Guillain-Barré syndrome related to SARS-CoV-2 infection

Kévin Bigaut, Martial Mallaret, Seyyid Baloglu, Benjamin Nemoz, Patrice
Morand, Florent Baicry, Alexandre Godon, Paul Voulleminot, Laurent
Kremer, Jean-Baptiste Chanson, et al.

To cite this version:

Kévin Bigaut, Martial Mallaret, Seyyid Baloglu, Benjamin Nemoz, Patrice Morand, et al.. GuillainBarré syndrome related to SARS-CoV-2 infection. Neurology Neuroimmunology \& Neuroinflammation, 2020, 7 (5), 10.1212/nxi.0000000000000785 . hal-03806709

HAL Id: hal-03806709

https://hal.science/hal-03806709

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Guillain-Barré syndrome related to SARS-CoV-2 infection

Kévin Bigaut, MD,* Martial Mallaret, MD, PhD,* Seyyid Baloglu, MD, Benjamin Nemoz, MD,
Patrice Morand, MD, PhD, Florent Baicry, MD, Alexandre Godon, MD, Paul Voulleminot, MD,
Laurent Kremer, MD, PhD, Jean-Baptiste Chanson, MD, PhD, and Jérôme de Seze, MD, PhD

Neurol Neuroimmunol Neuroinflamm 2020;7:e785. doi:10.1212/NXI. 0000000000000785

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for coronavirus disease 2019 (COVID-19) led to the death of thousands of people around the world. ${ }^{1}$ Neurologic manifestations are not much specific apart from acute anosmia, and postinfectious manifestation data are missing. ${ }^{2}$ We described the cases of 2 patients exhibiting demyelinating form of Guillain-Barré syndrome (GBS) and summarized neurologic manifestations and investigations results in table 1.

A 43-year-old man presented with cough, asthenia, and myalgia in legs, followed by acute anosmia and ageusia with diarrhea the next day. Symptoms resolved spontaneously after 2 weeks. Twenty-one days after the beginning of respiratory symptoms, he presented with in a rapidly progressive manner paraesthesia, hypoesthesia, and distal weakness in the lower limbs. In the following 2 days, these symptoms extended to the midthigh and tip of the fingers associated with ataxia, and he was hospitalized at day 4 because a right peripheral facial palsy had occurred. His body temperature was $36.9^{\circ} \mathrm{C}$ and oxygen saturation was 99%. Neurologic examination disclosed decreased light touch from midthigh to feet and the tip of the fingers; decreased vibration sense in the lower limbs, symmetric weakness for dorsiflexion and extension of the toes (Medical Research Council [MRC] score $=3 / 5$) and flexion of the thigh (MRC $=4 / 5$); and areflexia in the forelimbs apart from the left biceps reflex.

Laboratory results at day 4 were unremarkable (normal blood cell count, negative C-reactive protein, negatives HIV, Lyme, and syphilis serologies). Antigangliosides antibodies were negatives. Nasopharyngeal swab test was positive for SARS-CoV-2 on reverse transcriptionpolymerase chain reaction (RT-PCR) assay. CT of the chest showed ground-glass opacities in $10-25 \%$ on both lungs (figure e-1, links.lww.com/NXI/A267). CSF results showed normal cell count $\left(1 \times 10^{6} / \mathrm{L}\right)$, increased protein level ($0.94 \mathrm{~g} / \mathrm{L}$), and negative SARS-CoV-2 on RT-PCR assay. MRI at day 7 showed multiple cranial neuritis (in nerves III, V, VI, VII, and VIII), radiculitis, and plexitis on both the brachial and lumbar plexus (figure e-2, links.lww.com/NXI/A267). Nerve conduction studies at day 9 showed 2 conduction blocks ($>50 \%$) in both peroneal nerves, decreased motor conduction velocities in both peroneal and tibial nerves approximately 30-37 m / s, a sural sparing pattern, abolition of the H-reflex, and slightly increased of F-wave latencies supporting demyelinating pattern (table e-1, links.lww.com/NXI/A267). The patient was diagnosed with GBS, and IV immunoglobulin infusions (IVIg) were started at day $5(2 \mathrm{~g} / \mathrm{kg})$. He was rapidly discharged home with progressive improvement.

