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 Abstract: Flavaglines, a family of compounds coming from plants used in Traditional Chinese 

Medicine, exhibit a broad range of biological effects including anticancer, antiviral, cardioprotectant 

and anti-inflammatory activities. They exert  their action by targeting the scaffold proteins called 

prohitins-1 and-2, and the mRNA helicases eIF4A and DDX3. Flavaglines are densely functionalized 

cyclopenta[b]benzofurans that have attracted the attention of some of the most eminent organic 

chemists. This review provides an overview of the biosynthesis, total synthesis and pharmacological 

activities of flavaglines, which recently culminated with the entrance of a synthetic derivative, 

Zotatifin, into clinical trials against advanced solid tumors refractory or intolerant to standard 

treatments. 
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1. INTRODUCTION 

 The plant genus Aglaia found in the tropical and sub-
tropical rainforest of southern China, the Indo-Malayan 
region, some Pacific Islands and Northern Australia is 
characterized by benzo[b]oxepines, cyclopenta[b] 
benzofurans (also called flavaglines) and cyclopenta[bc] 
benzopyrans [1]. These trees have a long history in 
traditional medicine. In China, the branches and leaves of 
Aglaia odorata are often decocted or made into externally 
applied ointment to treat pain in rheumatic joints, injuries 
from falls, superficial infections and toxic swellings. Its 
flowers are recommended against distress of chest and 
diaphragm, common cold and cough [2]. The bark decoction 
of Aglaia elliptica, is used to treat tumors, whereas its 
flowers are applied to wounds [3]. 

 

*Address correspondence to this author at the Sino-French Joint Lab of 
Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of 
Science and Technology, Tianjin 300457, China. E-mail: 
desaubry@unistra.fr 

 

In India, Aglaia roxburghiana is traditionally used in 
Ayurvedic medicine against inflammation, leprosy, throat 
infections, bilious and febrile complaint, and also to treat 
snake and scorpion bites [4, 5]. Aglaia elaeagnoidea and 
Aglaia Lawii are used to treat diarrhea, skin diseases, 
bacterial infection, headaches, liver diseases and tumours 
[6]. 

In Thailand, Aglaia odorata is used as a tonic, febrifuge and 
a remedy for menorrhagia during the menopause [7]. 

Rocaglamide (1, Figures 1 and 2) was isolated in 1982 from 
a plant used in Traditional Chinese Medicine (TCM), Aglaia 
elliptifolia by Taiwanese scientists, King and collaborators 
[8]. These authors identified the structure of rocaglamide and 
demonstrated its anticancer activity in a murine model of 
leukemia. Since then, more than 100 flavaglines have been 
isolated from Aglaia species, and recently from trees of the 
gender Dysoxylum [1, 9, 10-12]. 
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Figure 2. Representative examples of natural (1-5) and synthetic 

(6-10) flavaglines. 

 

In the 1980’s, this compound and some of its natural analogs 
were found to delay tumor growth in mice at the National 
Cancer Institute. But, as they did not eradicate these tumors, 
this investigation was interrupted.  

In 2004, Marian and collaborators dubbed “flavaglines” this 
family of flavonol–cinnamate‐derived cyclopenta[b] 
benzofurans as they stem for the metabolism of flavonoids in 
plants of the genus Aglaia. Importantly, this team discovered 
that flavaglines induce the death of cancer cells without 
affecting normal cells [13].  

Thereafter, flavaglines were found to display anti-
inflammatory, neuro- and cardioprotectant activities, 
suggesting that they not only display anticancer properties 
but also protect the organism against the adverse effect of 
chemotherapies.  

The discovery in 2008 and 2012 that these drugs target the 
initiation factor of protein synthesis eIF4A [14-17] and 
prohibitins (PHBs) [18] greatly stimulated this field of 
research, leading to the advancement in 2019 of a synthetic 
 

 

 

 

 

 

 

 

 

 

 

 

 

flavagline, zotatifin (also called eFT226) into of phase 1/2 
clinical trial against advanced solid tumors refractory or 
intolerant to standard treatments [19]. Next year flavaglines 
were found to also target the mRNA helicase DDX3 [20]. 

