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1*, Léa Frachon2

1 Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour

l’Agriculture, l’Alimentation et l’Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France,
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Abstract

Pathogens are often the main selective agents acting in plant communities, thereby influ-

encing the distribution of polymorphism at loci affecting resistance within and among natural

plant populations. In addition, the outcome of plant-pathogen interactions can be drastically

affected by abiotic and biotic factors at different spatial and temporal grains. The characteri-

zation of the adaptive genetic architecture of disease resistance in native heterogeneous

environments is however still missing. In this study, we conducted an in situ Genome-Wide

Association study in the spatially heterogeneous native habitat of a highly genetically poly-

morphic local mapping population of Arabidopsis thaliana, to unravel the adaptive genetic

architecture of quantitative disease resistance. Disease resistance largely differed among

three native soils and was affected by the presence of the grass Poa annua. The observa-

tion of strong crossing reactions norms among the 195 A. thaliana genotypes for disease

resistance among micro-habitats, combined with a negative fecundity-disease resistance

relationship in each micro-habitat, suggest that alternative local genotypes of A. thaliana are

favored under contrasting environmental conditions at the scale of few meters. A complex

genetic architecture was detected for disease resistance and fecundity. However, only few

QTLs were common between these two traits. Heterogeneous selection in this local popula-

tion should therefore promote the maintenance of polymorphism at only few candidate resis-

tance genes.

Introduction

During their life cycle, plants are simultaneously and/or sequentially challenged by multiple

pathogens, whether in crop fields or in wild habitats [1]. Pathogens are widely recognized as

one of the major selective agents in nature, thereby influencing the eco-evolutionary trajecto-

ries of natural plant populations [2]. In particular, pathogens can influence the distribution of

polymorphism at loci affecting plant resistance, which may in turn affect the patterns of disease
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incidence, prevalence and evolution [3]. Disease resistance is highly diverse both within and

among plant populations, providing the opportunity to study plant-pathogen coevolution [2,

4]. Most theoretical papers on plant-pathogen coevolution focus on qualitative resistance

(presence/absence of symptoms), which is related to the gene-for-gene (GFG) relationship [3].

However, quantitative disease resistance (QDR, continuum of symptoms) is much more prev-

alent than qualitative resistance in natural plant populations [1, 5, 6]. In line with this observa-

tion, high-throughput analyses combined with systems biology approaches revealed that plant

immunity corresponds to a decentralized (i.e. not centered on a specific hub) and highly con-

nected molecular network rather than to the simplistic view of two layers of the immune sys-

tem (namely pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and

effector triggered immunity (ETI)) [7].

Predictions of co-evolutionary dynamics in plant pathosystems differ between quantitative

resistance and qualitative resistance [8, 9]. In particular, it is hypothesized that the emergence

of a new disease would first lead to coevolution of quantitative host resistance and pathogen

virulence, which would result in the stabilization of allele frequencies at multiple genes associ-

ated with host immunity and pathogen virulence over short co-evolutionary times [10]. Over

longer co-evolutionary periods, this stabilization would shift to long-period cycles in the fre-

quency of qualitative resistance and qualitative virulence, leaving signatures of balancing selec-

tion on underlying genes, as predicted by the GFG model [10, 11].

Besides the complexity of the genetic architecture of plant-pathogen interactions that has

been recently demonstrated by joint genome-wide association studies (GWAS) [12, 13], host-

pathogen co-evolutionary dynamics can be dramatically impacted by the environment [14–

17]. Numerous experimental studies highlighted the effect of abiotic and biotic factors on the

outcome of wild plant-pathogen interactions at different spatial and temporal grains, with the

extreme case of genotypes of plants and pathogens switching ranks between environments for

resistance and virulence, respectively [18–22]. Such crossing reaction norms in heterogeneous

environments are thought to delay fixation of a given resistance strategy, thereby constraining

co-evolutionary dynamics and potentially favoring the maintenance of genetic variation of

plant resistance in natural plant populations [3, 16].

Studies on the effects of the type of resistance (qualitative vs quantitative) and heteroge-

neous environments on co-evolutionary dynamics provided a solid ground in our understand-

ing of plant-pathogen interactions. However, studies reporting the adaptive genetic

architecture of quantitative disease resistance in a heterogeneous environment remains scarce.

In this study, we set up an in situGWAS to fine map Quantitative Trait Loci (QTLs) associated

with both disease resistance and fecundity using the local mapping population TOU-A of the

highly selfing species Arabidopsis thaliana [23], which is located in a heterogeneous abiotic

and biotic environment [24]. A. thaliana inhabits contrasting environments for diverse abiotic

(e.g. climate, soil physico-chemical properties) and biotic (e.g. microbial communities, plant

communities) factors [24–29], with disease incidence being common in its natural populations

[1, 30, 31]. For instance, in a survey of 163 natural populations in south-west of France, 72.7%

of plants presented disease symptoms and each of the two most abundant bacterial pathogenic

species (namely Pseudomonas viridiflava and Xanthomonas campestris) was detected by a

metabarcoding approach in more than 90% of natural populations [27].

