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Abstract 

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), 

however, there is presently no way to predict response to guide treatment. The aim of 

this study is to identify functional genes and pathways that distinguish BD Li 

responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of 

Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any 

significant results. As a result, we then employed network-based integrative analysis of 

transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 

significantly differentially expressed (DE) genes were identified in LR vs NR regardless 

of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-

boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived 

network propagation, there was a highly significant overlap of genes between the top 

500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric=1.28E-

09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal 

network genes identified focal adhesion and the extracellular matrix (ECM) as the most 

significant functions. Our findings suggest that the difference between LR and NR was a 

much greater effect than that of lithium. The direct impact of dysregulation of focal 

adhesion on axon guidance and neuronal circuits could underpin mechanisms of 

response to lithium, as well as underlying BD. It also highlights the power of integrative 

multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights 

into lithium response in BD.
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Introduction 

Bipolar disorder (BD) is a major psychiatric disorder characterized by recurrent 

episodes of mania and depression, and a high risk of suicide. Approximately 50% of BD 

patients suffer psychosis, and, if left untreated, up to about 17% will complete suicide1. 

Though effective treatments exist, little is understood regarding etiology to guide clinical 

drug selection or drug design. 

Lithium (Li) is the first and remains the best mood stabilizing medication for BD2, 

3. The mechanism of action of lithium has been studied for over six decades and 

multiple effects on cellular signaling processes have been identified such as: regulation 

of GSK3/Akt, G proteins and PKA signaling, inositol turnover, neuronal excitability (via 

Na+-K+ ATPase), or neurotransmitters4. Lithium is clinically effective in treating both 

mania and depression, but primarily used for prophylaxis. Approximately 30% of 

patients with BD enjoy a very robust response to lithium with almost complete 

elimination of symptoms5, 6. However, after onset, most patients go through multiple 

medication trials often over several years during which time they suffer and are at risk 

for suicide1. Many who would be excellent lithium responders never receive a trial of 

lithium. For these reasons, there is a great need for a predictor of lithium response to 

guide clinicians in prescribing lithium. Genetics may provide such a predictor as lithium 

responders have been shown to have a stronger family history of both BD and lithium 

responsiveness5. 

One of the challenges of pharmacogenomics is the labor-intensive task of 

phenotyping. The gold standard for assessing drug response is the prospective clinical 

trial, but sample sizes for such studies are orders of magnitude smaller (500 vs 50 000) 
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than those currently successful for genome-wide association studies (GWAS). 

Furthermore, there are few GWAS focusing on lithium response, most suffering from 

lack of power or failure in replication7. Though more data is being accumulated8-14, 

GWAS has so far not had the power to consistently detect reproducible genes. 

Human induced pluripotent stem cells (iPSC) provide an alternative and 

complementary approach to identifying genes and mechanisms of lithium response. It is 

a revolutionary set of methods enabling access to living neurons from specific 

individuals and in part overcoming a major hurdle in neuropsychiatric research, the 

inability to readily access living brain tissue15. iPSC methods are now being developed 

to derive a variety of specific neurons which in turn can model diseases and drug 

response16, 17. For instance, we have previously demonstrated a differential response to 

lithium in vitro between iPSC neurons derived from lithium responders vs non-

responders18, 19. These data are consistent with the notion that there are two different 

BD sub-populations with different pathophysiologies defined by lithium response5. 

Network-based analysis is a powerful bioinformatic approach that employs the 

fundamental connectivity of gene networks and genetic data to derive models of 

disease or drug response. Such network models may implicate biological functions 

associated with complex traits and presumably serve specific cellular processes20. 

Network-based methods require comprehensive information but have been shown to 

produce promising insights in studies of various diseases, including psychiatric 

disorders21, 22. Recently, network construction has advanced by integrating multiple 

sources of data, (e.g., genomic, transcriptomic, proteomic) that, in turn, improves 

performance23, 24. Therefore, a multi-omics network-based approach can be employed 
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in psychiatric research for efficiently uncovering the mechanisms of complex traits and 

the goal of precision psychiatry25, 26. 

The mechanisms underlying differential response to lithium in BD remain elusive. 

In this study, we aim to identify genes associated with lithium response in BD by 

combining genetic data from a GWAS of lithium response and data from a 

transcriptome study of iPSC-derived neurons challenged in vitro with lithium. The idea 

behind this integrative analysis is to improve our power to detect genes for lithium 

response by combining two different independent sources of data and examining the 

overlap in derived networks. 

To our knowledge, this is the first integrative analysis of multi-omics data for 

lithium response. Here, we describe the results of combining data between a GWAS for 

lithium response and 41 differentially expressed genes that were identified in iPSC-

derived BD neurons from responders (LR) and non-responders (NR). GWAS genes 

showed a highly significant overlap with the expression-derived network. The functional 

enrichment analyses identified focal adhesion and the extracellular matrix (ECM) as the 

most significant biological functions. 

Methods 

The methods are summarized here and detailed in Supplemental Methods. The 

overall study design is illustrated in Figure 1a. 

All subjects provided written informed consent according to their institution’s 

approved procedures. Subjects for the GWAS were recruited as part of two studies of 

lithium response and BD: the multi-site Pharmacogenomics of Bipolar Disorder (PGBD) 

study, and an identical study of veterans recruited from Veterans Affairs San Diego 
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Healthcare System (VA). The PGBD and veteran studies had a relapse prevention 

design where subjects were followed prospectively for up to 2.5 years12. All subjects 

had diagnoses confirmed using the Diagnostic Interview for Genetic Studies (DIGS)27 

and all were of European American (EA) ancestry. 

Subjects for the iPSC studies were selected from the PGBD/VA and Halifax 

samples. The Halifax sample from Dalhouise University was assessed retrospectively 

using the Alda scale28. Both responders and non-responders were selected from the 

ends of the distribution of response, either time in study (PGBD/VA sample) or Alda 

score (Halifax sample). Control (CT) subjects were recruited by advertising and 

screened for psychiatric diagnoses using the DIGS. 

GWAS was conducted using the Illumina Human Psychchip on the Illumina 

Infinium platform (Illumina, San Diego, CA). Genotypes were called using Genome 

Studio (Illumina). The GWAS analysis employed the “entered_maintenance” phenotype, 

representing stabilization on lithium monotherapy after 4 months. Analysis began with 

quality control (QC), followed by alignment and imputation. Association testing used 

logistic regression in PLINK29 with age, sex and three population principal component 

covariates. 

Following the initial analysis of all single nucleotide polymorphisms (SNPs), 

GWAS results were analyzed using Versatile Gene-Based Association (VEGAS) test30, 

which obtained a single empirical P-value for each gene. The Genome-Wide 

Association Boosting (GWAB) algorithm31 was employed in order to use network 

information to rank order genes. 
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Skin (PGBD/VA) or blood (Halifax) samples were obtained, and either fibroblasts 

or lymphoblasts, respectively were reprogrammed to iPSCs and differentiated to prox1+ 

hippocampal dentate gyrus glutamatergic granule cells (DG) as described previously18 

and in Supplemental Methods. The six PGBD/VA bipolar and four control cell lines 

used in this study were identical to the cells reprogrammed as reported previously18. 