An obese 70 -year-old woman presented with anosmia and ageusia, followed by diarrhea for 2 days. She complained of mild asthenia and myalgia without fever. All symptoms resolved excepted anosmia and ageusia. Nasopharyngeal swab test was positive for SARS-CoV-2 on RT-PCR assay. Seven days later, she presented with acute proximal tetraparesis and distal forelimb and perioral

Correspondence

Dr. Bigaut
kevin.bigaut@chru-strasbourg.fr

MORE ONLINE

COVID-19 Resources
For the latest articles, invited commentaries, and blogs from physicians around the world
NPub.org/COVID19

[^0]Table 1 Clinical characteristics and investigations result for 2 patients with GBS related to SARS-CoV-2 infection

| | Days
 between
 the onset of
 COVID-19
 and GBS | GBS symptoms
 and signs | CSF findings | Nerve
 conduction
 studies | Treatments
 and
 evolution |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Patient | | MRI results | | | |

Abbreviations: COVID-19 = coronavirus disease 2019; GBS = Guillain-Barré syndrome; IVIg = IV immunoglobulin infusions; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.
paraesthesia. She was hospitalized for dyspnea and loss of ambulation 3 days later and was rapidly transferred to an intensive care unit for noninvasive ventilation for acute respiratory failure with hypercapnia. She was discharged from the intensive care unit 9 days later, without requiring invasive mechanical ventilation. Neurologic examination disclosed proximal lower-limb weakness (MRC 2/5), distal weakness (MRC 4/5), and diffuse areflexia.

At admission, C-reactive protein was slightly increased at 22 mg / L. Antigangliosides antibodies were negative. CSF results showed subnormal cell count $\left(6 \times 10^{6} / \mathrm{L}\right)$, increased protein level ($1.06 \mathrm{~g} / \mathrm{L}$), and negative SARS-CoV-2 on RT-PCR assay. CT of the chest showed moderate ground-glass opacities in both lungs (figure e-1, links.lww.com/NXI/A267). Nerve conductions studies at day 7 showed a typical demyelinating pattern with a conduction block in the left median nerve, temporal dispersion, upper limb increased motor distal latencies, diffuse decreased motor and sensory conduction velocities lower than $38 \mathrm{~m} / \mathrm{s}$ in 9 nerves of 10 tested (table e-1, links.lww. com/NXI/A267), and neurogenic pattern on EMG. IVIg (2 g / kg) were started at day 4 after the onset of the first neurologic symptoms. Left peripheral facial palsy occurred in a delayed manner at day 9. Her clinical condition improved slowly with physiotherapy, needing a transfer in a rehabilitation center.

We reported here 2 cases of GBS related to SARS-CoV-2 infection with neurologic improvement on IVIg, adding to few cases of GBS, one case of Miller Fisher syndrome, and one case of polyneuritis cranialis already published.

The first case report described a patient with GBS whose symptoms began 7 days before COVID-19, which asks the question of parainfectious profile or coincidence. ${ }^{3}$ However, previous reports and our cases suggest that GBS associated with SARS-CoV-2 infection could start between 5 and 21 days after the SARS-CoV-2 clinical symptoms. ${ }^{4}$ It could follow a postinfectious profile as reported on Middle East respiratory
syndrome coronavirus infection in 4 patients with Bickerstaff's encephalitis overlapping with GBS. ${ }^{5}$

Thus, our cases add to several other reported cases and strengthen the view that GBS occurs with COVID-19.

Study funding

No targeted funding reported.

Disclosure

K. Bigaut, M. Mallaret, S. Baloglu, B. Nemoz, P. Morand, F. Baicry, A. Godon, P. Voulleminot, L. Kremer, J.-B. Chanson, and J. de Seze report no disclosures relevant to the manuscript. Go to Neurology.org/NN for full disclosures.

Publication history

Received by Neurology: Neuroimmunology \& Neuroinflammation April 29, 2020. Accepted in final form May 6, 2020.

Appendix Authors

Name	Location	Contribution
Kévin Bigaut, MD	Service de Neurologie, Hôpitaux Universitaires de Strasbourg, France	Conception, organization and execution of the research project, and writing of the first draft and the review and critique of the manuscript
Martial Mallaret, MD, PhD	Service de Neurologie, Centre Hospitalo- Universitaire de Grenoble Alpes, France	Conception, organization and execution of the research project, and writing of the first draft and the review and critique of the manuscript
Seyyid	Service de Baloglu, MD Neuroradiologie, Hôpitaux Universitaires de Strasbourg, France	Conception, organization and execution of the research project, and writing of the first draft and the review and critique of the manuscript

Appendix	(continued)	
Name	Location	Contribution
Benjamin Nemoz, MD	Institut de Biologie Structurale (IBS), Universite de Grenoble Alpes, CEA, CNRS, France	Conception and organization of the research project and review and critique of the manuscript
		Conception and organization of the
Patrice	Institut de Biologie Morand, MD, PhD	Structurale (IBS), Alpes, CEA, CNRS, France
review project and critique of the		
manuscript		