Specifically, we aimed at addressing the following questions: 1) What is the extent of natural

genetic variation in disease resistance among 195 local accessions scored in their native habi-

tat?, 2) How is genetic variation in disease resistance spatially distributed within the local pop-

ulation?, 3) Does genetic variation for disease resistance present signatures of natural

selection?, 4) What is the genetic architecture of disease resistance in a local population?, 5) Do

QTLs associated with disease resistance overlap with QTLs associated with fecundity?, 6) Do
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the answers to the five previous questions depend on the natural soil agronomic properties

and/or the presence of a co-occurring plant species in the local TOU-A population?

Results

Natural genetic variation in disease index and crossing reaction norms

We first aimed at estimating the extent of natural genetic variation for disease resistance

among local genotypes scored in contrasting micro-habitats and test whether the ranking of

accessions for disease resistance shifted among micro-habitats. In this study, we focused on

195 whole-genome sequenced accessions that have been collected along a transect of 350-m in

the highly genetically polymorphic local population TOU-A (France, Burgundy, 46˚ 380

57.302@ N, 4˚70 16.892@ E) located under an electric fence separating two permanent meadows

experiences cycles of grazing by cattle [24]. The mean distance between consecutive collected

accessions was 1.67m (min = 0m, max = 41.8m, confidence intervals 95% = 10 cm– 8.1m). The

195 accessions were grown in situ within the TOU-A population in six micro-habitats [24],

which consist of three soil types crossed with the presence or absence of the bluegrass Poa
annua, a species frequently associated with A. thaliana in natural habitats [24, 32, 33]. Based

on chemical analyses of 14 edaphic factors for 83 samples collected along the transect [24], we

determined three soil types (hereafter named soils A, B and C) that were naturally contrasted

for their agronomic properties. Soil A has a higher pH, higher concentrations of nitrogen, cal-

cium, magnesium and a lower concentration of aluminum than soil C, soil B having interme-

diate values for these five edaphic factors between soils A and C (S1 Fig).

Within each of the six micro-habitats, we grew five replicates of each accession in a ran-

domized complete block design with one replicate per block. Each block was represented by

three arrays of 66 individual wells, with 195 wells that were sown with seeds and three remain-

ing wells that were not sown with seeds. All the wells were first filled with 3 cm of the respec-

tive native soil, then with an additional 1cm of the respective native soil that was oven dried

for two days at 65˚C. Germination from the seed bank was therefore prevented by the oven

dried native soil. To mimic the main natural germination cohort observed in the TOU-A pop-

ulation, seeds were sown directly in situ on the three native soils A, B and C in late September

2012. For each natural soil, we manipulated the presence of P. annua by sowing five seeds of P.

annua in each well and then thinning them to obtain only one P. annua plant per well [24].

After overwintering at the rosette stage, 5,367 plants were scored early March 2013 for dis-

ease symptoms in a semi-quantitative manner with a scale ranging from zero to ten. These

eleven scores categorize the percentage of rosette area infected ranging from 0% (absence of

visible symptoms) to 100% (visible symptoms on the entire rosette area), with an increment of

10%. The symptoms considered in this study were determined by the presence of visible chlo-

rosis, visible necrosis, leaf mosaic or water-soaked lesions and cell death related symptoms sur-

rounding infection sites. Genetic variation for this set of symptoms have been observed in A.

thaliana in response to diverse pathogens, either viruses, bacteria, fungi and/or oomycetes, in

either greenhouse, field or natural conditions [34–40] (Fig 1A). In addition, the presence of

such disease symptoms was associated with a significantly higher relative proportion of the

pathobiota in the leaf bacterial microbiota in natural populations of A. thaliana [27].

Two-thirds of the plants presented disease symptoms (Fig 1B). While most diseased plants

presented few symptoms (disease index = 1, n = 1,476, 39.5%, Dataset 1 in S1 Dataset), a non-

negligible fraction of diseased plants presented severe symptoms (disease index > = 5, n = 407,

10.9%, Dataset 1 in S1 Dataset) (Fig 1B). Because resources involved in plant development

may not be further available for plant immunity, we investigated this trade-off [41, 42] by test-

ing whether plant development affected disease resistance. In line with the growth-immunity
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trade-off, disease index was significantly and positively correlated with plant size (i.e. maximal

rosette diameter used as a proxy) scored before the onset of winter (Table 1 and S2 Fig). How-

ever, variation in rosette size explained on average only 2.9% of disease index variation across

the six micro-habitats. Disease index was not different between plants that bolted before

(n = 2,608, 48.6%) or after (n = 2,759, 51.4%) early March 2013 (Table 1).

Fig 1. Genetic variation among the 195 TOU-A accessions for disease index across the six micro-habitats. (A) Photograph illustrating the

observed variation in the level of disease index ranking from zero to eight. Each value on the bottom right of each plant indicates the level of

disease index scored on March 3rd, 2013. (B) Variation of disease index across the 5,367 plants scored in this study. (C) Genetic variation within

each micro-habitat. Each dot corresponds to the genotypic values (Best Linear Unbiased Estimator) for disease index of one of the 195

accessions. ‘A w/o Poa’: soil A in absence of Poa annua, ‘A w. Poa’: soil A in presence Poa annua, ‘B w/o Poa’: soil B in absence of Poa annua, ‘B

w. Poa’: soil B in presence Poa annua, ‘C w/o Poa’: soil C in absence of Poa annua, ‘C w. Poa’: soil C in presence Poa annua. Different upper

letters indicate different groups according to the micro-habitat after a Tukey correction for multiple pairwise comparisons.H2: broad-sense

heritability value for each microhabitat. Italic values indicate statistically significant results after a Bonferroni correction for multiple

comparisons. ��� P< 0.001, � P< 0.05.

https://doi.org/10.1371/journal.pone.0274561.g001

Table 1. Genetic variation among the 195 TOU-A accessions for disease index across the six micro-habitats.