The six bipolar subjects in the Halifax sample are also identical to those previously 

reported19. Evidence of pluripotency, normal karyotypes and neural induction has also 

been previously reported for these lines. 

iPSC-derived DG-like neurons from both clinically validated lithium responders 

and non-responders were treated in culture both with and without lithium. Cells were 

treated for one week at 1 mM, a clinically effective blood concentration. RNA-

sequencing (RNA-seq) was performed on all samples. Ribo-depleted libraries were 

constructed and cDNA was sequenced as paired ends on an Illumina HiSeq 2500. QC 

and RNA-seq analysis are detailed in Supplemental Methods. Validation of selected 

genes was performed using reverse transcription quantitative real-time PCR (RT-

qPCR). 

Initial functional analysis of gene expression was conducted using WebGestalt32 

and g:Prolifer33. Network propagation was used to identify the network regions proximal 

to the RNA-seq differentially expressed genes20. A hypergeometric test was used to test 

for over-representation of the GWAB genes in the RNA-seq network. Clusters were 

derived using the Louvain graph-based clustering algorithm34 and functional analysis of 

the derived clusters was performed using ToppGene35 and g:Profiler33. 
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Results 

Subjects 

For the GWAS, out of total 728 enrolled subjects, 256 were selected based on 

completeness of data, Hardy-Weinberg equilibrium, and EA ancestry. Characteristics of 

the selected GWAS subjects are summarized in Supplementary Table 1. NR were 

significantly more likely to have rapid cycling illness. For the RNA-seq study, overall, 

there were no significant demographic or clinical differences between LR, NR, and CT 

groups selected for generation of iPSC-derived neurons (Supplementary Table 2). 

GWAS analysis yielded no significant results 

As shown in Supplementary Figure 1, no SNP was genome-wide significant. 

The quantile-quantile plot is consistent with inadequate power. A gene-based VEGAS 

analysis showed similarly negative results (Supplementary Table 3). 

RNA-seq analysis 

Overall, a total of 13 691 genes were expressed and included in downstream 

analyses. Filtering out low expression transcripts and using a trimmed mean of M-

values transformation successfully normalized the expression levels (Supplementary 

Figure 2). We applied two analysis strategies: ‘within-group’ and ‘across-group’ in the 

RNA-seq analysis, described in detail in Supplemental Methods. 
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The largest difference in gene expression was between LR and NR without lithium 

For the within-group analysis, gene expression in neurons treated with lithium 

(Li+) was compared to those without lithium (Li-). Employing a significance threshold of 

P-value <0.05 and log2fold-change ≥|1|, 14 genes showed nominal significance, but 

none were significant (Benjamini and Hochberg (B-H) q ≤0.20) after multiple testing 

correction (Figure 1b; Supplementary Figure 3a; Supplementary Table 4). 

Therefore, lithium had a limited effect on gene expression. 

For the across-group analysis, we examined the differential expression of genes 

between groups of neurons exposed to the same treatment condition. Six comparisons 

were made: LR vs NR, LR vs CT, and NR vs CT each with (Li+) and without lithium (Li-) 

(Supplementary Figure 3b; Supplementary Tables 5, 6). Using the same significance 

criteria, a total of 45 genes (43 protein-coding) from all six comparisons were 

significantly differentially expressed (P <0.05, log2fold-change ≥|1|, and B-H q ≤0.20; 

‘DE’ genes; Figure 1b). About half of the DE genes (25 of 45) were expressed in more 

than one comparison, suggesting genetic heterogeneity with small genetic effects 

across the comparisons. The majority of DE genes (43 of 45, 41 protein-coding) were 

found in LR vs NR comparisons (Figures 1c, d). Specifically, out of the 43 genes, the 

most was 37 DE genes in Li-.LR vs Li-.NR; next was 28 DE genes in Li+.LR vs Li+.NR. 

Moreover, 22 out of 43 genes (51.16%) were common to LR vs NR between the two 

treatments. Note that the direction of changes in expression of all 45 DE genes were 

similar among each comparison regardless of the treatment conditions. No interaction 

effect was significant (Supplementary Figure 3c; Supplementary Table 7). The entire 
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list and detailed differential expression of 45 DE genes are shown in Supplementary 

Table 8. 

RT-qPCR validation of selected differential expressed genes 

RT-qPCR was performed for technical validation of four selected genes (HEY1, 

KLF10, POU3F1, and PTP4A3) from the 41 protein-coding DE genes in LR vs NR 

comparisons. These four genes were selected because they were identified in our 

previous gene expression study of lithium response36. RT-qPCR quantification 

correlated well with RNA-seq for the four genes examined (Figure 1e; Supplementary 

Figure 4). 

There was a highly significant overlap of genes between GWAB and DE-derived 

networks 

Using standard GWAS analytic methods, we failed to identify genes significantly 

associated with lithium response in BD not only in SNP-based but also in gene-based 

analysis. 

In order to prioritize potential candidate genes in the GWAS dataset, we first 

used a gene-based VEGAS to conduct analysis of the GWAS data. A total of 1180 

genes were identified in the top 5% of the VEGAS-prioritized genes, including three 

genes (APCDD1, DSP, and PTP4A3) shared with the 41 protein-coding DE gene list. 

We then employed GWAB to boost the GWAS results and obtain prioritized genes 

utilizing network information31. GWAB reprioritizes GWAS genes by boosting “not quite 

significant” genes that are near other more significant genes in the network. This 

method reprioritizes genes but does not provide an association statistic for each gene, 
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nor does it provide weights for edges indicating the functional interaction of genes. We 

identified a total of 1119 genes in the top 5% of the GWAB-prioritized gene list, 

including four genes (FLNC, LEF1, MBP, and PRKD1) that were shared with the DE 

gene list (n=41). The top 5% prioritized genes obtained by VEGAS and GWAB are listed 

in Supplementary Table 9. 

We performed network propagation of 41 DE genes using the GIANT brain 

interactome database37 to construct a 500-proximal gene network with 25 020 edges 

(Figures 2a-c). We further boosted the network to a 2000-proximal gene network with 

157 688 edges (Figure 2d). Out of 41 DE genes, 34 were present in both networks. For 

the GWAB-prioritized genes, 73 and 241 were detected in the top 500- and top 2000-

gene networks, respectively. For the VEGAS-prioritized genes, 36 and 118 were 

detected in the top 500- and top 2000-gene networks, respectively. The details and 

genes included in the two networks are presented in Supplementary Table 10. 

Next, we examined the significance of the gene overlap between the DE-derived top 

500- or top 2000-proximal gene networks and the 1119 GWAB-prioritized genes. This 

overlap was striking and highly significant (hypergeometric P=1.28E-09 for the top 500 

network genes; 4.10E-18 for the top 2000 network genes). In contrast, the overlap 

between the DE-derived gene networks and 1180 VEGAS-prioritized genes showed 

nominal significance (hypergeometric P=0.006 for the top 500 network genes; 0.007 for 

the top 2000 network genes) (Figure 2a; Supplementary Table 11). The highly 

significant overlap from independent data sources suggests convergence on valid 

common biological functions. 
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Focal adhesion and the extracellular matrix were the most enriched biological 

functions 

To gain the biological insights into the 41 DE genes, we initially explored the 

functional enrichment of the 41 gene set using the WebGestalt32 and g:Profiler33 

analysis tools. The results in Supplementary Figure 5 show that the highest ranked 

functions were related to ‘focal adhesion’ (KEGG; WebGestalt) and the ‘extracellular 

matrix’ (REACTOME; g:Profiler). However, no significant enrichment (P <0.05 with B-H 

FDR <1.0E-05) was observed in either test. 

