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In the present paper we consider a family of non-Volterra quadratic stochastic operators depending on a parameter α and study their trajectory behaviors. We find all fixed points for a non-Volterra quadratic stochastic operator on a finite-dimensional simplex. We construct some Lyapunov functions. A complete description of the set of limit points is given, and we show that such operators have the ergodic property.

Introduction

The quadratic stochastic operators frequently arise in many models of mathematical genetics, namely, in the theory of heredity (see [START_REF] Abdulghafor | Dynamics of doubly stochastic quadratic operators on a finite-dimensional simplex[END_REF], [START_REF] Bernstein | The solution of a mathematical problem related to the theory of heredity[END_REF], [START_REF] Blath | G,µ)-quadratic stochastic operators[END_REF], [START_REF] Ganikhodjaev | Quadratic stochastic operators and zero-sum game dynamics[END_REF], [START_REF] Ganikhodzhaev | Quadratic stochastic operators, Lyapunov functions and tournaments[END_REF], [START_REF] Ganikhodzhaev | Quadratic stochastic operators and processes: results and open problems[END_REF], [START_REF] Ganikhodzhaev | Doubly stochastic quadratic operators and Birkhoff's problem[END_REF], [START_REF] Jamilov | Quadratic stochastic operators corresponding to graphs[END_REF], [START_REF] Jamilov | On a family of strictly non-Volterra quadratic stochastic operators[END_REF], [START_REF] Jamilov | On symmetric strictly non-Volterra quadratic stochastic operators[END_REF], [START_REF] Jamilov | Non-ergodicity of uniform quadratic stochastic operators[END_REF], [START_REF] Jamilov | On the equiprobable strictly non-Volterra quadratic stochastic operators[END_REF], [START_REF] Jamilov | On the random dynamics of Volterra quadratic operators[END_REF], [START_REF] Kesten | Quadratic transformations: A model for population growth[END_REF], [START_REF] Yu | Khamraev: On the dynamics of a quasi strictly non-Volterra quadratic stochastic operator[END_REF], [START_REF] Yu | Mathematical structures in population genetics[END_REF], [START_REF] Rozikov | F-quadratic stochastic operators[END_REF], [START_REF] Rozikov | Volterra quadratic stochastic operators of a two-sex population[END_REF], [START_REF] Ulam | A collection of mathematical problems[END_REF], [START_REF] Zakharevich | On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex[END_REF], [START_REF] Zhamilov | On the dynamics of strictly non-Volterra quadratic stochastic operators on a two-dimensional simplex[END_REF]). Consider a biological population and suppose that each individual in this population belongs precisely to one of the species (genotype) 1, . . . , m. The scale of species is such that the species of the parents i and j, unambiguously, determine the probability of every species k for the first generation of direct descendants. Denote this probability, called the heredity coefficient, by p ij,k = P (k|(i, j)). It is then obvious that p ij,k ≥ 0 for all i, j, k and that m k=1 p ij,k = 1, i, j, k = 1, . . . , m.

The state of the population can be described by the tuple (x 1 , x 2 , . . . , x m ) of species probabilities, that is, x k = P (k) is the fraction of the species k in the total population.

In the case of panmixia (random interbreeding) the parent pairs i and j arise for a fixed state x = (x 1 , x 2 , . . . , x m ) with probability x i x j = P (i, j) = P (i)P (j). Hence, the total probability of the species k in the first generation of direct descendants is defined by

x k = m i,j=1 P (k|(i, j))P (i)P (j) = m i,j=1 p ij,k x i x j , k = 1, . . . , m.
The association x → x defines an evolutionary quadratic operator. Thus evolution of a population can be studied as a dynamical system of a quadratic stochastic operator [START_REF] Yu | Mathematical structures in population genetics[END_REF]. See [START_REF] Ganikhodzhaev | Quadratic stochastic operators and processes: results and open problems[END_REF] and [START_REF] Mukhamedov | Quantum quadratic sperators and processes[END_REF] for a review of QSOs. Recently in [START_REF] Yu | Khamraev: On the dynamics of a quasi strictly non-Volterra quadratic stochastic operator[END_REF], [START_REF] Hardin | A quasi-strictly non-Volterra quadratic stochastic operator[END_REF] a quasi-strictly non-Volterra QSO is studied. We refer the reader to [START_REF] Jamilov | Reinfelds: A family of Volterra cubic stochastic operators[END_REF] for a review on convex combinations of quadratic stochastic operators. The main goal of the present paper is to study a family of operators which contains a convex combination of two non-Volterra QSOs.