Model terms with parentheses indicate nested effects (see Model 1). Random effects are in italic. Model random terms

were tested with likelihood ratio tests of models with and without these effects following a chi-square distribution with

a degree of freedom of 1.

Model terms F or λLR P
block(soil�comp) 21.0 1.0 E-32

soil 29.6 1.7E-13

comp 1.1 3.0E-01

soil�comp 10.2 3.7E-05

Acc 39.4 3.5E-10

Acc�soil 79.2 1.0 E-16

Acc�comp 0.0 1.0E+00

Acc�soil�comp 8.7 3.2E-03

bolting (soil�comp) 2.6 1.7E-02

rosette diameter (soil�comp) 18.4 3.0E-21

Bold P-values indicate significant effect after Bonferroni correction. λLR: likelihood-ratio test statistic. ‘soil’: soils A, B

and C. ‘comp’: absence or presence of P. annua. ‘Acc’: accession. ‘Bolting’: binary trait corresponding to the presence

or absence of an inflorescence distinguishable from the leaves, on the day plants were scored for disease symptoms.

‘Rosette diameter’: maximal rosette diameter before the onset of winter.

https://doi.org/10.1371/journal.pone.0274561.t001
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The mean disease index largely differed among the six micro-habitats, with a significant

interacting effect between the soil type and the presence/absence of P. annua (Table 1). In

absence of P. annua, plants presented on average more disease symptoms in soil A than in soil

B, plants in soil C presenting significantly intermediate levels of disease symptoms (Fig 1C).

The presence of P. annua significantly reduced the level of disease symptoms in soils A and B,

but not in soil C (Fig 1C). Extensive genetic variation was found among the 195 accessions in

each micro-habitat (in particular in soil C), with the exception of soil B in presence of P.

annua for which no significant genetic variations was detected (Tables 1 and S1 and Fig 1C).

Because the absence of genetic variation among accessions precludes any genotypic selection

analyses and GWA mapping, the micro-habitat ‘soil B in presence of P. annua’ was not further

considered in the rest of the study. Among the five remaining micro-habitats, broad-sense her-

itability values ranged from 0.37 to 0.76 (Fig 1C). Highly significant ‘accessions × soil type’ and

‘accession × soil type × presence/absence of P. annua’ interactions combined with the observa-

tion of strong crossing reaction norms, indicate that the ranking of accessions for disease

index was different among the micro-habitats (Table 1). These extensive Genotype x Environ-

ment (GxE) interactions are well illustrated by comparing genotypic values of disease index

between soils A and C (both in absence and presence of P. annua, Fig 2A) as well as between

the absence and presence of P. annua, in particular in soil C (Fig 2B).

Spatial genetic variation in disease index

After detecting highly significant genetic variation in disease index in five out of the six micro-

habitats tested, we aimed at estimating the degree of patchiness of this genetic variation along

the 350-m environmentally heterogeneous transect. To estimate the spatial grain of disease

index variation, we first performed a spectral decomposition of the spatial relationships

among the 195 accessions. We identified 59 Principal Coordinates of Neighbor Matrices

(PCNM) components, suggesting a relatively homogeneous spatial distribution of the 195

accessions along the 350-m transect (S3 Fig), which is in line with the mean distance between

Fig 2. Extensive Genotype x Environment (GxE) interactions across the micro-habitats. (A) GxE interactions between soil

A and soil C in absence (left panel) and presence (right panel) of P. annua. (B) GxE interactions between the absence and

presence of P. annua on soils A (left panel) and C (right panel). Each dot corresponds to the Best Linear Unbiased Estimator

(BLUE) for disease index of one of the 195 accessions. Each line connects one of the 195 accessions between two micro-

habitats.

https://doi.org/10.1371/journal.pone.0274561.g002
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consecutive collected accessions of 1.67m. The spatial grain of disease index largely differed

among the micro-habitats. While a coarse-grained spatial variation was detected in soil A in

absence of P. annua, a fine-grained spatial variation was detected in soil C both in absence and

presence of P. annua (S2 Table). No significant spatial variation was detected in soil A in pres-

ence of P. annua and in soil B in absence of P. annua, suggesting a random spatial distribution

of disease index variation scored in these two micro-habitats (S2 Table).

Fecundity-disease index relationship estimated by a genotypic selection

analysis

As a next step, we aimed at testing whether genetic variation in disease index presented signa-

tures of natural selection. To do so, we performed a genotypic selection analysis by estimating

the selection differential S, which is a measure of association between trait values and fitness

estimates [43, 44]. Negative S values predict that natural selection would favor genotypes with

low values for the phenotypic trait of interest. Fitness estimate is usually approximated by the

total number of seeds produced by a plant, which has been demonstrated as a good proxy of

fecundity in highly selfing species such as A. thaliana [25, 45]. Because the number of seeds

per fruit is highly correlated with fruit length in A. thaliana [46], total seed production of each

plant scored for disease index was approximated by measuring total silique length [24]. Based

on genotypic values (Dataset 2 in S1 Dataset), we first calculated relative fecundity and stan-

dardized disease index in each micro-habitat for which disease index was significantly herita-

ble. We found standardized S estimates to be negative across micro-habitats, indicating that

accessions presenting severe symptoms produced on average fewer seeds than accessions with

few symptoms (Fig 3). In addition, S estimates were significantly different among the three soil

types (S3 Table), with S estimates in soil C being between 2.3 and 7.1 higher than S estimates

in soils A and B (Fig 3). The presence of P. annua did not significantly affect S estimates (S3

Table and Fig 3).