We further evaluated the functional enrichment of the genes in the top 500-gene 

network proximal to the 41 DE gene seed set. Cluster enrichment analysis of the top 

500 proximal network genes identified three clusters (Figure 2e) with 189 enriched 

terms (B-H q <0.05, range=0.0498-1.01E08), comprising clusters 0, 1, and 2, with 82, 

67, and 40 functional terms, respectively. The enrichment for each of the three clusters, 

including the top 10 terms and gene contribution are summarized in Figure 3. The 

details of each functional term for each cluster are described in Supplementary Figure 

6 and Supplementary Tables 12-14. 

Overall, cluster 0 had the most enriched terms. Strikingly, almost all of the top 10 

enriched terms in cluster 0 involved in the ECM, including the term with the greatest 

enrichment—‘extracellular matrix’ (GO:0031012; B-H q=1.01E-08), suggesting that 

cluster 0 mainly represented an ECM-related subnetwork. Whereas, the top ranked 

terms in cluster 1, such as G-protein-coupled receptors (GPCR) signaling and neuronal 

transmission, yielded subnetworks relevant to neuronal systems. The greatest 

enrichment in cluster 1 was ‘GPCR downstream signaling’ (REAC:R-HSA-388396; B-H 
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q=1.57E-04). In contrast, most of the enriched terms in cluster 2 were related to tissue-

specific functions, but not strongly significant. Only one term (HPA:007010_22, 

cerebellum; Purkinje cells; B-H q=0.04) was related to neurons. The greatest 

enrichment in cluster 2 (B-H q=0.0054) included ‘soft tissue 1; fibroblasts’ 

(HPA:047030_22) and ‘breast; myoepithelial cells’ (HPA:004030_22). Thus, the major 

findings of cluster analysis implicate the ECM in lithium response. 

The KEGG pathway enrichment analysis of the top 500 proximal network genes 

revealed a total of 37 KEGG pathways that were significantly enriched (B-H q <0.05, 

range=0.02409-1.05E-21) among 196 genes (Figures 4a, b; Supplementary Figure 7; 

Supplementary Table 15). The 37 significant KEGG pathways involved four main 

KEGG categories: cellular processes, environmental information processing, human 

diseases, and organismal systems, of which the one with the greatest enrichment was 

‘pathways in cancers’ (hsa05200; B-H q=1.05E-21), followed by ‘focal adhesion’ 

(hsa04510; B-H q=8.04-E20) as the second highest enrichment. 

Of these 37 KEGG pathways, 17 were selected a priori based on their 

involvement in brain function and relevant involvement in pathways modulated by 

lithium, such as PI3K-Akt signaling, Ras signaling, MAPK signaling, and Wnt signaling 

(Figures 4a, b). These 17 relevant pathways with 130 network genes represented 

26.0% of top 500 network genes, including 7 DE, 3 DE/GWAB, and 24 GWAB genes.  

Of the 17 relevant KEGG pathways, the top 3 were ‘focal adhesion’ (hsa04510; B-H 

q=8.04-E20), ‘ECM-receptor interaction’ (hsa04512; B-H q=1.57E-13), and ‘PI3K-Akt 

signaling pathway’ (hsa04151; B-H q=9.62E-13), respectively (Figure 4b). These top 3 

pathways were significantly overrepresented in a subset of 54 network genes (10.8% of 
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top 500 network genes). Note that 20 out of 54 genes overlapped among the top 3 

relevant KEGG pathways (Figures 4c, d). The top relevant KEGG pathway — ‘focal 

adhesion’ with 42 network genes, is illustrated in Figure 4e, which also shows the 

connection between focal adhesion and other enriched pathways. 

Notably, the enrichment of the top 500-proximal gene network was consistent 

with the preliminary enrichment of the 41 DE gene set obtained via WebGestalt32 and 

g:Profiler33 (Supplementary Figure 5). Likewise, Figure 5a summarizes the UniProtKB 

functions38 of the 41 DE genes, which were associated with cell/focal adhesion, the 

ECM, neurogenesis, including development of axon and synapse. Similarly, the 

UniProtKB function38 of 22 genes (Figure 5b) shared by gene sets of the top 3 terms of 

cluster 0 (91 genes) and the top 3 relevant KEGG pathways (54 genes) were involved in 

the same functions. 

Hub-like genes are defined as genes that have a high degree of connectivity 

among pathways. Among a total of 90 genes from the top 3 of 37 KEGG pathways, 

seven genes (EGFR, TGFB2, CAMK2B, FGFR1, TIMP3, LAMA4, and COL1A1) 

showed the highest degree of connectivity (degree >200, range=202-258; 

Supplementary Table 16), which were considered ‘hub-like’ genes. Out of these 

seven, four genes were also found in a 54-gene subset of the top 3 of 17 KEGG 

pathways (Figures 4c, d). The top scoring gene (EGFR) was involved in all three 

pathways. The remaining three genes (FGFR1, LAMA4, and COL1A1) were involved in 

one or two pathways. Noticeably, all seven hub-like genes were not DE; but rather 

GWAB or network genes, since only 34 DE genes (6.80%) were part of the top 500-

proximal gene network. 
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Discussion 

In this study, we have combined GWAS and transcriptomic data to improve our 

overall power to detect genes and biological functions associated with lithium response. 

Analysis of the RNA-seq data indicated that the largest overall difference was between 

LR and NR, particularly in the absence of lithium, implying that inter-individual 

differences are a larger effect than the effect of lithium. In addition, the effect of lithium 

was similar between LR and NR subjects. We further demonstrated a highly significant 

overlap of the DE gene-propagated network and GWAB-prioritized genes 

(Phypergeometric=1.28E-09 for the top 500-proximal gene network; 4.10E-18 for the top 

2000-proximal gene network), indicating that GWAB genes are in the same gene 

neighborhoods as the 41 DE genes. Functional enrichment analyses of the 500-gene 

network identified more than 200 functions and revealed ‘focal adhesion’ (KEGG), 

‘ECM-related functions’ (KEGG and cluster 0) and ‘PI3K-Akt signaling’ (KEGG) as the 

functions influencing lithium response. PI3K-Akt signaling has long been implicated in 

lithium’s action, though the role of focal adhesion and the ECM in lithium response in 

BD are relatively novel results. 