The paper is organised as follows. In Section 2 we recall definitions and well known results from the theory of Volterra and non-Volterra QSOs. In Section 3 we consider a class of non-Volterra QSOs and study trajectory behaviors of such operators. We show that each QSO from this class has the two fixed points. Moreover, we prove that such operator is ergodic.

Preliminaries

Let S m-1 = x = (x 1 , x 2 , . . . , x m ) ∈ R m : for any i, x i > 0 and

m i=1 x i = 1 be the (m -1)-dimensional simplex. A map V of S m-1 into itself is called a quadratic stochastic operator (QSO) if (V x) k = m i,j=1 p ij,k x i x j (1) 
for any x ∈ S m-1 and for all k = 1, . . . , m, where

p ij,k ≥ 0, p ij,k = p ji,k for all i, j, k and m k=1 p ij,k = 1. (2) 
Assume {x (n) ∈ S m-1 : n = 0, 1, 2, . . . } is the trajectory (orbit) of the initial point x ∈ S m-1 , where x (n+1) = V (x (n) ) for all n = 0, 1, 2, . . ., with x (0) = x.

One of the main problems in mathematical biology is to study the asymptotic behavior of the trajectories. This problem deeply studied for the Volterra QSOs (see [START_REF] Ganikhodzhaev | Quadratic stochastic operators, Lyapunov functions and tournaments[END_REF], [START_REF] Ganikhodzhaev | Map of fixed points and Lyapunov functions for one class of discrete dynamical systems[END_REF]). Definition 2.1. A quadratic stochastic operator is called a Volterra operator if p ij,k = 0 for any k / ∈ {i, j}, i, j, k = 1, . . . , m.

Definition 2.2. A point x ∈ S m-1 is called a periodic point of V if there exists an n so that V n (x) = x. The smallest positive integer n satisfying the above is called the prime period or least period of the point x. A period-one point is called a fixed point of V .

Denote the set of all fixed points by Fix (V ) and the set of all periodic points of (not necessarily the smallest) period n by Per n (V ). Evidently that the set of all iterates of a periodic point form a periodic trajectory (orbit).

Let D x V (x * ) = (∂V i /∂x j )(x * ) be a Jacobian of V at the point x * .

Definition 2.3 ([4]

). A fixed point x * is called hyperbolic if its Jacobian D x V (x * ) has no eigenvalues on the unit circle.

Definition 2.4 ([4]

). A hyperbolic fixed point x * is called: i) attracting, if all the eigenvalues of the Jacobian D x V (x * ) are less than 1 in absolute value;

ii) repelling, if all the eigenvalues of the Jacobian D x V (x * ) are greater than 1 in absolute value;

iii) a saddle, otherwise.

Definition 2.5. A QSO V is called regular if for any initial point x ∈ S m-1 , the limit lim n→∞ V (x (n) ) exists.