Genetic architecture of disease index and fecundity

As a last step, we aimed at describing the genetic architecture underlying natural genetic varia-

tion in disease index and estimating the percentage of detected QTLs that were also associated

with natural genetic variation of fecundity. To do so, we set up GWA mapping analyses by tak-

ing advantage of the genome sequencing of the 195 TOU-A accessions, which revealed a set of

1,902,592 Single Nuclear Polymorphisms (SNPs) and a linkage disequilibrium (LD) decay to r2

= 0.5 within an average of 18 base pairs [24]. To fine map QTLs associated with natural varia-

tion of disease index down to the gene level, we combined a mixed-model approach correcting

for the effects of population structure with a local score approach, the latter approach allowing

delimiting QTL regions by accumulating single marker p-values obtained from the mixed-

model while controlling the issue of multiple hypothesis tests [47]. The efficiency of this com-

bination was demonstrated in the TOU-A population, with the fine mapping (in particular,

the detection of QTLs with small effects) and the cloning of four of the QTLs associated with

quantitative disease resistance to the bacterial pathogen Ralstonia solanacearum [48].

Natural genetic variation for disease index was highly polygenic, with the detection of

between 13 and 73 QTLs depending on microhabitat (Fig 4), for a total of 195 detected QTLs

overlapping with 548 unique candidate genes (Dataset 3 in S1 Dataset). The genetic architec-

ture was highly variable among the micro-habitats, with most candidate genes being specific to

a particular micro-habitat (Fig 5). The main exception concerns 20 candidate genes that were

common both in absence and in presence of P. annua in soil C (Fig 5). Note that no candidate

gene associated with disease index was detected as common between more than two micro-
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habitats (Fig 5). A similar pattern was observed for natural genetic variation of fecundity (S4

Fig), with the detection of between 14 to 32 QTLs depending on micro-habitat. The 107

detected QTLs overlaps with 360 candidate genes (Dataset 3 in S1 Dataset), most of them

being specific to a particular micro-habitat (S4 Fig).

Only four QTLs were common between disease index and fecundity, suggesting that only a

small fraction of disease resistance QTLs detected in the local mapping population TOU-A are

under selection in the micro-habitats tested in this study (Figs 4 and S6). One QTL was

detected in soil A in presence of P. annua and three QTLs were detected in soil C in presence

of P. annua (Fig 4). The first QTL is located between the genes AT4G11450 and AT4G11460
encoding a protein of unknown function and the cysteine-rich receptor-like protein kinase

CRK30, respectively (Fig 6). The second QTL is located on the genes OVATE FAMILY PRO-
TEIN 2 (OFP2) and TUBULIN FOLDING FACTOR A (also named KIS) (Fig 6). The third

QTL is located on genes AT3G02900 and AT3G02910 encoding a receptor-like protein and an

AIG2-like (avirulence induced gene) family protein, respectively (Fig 6). The last QTL is

located on the gene AT3G26290 encoding the cytochrome P450 protein CYP71B26 (Fig 6).

Fig 3. Genotypic selection analysis between relative total seed production and standardized disease index with

selection differential (S) within each micro-habitat for which disease index was significantly heritable. Each dot

corresponds to the Best Linear Unbiased Estimator (BLUE) for disease index of one of the 195 accessions. ‘w/o’:

absence of P. annua, ‘w.’: presence of P. annua. The solid line corresponds to the fitted regression line, whereas the

dashed lines delimit the band of 99% confidence intervals. ��� P< 0.001, �� P< 0.01, � P< 0.05. Bold P values indicate

statistically significant results after a Bonferroni correction for multiple comparisons. Note that the scale for the x and y
axes are different among the five micro-habitats.

https://doi.org/10.1371/journal.pone.0274561.g003
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Discussion

Extensive Genotype × Environment interactions should promote the

maintenance of quantitative disease resistance polymorphisms in the local

TOU-A population

In this study, we detected extensive genetic variation for quantitative disease resistance as well

as extensive GxE interactions at a very small spatial scale. In previous experiments conducted

under laboratory controlled conditions, extensive genetic variation was detected in the

TOU-A population for either qualitative or quantitative disease resistance, when accessions

were mono-infected with strains of the bacterial pathogens Pseudomonas syringae, R.

Fig 4. A polygenic architecture underlying natural genetic variation in disease index within each micro-habitat

for which disease index was significantly heritable. Manhattan plot of the Lindley process (local score method with a

tuning parameter ξ = 2). The x-axis indicates the physical position of the 981,617 SNPs with a minor allele relative

frequency above 7%, along the five chromosomes. The dashed lines indicate the minimum and maximum of the five

chromosome-wide significance thresholds. Black arrows indicate the positions of the four QTLs containing candidate

genes common between disease index and total seed production (see Fig 6).

https://doi.org/10.1371/journal.pone.0274561.g004
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solanacearum and X. campestris [24, 40, 48, 49]. However, coinfection with multiple pathogens

or multiple isolates from the same pathogenic species appears the norm in natural populations

of A. thaliana [1, 12, 27, 50]. Whether plants grown in the six micro-habitats were attacked by

either a single pathogenic isolate, multiple pathogenic isolates or multiple pathogens remains

an open question and would have required the characterization of the entire pathobiota (i.e.

viruses, bacteria, fungi and oomycetes) using, for instance, a shotgun metagenomics approach

[51].