Several limitations temper the interpretation of our results. Most prominent is the 

small sample size of each iPSC-derived neuron group (6 LR; 5 NR; 6 controls) and the 

GWAS (n=256). Not surprisingly, no significant SNPs in the GWAS were detected due 

to low power. Only EA subjects were included, limiting generalization to other 

racial/ethnic groups. Lastly, our iPSC model using very young neurons may not reflect 

the behavior of mature neurons interacting with other surrounding cells in vivo from BD 

patients. 
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There are limited reports with which to compare our results. Recently, studies of 

lithium response in BD have examined gene expression but utilized different tissues or 

different comparisons (BD vs controls; BD LR vs BD NR; Li-exposure vs non-exposure). 

The majority of studies utilized lymphocytes36, 39-41, whose expression pattern is of 

limited relevance to brain; while few studies utilized either iPSC derived neurons18, 42 or 

post-mortem brains43. In the current study, six of our 41 DE genes from LR vs NR 

comparisons were also reported in previous transcriptomic studies of lithium response 

in BD. For five genes (HEY1, KLF10, PDGFA, POU3F1, and PTP4A3), expression in 

lymphoblasts was shown to be modulated by lithium36. Another gene (LEF1) was 

reported to be responsible for resistance to lithium in NR42. Surprisingly, only PDGFA 

appeared to be involved in both focal adhesion and the ECM. Our study failed to detect 

genes previously reported for lithium response (i.e., GADL110, GRIA28, SESTD113, 

lncRNAs11, and HLA antigen genes11). Nonetheless, we performed a post-hoc 

comparison of our 37 DE genes (Li-.LR vs Li-.NR) with genes identified in our PGBD/VA 

and two other GWA studies: the ConLiGen consortium GWAS of lithium response9 

(n=2563) and the Psychiatric Genomics Consortium Bipolar Disorder Working Group 

(PGC-BD) GWAS of BD44 (n=51 710). Of the 35 DE genes for which GWAS results 

were available, 14 genes showed significant SNP association after Bonferroni correction 

(12 in our PGBD/VA study; DSP and LMX1B in the ConLiGen study; ADAMTS14 and 

FOXO6 in the PGC-BD study; Supplementary Table 17). LMX1B and ADAMTS14 

were significant in two studies. Of these 14 significantly associated genes, 12 were part 

of the top 500-proximal gene network and achieved statistically significant functional 
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enrichment. Taken together, our post-hoc findings indicate a striking level of 

correspondence between the RNA-seq and three independent GWAS results. 

Focal adhesion and the ECM were novel and unexpected findings. In neurons, 

focal adhesions are a complex of proteins that bind multiple ECM proteins45-47. Integrins 

on the cell surface are activated by mechanical or chemical signals from the ECM, and 

in turn form the focal adhesion complex, which promotes actin-microtubule 

polymerization46, 48, 49. Axon guidance occurs as filopodia and lamellipodia of the growth 

cone detect and respond to axon guidance signals from the ECM proteins (known as 

guidance cues), resulting in growth-cone motility and turning50-54. The ECM, comprising 

various proteins, e.g., collagens and non-collagenous glycoproteins55, has been shown 

to be a dynamic structure that provides not just structural support for neurons and glia 

cells but has an important role in axon guidance and regulation of axonal growth56, 57. 

Thus, in neurons, focal adhesions and the ECM together form a “motor” that propels 

growth-cone movement and steering via downstream regulation of actin cytoskeleton 

organization47, 49, 52-54, 58, 59. 

Figure 4e is the KEGG pathway diagram for focal adhesion (hsa04510), the 

most enriched among the 17 pathways relevant to BD/neuronal system, annotated with 

gene involvement from our analyses. Among these multiple genes (n=42), of particular 

interest is EGFR, our top hub-like gene, that appears to be essential for neuronal 

development, including neurite outgrowth and axonal regeneration60. A recent study 

also demonstrates that EGFR can modulate integrin tension and focal adhesion 

formation61. Altogether, it supports the role of EGFR in the focal adhesion process and 

the mechanism of lithium response in BD. It also shows an example of biological 
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interconnections contributing to lithium response in BD, which were successfully 

identified by integrative multi-omics approaches. 

A variety of studies indicate a strong effect of lithium on neurons in culture and in 

animal models62, 63. Lithium has been shown at therapeutic concentrations to regulate 

axon morphology, i.e., promote axon growth, enlarge the growth cone, and increase 

neurite branching64, 65. Inhibition of GSK3β results in a similar phenotype of elongated 

axons and increased branching consistent with lithium’s action being mediated by its 

inhibition of GSK3β66, 67. Lithium and two other mood stabilizing drugs, carbamazepine 

and valproate, all prevent growth-cone collapse, increase growth-cone area and axonal 

branching68. 

BD neurons are shown to have morphopathological changes in a variety of 

measures, e.g., reductions in number, size, density, and/or dendrite lengths69-71, which 

suggests that BD neurons tend to be smaller with short dendrites and axons, as 

compared with normal/healthy neurons. Together with our findings, we hypothesize that 

BD LR inherit genetic defects in ‘focal adhesion’ and the ECM including the integrin-

ECM interactions that cause disruption of focal adhesion function. This results in poorly 

branched and shortened axons with malformed growth cones that convey susceptibility 

to BD (Figure 5c). Lithium, through its actions (likely upon inhibition of GSK3β) of 

facilitating branching, re-arborization, and supporting the growth cone, is effective for 

BD LR by correcting these morphological and functional defects (Figure 5c’’). BD NR, 

on the other hand, have BD for reasons other than dysfunctional focal adhesion, and 

therefore, lithium does not rescue the relevant mechanisms and they fail to respond 

(Figure 5c’’’). In this model, BD LR and BD NR result from different disease 
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mechanisms as has been previously proposed5, 18, 19, 36. Consistent with this, another 

line of evidence shows a significant difference in cellular adhesion in directly induced 

neuron-like cells between BD LR than BD NR72. This highlights the role of the biological 

cell adhesion-ECM process in the underlying mechanism of lithium response in BD. 

In conclusion, to our knowledge, our study is the first to report the significant role 

of ‘focal adhesion’ and the ‘ECM’ influencing lithium response in BD. This study also 

demonstrates the power of applying network methods to multi-omics data. Our results 

suggest that both genetic and functional studies of lithium response and/or BD should 

focus efforts on the pathways of focal adhesion and the ECM as well as regulation of 

axonal growth/extension and synaptic connectivity. Distinguishing two distinct forms of 

BD would advance our understanding of disease mechanism and facilitate the 

development of novel therapeutics or a clinical test for lithium response. 
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Figure Legends 
 

Combined Figure 1 

 
a. Study design and analysis workflow. 

Figure 1a shows a summary of our study workflow, including major findings. The study 

materials and methods are detailed in Supplemental Methods. Our comprehensive 

findings are described in the ‘Results’ section. 