Note that the limit point is a fixed point of a QSO. Thus, the fixed points of a QSO describe limit or long run behavior of the trajectories for any initial point. The limit behavior of trajectories and fixed points play an important role in many applied problems (see [START_REF] Blath | G,µ)-quadratic stochastic operators[END_REF], [START_REF] Ganikhodjaev | Quadratic stochastic operators and zero-sum game dynamics[END_REF], [START_REF] Ganikhodzhaev | Quadratic stochastic operators, Lyapunov functions and tournaments[END_REF], [START_REF] Ganikhodzhaev | Quadratic stochastic operators and processes: results and open problems[END_REF], [START_REF] Jamilov | Quadratic stochastic operators corresponding to graphs[END_REF], [START_REF] Jamilov | On a family of strictly non-Volterra quadratic stochastic operators[END_REF], [START_REF] Jamilov | Dynamics of a strictly non-Volterra quadratic stochastic operator on S 4[END_REF], [START_REF] Jamilov | Non-ergodicity of uniform quadratic stochastic operators[END_REF], [START_REF] Jamilov | On the equiprobable strictly non-Volterra quadratic stochastic operators[END_REF], [START_REF] Kesten | Quadratic transformations: A model for population growth[END_REF], [START_REF] Yu | Mathematical structures in population genetics[END_REF], [START_REF] Rozikov | F-quadratic stochastic operators[END_REF], [START_REF] Zakharevich | On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex[END_REF], [START_REF] Zhamilov | On the dynamics of strictly non-Volterra quadratic stochastic operators on a two-dimensional simplex[END_REF]). The biological treatment of the regularity of a QSO is rather clear: in the long run the distribution of species in the next generation coincides with the distribution of species in the previous one, i.e., it is stable.

For nonlinear dynamical systems (1) Ulam [START_REF] Ulam | A collection of mathematical problems[END_REF] suggested an analogue of a measure-theoretic ergodicity, the following ergodic hypothesis:

Definition 2.6. A QSO V is said to be ergodic if the limit lim n→∞ 1 n n-1 k=0 V k (x) exists for any x ∈ S m-1 .
On the basis of numerical calculations Ulam, in [START_REF] Ulam | A collection of mathematical problems[END_REF], conjectured that the ergodic theorem holds for any QSO. In [START_REF] Zakharevich | On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex[END_REF] Zakharevich proved that this conjecture is false in general. Later, in [START_REF] Ganikhodjaev | On a necessary condition for the ergodicity of quadratic operators defined on a two-dimensional simplex[END_REF], a sufficient condition of non-ergodicity for QSOs defined on S 2 was established. In [START_REF] Ganikhodjaev | Quadratic stochastic operators and zero-sum game dynamics[END_REF] have shown the correlation between non-ergodicity of Volterra QSOs and rock-paper-scissors games. In [START_REF] Jamilov | On the random dynamics of Volterra quadratic operators[END_REF] the random dynamics of Volterra QSOs is studied.

The biological treatment of non-ergodicity of a QSO is the following: in the long run the behavior of the distributions of species is unpredictable. Note that a regular QSO is ergodic, but in general from ergodicity does not follow regularity.

Let ω V x (0) be the set of limit points of the trajectory

V n x (0) ∈ S m-1 : n = 0, 1, 2, . . . . Definition 2.7. A continuous function ϕ : S m-1 → R is called a Lyapunov function for a QSO V if ϕ(V (x)) ≥ ϕ(x) for all x (or ϕ(V (x)) ≤ ϕ(x) for all x).
Note that a Lyapunov function is very helpful to describe an upper estimate of ω V (x 0 ). 

(i) = i, and (2) 
π fixes each j ∈ E n \ {i, π(i), . . . , π k-1 (i)}.
The k-cycle π is usually denoted i, π(i), . . . , π k-1 (i) .

The set supp(π) = {i ∈ E n : π(i) = i} denotes the support of π and we let supp(k) denote the support of the k-cycle, that is, the set supp(k) = {i, π(i), . . . , π k-1 (i)}.

Any permutation can be represented in the form of a product of cycles without common elements (i.e. disjoint cycles) and this representation is unique to within the order of the factors.

Let π = τ 1 τ 2 . . . τ q be a permutation of the set E m-1 = {1, . . . , m -1}, where τ 1 , . . . , τ q are disjoint cycles and we denote by ord(τ i ) the order of a cycle τ i . Evidently that supp(τ 1 ) ∪ • • • ∪ supp(τ q ) = supp(π) and supp(τ i ) ∩ supp(τ j ) = ∅, for any i = j.