The environmental heterogeneity encountered by the accessions of A. thaliana in the

TOU-A population affected in an unpredictable way the mean level of disease resistance as

well as the extent of genetic variation, suggesting non-linear interacting effects between soil

agronomic properties and heterospecific competition on plant-pathogen interactions. We may

caution that differences in soil agronomic properties can lead to differences in soil microbial

communities that directly mediates plant-pathogen interactions, as previously demonstrated

Fig 5. A variable architecture underlying natural genetic variation in disease index within each micro-habitat for which disease index was significantly

heritable. UpSet plot illustrating the number of candidate genes that were either specific to a single micro-habitat (i.e. single black dots) or common between

two micro-habitats (i.e. black dots connected by a solid line). ‘w/o’: absence of P. annua, ‘w.’: presence of P. annua. For each micro-habitat, the number of

candidate genes identified by GWA mapping (colored bars) corresponds to the sum of the numbers of candidate genes above the grey bars for which dots are

present. For instance, the total number of candidate genes identified by GWA mapping for the micro-habitat ‘soil C w. Poa annua’ is 214, which corresponds to

the sum of the values 191, 20 and 3.

https://doi.org/10.1371/journal.pone.0274561.g005
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in the natural plant pathosystems Plantago lanceolata—Podosphaera plantaginis [20]. Based on

a correlation approach, pH was proposed as one of the main factors shaping the microbiota

(bacteria, fungi and oomycetes) of A. thaliana across 17 natural European sites, in the soil, rhi-

zosphere, rhizoplane and root compartments [29]. Because pH varies between 4.8 and 6.2

along the 350-m transect of the TOU-A population, it would be interesting to characterize in

each micro-habitat, microbial communities of the soil and in diverse plant compartments.

Importantly, although accessions switched ranks for disease resistance among the micro-

habitats, the fecundity-disease resistance relationship was consistently negative, which is line

with the negative relationship detected between disease severity and total seed production in

the A. thaliana–P. syringae pathosystem under growth chamber conditions [52]. In combina-

tion with the spatial grain of genetic variation in disease resistance that differs among the

micro-habitats, these results suggest the presence of heterogeneous selection acting on disease

resistance in the TOU-A population from the scale of few meters to the scale of several tens of

meters. With alternative host genotypes being favored under contrasting environmental con-

ditions, such a heterogeneous selection should promote the maintenance of polymorphism at

the resistance genes. This is in line with the presence of long-lived haplotypes in the TOU-A

population for the R genes RPM1 and RPS2 conferring qualitative resistance against P. syringae
strains, and the gene RKS1 conferring broad-spectrum quantitative resistance against X. cam-
pestris [24, 49]. The presence of long-lived haplotypes at R genes and RKS1 was also observed

in several tens of populations located in Europe [40, 49, 53]. Therefore, environmentally driven

heterogeneous selection may be widespread across the native range of A. thaliana, in particular

in populations inhabiting environments with contrasting soil agronomic properties and/or

containing a large number of companion plant species [26, 33].

Why so few common QTLs between disease resistance and total seed

production?

A polygenic and habitat-dependent genetic architecture was detected for both disease resis-

tance and fecundity. Similar patterns were observed (i) under laboratory controlled conditions

when the same set of 195 TOU-A accessions were challenged with the bacterial pathogen R.

Fig 6. Zoom spanning the four genomic regions containing candidate genes common between disease index and total seed production. (A) Overlapping QTL

between disease index and total seed production on soil A in presence of P. annua. (B-D) Overlapping QTLs between disease index and total seed production on soil C in

presence of P. annua. Red and blue dots correspond to Lindley values for disease index and total seed production, respectively. The red and blue dashed lines indicate the

corresponding chromosome-wide significance threshold for disease index and total seed production, respectively. Vertical numbers (expressed in bp) at the bottom of

each panel correspond to the physical positions of the QTL region.

https://doi.org/10.1371/journal.pone.0274561.g006
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solanacearum at two temperatures differing by only 3˚C [48], and (ii) under field conditions

when a set of worldwide accessions of A. thaliana were phenotyped for fecundity in four sites

across Europe [54].

However, despite a significant negative genetic relationship between disease resistance and

total seed production, the number of common QTLs between these two traits was small. Sev-

eral non-exclusive hypotheses can be advanced to explain the paucity of QTLs overlapping

between disease resistance and total seed production. Firstly, we scored disease symptoms in a

semi-quantitative manner that may have led to a subjective categorization of some plants

according to the scale of scoring. Although substantial genetic variation was detected among

the 195 local accessions for disease resistance, some mis-categorization may in turn have

affected the estimates of genotypic values, and thus an accurate detection of the QTLs associ-

ated with disease resistance. Secondly, a non-negligible fraction of disease resistance variation

can be neutral, in particular in micro-habitats where total seed production is weakly associated

with disease index, such as in soil A in presence of P. annua. Thirdly, total seed production is

only one component of fitness measured in this study. It would be informative to consider

other fitness components, such as seed quality, germination rate and survival rate of offspring

[55]. Fourthly, despite the detection of dozens of QTLs for each trait in each micro-habitat, the

number of accessions phenotyped in this study might have been too small to correctly charac-

terize the genetic architecture of such integrative traits like quantitative disease resistance and

total seed production, thereby impeding the detection of QTLs with very small effects [54, 56].

