characterize the tube-wise sparsity since the anomalies
account for a small amount of the scene. Gaussian noise
is also incorporated into the model to suppress noise
confusion with the anomaly.

The experimental results on five different datasets, with
extensive metrics and illustrations, demonstrate that the pro-
posed method significantly outperforms the other competing
methods.

The remainder of this article is organized as follows.
the third paragraph of section II introduces the problem
formulation and proposed method. In Section III, we evaluate
the performance of the proposed method and compare it with
some traditional and state-of-the-art AD methods using five
real hyperspectral datasets. Finally, the conclusion and future
works are illustrated in Section IV.
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Fig. 1: The flowchart of the proposed ATLSS method, and an AVIRIS-2 HSI is used as an example.

TABLE I: Symbols.

X Abundance tensor

E Anomaly tensor

N Noise tensor

Y The observed HSI

A Endmember matrix

Z(1) The factor matrix of abundance tensor

z(1)
1 The first outproduct vector of factor matrix

H The height of the observed HSI

W The width of the observed HSI

D The number of bands of the observed HSI

R The number of endmember

KX The rank of abundance tensor

II. Problem Formulation and ProposedMethod

In this section, we first introduce HSI AD based on
the background LMM. The proposed ATLSS algorithm is
illustrated afterward. In addition, the overall flowchart of the
proposed ATLSS algorithm for the hyperspectral AD method
is shown in Fig. 1.

A. Tensor Notation and Definition

This subsection introduces some mathematical notation
and preliminaries of tensors, with our proposed method clearly
described. We use lowercase bold symbols for vectors, e.g., x,
and capital letters for matrices, e.g., X. The paper denotes a
third-order tensor by bold Euler script letters, e.g., X. The
scalar is written as x.

Definition 1. The dimension of a tensor is called the mode,
and X ∈ RI1×I2×···×IN has N modes. Slices are two-dimensional
sections of a tensor and are defined by fixing all but two
indices. For a third-order tensor Y ∈ RI1×I2×I3 , Y :,:,k is the
k-th frontal slice.

Definition 2. (The mode-n unfolding and folding of a
tensor) The ”unfold” operation along mode-n on an N-mode
tensor X ∈ RI1×I2×···× IN is defined as unfoldn(X) = X(n) ∈

RIn×(I1 ··· In−1 In+1 ··· IN ). Its inverse operation is the mode-n folding,
denoted as X = foldn

(
X(n)
)
.

Definition 3. (Rank-one tensors) An N-way tensor X ∈
RI1×I2×···×IN is a rank-one tensor if it can be written as the
outer product of N vectors.

Definition 4. (Mode-n product) The mode-n product of tensor
X ∈ RI1×I2×···×IN and a matrix U ∈ RJ×In is defined as:

(X ×n U)I1···In−1 JIn+1···IN =

In∑
in=1

xI1I2···IN uJIn , (1)

In contrast, the n-mode product can be further computed by
matrix multiplication.

Y = X ×n U⇐⇒ Y = UX(n), (2)

Definition 5. (CP decomposition) CP decomposition factor-
izes an n-order tensor X ∈ RI1×I2×···×IN into a sum of component
rank-1 tensors as:

X ≈ ⟦λ; B(1),B(2), · · · ,B(N)⟧ ≡
R∑

r=1

λrb(1)
r ◦ b(2)

r ◦ · · ·b
(N)
r , (3)

where λ ∈ RR is the weight vector and B(n) = [b(n)
1 · · · b

(n)
R ] ∈

RIn×R ∀n = {1, · · · ,N} is the n-th factor matrix. R is the rank
of tensor X, and we denote rank(X) = R.

B. HSI AD based on Background LMM

Since an HSI cube can be naturally treated as a third-order
tensor, we use a tensor-based representation to avoid spatial
and spectral information loss. In such an AD application, an
HSI tensor can be decomposed into so-called background and
anomaly tensors [47]. However, in real-world applications, the
scenes are usually corrupted by noise [45]; hence, in this paper,
noise is also added into the model to suppress its confusion
with the estimated anomaly term, and the model is expressed
as follows:

Y = B + E +N , (4)

where Y ∈ RH×W×D is the observed HSI and B ∈ RH×W×D,
E ∈ RH×W×D, and N ∈ RH×W×D are the background, anomaly,
and noise, respectively. H, W, and D represent the height,
width, and number of bands of each tensor, respectively. The
purpose of AD is to reconstruct an accurate background image
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Fig. 2: AVIRIS-1 dataset. (a) False color image of the whole scene. (b) False color image of the detection area corresponding
to the area surrounded by the red box in the scene (a). (c) Ground-truth map of the anomalies. (d) Spectra of endmembers
#1-#3 of the background, and the estimated number of endmembers is 3.

Fig. 3: AVIRIS-2 dataset. (a) False color image of the detection area corresponding to the area surrounded by the blue box in
the scene in Fig. 2 (a). (b) Ground-truth map of the anomalies. (c) Spectra of endmembers #1-#2 of the background, and the
estimated number of endmembers is 2.

to more accurately separate the anomaly from the background
and noise, yielding superior performance.

There are typically several mixed pixels in natural HSI
scenes, implying that more than one material participates
in constituting each mixing pixel. This refers to an explicit
physical interpretation under the assumption of the LMM; that
is, the spectrum of each pixel of a low-rank background can
be linearly combined with a few numbers of pure spectral
endmembers. NMF is an ideal solution for the LMM, as it
decomposes the original data into the product of two low-
dimensional nonnegative matrices. Alternatively, under tensor
notation, the tensor background approximates the mode-3
product of a nonnegative abundance tensor and a nonnegative
endmember matrix. Mathematically, eq. (4), inspired by NMF,
takes the following form:

Y = X ×3 A + E +N
s.t. X ≥ 0, A ≥ 0,

(5)

where X ∈ RH×W×R is the third-order abundance tensor,
A ∈ RD×R is the endmember matrix, and R is the number
of endmembers. The third-order abundance tensor is obtained
by reshaping each abundance vector into a frontal slice ma-
trix X:,:,r ∀r ∈ {1, . . . ,R} of dimensions H × W and then
stacking them along the mode-3 direction. The newly formed
abundance tensor implements the underlying inner low-rank
structure information to be well characterized.