The following notations will be used in the below. Let ∂S m-1 = x ∈ S m-1 : x i = 0 for at least one i ∈ {1, 2, . . . , m} denote the boundary of S m-1 and let int S m-1 = {x ∈ S m-1 :

x 1 x 2 • • • x m > 0} be the interior of S m-1 .

Main results

Consider a non-Volterra QSO defined on a finite-dimensional simplex which has the form

V π :    x k = 2x m x π(k) , k = 1, . . . , m -1 x m = x 2 m + m-1 i=1 x i 2 ( 3 
)
where π is a permutation on the set E m-1 .

It is worth mentioning that if π = (21)(3) then the QSO (3) coincides up to the rearrangement of the coordinates with the quasi-strictly non-Volterra QSO which is studied in [START_REF] Yu | Khamraev: On the dynamics of a quasi strictly non-Volterra quadratic stochastic operator[END_REF].

Let s = LCM ord(τ 1 ), . . . , ord(τ q ) .

Theorem 3.1 ([17]

). For the operator V π the following statements are true:

i) if x (0) ∈ Γ = {x ∈ S m-1 : x m = 0} ∪ {e m } then ω Vπ x (0) = {e m }; ii) if π = Id then ω Vπ x (0) = { x} for any x (0) ∈ S m-1 \ Γ; iii) if π = Id then ω Vπ x (0) = {x ξ , x 1 ξ , . . . , x s-1 ξ }. Let V 1 := V Id and V 2 := V π . Consider the convex combination of the QSOs V 1 , V 2 , that is, V α = αV 1 + (1 -α)V 2 , α ∈ [0, 1]
It is easy to see that the operator V α has the form

V α :    x k = 2x m (αx k + (1 -α)x π(k) ), k = 1, . . . , m -1 x m = x 2 m + m-1 i=1 x i 2 (4) 
where π is a permutation on the set E m-1 .

It is evident that if π = Id then for any α ∈ [0, 1] the operator V α coincides with the QSO V 1 . The dynamics of the operator V 1 is given in the Theorem 3.1. In the below we consider the cases π = Id.

The QSO (4) can be written as follow

V α :        x k = 2x m (αx k + (1 -α)x π(k) ), k ∈ supp(π) x k = 2x m x k , k / ∈ supp(π) x m = x 2 m + m-1 i=1 x i 2 ( 5 
)
where π is a permutation on the set E m-1 .

Consider the function f (x) = 2x 2 -2x + 1, x ∈ [0, 1]. We define f n to be the n-fold composition of f with itself. One can easily verify the statements of the next proposition about dynamics of the function f (x). Denote supp(x) = {i : x i > 0} and let | supp(x)| be its cardinality.

In the next Proposition we will describe the invariant sets, all fixed points and we give some Lyapunov function.

Proposition 3.3. For the operator V α the following statements are true:

i) If | supp (π)| < m -1 then Γ β = {x ∈ S m-1 : x i = 0, ∀ i ∈ β} is an invariant set for any β ⊂ E m-1 \ supp (π). Also the sets M µ,i = x ∈ S m-1 : k∈supp(τ i ) x k = µ, x m = 1/2 and M ν,i,j = x ∈ S m-1 : k∈supp(τ i ) x k = ν k∈supp(τ j )
x k are invariant sets, where µ ≥ 0, ν > 0;

ii) Fix (V α ) = X ∪ {e m }, where e m = (0, . . . , 0, 1) and

X = {x ∈ S m-1 : x k = x l , ∀ k, l ∈ supp(τ i ), i = 1, . . . , q, x m = 1/2};
iii) For any i ∈ {1, . . . , q} the function 5) one easily has x k = 0. Hence it follows that the set Γ β is a invariant set.