 

Step I: iPSC-derived neurons of three sample groups (6 controls [CT], 6 BD Li 

responders [BD.LR], and 5 BD Li non-responders [BD.NR]) were tested with in vitro 

lithium. Part of step I is modified from Welham, et al (2015)73. Step II: RNA-seq pipeline 

was used for analyzing transcriptomic profiles of all three sample groups under Li-

treated (Li+) and untreated (Li-) conditions. The RNA-seq analyses were classified into 

‘within-group’ and ‘across-group’. Forty-one significantly DE genes were identified in LR 

vs NR regardless treatment conditions. Step III: The PGBD12/VA GWAS for lithium 

response in BD (n=256) was used in a GWA-boosting (GWAB) analysis31, which 

identified the top 5% of GWAB-prioritized genes (1119 genes). Step IV: Network 

propagation analysis20 of the top 500-proximal gene network derived from the 41 DE 

genes revealed a highly significant overlap with the 1119 GWAB-prioritized genes, 

containing 103 genes (73 GWAB and 30 DE) genes that were significantly proximal to 

the 41 seed genes with a hypergeometric P of 1.28E-09. Step V: Functional enrichment 

analysis of gene clusters and KEGG pathways in the top 500-proximal gene network 
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identified 189 terms significantly enriched in three clusters and 37 significantly enriched 

KEGG pathways for lithium response in BD. 

 

b. Distribution of RNA-seq genes identified in iPSC-derived neurons. 

Bar plots of serial filtering RNA-seq genes for ‘within-group’ (left panel) and ‘across-

group’ (right panel) analyses. Each analysis was categorized into subgroup 

comparisons (total n=9; see comparison details in Supplemental Methods). A total of 

13 691 RNA-seq genes for each subgroup comparison were removed by serial filters. 

The RNA-seq genes that passed the serial filtering threshold of CPM >1, P-value ≤0.05, 

log2FC >|1|, and B-H q-value ≤0.20 were considered as ‘differentially expressed’ (DE) 

genes. Each subplot shows a plot of the serial filters (y-axis) against the number of 

genes (x-axis). RNA-seq genes identified in subgroup comparisons with detailed 

expression data are presented in Supplementary Tables 4, 5, 6, and 7. 

 

c-d. Distribution and expression profiles of 45 DE genes identified in across-

group analysis of iPSC-derived neurons. 

A total of 45 DE genes (P ≤0.05, log2FC of >|1|, and B-H q-value ≤0.20) were identified 

in ‘across-group’ analysis: 39 genes in untreated (Li-) condition and 31 genes in Li-

treated (Li+) condition. Note that out of 45 DE genes, almost all (n=43) were found in LR 

vs NR comparisons: 37 genes in untreated condition and 28 genes in Li-treated 

condition, including 22 genes that overlapped between them. Lists of DE genes with 

detailed expression data under two treatment conditions are presented in 

Supplementary Table 8. 
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c. Venn diagrams of 45 DE genes comparisons among CT, BD LR, and BD NR 

under two treatment conditions. 

 

d. Expression of 45 DE genes classified into subgroup comparisons under 

untreated (Li-) and Li-treated (Li+) conditions. 

Each subgroup comparison displays each graph comprising one heatmap and one bar 

plot. 

 

Heatmaps (left panel) display hierarchical clustering of gene expression levels for sets 

of DE genes. Gene symbols (rows) are listed and indicate direction of regulation (down-

regulated, light red; up-regulated, light blue). The color scale (top left) represents the 

degree of differential expression (low, blue; high, red). The color boxes above the 

heatmaps represent sample groups (CT, green; BD.LR, blue; BD.NR, red). Texts 

(columns) below the heatmap represent samples and are colored by treatment 

conditions (Li-, dark blue; Li+, orange). 

 

Bar plots (right panel) present FC expression values (log2 transformed) and significance 

of gene expression (P ≤0.05). The color scale (right) represents the degree of 

significance in expression for each gene (low, dark purple; high, yellow), displayed as 

nominal P-values (-log transformed). 

 

e. RNA-seq validation of selected DE genes using RT-qPCR. 
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Bar plot and scatter plot shows a FC expression comparison of RNA-seq and RT-qPCR 

results for the four selected DE genes (out of total 37, Figure 1d; Supplementary 

Table 8a) in Li-.LR vs Li-.NR. 

 

Bar plot (left panel) represents relative FC expression values (y-axis) of the selected 

four DE genes (x-axis), measured by RNA-seq (grey bars) and RT-qPCR (yellow bars; 

Supplementary Figure 4): HEY1, KLF10, PTP4A3 were down-regulated; and POU3F1 

was up-regulated. FC values were presented as in log2 unit. RT-qPCR were calculated 

using the 2−ΔΔCt method. Error bars represent the mean ± SEM of triplicate RT-qPCR 

data. 

 

Scatter plot (right panel) shows a high correlation (Pearson R2 = 0.971, P = 0.015) of 

log2FC expression between RNA-seq (x-axis) and RT-qPCR (y-axis) methods. 

 

B-H, Benjamini and Hochberg; CPM, counts-per-million; CT, controls; DE, differentially 

expressed; FC, fold-change; GWAS, genome-wide association study; LR, BD Li 

responders; NR, BD Li non-responders; RNA-seq, RNA-sequencing; RT-qPCR, real 

time quantitative PCR; SEM, the standard error of the mean. 

 

Combined Figure 2 

 
a. Results of hypergeometric test between the top 500 or top 2000 proximal 

network genes and the top 5% prioritized genes. 
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A line graph (left panel) plots the -log (hypergeometric P-value) against the number of 

proximal network genes. Each line corresponds to the top 5% prioritized gene sets for 

GWAB31 (orange) and VEGAS30 (green). Vertical dashed grey lines at 500 and 2000 

(on the x-axis) represents the top 500 and top 2000 proximal network genes, 

respectively. 

 

A table (right panel) shows summary of hypergeometric test results. A hypergeometric 

P-value of <0.05 shows the significance of overlap in genes between the top 500 or top 

2000 proximal network genes and the top 5% prioritized genes obtained by either 

GWAB (1119 genes) or VEGAS (1180 genes). See the lists of the top 5% prioritized 

genes and the top 500 and top 2000 proximal network genes in Supplementary Tables 

9 and 10, respectively. See the detailed results of the hypergeometric test in 

Supplementary Table 11. 

 

b. Distribution of genes in the top 500- and top 2000-proximal gene networks 

derived from the 41 protein-coding DE genes. 

Pie charts show the number and types of genes in the proximal gene networks: the top 

500-proximal gene network (left) and the top 2000-proximal gene network (right). Each 

pie chart represents the proportion of gene types as both numbers and percentages. 

Colors represent gene types (DE, orange; DE/GWAB, yellow; GWAB, green; network, 

purple). The list of 41 protein-coding DE genes is presented in Figures 1c, d, and 

Supplementary Table 8. 
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c-d. Network propagation of the top 500 and top 2000 proximal network genes. 

The network used 41 protein-coding DE genes as the seeds and GIANT interactome37 

(Tissue-specific gene networks from HumanBase; https://hb.flatironinstitute.org/about) 

as the background. Color scale on genes (nodes) represents the degree of proximity 

from the seeds (low/further, yellow; high/nearer, red). Shapes represent gene types. 

 

c. Network propagation of the top 500 proximal network genes. 

The network resulted in 500 genes (nodes) connected with 25 025 edges, and 

contained 30 DE, 4 DE/GWAB, 69 GWAB, and 397 network genes. A subset of 103 (69 

GWAB, 4 GWAB/seed, and 30 seed) genes showed statistical significance of the 

overlap (Phypergeometric=1.28E-09) in genes between the top 500-proximal gene network 

and top 5% GWAB-prioritized data, two independent sources of data. The interactive 

graph of the top 500-proximal gene network can be accessed at 

https://ndexbio.org/viewer/networks/8ddb8cc6-aea3-11eb-9e72-0ac135e8bacf. 