C. Proposed method

An HSI usually consists of a few materials, which makes
it lie in low-rank subspaces. Moreover, a similar substance is

distributed in the adjacent region, which gives the HSI a locally
smooth property. Compared to the background, anomalies are
distributed randomly; thus, anomalies are often assumed to be
sparse. Therefore, in this paper, we model the problem based
on the assumption that the observed HSI is a superposition of
a low-rank background, sparse anomalies, and the noise term.

The LMM assumes that each mixed pixel in the back-
ground linearly consists of a few endmembers, indicating that
many zero entries are contained in the abundance tensor, which
can be represented by a sparse property. Remarkably, the ℓ0-
norm can directly minimize nonzero components, but this
leads to an NP-hard problem. The ℓ1-norm, therefore, is intro-
duced to promote the sparsity of the abundance tensor, where
the sparsity prior narrows the solution space and achieves
accurate abundance tensor estimation. The anomaly pixels
occupy a small proportion of the scene, indicating that the
anomaly matrix has a column-sparse property and is character-
ized by the ℓ2,1-norm [48]. Here, we have ∥E(3)∥2,1 = ∥E∥1,1,2;
therefore, due to the physical meaning and the definition of the
ℓ1,1,2-norm in [49], it is reasonable to assume that the tensor
anomaly has tube-wise sparsity. In addition, an HSI is usually
corrupted with the noise, which is assumed to be identically
and independently distributed Gaussian random variables [44];
therefore, the noise is modeled as ∥N∥2F to suppress it from
being confused with the anomaly. In general, the background
model based on the LMM can be rewritten as follows:

min
X,A,E,N

1
2
∥N∥2F + λ1∥X∥1 + β∥E∥1,1,2

s.t. Y = X × 3 A + E +N , X ≥ 0, A ≥ 0,
(6)

where ∥ · ∥1 and ∥ · ∥2F denote the ℓ1-norm and ℓ2-norm,
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Fig. 4: HYDICE dataset. (a) False color image of the whole scene. (b) False color image of the detection area. (c) Ground-truth
map of the anomalies. (d) Spectra of endmembers #1-#4 of the background, and the estimated number of endmembers is 4.

Fig. 5: Urban-1 of the Urban (ABU) dataset. (a) False color image of the detection area. (b) Ground-truth map of the anomalies.
(c) Spectra of endmembers #1-#2 of the background, and the estimated number of endmembers is 2.

Fig. 6: Urban-2 of the Urban (ABU) dataset. (a) False color image of the detection area. (b) Ground-truth map of the anomalies.
(c) Spectra of endmembers #1-#3 of the background, and the estimated number of endmembers is 3.

respectively. Here, ∥E∥1,1,2 =
∑H

h=1
∑W

w=1 ∥Eh,w,:∥F is defined as
the sum of the Frobenius norm of all tube-wise spectra vectors
of E. λ1 and β are the trade-off parameters that control the
sparsity of the abundance tensor and tube-wise sparsity of the
anomaly, respectively.

Beyond the single-pixel sparsity, the spatial correlation
between the neighbor pixels also deserves to be exploited. It
supposes that there is a high correlation among the spectra of
the pixels lying in homogeneous regions. For that, we impose
a soft low-rank property on the abundance tensor X of the
background tensor B in order to model the aforementioned
high correlation property of homogeneous.

Assuming that KX designates the rank of the abundance
tensor, the loss function for HSI AD can be written as:

min
X,A,E,N

1
2
∥N∥2F + λ1∥X∥1 + β∥E∥1,1,2

s.t. rank(X) = KX,

Y = X ×3 A + E +N ,X ≥ 0,A ≥ 0.

(7)

However, the rank of X in (7) is a nonconvex problem

in that the optimization is also difficult. Referring to [50], we
introduce Q, which is assumed to be low-rank and represents
a low-rank prior. Then, CP decomposition is employed to
measure the low rankness of Q via the summation of the KX
rank-1 components. Consequently, CP decomposition of Q can
be written as:

Q = ⟦Z(1),Z(2),Z(3)⟧ =

KX∑
i=1

z(1)
i ◦ z(2)

i ◦ z(3)
i , (8)

where Z(1) = ⟦z(1)
1 · · · z

(1)
KX
⟧ ∈ RH×KX , Z(2) = ⟦z(2)

1 · · · z
(2)
KX
⟧ ∈

RW×KX , and Z(3) = ⟦z(3)
1 · · · z

(3)
KX
⟧ ∈ RD×KX are the factor

matrices.
Subsequently, we introduce a new regularization term

controlled by a low-rank tensor Q to enforce a nonstrict
constraint on KX, as shown in (9). A very large KX value will
lead to the mixing of anomalies into the background, which
undermines the low-rank characterization of the background
by the regularization term. Thereby, the parameter λ3 aims to
modify the strictness of the low-rank constraint on X. Thus,
not only is the nonconvex issue addressed, but the small-
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scale details that are necessary for the background may also
be preserved. The function based on (7) is approximately
rewritten as:

min
X,A,E,Q,N

1
2
∥N∥2F + λ1∥X∥1 +

λ3

2
∥X −Q∥2F + β∥E∥1,1,2

s.t. rank(Q) = KX,

Y = X ×3 A + E +N , X ≥ 0, A ≥ 0,

(9)

where the rank is controlled by KX. Then, the model of (11)
can be rewritten as:

min
X,A,E,Z(1),Z(2),Z(3),N

1
2
∥N∥2F + λ1∥X∥1+

λ3

2
∥X − ⟦Z(1),Z(2),Z(3)⟧∥2F + β∥E∥1,1,2

s.t. Y = X ×3 A + E +N , X ≥ 0, A ≥ 0.