Fifthly, as proposed in [52], infection might have affected total seed production through differ-

ent genetic mechanisms than the ones associated with disease resistance in this study, such as

disease tolerance. In line with disease tolerance, the fraction of the pathobiota in the leaf bacte-

rial microbiota was high in a non-negligible number of symptomless A. thaliana plants col-

lected in natural populations located south-west of France, suggesting the presence in these

plants of genetic mechanisms allowing pathogen population growth without affecting plant

development [27]. Sixthly, selection differentials include both direct selection on a trait and

indirect selection due to selection acting on correlated traits [44]. Therefore, considering addi-

tional putative adaptive traits such as the duration of reproductive period or the number of

branches [26, 57], may help to measure the strength and trend of directional selection acting

on disease resistance through the estimation of linear partial regression coefficients [58]. Com-

bined with pairwise genetic correlations, a multivariate genotypic selection analysis may in

turn forecast genetic constraints between disease resistance and other phenotypic traits [58].

Candidate genes for disease resistance potentially under selection encode

diverse molecular functions

The candidate genes associated with natural variation of quantitative disease resistance and

potentially under selection encode diverse molecular functions, suggesting that the molecular

mechanisms underlying this type of resistance may be more complex than anticipated [59].

Such a pattern is in agreement with previous studies conducted on A. thaliana when chal-

lenged with diverse pathogens including viruses [35], bacteria [6, 40, 48, 49, 60, 61], fungi [38,

39, 62] and oomycete [63, 64].

In this study, two candidate genes are of particular interest. Firstly, the cysteine-rich recep-

tor-like protein kinase CRK30 is a member of one of the largest group of receptor-like kinases

in plants [65]. The transcript level of several CRKs has been reported to be induced by bacterial

pathogens [65]. Recently, by assessing transcriptional response of A. thaliana to 39 commensal

bacterial strains in the leaf compartment, a core set of 24 genes (including two CRKs) consis-

tently induced by the presence of most strains, was identified and referred as a molecular
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process called general non-self-response (GNSR) [66]. These findings suggest that in our

study, CRK30 may have directly perceived bacterial pathogens and/or indirectly perceived

microbiota perturbations by pathogen invasion. Secondly, under controlled laboratory condi-

tions, the transcript level of the cytochrome P450 gene CYP71B26 was deregulated in the early

stages of infection with X. campestris [59], which is the most prevalent and abundant bacterial

pathogen in natural populations of A. thaliana located south-west of France [12, 27]. For the

five other candidate genes associated with both disease index and fecundity, no obvious links

between the function of these genes and disease index was reported in the literature.

The next step to understanding the mechanisms underlying natural variation of quantita-

tive disease resistance in ecologically relevant habitats would be to functionally validate the

two candidate genes related to response to bacterial pathogens, i.e. CRK30 and CYP71B26, and

test their effects on total seed production. By growing isogenic lines differing only by natural

alleles present in the TOU-A population at these two genes on the six micro-habitats, it may

help to better understand at the genetic level the adaptive dynamics of host-pathobiota interac-

tions in a spatially fine-grained environment [67].

Methods

Plant material and experimental design

One hundred and ninety-five accessions of A. thaliana of the local TOU-A population were

used in this study. This set of accessions were collected in 2002 (n = 80) and 2010 (n = 115)

according to a sampling scheme based on the density of A. thaliana plants along a 350-m tran-

sect under an electric fence separating two permanent meadows. We reduced differences in

maternal effects among the 195 accessions by growing one plant per accession for one genera-

tion, under greenhouse conditions (16-h photoperiod, 20˚C).

The experimental design was fully described in Frachon et al. [24]. Briefly, the 195 acces-

sions were grown in six ‘soil × interspecific competition’ micro-habitats at the local site of the

TOU-A population. Each was organized in five blocks. Each block corresponded to an inde-

pendent randomization of 195 plants with one replicate per accession, for a total of 5,850

plants across the six micro-habitats.

Disease symptoms were scored on March 5th, 2013. Maximal rosette diameter (to the near-

est millimeter) used in this study was measured before the onset of winter on November 21st,

2012 and used as a proxy for plant size. Bolting was scored on March 5th, 2013 as the presence

of an inflorescence distinguishable from the leaves at a size > 5 mm. Total seed production

was previously estimated by multiplying the number of fertilized fruits by an estimate of their

corresponding fruit length [24].