ϕ i x = k∈supp(τ i ) x k is a Lyapunov function; iv) For any k / ∈ supp(π) the function φ k x = x k is a Lyapunov function. Proof. i) Let | supp (π)| < m -1 then for any k / ∈ supp (π) from (
Let x ∈ M µ,i and τ i is a cycle then from (3) we have

k∈supp(τ i ) x k = k∈supp(τ i ) αx k + (1 -α)x π(k) = α k∈supp(τ i ) x k + (1 -α) k∈supp(τ i ) x π(k) = µ. Therefore V (M µ,i ) ⊂ M µ,i .
Let x ∈ M ν,i,j and τ i , τ j cycles then from (3) we have

k∈supp(τ i ) x k k∈supp(τ j ) x k = 2x m k∈supp(τ i ) x k 2x m k∈supp(τ j ) x k = ν. Consequently V (M ν,i,j ) ⊂ M ν,i,j .
ii) The equation V α (x) = x has the following form

x k = 2x m (αx k + (1 -α)x π(k) ), 1 ≤ k ≤ m -1, x m = 2x 2 m -2x m + 1. (6) 
Due to Proposition 3.2 the last equation of the system (6) has the solutions x m = 1 and x m = 1/2.

Evidently that if x m = 1 then we get the vertex e m = (0, . . . , 0, 1). For x m = 1/2 from the system of equations

x k = αx k + (1 -α)x π(k) , 1 ≤ k ≤ m -1, and x 1 + • • • + x m-1 = 1 2
it follows that x k = x k for all k, k ∈ supp(τ i ), i = 1, . . . , q and

x k = x k for all k ∈ Fix(π).

Using the last one has that a point x = (x 1 , . . . , x m ) ∈ X is a solution of the system (6).

iii) Let τ i , i ∈ {1, . . . , q} be a cycle. Then f (x) ≥ 1/2 for any 0 < x < 1 and we can assume that x m ≥ 1/2. Then from (3) we have

ϕ i V α (x) = k∈supp(τ i ) x k = k∈supp(τ i ) 2x m (αx k + (1 -α)x π(k) ) = 2x m α k∈supp(τ i ) x k + (1 -α) k∈supp(τ i ) x π(k) = 2x m αϕ i (x) + (1 -α)ϕ i (x) = 2x m ϕ i (x) ≥ ϕ i (x).
Therefore the functions ϕ i (x) are Lyapunov functions for any i ∈ {1, . . . , q}. iv) Using x m ≥ 1/2 from (5) for any k / ∈ supp(π) one easily has that

φ k (V α (x)) = 2x m x k ≥ x k = φ k (x). Corollary 3.4. If p = |E m-1 \ supp (π)|, then φ(x) = γ 1 φ 1 (x) + • • • + γ p φ p (x) and ϕ(x) = β 1 ϕ 1 (x) + • • • + β q ϕ q (x)
are Lyapunov function for the QSO V α for any γ 1 ≥ 0, . . . , γ p ≥ 0 and β 1 ≥ 0, . . . , β q ≥ 0.

In the next Theorem we give the description of the set of limit points of the trajectories.

Theorem 3.5. For the operator V α the following statements are true:

i) if x (0) ∈ Γ = {x ∈ S m-1 : x m = 0} ∪ {e m } then ω Vα x (0) = {e m }; ii) if α ∈ (0, 1), π = Id then ω Vα x (0) = {b}, b ∈ X for any x (0) ∈ S m-1 \ (Γ ∪ X); iii) if α = 0, π = Id then ω Vα x (0) = {x ξ , x 1 ξ , . . . , x s-1 ξ }; iv) if α = 1, π = Id then ω Vα x (0) = { x} for any x (0) ∈ S m-1 \ Γ.
Proof. i) Evidently that V α x (0) = e m for any x (0) ∈ Γ.

ii) Let α ∈ (0, 1) and x (0) ∈ S m-1 \ (Γ ∪ X). Then by assertion of Proposition 3.2 we obtain lim n→∞ x (n) m = 1/2. Since f (x) ≥ 1/2 for any 0 < x < 1 and we can assume that x m ≥ 1/2.