(10)

Notably, the pixels with spatial homogeneity are more
likely to contain the same materials, which indicates the frac-
tional abundance of the adjacent pixels that tend to be similar.
Here, the spatial-context information of the abundance tensor
is characterized by the TV regularizer [51] by encouraging
the piecewise smoothness structure with the distinct edges
preserved. The TV-based cost function corresponding to (10)
can be modeled as:

min
X,A,E,N

1
2
∥N∥2F + λ1∥X∥1 + λ2∥X∥TV + β∥E∥1,1,2

s.t. rank(X) = KX,

Y = X ×3 A + E +N ,X ≥ 0,A ≥ 0,

(11)

where ∥·∥TV is the TV norm and λ2 is a parameter to adjust the
strength of the piecewise smoothness. The spatial TV norm of
the abundance tensor X is defined as [52]:

∥X∥TV = ∥HX∥1 = ∥HhX∥1 + ∥H vX∥1 , (12)

Let Xh,w,r |∀h={1,...,H},w={1,...,W},r={1,...,R} indicate the intensity of the
voxel (h,w, r) and Hh and H v be the two horizontal and
vertical differential operators in the spatial domain. Then, we
have: {

HhXh,w,r = Xh,w+1,r −Xh,w,r

H vXh,w,r = Xh+1,w,r −Xh,w,r
(13)

Similar to (7), (8), it can be further rewritten as:

min
X,A,E,Z(1),Z(2),Z(3),N

1
2
∥N∥2F + λ1∥X∥1 + λ2∥X∥TV+

λ3

2
∥X − ⟦Z(1),Z(2),Z(3)⟧∥2F + β∥E∥1,1,2

s.t. Y = X ×3 A + E +N , X ≥ 0, A ≥ 0.

(14)

D. Optimization Procedure

The optimization problem in (14) can be solved by
ADMM [53]. We need to introduce three auxiliary variables,

V1,V2, and V3, and then transform it to the following
equivalent problem:

min
X,A,E,Z(1),Z(2),Z(3),N

1
2
∥N∥2F + λ1∥V3∥1 + λ2∥V2∥1+

λ3

2
∥X − ⟦Z(1),Z(2),Z(3)⟧∥ 2

F + β∥E∥1,1,2

s.t. A ≥ 0,X ≥ 0,X = V1,HV1 = V2,X = V3,

Y = X × 3A + E +N .

(15)

The problem in (15) can be solved by ALM [54] to
minimize the following augmented Lagrangian function:

L (X,A,Q,N ,E,V1,V2,V3,D1,D2,D3,D4)

=
1
2
∥N∥2F + λ1 ∥V3∥1 + λ2 ∥V2∥1 +

λ3

2
∥X −Q∥2F + β∥E∥1,1,2

+
µ

2
(∥X −V1 +D1∥

2
F + ∥HV1 −V2 +D2∥

2
F +∥∥∥X −V3 +D3

∥∥∥2F+∥∥∥Y −X × 3A − E −N +D4∥
2
F

)
s.t. A ≥ 0,X ≥ 0,

(16)
where D1, D2, D3, and D4 are the Lagrange multipliers and
µ is the penalty parameter. The above problem can be solved
by updating one variable while fixing the others. Specifically,
in the t+1-th iteration, where the problem can be divided into
several subproblems, the variables are updated as follows:

1) Update X: The related subproblem is:

X
(t+1) = arg min

X

λ3

2

∥∥∥X − Q(t)
∥∥∥2

F +
µ

2
(
∥∥∥X −V(t)

1 +D
(t)
1

∥∥∥2
F

+
∥∥∥X −V(t)

3 +D
(t)
3

∥∥∥2
F +
∥∥∥Y −X × 3A(t) − E(t)

−N
(t) +D

(t)
4

∥∥∥2
F)

s.t. X ≥ 0,
(17)

which can be transformed to the following linear system:

X
(t+1) = X · ∗[(µ × (Y − E(t)

−N
(t) +D

(t)
4 ) ×3 A(t)T

+ λ3Q(t)

+ µ(V(t)
1 −D

(t)
1 +V

(t)
3 −D

(t)
3 ) · (µ ×X ×3 (A(t)T

A(t))+
(λ3 + 2µ)X)].

(18)
2) Update A: The related subproblem is:

A(t+1) = arg min
A

∥∥∥Y −X(t+1)
× 3A(t) − E(t)

−N
(t) +D

(t)
4

∥∥∥2
F

s.t. A ≥ 0.
(19)

Similar to (18), we obtain the following solution:

A(t+1) = A. ∗
(
Y − E

(t)
−N

(t) +D
(t)
4

)
X
⟨t+1)T

· /AX(t+1)
X

(t+1)T
.

(20)
3) Update B: We combine (18) and (20) and compute

the result as follows:

B
(t+1) = X(t+1)

× 3A(t+1). (21)

4) Update Q: The related subproblem is:

Q
(t+1) = arg min

Q

λ3

2

∥∥∥X(t+1)
−Q
∥∥∥2

F . (22)

By substituting (11) into (14), the optimization problem
becomes:(

Z(1),Z(2),Z(3)
)
= arg min

Z(1),Z(2),Z(3)

λ3

2

∥∥∥X − ⟦Z(1),Z(2),Z(3)⟧
∥∥∥2

F , (23)
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where CP decomposition is solved by an alternating least
squares (ALS) [55] algorithm. Consequently, each factor ma-
trix is calculated through a linear least square approach by
fixing the other two matrices.