Natural genetic variation

Natural variation of disease index was analysed using the following statistical mixed model:

diseases indexijklmn¼mdisease index þ blocki soilj � compk

� �
þ soilj þ compk þ soilj � compk

þ accl þ accl � soilj þ accl� compk þ accl � soilj � compk

þ boltingm soilj � compk

� �
þ diametern soilj � compk

� �
þ εijklmn ðModel 1Þ

In this model, μ is the overall phenotypic mean; ‘block’ accounts for differences between the

five experimental blocks within each type of ‘soil × absence or presence of P. annua’ experi-

mental combination; ‘soil’ corresponds to the effects of the three types of soil; ‘comp’ measures

the effect of the presence of P. annua; ‘acc’ measures the differences among the195 accessions;
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interaction terms involving the accession term account for genetic variation in reaction norms

of accessions between the three types of soil and the absence or presence of P. annua; ‘bolting’

measures the effect of being bolted on the day plants were scored for disease symptoms; ‘diam-

eter’ accounts for developmental effects approximated by maximal rosette dimeter before the

onset of winter; and ε is the residual term. Inference was performed using ReML estimation,

using the PROC MIXED procedure in SAS v.9.4 (SAS Institute Inc., Cary, North Carolina,

USA). All factors were treated as fixed effects, except the term ‘acc’, which was treated as a ran-

dom effect. For fixed effects, terms were tested over their appropriate denominators for calcu-

lating F values. Significance of the random effects was determined by likelihood ratio tests of

the model with and without these effects.

Best linear unbiased estimates (BLUEs) of disease index were obtained for each accession in

each of the six micro-habitats by running the following mixed model (PROC MIXED proce-

dure in SAS v.9.4):

diseases indexilmn¼mþ blocki þ accl þ boltingm þ diametern þ εilmn ðModel 2Þ

Because A. thaliana is a highly selfing species [23], BLUEs correspond to the genotypic val-

ues of accessions. Based on the same individual plants scored for disease index, BLUEs for

fecundity were obtained from Frachon et al. [24].

Broad-sense heritability (H2) of disease index was estimated from variance component esti-

mates for the ‘block’ and ‘acc’ terms (PROC VARCOMP procedure in SAS v.9.4) on the resid-

uals obtained after fitting Model (2) without the ‘block’ and ‘acc’ terms.

Spatial grains of disease index variation

For each micro-habitat, the spatial grain of disease index variation was estimated by first

modeling a spectral decomposition of the spatial relationships among the 195 accessions with

PCNMs, using the pcnm function implemented in the R vegan package [68] using the Euclid-

ean distance matrix based on the coordinates of the 195 accessions along the 350-m transect.

The resulting orthogonal PCNM components correspond to successive spatial grains [69]. The

first and last PCNM components define large and fine spatial grains, respectively [69]. Then,

for each micro-habitat, all PCNM components were used as explanatory variables in a multiple

linear regression on genetic variation in disease index in the R environment. Multiple testing

were controlled for a false discovery rate (FDR) at a nominal level of 5% [70].

Genotypic selection analysis

The extent of natural selection on disease resistance was measured by the selection differential

S [43, 44], within each of the five micro-habitats for which disease index was significantly heri-

table. Based on BLUEs, we first calculated in each micro-habitat relative fecundity as the fecun-

dity estimate divided by the mean fecundity estimate, and disease index standardized to a

mean of zero and a standard deviation of one [58]. The following analysis of covariance

(ANCOVA) was then run in each micro-habitat (PROC GLM procedure in SAS v.9.4), with

the S estimate corresponding to the regression slope value:

relative fitnessd¼mrelative fitness þ disease indexd þ εd ðModel 3Þ

To test whether the fecundity-disease index relationship was affected by the soil type and/or

the presence/absence of P. annua, we run the following ANCOVA (PROC GLM procedure in
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SAS v.9.4):

relative fitnessdjkl¼mrelative fitness þ disease indexd þ soilj þ compk þ soilj � compk

þ disease indexd � soilj þ disease indexd � compk

þ disease indexd � soilj � compk þ εdjklmn ðModel 4Þ

In Models (3) and (4), μ is the overall phenotypic mean; ‘disease index’ corresponds to dis-

ease index standardized within each micro-habitat; ‘soil’ corresponds to the effects of the three

types of soil; ‘comp’ measures the effect of the presence of P. annua; and ε is the residual term.

Genome-Wide Association mapping combined with a local score approach

Although the effects of population structure on phenotype-SNP associations were demon-

strated to be limited in the TOU-A population [26, 32], we nonetheless run GWA mapping

using a mixed model implemented in the software EMMAX (Efficient Mixed-Model Associa-

tion eXpedited) [71]. To control for the effect of population structure, we included as a covari-

ate an identity-by-state kinship matrix K. This kinship matrix was based on 1,902,592 SNPs

identified among the 195 accessions of the TOU-A population [24]. Because rare alleles may

increase the rate of false positives [63, 72], we only considered SNPs with a minor allele relative

frequency (MARF) > 7%, a MARF value above which the p value distribution obtained from

the EMMAX mixed model is not dependent on MARF values in the TOU-A population [24].

Based on the resulting 981,617 SNPs, the EMMAX mixed model was run on BLUEs of disease

index. Results from EMMAX mixed model based on BLUEs for fecundity were previously

obtained in Frachon et al. [24].

In order to better characterize the genetic architecture associated with natural genetic varia-

tion in disease index and fecundity, we applied a local score approach on the set of p-values

provided by EMMAX. This local score approach increases the power of detecting QTLs with

small effect and narrows the size of QTL genomic regions [47, 73]. A tuning parameter ξ of 2

expressed in–log10 scale, was used in this study. Significant phenotype-SNP associations were

identified by estimating a chromosome-wide significance threshold for each chromosome

[47]. Because the estimation of the significance threshold depends on the distribution of the p-

values after a FDR control, threshold values depend on both the identity of the phenotypic

trait and the chromosome identity. Based on a custom script [74], we retrieved all candidate

genes underlying QTLs by selecting all genes inside the QTL regions as well as the first gene

upstream and the first gene downstream of these QTL regions (Dataset 3 in S1 Dataset). The

TAIR 10 database (https://www.arabidopsis.org/) was used as our reference. The number of

candidate genes that were either specific to a single micro-habitat or common between several

micro-habitats were illustrated by UpSet plots using the package UpSetR implemented under

the R environment [75].
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S1 Dataset. This file includes the three data sets mentioned in the main text.