 

d. Network propagation of the top 2000 proximal network genes. 

The network resulted in 2000 genes (nodes) connected with 157 688 edges, and 

contained 30 DE, 4 DE/GWAB, 237 GWAB, and 1729 network genes. Note that a 

subset of 271 (30 DE, 4 DE/GWAB, and 241 GWAB) genes with 3135 edges are shown 

here. These relevant 271 genes showed statistically significant overlap 

(Phypergeometric=4.10E-18) between the top 2000-proximal gene network and top 5% 

GWAB-prioritized data. The interactive graph of the top 2000-proximal gene network 
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can be accessed at https://ndexbio.org/viewer/networks/8ddb8cc6-aea3-11eb-9e72-

0ac135e8bacf. 

 

e. Cluster enrichment analysis of the top 500-proximal gene network derived from 

the 41 protein-coding DE genes. 

Three clusters were identified based on biological functions. Colors on genes (nodes) 

indicate for each cluster (0, blue; 1, orange; 2, green). Shapes represent gene types. 

The basic network prior cluster enrichment analysis is displayed in Figure 2c. See the 

list and distribution of genes for each cluster in Supplementary Table 10, and Figure 

3, respectively. The interactive graph of cluster enrichment for the top 500-proximal 

gene network can be publicly accessed at 

https://ndexbio.org/viewer/networks/43073550-aea3-11eb-9e72-0ac135e8bacf. 

 

DE, differentially expressed; GWAB, genome-wide association boosting; VEGAS, 

versatile gene-based association study. 

 

Combined Figure 3 

 
a-c. Significantly enriched terms (B-H q-value ≤0.05) identified in cluster 

enrichment analysis of the top 500-proximal gene network derived from the 41 

protein-coding DE genes. 

The cluster analysis identified three clusters: 0 (blue), 1 (orange), and 2 (green), 

containing 239, 168, and 93 genes, respectively. A total 189 functional terms were 
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significantly enriched (B-H q-value ≤0.05) among the three clusters. Overall, cluster 0 

had the most enriched terms, of these, the term with the greatest enrichment was 

‘extracellular matrix’ (GO:0031012; B-H q=1.01E-08). Details of corresponding terms for 

clusters 0, 1, and 2 are listed in Supplementary Tables 12, 13, and 14, respectively. 

The distribution of genes for each term is summarized in Supplementary Figure 6. 

 

a. Distribution of significantly enriched terms and gene sets in three clusters of 

the top 500-proximal gene network. 

The sunburst diagram (central) shows the proportion of genes involved in each of the 

three clusters. Each subordinate pie chart (marginal) shows the proportion of genes 

involved in significantly enriched terms for each cluster. Colors on the subordinate pie 

charts represent gene types. Solid and stripe patterns indicate functional (participating) 

and non-functional (non-participating) of the genes in each cluster, respectively. The 

size of each pie slice corresponds to the number of genes. The proportion is presented 

as both numbers and percentages. 

 

b. Categories of significantly enriched terms in three clusters of the top 500-

proximal gene network. 

A sunburst diagram corresponds to a total of 189 significantly enriched terms, 

comprising of 82, 67, and 40 terms enriched in clusters 0, 1, and 2, respectively. Among 

six various categories, the Gene Ontology (GO) and Human Phenotype Ontology (HP) 

were the majority of enrichment in cluster 0; while GO and Human Proteome Atlas 

(HPA) were the most terms enriched in clusters 1 and 2, respectively. The size of each 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.10.21268493doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.10.21268493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 42 - 

slice of the pie chart corresponds to the number of enriched terms. Each proportion is 

displayed as both numbers and percentages. The inner ring shows the proportion of 

enriched terms for each of the three clusters, colored by clusters. The outer ring shows 

the proportion of biological term categories for each cluster, colored by categories of 

enriched terms. 

 

c. Identification and summarizing features of the top 10 significantly enriched 

terms of clusters 0, 1, and 2. 

In brief, cluster 0 had the terms with the greatest enrichment, and almost all the top 10 

terms mainly involved in the extracellular matrix (ECM). The top 10 significantly 

enriched terms in cluster 1 tended to involve in neuronal systems and synapses. 

Whereas those in cluster 2 showed various tissue-specific association other than 

neuronal tissues. 

 

Bar plot (left panel) shows the number and types of genes in each of the top 10 

enriched terms for each cluster. The x-axis represents the number of genes (gene 

counts) and gene types distributing to each corresponding term. The y-axis corresponds 

to significantly enriched terms grouped by clusters, shown in text colors. Colors on bars 

indicate gene types. 

 

Bubble plot (right panel) shows the statistics of enrichment for each of the enriched 

terms. The size of bubbles represents the number of genes (gene counts) in each 

corresponding term. The bubble coordinate on the x-axis represents the degree of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.10.21268493doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.10.21268493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 43 - 

enrichment for DE genes known as ‘DE gene rich factor’. The DE gene rich factor is the 

ratio of DE genes in each term to total genes in each term. The larger rich factor 

represents the greater enrichment. The color scale indicates the degree of significance 

(B-H q-value ≤0.05) in enrichment for each corresponding term (low, dark purple; high, 

yellow). The significance of enrichment is presented as the -log transformed B-H q-

value. 

 

Gene types are indicated by colors: DE, orange; DE/GWAB, light green (3a) or yellow 

(3c); GWAB, green; network, purple. 

 

B-H, Benjamini and Hochberg; DE, differentially expressed; GWAB, genome-wide 

association boosting. 

 

Combined Figure 4 

 
a-b. Significantly enriched KEGG pathways (B-H q-value ≤0.05) identified in KEGG 

pathway enrichment analysis of the top 500-proximal gene network derived from 

the 41 protein-coding DE genes. 

The KEGG pathway analysis (containing at least one seed gene and one GWAB gene) 

identified a total of 37 KEGG pathways, including a subset of 17 KEGG pathways 

relevant to BD/neuronal system, which were significantly enriched (B-H q-value ≤0.05) 

in the top 500-proximal gene network. Details for each pathway are listed in 
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Supplementary Table 15. The distribution of genes for each pathway is summarized in 

Supplementary Figure 7. 

 

a. Summary of significantly enriched KEGG pathways and gene sets in the top 

500-proximal gene network. 

Pie charts display the number of genes from each source that comprise the top 500-

proximal gene network (left), a set of 196 genes of the 37 enriched KEGG pathways 

(middle), and a set of 130 genes of the 17 relevant enriched KEGG pathways (right). 

Each pie represents the proportion of gene types as both numbers and percentages. 

Colors represent gene types. Solid and stripe patterns indicate function (participating) 

and non-function (non-participating) of genes, respectively, in each gene set of either 37 

or 17 enriched KEGG pathways. 

 

b. KEGG pathway classification and enrichment statistics of significantly 

enriched KEGG pathways for the top 500-proximal gene network. 