5) Update N: The related subproblem is:

N
(t+1) = arg min

N

1
2

∥∥∥N (t)
∥∥∥2

F +
µ

2
∥Y −X

(t+1)
× 3A(t+1) − E(t)

−

N
(t) +D

(t+1)
4 ∥2F ,

(24)
for which the solution is:

N
(t+1) =

µ
(
Y −X

(t+1)
× 3A(t+1) − E(t) +D

(t)
4

)
(µ + 1)

. (25)

6) Update V1: The related subproblem is:

V
(t+1)
1 = arg min

V1

∥∥∥X(t+1)
−V

(t)
1 +D

(t)
1

∥∥∥2
F

+
∥∥∥HV(t)

1 −V
(t)
2 +D

(t)
2

∥∥∥2
F .

(26)

Now, we solve the subproblem of V1:(
H

T
H + I

)
V

(t+1)
1 =

(
X

(t+1) +D
(t)
1

)
+H∗

(
V

(t)
2 −D

(t)
2

)
.

(27)
where I is the identity tensor; H is a convolution, as defined
in (13), that operates in the spatial domain; and HT indicates
the adjoint operator of H . Therefore, V1 can be quickly
computed by:

V
(t+1)
1 = i f f t

 X
(t+1)
+D

(t)
1 +H

T
(
V

(t)
2 −D

(t)
2

)
1 + f f t (Hh)T f f t (Hh) + f f t (H v)

T f f t (H v)

 ,
(28)

where f f t and i f f t denote the fast Fourier transform [56] and
its inverse, respectively.

7) Update V2 and V3: The subproblem for V2 is:

V
(t+1)
2 = arg min

V2

λ2
∥∥∥V(t)

2

∥∥∥
1 +
µ

2

∥∥∥HV(t+1)
1 −V

(t)
2 +D

(t)
2

∥∥∥2
F ,

(29)
which can be solved by a soft-thresholding function. For V3,
its update rule is similar to that of V2.

8) Update E: The related subproblem is:

E
(t+1) = arg min

ε

µ

2

∥∥∥Y −X(t+1)
× 3A(t+1) − E −N (t+1) +D

(t)
4

∥∥∥2
F

+β∥E∥1,1,2.
(30)

Denoting F (t) = Y −X(t+1)
× 3 A(t+1) −N (t+1) +D

(t)
4 , the

closed-solution of (30) can be achieved as:

E
(t+1)(h,w, :) = max

1 − β

µ(t)
∥∥∥F (t)(h,w, :)

∥∥∥
F

, 0

 ∗ F (t)(h,w, :),

(31)
where h ∈ {1, . . . ,H} and w ∈ {1, . . . ,W}.

9) Update D1, D2, D3, D4, and µ: The four Lagrange
multipliers and the penalty parameter are updated as follows:

D
(t+1)
1 =D

(t)
1 +X

(t+1)
−V

(t+1)
1 , (32)

D
(t+1)
2 =D

(t)
2 +HV

(t+1)
1 −V

(t+1)
2 , (33)

D
(t+1)
3 =D

(t)
3 +X

(t+1)
−V

(t+1)
3 , (34)

Algorithm 1 ATLSS algorithm
Input: HSI tensor Y , number of background endmem-
bers R, abundance tensor rank K, regularized parameters
λ1, λ2, λ3, β, µ = 10−2, µmax = 106, Tmax = 100, and the
residual error ξ = 10−6.
Output: anomaly tensor E and anomaly map T.
1. Initialization: endmember matrix A and abundance
tensor X.
2. Repeat:
3. Update X with Equation (17)
4. Update A with Equation (19).
5. Update B with Equation (21).
6. Update Q with Equation (22).
7. Update Z(1),Z(2),Z(3), with Equation (23).
8. Update N with Equation (24).
9. Update V1 with Equation (26).
10. Update V2 with Equation (29).
11. Update V3 in a way similar to that in step 10.
12. Update E with Equation (30).
13. Update D1, D2, D3, and D4 with Equation (32), (33),
(34), and (35) respectively.
14. Until either Tmax = 100 or

∥∥∥B(t+1)
−B

(t)
∥∥∥

2 /
∥∥∥B(t+1)

∥∥∥
2

< ξ are satisfied.

D
(t+1)
4 = Y −X⟨t+1)

× 3A(t+1) − E(t+1)
−N

(t+1) +D
(t)
4 , (35)

µ(t+1) = min
(
ρµ(t), µmax

)
. (36)

Finally, according to the anomaly E, the AD maps T
can be obtained by Th,w = ∥Eh,w,:∥F |∀h={1,...,H},w={1,...,W}. The
abovementioned approach can be summarized in Algorithm 1,
in which we arrive at an augmented Lagrangian alternating
direction method to solve the proposed ATLSS model.

E. Initialization and Termination Condition

In the proposed ATLSS solver, the input terms are the
observed HSI, the basis matrix A, the abundance matrix X,
and the number of endmembers R. It is worth noting that the
initialization of A, X, and R influences the AD results of the
proposed method. For that, we initialize the background B by
the RX algorithm. Then, HySime [57] is employed to estimate
the number of background endmembers R. Afterward, NMF
[58] and the related update rules in [53] are utilized to iterate
over A and X, respectively. The CP rank K is determined by
the algorithm referred to in [50] to provide an accurate rank
estimation for the proposed method. In general, the iterative
process continues until a maximum number of 100 iterations
or a residual error is satisfied.

F. Computational Complexity Analysis

As shown in Algorithm 1, each iteration’s computational
cost consists of updating all the referred factors. The time com-
plexity of CP decomposition (Update Q): O(TmaxR2(W2D2 +

H2D2 + H2W2)). Time complexity of FFT (update V1):
O(HWR log(HW)). Time complexity of soft threshold operator
(updateV2,V3) is O(HWR). Time complexity of other matrix
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TABLE II: Formulations of the ATLSS model and its different degradation models.