Let k / ∈ supp (π). Due to Proposition 3.3 the function φ k x is a Lyapunov function for the QSO (4). Therefore, we have

φ k (x (n+1) ) ≥ φ k (x (n) ), k / ∈ supp (π), n = 0, 1, . . . , (7) 
that is there exists lim

n→∞ x (n) k = lim n→∞ φ k (x (n) ) = ξ k for any k / ∈ supp (π). Denote X = x ∈ S m-1 : b k = ξ k , ∀ k / ∈ supp (π), b m = 1/2 . Let τ i , i ∈ {1, . . . , q} be a cycle. Consider the function ψ i (x) = min k∈supp(τ i )
x k . Then from (3) we have

ψ i V α (x) = min k∈supp(τ i ) 2x m (αx k + (1 -α)x π(k) ) ≥ αψ i (x) + (1 -α)ψ i (x) = ψ i (x). (8)
Consequently, we have

ψ i (x (n+1) ) ≥ ψ i (x (n) ), i = 1, . . . , q, n = 0, 1, . . . (9) 
Therefore the sequence ψ i (x (n) ) is an increasing and bounded sequence. Hence it follows existence the following limit lim

n→∞ ψ i (x (n) ) = ξ i .
Let k ∈ supp (π). It is easy to see that for any i ∈ {1, . . . , q}

ψ i x ≤ ψ i b and ψ i x = ψ i b iff x = b, b ∈ X ∩ X.
Indeed if x = b, b ∈ X ∩ X then it is easily follows that ψ i x = ψ i b for any i ∈ {1, . . . , q}. Let ψ i x = ψ i b , x ∈ X for any i ∈ {1, . . . , q} and b ∈ X ∩ X then for any i ∈ {1, . . . , q} we get ψ i x = x i 1 ≤ x i 2 ≤ • • • ≤ x it , where t = ord(τ i ). If we assume that some of the inequalities x i 1 ≤ x i 2 ≤ • • • ≤ x it are strong inequalities in this case we have contradiction to x ∈ S m-1 . Therefore we have if ψ i x = ψ i b for any i ∈ {1, . . . , q} and b ∈ X ∩ X then for any i ∈ {1, . . . , q} we obtain

ψ i x = x i 1 = x i 2 = • • • = x it .
Next we prove that if ξ i < ψ i (b) for any i ∈ {1, 2, . . . , q}, then lim This is a contradiction. It follows that ξ i = ψ i (b) for any i ∈ {1, 2, . . . , q}.

Thus lim n→∞ x (n) = b for any α ∈ (0, 1) and an initial x (0) ∈ S m-1 \ (Γ ∪ X).

The proofs of parts iii) and iv) follows from the Theorem 3.1.

Corollary 3.6. The QSO V α is an ergodic transformation.

Proposition 3 . 2 .

 32 For the function f (x) the following statements are true: i) Fix (f ) = {1, 1/2}; ii) x = 1 is a repelling and the fixed point 1/2 is an attracting; iii) for any value n ≥ 2 the function f (x) has no n-periodic points, different from fixed points; iv) lim n→∞ f n (x) = 1/2 for any 0 < x < 1 and f (0) = f (1) = 1.

n→∞x

  (n) = b. Suppose the converse. Then there is a sequence {x (nt) } t=1,2,3,... such that lim t→∞x (nt) = c = b. (10)Using minf (x) = 1/2 one has1 = ψ i (b) -ξ i ψ i (b) -ξ i = lim t→∞ ψ i (b) -ψ i (x (nt+1) ) ψ i (b) -ψ i (x (nt) ) = 1 + lim t→∞ ψ i (x (nt) ) -2x ψ i (b) -ψ i (x (nt) ) ≤ 1 + lim t→∞ ψ i (x (nt) ) -αx (nt) k + (1 -α)x (nt) π(k) ψ i (b) -ψ i (x (nt) ) ≤ 1 + lim t→∞ ψ i (x (nt) ) -1 ψ i (b) -ψ i (x (nt) ) < 1.
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