(XLSX)

S1 Table. Genetic variation among the 195 TOU-A accessions for disease index within

each six micro-habitat. The random effect ‘Accession’ is in italic. The model random term

was tested with likelihood ratio tests of model with and without this effect. Bold P-values indi-

cate significant effect after Bonferroni correction. LRT: Likelihood Ratio Test. ‘w/o’: absence of

P. annua, ‘w.’: presence of P. annua.
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S2 Table. Spatial genetic variation of disease index. Levels of significance (p-values) between

disease index variation and each Principal Coordinates of Neighbor Matrices (PCNM) compo-

nent within each micro-habitat for which disease index was significantly heritable. Significant

associations after a FDR adjustment at a nominal level of 5% are highlighted in green.

(DOCX)

S3 Table. Genotypic selection analysis revealing fecundity–disease index relationship. Bold

P-values indicate significant effect after Bonferroni correction. ‘soil’: soils A, B and C. ‘comp’:

absence or presence of P. annua.

(DOCX)

S1 Fig. Variation of 14 edaphic factors along the 350-m transect in the TOU-A population

illustrated by Jitter plots to better visualize overlapping individual one-dimensional val-

ues. Each dot corresponds to one of the 83 soil samples collected along the 350-m transect and

characterized for 14 edaphic factors; i.e. pH, maximal water holding capacity (WHC), total

nitrogen content (N), organic carbon content (C), C/N ratio, soil organic matter content

(SOM), concentrations of P2O5, K, Ca, Mg, Mn, Al, Na and Fe. Red, green and blue dots corre-

spond to soil samples located in the three contrasted natural soils on which plants were grown

in this study, i.e. A (n = 3), B (n = 9) and C (n = 8), respectively. The remaining grey dots

(n = 63) correspond to soil samples located outside of the three contrasted natural soils tested

in this study.

(DOCX)

S2 Fig. Relationship between disease index and maximal rosette diameter within each

micro-habitat. A w/o Poa’: soil A in absence of Poa annua, ‘A w. Poa’: soil A in presence Poa
annua, ‘B w/o Poa’: soil B in absence of Poa annua, ‘B w. Poa’: soil B in presence Poa annua, ‘C

w/o Poa’: soil C in absence of Poa annua, ‘C w. Poa’: soil C in presence Poa annua. The solid

line corresponds to the fitted regression line, whereas the dashed lines delimit the band of 99%

confidence intervals. ‘R2’ corresponds to the adjusted R-squared of the fitted model. ���

P< 0.001.

(DOCX)

S3 Fig. Spectral decomposition of the relationships among the 195 accessions along the

350-m transect. The 59 Principal Coordinates of Neighbor Matrices (PCNM) components are

ranking from the higher (PCNM1) to the lower (PCNM59) eigenvalues i.e. from coarse-

grained to finer-grained spatial variations. The size of squares are proportional to the PCNM

values. The filled and open squares indicate negative and positive PCNM values, respectively.

The x-axis corresponds to the length of the transect along which the 195 TOU-A accessions

have been collected.

(DOCX)

S4 Fig. A polygenic architecture underlying natural genetic variation of total seed produc-

tion within each micro-habitat for which disease index was significantly heritable. Manhat-

tan plot of the Lindley process (local score method with a tuning parameter ξ = 2). The x-axis

indicates the physical position of the 981,617 SNPs along the five chromosomes. The dashed

lines indicate the minimum and maximum of the five chromosome-wide significance thresh-

olds.

(DOCX)

S5 Fig. A variable architecture underlying natural genetic variation of total seed produc-

tion within each micro-habitat for which disease index was significantly heritable. UpSet
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plot illustrating the number of candidate genes that were either specific to a single micro-habi-

tat (i.e. single black dots) or common between two micro-habitats (i.e. black dots connected by

a solid line). ‘w/o’: absence of P. annua, ‘w.’: presence of P. annua. For each micro-habitat, the

number of candidate genes identified by GWA mapping (colored bars) corresponds to the

sum of the numbers of candidate genes above the grey bars for which dots are present. For

instance, the total number of candidate genes identified by GWA mapping for the micro-habi-

tat ‘soil C w:O Poa annua’ is 55, which corresponds to the sum of the values 51, 3 and 1.

(DOCX)

S6 Fig. Comparison of the polygenic architecture underlying natural genetic variation of

disease index and total seed production within each micro-habitat. (A) soil A in absence of

Poa annua. (B) soil A in presence Poa annua. (C) soil B in absence of Poa annua. (D) soil C in

absence of Poa annua. (E) soil C in presence Poa annua. Manhattan plot of the Lindley process

(local score method with a tuning parameter ξ = 2). The x-axis indicates the physical position

of the 981,617 SNPs along the five chromosomes. The dashed lines indicate the minimum and

maximum of the five chromosome-wide significance thresholds.
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