Model Name Formulation

Dm-1 min
X,A,E,N

1
2 ∥N∥

2
F + λ1∥X∥1 + β∥E∥1,1,2

s.t. Y = X × 3 A + E +N , X ≥ 0, A ≥ 0

Dm-2 min
X,A,E,N

1
2 ∥N∥

2
F + λ1∥X∥1 + β∥E∥1,1,2

s.t. rank(X) = KX,Y = X × 3 A + E +N , X ≥ 0, A ≥ 0

ATLSS Model min
X,A,E,N

1
2 ∥N∥

2
F + λ1∥X∥1 + λ2∥X∥TV + β∥E∥1,1,2

s.t. rank(X) = KX,Y = X × 3 A + E +N , X ≥ 0, A ≥ 0

multiplication operations (update X, A, B, Z(1),Z(2),Z(3), N ,
E, D1, D2, D3, and D4): O(HWR+DR+HKX + 4HWD) =
O(HW(D + R)). So the time complexity of Algorithm 1 is
O(R2(W2D2+H2D2+H2W2)+HWR log(HW)+HW(D+2R)).

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the proposed ATLSS algorithm was car-
ried out on five real HSI datasets for AD, where the detailed
description is listed as follows. All the experimental algorithms
are performed in MATLAB 2016b on a computer with a 64-bit
quad-core Intel Xeon 2.40 GHz CPU and 32.0 GB of RAM
in Windows 7.

A. Experimental Datasets

1) AVIRIS Airplane Data: The AVIRIS airplane dataset
was collected by AVIRIS in San Diego. There are 189 bands
retained, while the water absorption regions, low-SNR, and
bad bands (1− 6, 33− 35, 97, 107− 113, 153− 166, 221− 224)
are removed. As shown in Fig. 2(b), the subimage is named the
AVIRIS-1 dataset, and it is located in the top-left corner of the
AVIRIS image with a size of 150 × 150 × 186. The contained
anomaly is the three air planes, and the ground truth is shown
in Fig. 2(c). AVIRIS-2 is located in the center of San Diego,
as shown in Fig. 3, and it contains 120 anomaly pixels with
a size 100 × 200 × 186.

2) HYDICE Data: The real data was collected by the hy-
perspectral digital imagery collection experiment (HYDICE)
sensor, and the original image has a size of 307 × 307 × 210.
After removing the low-SNR and water vapor absorption
bands, 162 bands remained. An 80× 100 subspace is cropped
from the top right of the whole image, and the cars and roofs
in the image scene are considered anomalies. The false color
image and the corresponding ground truth are shown in Fig.
4.

3) Urban (ABU) Data: The Urban dataset was collected
with AVIRIS sensors and contains five images of five different
scenes. In this paper, we select the Urban-1 image and Urban-
2 image, captured at different locations on the Texas Coast,
to perform the experiment. The spatial size of the Urban-1
dataset is 100 × 100, the number of spectral bands is 204,
and its false-color image and the ground truth are presented
in Fig. 5(a) and (b). For the Urban-2 dataset with a size of
100×100×207, Fig. 6(a) and (b) are the corresponding false-
color image and the ground truth.

B. Evaluation Metrics and Parameter Settings

The AD performance of the proposed ATLSS method is
demonstrated in this section. Table II shows the formulations
of ATLSS and its two degradation models, degradation model
1 (Dm-1) and degradation model 2 (Dm-2), which are based on
the linear spectral unmixing method. In addition, we choose to
compare our models with RX [12], RPCA [22], LRASR [24],
GTVLRR [25], GVAE [9], PTA [35], and TRPCA [49]. RXD
is a statistical-based method in the HSI AD field, and it is the
baseline in almost all reference articles. The methods above
are based on matrix modeling. PTA is a tensor-based method,
but it is based on matrix operations. GVAE is a deep learning
method. TRPCA and the proposed ATLSS algorithm are based
on tensor modeling. We classified the RX, RPCA, LRASR,
GTVLRR, and PTA methods as matrix-based operations and
TRPCA, Dm-1, Dm-2, and ATLSS as tensor-based operations.

To evaluate the detector more effectively, the 3D ROC
curve [59] is employed, which introduces the threshold τ
in addition to the parameters Pd and P f used in the 2D
ROC curve [60] to specify a third dimension (Pd, P f , τ). In
addition, the 2D ROC curves (Pd, P f ) and (P f , τ) are used
to measure the AD result, where an efficient detector would
have a performance with a larger (Pd, P f )(→ 1) value but a
smaller (P f , τ)(→ 0) value, where it is desired that the curves
of (Pd, P f ) and (P f , τ) are close to the upper left and lower
left corners of the coordinate axis, respectively. In addition,
box and whisker plots are used to evaluate the separability
between the anomaly and background. The boxes in the box
and whisker plot reflect the distribution range of the detection
values of the anomaly and background; that is, a larger gap
between the anomaly and background boxes indicates better
discrimination of the detector.

In the proposed ATLSS method, the number of endmem-
bers R is first estimated in the initialization phase using the
HySime algorithm, whereas the most significant task is to
search for the best set of parameters (λ1, λ2, λ3, β) that need to
be carefully identified. Moreover, the λ1, λ2, λ3, and β range in
the set {5·10−1, 1·10−1, 5·10−2, 1·10−2, 5·10−3, 1·10−3, 5·10−4, 1·
10−4}, respectively, while µ is selected from {0.01, 0.001}.
Here, we carefully searched the five datasets to determine the
optimal parameters for all the algorithms. To demonstrate the
contribution of the different parameters to AD, we take the
example of the AVIRIS-2 airplane data while changing the
λ1, λ2, λ3, and β parameters to illustrate the tuning procedure
in detail. We applied ATLSS with different parameter settings
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: 2-D plots of the detection results obtained by RX, RPCA, LRASR, TRPCA, GTVLRR, GVAE, PTA, Dm-1, Dm-2, and
ATLSS on the AVIRIS-1 dataset. (a) RX. (b) RPCA. (c) LRASR. (d) TRPCA. (e) GTVLRR. (f) GVAE. (g) PTA. (h) Dm-1.
(i) Dm-2. (j) ATLSS.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8: 2-D plots of the detection results obtained by RX, RPCA, LRASR, TRPCA, GTVLRR, GVAE, PTA, Dm-1, Dm-2, and
ATLSS on the AVIRIS-2 dataset. (a) RX. (b) RPCA. (c) LRASR. (d) TRPCA. (e) GTVLRR. (f) GVAE. (g) PTA. (h) Dm-1.
(i) Dm-2. (j) ATLSS.

on the AVIRIS airplane datasets (including AVIRIS-1 and
AVIRIS-2), HYDICE dataset, and Urban (ABU) datasets (in-
cluding Urban-1 and Urban-2) in turn to achieve the detection
results under the optimal parameter combination.