Appendix (continued)
$\left.\begin{array}{lll}\hline \text { Name } & \text { Location } & \text { Contribution } \\ \hline \begin{array}{l}\text { Laurent } \\ \text { Kremer, MD, } \\ \text { PhD }\end{array} & \begin{array}{l}\text { Service de Neurologie, } \\ \text { Hôpitaux Universitaires de } \\ \text { Strasbourg, France }\end{array} & \begin{array}{l}\text { Conception and } \\ \text { organization of the } \\ \text { research project and } \\ \text { review and critique of the } \\ \text { manuscript }\end{array} \\ \hline \begin{array}{lll}\text { Jean-Baptiste } \\ \text { Chanson, } \\ \text { MD, PhD }\end{array} & \begin{array}{l}\text { Service de Neurologie, } \\ \text { Hôpitaux Universitaires de } \\ \text { Strasbourg, France }\end{array} & \begin{array}{l}\text { Conception, organization } \\ \text { and execution of the } \\ \text { research project, and } \\ \text { writing of the first draft } \\ \text { and the review and }\end{array} \\ \text { critique of the manuscript }\end{array}\right\}$

References

1. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-1720.
2. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol Epub 2020 April 10. doi: 10.1001/jamaneurol.2020.1127.
3. Zhao H, Shen D, Zhou H, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol 2020;19:383-384.
4. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med Epub 2020 Apr 17. doi: 10.1056/NEJMc2009191.
5. Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol 2017;13:227-233.

Neurology ${ }^{\circ}$ Neuroimmunology \& Neuroinflammation

Guillain-Barré syndrome related to SARS-CoV-2 infection

Kévin Bigaut, Martial Mallaret, Seyyid Baloglu, et al.
Neurol Neuroimmunol Neuroinflamm 2020;7; DOI 10.1212/NXI. 0000000000000785

This information is current as of May 27, 2020

[^1]

 Services	including high resolution figures, can be found at: http://nn.neurology.org/content/7/5/e785.full.html
References	This article cites 5 articles, 0 of which you can access for free at: http://nn.neurology.org/content/7/5/e785.full.html\#\#ref-list-1
Citations	This article has been cited by 9 HighWire-hosted articles: http://nn.neurology.org/content/7/5/e785.full.html\#\#otherarticles
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s): COVID-19 http://nn.neurology.org//cgi/collection/covid_19 Guillain-Barre syndrome http://nn.neurology.org//cgi/collection/guillainbarre_syndrome
Errata	An erratum has been published regarding this article. Please see next page or: /content/7/5/e850.full.pdf
Permissions \& Licensing	Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://nn.neurology.org/misc/about.xhtml\#permissions
Reprints	Information about ordering reprints can be found online: http://nn.neurology.org/misc/addir.xhtml\#reprintsus

Neurol Neuroimmunol Neuroinflamm is an official journal of the American Academy of Neurology. Published since April 2014, it is an open-access, online-only, continuous publication journal. Copyright Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.. All rights reserved. Online ISSN: 2332-7812.

CORRECTION

Guillain-Barré syndrome related to SARS-CoV-2 infection

Neurol Neuroimmunol Neuroinflamm 2020;7:e850. doi:10.1212/NXI.0000000000000850
In the Article "Guillain-Barré syndrome related to SARS-CoV-2 infection" by K. Bigaut et al., ${ }^{1}$ there are several errors in table 1 . The age noted for the patient described in the first case should be 43; additionally, the protein level in CSF should be listed as $0.94 \mathrm{~g} / \mathrm{L}$ for this patient. Lastly, for the patient described in the second case, the protein level in CSF should be listed as $1.06 \mathrm{~g} / \mathrm{L}$. The authors regret the errors.

Reference

1. Bigaut K, Mallaret M, Baloglu S, et al. Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm 2020;7:e785. doi:10.1212/NXI. 0000000000000785 .

[^0]: *These authors contributed equally to the manuscript.
 From the Service de Neurologie (K.B., P.V., L.K., J.-B.C., J.S.), Hôpitaux Universitaires de Strasbourg; Service de Neurologie (M.M.), Centre Hospitalo-Universitaire de Grenoble Alpes, La Tronche; Service de Neuroradiologie (S.B.), Hôpitaux Universitaires de Strasbourg; Institut de Biologie Structurale (IBS) (B.N., P.M.), Université de Grenoble Alpes, CEA, CNRS; Laboratoire de virologie (B.N., P.M.), Centre Hospitalo-Universitaire de Grenoble Alpes, La Tronche; Service d'Accueil des Urgences (F.B.), Hôpitaux Universitaires de Strasbourg; and Service de Réanimation Polyvalente Chirurgicale (A.G.), Centre Hospitalo-Universitaire de Grenoble Alpes, La Tronche, France.

 The Article Processing Charge was funded by the authors.
 Go to Neurology.org/NN for full disclosures. Funding information is provided at the end of the article.
 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

[^1]: Neurol Neuroimmunol Neuroinflamm is an official journal of the American Academy of Neurology. Published since April 2014, it is an open-access, online-only, continuous publication journal. Copyright Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.. All rights reserved. Online ISSN: 2332-7812.