A total of 37 enriched KEGG pathways is on the left panel, and a subset of 17 relevant 

enriched KEGG pathways is on the right panel. These pathways were classified into 

four classes: cellular processes (yellow), environmental information processing (blue), 

human diseases (grey), and organismal systems (green). Of the 37 enriched KEGG 

pathways, the most significant enrichment was ‘pathways in cancer’ (hsa05200; B-H 

q=1.05E-21; see red box). The second most significant enrichment was ‘focal adhesion’ 

(hsa04510; B-H q=8.04-E20; see red box), which was also the most significant one 

among the 17 relevant enriched KEGG pathways. Of the 17 relevant enriched KEGG 
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pathways, the top 3 significant enrichment were ‘focal adhesion’ (as mentioned), ‘ECM-

receptor interaction’ (hsa04512; B-H q=1.57E-13), and ‘PI3K-Akt signaling pathway’ 

(hsa04151; B-H q=9.62E-13), respectively. 

 

Pie charts (top panel) show the distribution of KEGG pathway classification. Each pie 

displays the proportion of KEGG classes as both numbers and percentages, colored by 

KEGG classes. 

 

Bar and bubble plots (bottom panel) show the distribution of genes and/or the statistical 

enrichment for each of the enriched KEGG pathways, respectively. 

 

Bar plots show the distribution of genes for each KEGG pathway. The x-axis represents 

the number of genes contributing to each corresponding pathway. The y-axis 

corresponds to significantly enriched KEGG pathways categorized into KEGG classes 

and shown in text colors. For the 37 enriched KEGG pathways (bottom left panel), the 

color scale on bars indicates the degree of significance (B-H q-value ≤0.05) of 

enrichment (low, blue; high, red). An asterisk (*) on bars specifies the KEGG pathways 

that are relevant to BD/neuronal system. Whereas, for a subset of the 17 relevant 

enriched KEGG pathways (bottom middle panel), colors on bars indicate gene types. 

 

Bubble plot (bottom right panel) shows the statistical enrichment of a subset 17 relevant 

enriched KEGG pathways. The size of bubbles represents the number of genes (gene 

counts) in each corresponding KEGG pathway. The bubble coordinate on the x-axis 
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represents the degree of enrichment for DE genes known as ‘DE gene rich factor’. The 

DE gene rich factor is the ratio of DE genes in each pathway to total genes in each 

pathway. The larger rich factor represents the greater enrichment. The color scale 

indicates the degree of significance (B-H q-value ≤0.05) in enrichment for each 

corresponding pathway (low, dark purple; high, yellow). The significance of enrichment 

is presented as the -log transformed B-H q-value. 

 

c-e. Identification and summarizing features of the top 3 significantly enriched 

KEGG pathways relevant to BD/neuronal system (B-H q-value ≤0.05). 

The top 3 of the 17 relevant significantly enriched KEGG pathways are ‘top 1’ - focal 

adhesion (hsa04510; light blue), ‘top 2’ - ECM-receptor interaction (hsa04512; light 

yellow), and ‘top 3’ - PI3K-Akt signaling pathway (hsa04151; light pink), respectively. A 

subset of 54 genes (out of the top 500 proximal network genes) are present in the top 3 

relevant enriched KEGG pathways. 

 

c. Sub-networks among the 54 genes in the top 3 significantly enriched KEGG 

pathways relevant to BD/neuronal system. 

A propagation-based network illustrates sub-networks among a set of 54 genes (out of 

the top 500 proximal network genes) present in the top 3 relevant enriched KEGG 

pathways. This network included 54 genes (nodes) connected with 506 edges, 

containing 3 DE, 1 DE/GWAB, 12 GWAB, and 38 network genes. Shapes represent 

gene types. Color scale indicates the degree of connectivity calculated from the top 500 

proximal network genes (low degree/poorly connected, yellow; high degree/highly 
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connected, dark purple). Background colors are specified for the top 3 relevant enriched 

KEGG pathways. The connectivity of the 54 proximal network genes of the top 3 

relevant enriched KEGG pathways is presented in Supplementary 16. 

 

d. Venn diagram of the 54 genes in the top 3 significantly enriched KEGG 

pathways relevant to BD/neuronal system. 

A total of 54 gene names are listed and categorized into gene types. There are 42, 23, 

and 44 genes involved in the top 1, top 2, and top 3 relevant enriched KEGG pathways, 

respectively, including 20 overlapping genes and four ‘hub-like’ genes. Venn diagram 

colors indicate the top 3 relevant enriched KEGG pathways. 

 

e. Pathview of focal adhesion (hsa04510), the top significantly enriched KEGG 

pathway relevant to BD/neuronal system. 

The top relevant significantly enriched KEGG pathway,’ focal adhesion’ (B-H q-

value=8.04E-20), contained a total of 42 genes (including three ‘hub-like’ genes), which 

are listed and categorized into gene types. This figure also illustrates several KEGG 

pathways connected with focal adhesion. Those relevant significantly enriched 

pathways (B-H q-value ≤0.05) identified in our study are highlighted in blue. The color 

scale indicates the degree of network proximity to seed genes (more proximal/farther, 

yellow; less proximal/nearer, red). Pathview map created by the R-based Pathview74 

software from Bioconductor. 
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Gene types are indicated by colors: DE, orange; DE/GWAB, yellow; GWAB, green; 

network, purple. An asterisk (*) in dark red represents the ‘hub-like’ genes. 

 

B-H, Benjamini and Hochberg; DE, differentially expressed; ECM, the extracellular 

matrix; GWAB, genome-wide association boosting. 

 

Combined Figure 5 

 
a. Summary of functional annotation for 41 protein-coding DE genes: individual- 

and multi-gene functions. 

The bar plots show the functions of each protein-coding DE gene (n=41; 

Supplementary Table 8) based on the functional enrichment analysis of the 500-

proximal gene network from this study. The 41 DE genes are annotated in the three 

clusters (clusters: 0, blue; 1, orange; 2, green) (Supplementary Tables 12, 13, and 14, 

respectively), shown on the left bar plot, and annotated in the 37 significantly enriched 

KEGG pathways (17 relevant enriched KEGG, light blue; the remaining 20 KEGG, dark 

blue) (Supplementary Table 15), shown on the right bar plot. Note that, out of 41, 

seven genes (ADAMTS14, ADMATS4, APCDD1, BTBD17, CPEN5, FOXO6, and IAH1; 

texts in grey) were excluded from the top 500-proximal gene network prior the functional 

enrichment analysis. Another six (CHST6, MBP, POU3F1, PTP4A3, RWDD2B, and 

TPD52) out of 34 remaining genes were not in either cluster or KEGG functions. The x-

axis indicates the number of participating terms in clusters or participating pathways in 
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KEGG functions. The y-axis indicates a list of 41 protein-coding DE gene names in 

alphabetical order. 

 

The tubular texts (left box) show the single and co-occurrence gene functional modules 

based on the UniProt Knowledgebase evidence38 (UniProtKB, https://www.uniprot.org/). 