C. Detection Performance

We investigate the contribution of the regularization
terms, including sparsity regularization, TV regularization, and
CP regularization, in the proposed ATLSS method with regard
to the accuracy of AD. We refer again to Table II for the
ATLSS, Dm-1, and Dm-2 models. Furthermore, we compare
the performance of ATLSS, including Dm-1 and Dm-2, with
that of RX, RPCA, LRASR, GTVLRR, TRPCA, LSMAD, and
PTA. Sequentially, the 2-D plots of the comparison algorithm

detection results on the five datasets are shown in Fig. 7-11.
Table III shows the AUC values of (Pd, P f )/(P f , τ) obtained
by different AD algorithms on the five real datasets. Each
algorithm is ran ten times on each dataset to avoid randomness,
and the average AUC values are used. Fig. 12 and Fig. 13
show the corresponding performance curves and the box and
whisker plots for different comparison methods on the five real
datasets. We also take the AVIRIS-2 dataset as an example to
illustrate the superior performance of the proposed method in
detail.

For Dm-1, when the parameter settings are λ1 = 0.01 and
β = 0.1, all five datasets can achieve very good results.

1) AVIRIS-2: For the AVIRIS-2 dataset, the estimation
number of the endmembers for the background is 2, as shown
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9: 2-D plots of the detection results obtained by RX, RPCA, LRASR, TRPCA, GTVLRR, GVAE, PTA, Dm-1, Dm-2, and
ATLSS on the HYDICE dataset. (a) RX. (b) RPCA. (c) LRASR. (d) TRPCA. (e) GTVLRR. (f) GVAE. (g) PTA. (h) Dm-1.
(i) Dm-2. (j) ATLSS.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10: 2-D plots of the detection results obtained by RX, RPCA, LRASR, TRPCA, GTVLRR, GVAE, PTA, Dm-1, Dm-2,
and ATLSS on the ABU-Urban-1 dataset. (a) RX. (b) RPCA. (c) LRASR. (d) TRPCA. (e) GTVLRR. (f) GVAE. (g) PTA. (h)
Dm-1. (i) Dm-2. (j) ATLSS.

in Fig. 3(c), and the estimated rank is K = 18. In the
following two paragraphs, we study (1.a) the effects of the
regularization terms and (1.b) the comparison with different
anomaly detectors.

(1.a) Effects of the Regularization Terms: After a large
number of parameter traversals, the trade-off parameters ref-
erenced in the ATLSS algorithm and Dm-2 both achieve their
optimal performance, i.e., λ1 = 0.5, λ2 = 0.005, λ3 = 0.005,
and β = 0.005 for ATLSS and λ1 = 0.1, λ3 = 0.5, and
β = 0.001 for Dm-2. Fig. 14 shows the detection accuracy of
ATLSS on the AVIRIS-2 dataset when one parameter varies
within a predefined parameter range and when the other three
trade-off parameters are fixed. In Fig. 14(a), it can be observed
that when λ1 increases from 0.0001 to 0.5, the curve shows
an upward trend, and the highest detection result is obtained
at λ1 = 0.5, which indicates a positive effect on controlling

the sparsity of the abundance tensor. Table III and Fig. 8
provide the certification from the quantitative analysis and
visual qualitative analysis. The peak of the curve in Fig.
14(b) is located at λ2 = 0.005 when λ2 is in the interval
[0.0001, 0.005]. The increasing curve implies that TV has a
positive effect on suppressing noise, while λ2 > 0.005 imposes
an over smoothness constraint on the abundance tensor leading
to a dramatic decline in the detection results. λ3 is imposed
on Q to control its low rankness, and Fig. 14(c) reveals
that setting λ3 = 0.005 balances the low-rank regularization
with the most important information but captures small-scale
details. The curve first steadily increases and then falls as
it deviates from the optimal parameter value, implying that
parameter values that are too large lead to strict low rankness
on X and thus result in a significant residual loss of the
reconstructed abundance tensor. In Fig. 14(d), we clearly see
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11: 2-D plots of the detection results obtained by RX, RPCA, LRASR, TRPCA, GTVLRR, GVAE, PTA, Dm-1, Dm-2,
and ATLSS on the ABU-Urban-2 dataset. (a) RX. (b) RPCA. (c) LRASR. (d) TRPCA. (e) GTVLRR. (f) GVAE. (g) PTA. (h)
Dm-1. (i) Dm-2. (j) ATLSS.

that the curve is stable when β ∈ [0.005, 0.1] and exhibits
superior performance. Outside this interval, the detection result
is sensitive to the change in the parameter and results in the
detection performance declining in a straight downward trend.
When β is set to 0.005, the best performance is achieved.

(1.b) Comparison with Different Anomaly Detectors: Ta-
ble III demonstrates the AUC values of (Pd, P f ) and (P f , τ)
for the different comparison methods on the five datasets. In
Table III, the anomaly detection accuracy (Pd, P f ) of ATLSS,
which obtains the highest score among all the comparison
methods when τ = 0.087, is illustrated by the ROC curve
in the upper left corner, which also shows the efficiency
of the model. The (P f , τ) score is lower than the others,
and the (P f , τ) ROC curve is also closest to the lower-left
corner, as shown in Fig. 12(b). ATLSS performs well on
the AVIRIS-2 dataset and achieves optimal AD accuracy and
a low false alarm rate. The proposed ATLSS model and
the generation DM-1 and DM-2 methods better separate the
anomaly and background, which is shown in Fig. 13(b). The
2-D plots of the detection results in Fig. 8(i) show the low-rank
structure imposed by the regularization constraint (i.e., CP
decomposition on the introduced low-rank prior term), which
allows the abundance tensor adequate flexibility to model
fine-scale spatial details with most of its spatial distribution
preserved. The exploration of the background tensor enables
the suppression of the background more efficiently. Moreover,
TV regularization, which smooths the estimated abundance
map, effectively suppresses Gaussian noise. When compared
with the generation DM-1 and DM-2 methods, ATLSS has
better background suppression, as shown in Fig. 8, and the
best AD performance, as shown in Table III. In Fig. 12(b),
except for the curves of (Pd, P f ) and (P f , τ), the 3D ROC curve
also comprehensively shows the performance of the proposed
ATLSS method.

The methods assume that the background and the
anomaly have a low-rank and sparse property and performs
better than the RX method in terms of the AUC value and

false alarm rate, which can be observed from Table III and Fig.
12(b). The 2-D plots in Fig. 8 also reveal that the background
and Gaussian noise are both effectively suppressed; more-
over, the anomaly airplanes are clearly detected by ATLSS
compared to RX. The GTVLRR, PTA, Dm-2, and ATLSS,
utilize TV regularization to smooth away the noise signature
while strengthening the outlines of the airplanes. We can
observe that GTVLRR performs well among the comparison
methods. However, the proposed ATLSS method based on
tensor decomposition is completely outstanding compared to
the comparison methods in terms of (Pd, P f )/(P f , τ) and the
power of the anomaly and background separation views.

Table IV shows the computational times of the ten re-
ferred algorithms on the AVIRIS-2 dataset. We observe that the
running time of ATLSS is higher than that of Dm-1 and Dm-
2 because the added regular terms increase the running time,
but the AD performance improves. The time cost of ATLSS
is also lower than that of GTVLRR and TRPCA. Compared
to RX, RPCA, LRASR, and PTA, the time cost of ATLSS is
much higher because they are based on matrix operations. As
shown in Table III, the deep learning method GVAE with the
Training time/Test time is 80×2000/25.56, which not only has
a high time complexity but also the experimental performance
is far inferior to our proposed ATLSS.

2) AVIRIS-1: For the AVIRIS-1 dataset, the estimation
number of the endmember for the background is 3, as shown
in Fig. 2(d), and the estimated rank is K = 46.

When comparing Dm-1, Dm-2, and ATLSS, we can see
that the anomaly part includes three planes, which are clearly
identified in Fig. 7. In Table III and Fig. 12(a), for ATLSS,
we can observe that its value of (Pd, P f ) is the largest, and the
curve is on the upper left corner. The (P f , τ) value of ATLSS
is also relatively low. The superior performance of ATLSS
demonstrates that it imposes low-rank tensor regularization
and TV regularization on the abundance tensor, efficiently
suppressing the background and smoothing away the noise.
Among all the comparison methods, as shown in Table III,
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Fig. 12: The ROC curves of different comparison methods on the five datasets. (a) AVIRIS-1. (b) AVIRIS-2. (c) HYDICE. (d)
ABU-Urban-1. (e) ABU-Urban-2. (Left to right) 3D-ROC curve and 2D-ROC curve of (Pd, P f ), and 2D-ROC curve of (P f , τ).
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Fig. 13: Box and whisker plots for the different comparison methods on the five real datasets: (a) AVIRIS-1. (b) AVIRIS-2.
(c) HYDICE. (d) ABU-Urban-1. (e) ABU-Urban-2.

TABLE III: The AUC values obtained by different AD algorithms on the five real datasets.

Datasets

AUC values of (Pd, P f )/(P f , τ)

Matrix-based operations Deep learning

RX RPCA LRASR GTVLRR PTA GVAE TRPCA

AVIRIS-1 0.9551/0.0118 0.8935/0.0129 0.9716/0.1968 0.9822/0.0893 0.9890/0.2227 0.9860/0.0718 0.9801/0.0304

AVIRIS-2 0.9213/0.0266 0.7969/0.0262 0.9672/0.0711 0.9816/0.0518 0.9609/0.0514 0.9616/0.2009 0.9549/0.0478

HYDICE 0.8511/0.0470 0.9436/0.0277 0.9311/0.0989 0.9393/0.0488 0.9829/0.0935 0.9311/0.1549 0.9600/0.0817

Abu-urban-1 0.9934/0.0329 0.9916/0.0496 0.8666/0.2096 0.9093/0.1261 0.9852/0.1869 0.9778/0.0925 0.9823/0.2450

Abu-urban-2 0.9946/0.0611 0.9960/0.0283 0.9867/0.0211 0.9967/0.0487 0.9992/0.0672 0.9828/0.1976 0.9456/0.0325

the best detection result was also achieved by ATLSS. We
can observe that even though RX has the lowest false alarm
rate, the AD accuracy and the separation of the anomaly
and background in Fig. 12(a) and Fig. 13(a) demonstrate
that its performance is not very good. Notably, our proposed
method on the AVIRIS-2 is superior to the tensor-based PTA
method in all the measurements. Fig. 12(a) shows that the
ROC curve of ATLSS is closer to the top left that those of
all the comparison methods, and Table III further proves the
remarkable performance of ATLSS.

3) HYDICE: For the urban data, the estimated number
of endmembers is R = 4, as shown in Fig. 4(d), where the
estimated CP rank is K = 67.