The functions for each DE gene and co-occurrence genes are shown in right and left 

tableau, respectively. Among the single-gene functions, the majority were ‘cell/focal 

adhesion’, ‘cell migration’, and ‘extracellular matrix’ (ECM). While the co-occurrence 

functions in multi-genes also tended to cluster for ‘focal adhesion’, ‘nervous system 

development’, including ‘neurogenesis’ and ‘axon development’. 

 

b. Distribution and summary of gene sets in the top 3 cluster 0 significantly 

enriched terms (91 genes) and the top 3 17 relevant significantly enriched KEGG 

pathways (54 genes) (B-H q-value ≤0.05). 

Venn diagrams (top panel) show the numbers of genes participating in the top 3 cluster 

0 significantly enriched terms (91 genes, tan; Supplementary Figure 6d; 

Supplementary Table 12) and the top 3 17 relevant significantly enriched KEGG 

pathways (54 genes, grey; Figures 4c, d; Supplementary Figure 7; Supplementary 

Table 15), including 22 genes overlapping (dark red bold) between them. The size of 

the Venn diagrams is shown as proportion to a size of 500 genes. 

 

Doughnut charts (bottom panel) exhibit the distribution of gene types and functions for 

the top 3 cluster 0 significantly enriched terms (left) and the top 3 17 relevant 
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significantly enriched KEGG pathways (right). (i) Inner ring represents gene types: DE 

(orange), DE/GWAB (yellow), GWAB (green), and network (purple) genes. (ii) Middle 

ring represents numbers of terms/pathways in which each gene was participating, 

shown as bar scale (range from 1 to 3). (iii) Outer ring represents gene names that are 

listed in alphabetical order and colored by gene types. Overlapping genes are 

highlighted in dark red bold. 

 

A total of 22 overlapping genes including their single-gene functions based on evidence 

in the UniProt Knowledgebase38 (UniProtKB, https://www.uniprot.org/) are listed (top 

right box). The functions among 22 genes are mainly involved in ‘cell/focal adhesion’, 

‘cell migration’, ‘ECM’, ‘neurogenesis’, including ‘axon guidance/extension’, which are 

similar to the functions of 41 protein-coding DE genes (Figure 5a, left box). 

 

c. Schematic of a proposed model of focal adhesion and its role in lithium 

response in BD. Boxes are magnified for physiological cytoskeleton dynamics 

(5c’) and a proposed model (5c’’- 5c’’’) at the neuronal growth cone. 

As shown in Figure 5c, based on our KEGG pathway enrichment result, we 

hypothesize that a defect in focal adhesion and the ECM, including the integrin-ECM 

interactions, accounts for an underlying mechanism of lithium response in BD. However, 

to date, the assessment of focal adhesion function in BD, including the cytoskeleton 

dynamics and morphology of growth cones in BD neurons, has not yet been well 

studied. In addition, lithium has been reported to have positive effects on axonal and 

growth cone morphology of normal neurons64-68 (top right panel). Moreover, without 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.10.21268493doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.10.21268493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 51 - 

drug treatments, collective evidence favors the pathological morphology69-71 in BD 

neurons (in purple) compared with healthy neurons (in grey) (bottom left panel). 

 

Altogether, we propose that, lithium treatment (bottom right panel) results in substantial 

improvement of axon guidance and synaptic connectivity in BD responder neurons (with 

blue axon), thereby correcting an underlying causative defect and resulting in 

successful treatment in BD responders. Whereas, BD non-responder neurons (with red 

axon) may have BD not only due to focal adhesion but also due to other different 

molecular etiologies not involving focal adhesion, and therefore not responsive to 

lithium. 

 

(5c’). Physiological cytoskeleton dynamics.  

The neuronal growth cone is a motile structure at the peripheral tip of the axon, which is 

enriched in two cytoskeletal filaments—filamentous actin (F-actin) and microtubules 

(MTs). The growth cone is essential in axon outgrowth, guidance and pathfinding in 

order to form proper synaptic connections. The interaction between actin filaments and 

MTs is a dynamic process resulting in protrusion or retraction along the edge of growth 

cones50-54. In brief, the protrusion of filopodia (F-actin parallel bundles) and lamellipodia 

(F-actin meshwork) are responsive to extrinsic attractive cues in the ECM. This induces 

actin polymerization and subsequent coupling of F-actin and MTs for MT polymerization 

and stabilization, resulting in growth cone turning and axon outgrowth. Whereas, 

retraction occurs in response to repulsive guidance cues in the ECM by F-actin 

severing, disassembly of F-actin and MTs, and MT depolymerization/destabilization. To 
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develop proper axon outgrowth, focal adhesion is required as an adhesive linkage 

between the cytoskeleton and the ECM that regulates actin cytoskeletal organization 

(see 5c’’- c’’’), thereby enabling growth cone behavior and axon guidance58, 59. This 

figure is adapted from Vitriol and Zheng (2012)53 and Cammarata, Bearce, and Lowery 

(2016)54 with permission. 

 

(5c’’- 5c’’’). Focal adhesion at growth cones of BD neurons in response to lithium 

in the proposed model. 

Focal adhesion plays a pivotal role in linking the cytoskeleton to ECM via an interaction 

between transmembrane integrin receptors and ECM proteins (i.e., laminins, collagens, 

and fibronectin)46-49. Focal adhesions and integrin-ECM interactions occur in neuronal 

cells, mainly at the tip of growth cones, named point contact (PC). At PC, several 

signaling and adhesion molecules such as FAK-Src, paxillin, vinculin, talin, and Cas-csk 

are recruited and form the focal adhesion complex46-49, which regulates actin 

cytoskeleton organization downstream of the focal adhesion complex50-54. Thus, focal 

adhesion has complex, dynamic functions and is essential for regulating axon outgrowth 

and guidance in response to axon guidance cues (see c’), which leads to growth cone 

turning and synapse formation in neuronal cells58, 59. 

 

Our hypothesized model is described in detail here. In BD responder neurons (5c’’) 

treated with lithium, focal adhesion dysfunction is corrected resulting in strong and well-

organized actin filaments and MTs. Vigorous filopodia and lamellipodia are restored at 

the growth cone, and axon elongation and growth cone dynamics (protrusion and 
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retraction, see 5c’) are normalized. This suggests that focal adhesions can be rescued 

and preserved by lithium effects in BD responder neurons, leading to response to 

lithium treatment in BD responders. 

 

In contrast, for BD non-responder neurons (5c’’’), when treated with lithium, focal 

adhesion function remains defective perhaps due to inefficient effects of lithium on 

those neurons, resulting in persistently weak and poorly-organized actin and 

microtubule structures. Unwell filopodia and lamellipodia at the growth cone cause poor 

neuronal axon guidance and disrupted synaptic formation. Therefore, lithium has no 

major effects on axonal outgrowth and growth cone morphology in BD non-responder 

neurons, leading to no response to lithium in BD non-responders. More details and 

references are provided in the ‘Discussion’ section. 

 

B-H, Benjamini and Hochberg; Cas, Crk-associated substrate; csk, c-terminal Src 

kinase; DE, differentially expressed; ECM, the extracellular matrix; FAK, focal adhesion 

kinase; GWAB, genome-wide association boosting. 
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