Compared to Dm-1 and Dm-2, as shown in Table III,
the ATLSS method shows a competitive performance, the AD
AUC value is the highest, and the false alarm rate is the
lowest. For anomaly and background separability, ATLSS is
also powerful in separating anomalies and the background, as

Tensor-based operations

Dm-1 Dm-2 ATLSS

0.9950/0.0649 0.9954/0.0293 0.9967/0.0328

0.9967/0.0655 0.9970/0.0490 0.9982/0.0159

0.9829/0.0388 0.9847/0.0222 0.9893/0.0152

0.9940/0.1214 0.9960/0.1226 0.9962/0.1291

0.9976/0.0126 0.9989/0.0346 0.9992/0.0611

shown in Fig. 13(c). In Fig. 9(i), the anomaly is accurately
detected; furthermore, the background and the noise are both
well suppressed, which is a benefit of tensor low-rank regu-
larization and TV smoothness for the background abundance
tensor. Compared with PTA, the (Pd, P f )/(P f , τ) values of
ATLSS, as shown in Table III, account for the fact that the
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(a) (b) (c) (d)

Fig. 14: Detection accuracy of ATLSS on the AVIRIS-2 dataset with different parameter settings. (a) λ1 varies. (b) λ2 varies.
(c) λ3 varies. (d) β varies.

TABLE IV: The computational time (seconds) of different AD algorithms on the AVIRIS-2 dataset.

Method
Matrix-based operations Deep learning Tensor-based operations

RX RPCA LRASR GTVLRR PTA GVAE TRPCA Dm-1 Dm-2 ATLSS

Time(s) 3.577 15.457 26.399 241.099 241.099 80×2000/25.56 234.465 70.494 149.949 200.732

abundance maps possess more distinctive features than the
raw data, which is beneficial for identifying the anomaly from
the background and achieving outstanding performance. The
qualitative and quantitative results are given in Table III and
Fig. 12(c), as well as in Fig. 13(c). These results are obtained
due to the background low-rank decomposition, which enables
more accurate background reconstruction.

4) Urban (ABU-1): For the ABU-Urban-1 dataset, the
number of estimation endmembers is 2, as shown in Fig. 5(c),
and the estimated CP rank is K = 25.

Compared with Dm-1 and Dm-2, the ATLSS background
model imposes a CP regularization constraint and TV regular-
ization on the abundance tensor, and an excellent AD perfor-
mance achieved, as shown in Table III. A higher detection
result would lead to a few anomaly pixels being regarded
as background pixels, resulting in a lower false alarm rate.
Thus, as shown in III and Fig. 12(d), the (Pd, P f ) values
of Dm-1, Dm-2, and ATLSS increase gradually, while the
(P f , τ) values in Table III also increased. Furthermore, we
can observe that (P f , τ) of RX is the lowest, and (Pd, P f )
is high among all the comparison methods. However, Fig.
13(d) shows that ATLSS and the generation methods perform
a superior separation between the anomaly and background. In
general, the evaluation metrics mentioned above validate that
the proposed ATLSS method outperforms the other methods
in both qualitative and quantitative aspects.

5) Urban (ABU-2): For the ABU-Urban-2 dataset, the
number of estimation endmembers is 3, as shown in Fig. 6(c),
and the estimated CP rank is K = 25.

As shown in Table III, the detection result (Pd, P f ) of
ATLSS is higher than those of Dm-1 and Dm-2. In contrast,
the (P f , τ) value of ATLSS is slightly higher than those of
the other two generative methods. It suffers from a much
higher detection result, which causes a few anomaly pixels
to be detected as background pixels. However, its efficient
separability between the anomaly and background, as shown

in Fig. 7(e), demonstrates that it is still a competitive AD
method. For the Urban (ABU-2) dataset, the results of the
tensor-based PTA and ATLSS methods are evenly matched,
as shown in Table III, Fig. 12, and Fig. 13. However, it is
worth noting that the (P f , τ) value of ATLSS is lower than
that of PTA, which demonstrates that the abundance maps
possess more distinctive features than the original data and
enable a more accurate identification of the anomaly and the
background; hence, it achieves outstanding performance.

We perform the proposed ATLSS method and extensive
comparison experiments on the five datasets and summarize
the advantages of the proposed method as follows:

(1) Effectiveness: The proposed ATLSS method decom-
poses the background into an abundance tensor and endmem-
ber matrix. The structural characteristics of the abundance
tensor are fully explored, i.e., the local spatial continuity
and the high abundance vector correlations, which contribute
to reconstructing a more accurate abundance tensor for the
background. The proposed ATLSS model performs excellently
compared to its degradation Dm-1 and Dm-2.

(2) Performance: Seven comparison algorithms are pre-
sented to sufficiently demonstrate the performance of the
proposed method. Compared to RX, ATLSS, based on the
low-rank and sparse assumption, has a more accurate AD
performance. PTA is a tensor-based but matrix-based operation
method that is competitive with the proposed ATLSS method,
but its performance cannot be generalized to all datasets.
The deep learning method GVAE has a high training time
while achieving a general performance. ATLSS, which exploits
the abundance tensor’s physical meaning and possesses more
distinctive features than the raw data, achieves outstanding AD
performance.

IV. Conclusion

In this paper, a novel method is proposed for hyperspec-
tral AD. The idea is that the background is decomposed into
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the mode-3 product of an abundance tensor and an endmember
matrix. Considering that the background pixels contain limited
endmembers, we impose the ℓ1-norm to characterize the spar-
sity. In addition, low-rank structure regularization is introduced
for encoding fine-scale abundance tensor behavior to avoid a
strict low-rank constraint. Moreover, a TV regularizer is also
incorporated into the model to smooth the noise and anomaly
signatures and separate the background more accurately. The
sparse anomaly is characterized by the defined ℓ1,1,2-norm that
aims to better constrain the tensor tube-wise sparsity. Notably,
the noise is assumed to be Gaussian to avoid confusion with
the anomaly. The experimental results on the five datasets
demonstrated that the proposed method has an excellent AD
performance compared to the other methods.
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