 

2. BIOSYNTHESIS 

 The coexistence of cinnamic amides 12, aglaforbesins 15, 
aglains 16 and flavaglines in the plants of the genus Aglaia, 
led Proksch and coll. to propose the biosynthetic pathway 
presented in Scheme 1 [21]. A [3 + 2] condensation between 
a hydroxyflavone 11 and a cinnamic amide 12 generates 
benzo[b]oxepines 13, which can be reduced to diols 16 or 
undergo acyloin rearrangement to afford flavaglines 17. The 
presence of flavaglines in these plants probably stems from 
their potent insecticide activity [21-24]. 

 

 

 

 

 

 

Scheme 1. Biosynthesis of flavaglines proposed by Proksch and 

coll. [21]. 

 

3. TOTAL SYNTHESES 

The densely functionalized tricyclic core of flavaglines 

represents a considerable challenge that was first taken up by 

Barry Trost [25]. Since then, other approaches have been 

described and recently reviewed [26]. However, only two 

strategies have been extensively used in medicinal chemistry 

Figure 1. Major milestones achieved in the development of flavaglines as clinical candidates. 
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Scheme 2. Dobler’s racemic synthesis of flavaglines [27]. 

 

programs. The first of these particularly practical approaches 

was originally developed by Richard Taylor and improved 

by Markus Dobler (Scheme 2) [27-29].  It is based on a 

Michael reaction between a benzofuranone 18 and 

cinnamaldehyde, followed by the formation of a cyanohydrin 

21 that can be deprotonated to react with the ketone and 

provide the flavagline backbone. 
 
The second approach, inspired by the biosynthesis of 

flavaglines in plants, was developed by John Porco (Scheme 

3) [30-33]. UV irradiation of a 3- hydroxyflavone 11 in the 

presence of a cinnamic ester or amide generates a 

photoexcited triplet biradical 24 capable of performing a [3 + 

2] cycloaddition, to afford the aglain backbone (25). In the 

presence of a base, this adduct undergoes an α-acyloin 

rearrangement to generate the flavagline 26. 

 

Scheme 3. Porco’s biomimetic synthesis of flavaglines [31]. 
 

 
Ragot and coll. at Bayer developed also a short synthesis of 
bis-demehoxyrocaglaol 31 that uses the intramolecular ring 
closure of epoxide 30 as a key step (Scheme 4) [34]. 

Unfortunately, this compound is not pharmacologically 
active, and the synthesis of rocaglaol (2) from 
cyclopentanone 29 was not reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 4. Bayer synthesis of bis-demethoxyrocaglaol 31, a 

pharmacologically inactive analogue of rocaglaol (2) [34]. 

 

As part of our medicinal program to develop flavaglines with 
improved pharmacological properties, we considered using 
this strategy to prepare new derivatives. For this purpose, we 
developed two efficient syntheses of the cyclopentenone 37 
substituted by the different aryl moieties necessary for the 
pharmacological activity (Scheme 5). The first approach lied 
on a gold(I)-catalyzed cyclopentanone formation that was 
originally described with tertiary silyl ethers [35]. This 
synthesis began with a Perkin condensation of acid 32 and 
benzaldehyde followed by the conversion to an acyl chloride 
and a Sonogashira coupling that afforded ketone 33 as a sole 
E isomer [36]. Condensation with lithiated 
trimethoxybenzene, molybdenum (VI)-catalyzed 
transposition and etherification of allylic alcohol 34 
conveniently furnished the allylic ether 35. Gratifyingly, 
gold(I)-catalyzed annulation of alkyne 36 afforded the 
cyclopentenone 37 in 63% yield.  

During the development of this synthesis, we serendipitously 

found that Re2O7 efficiently catalyzes the formation of 

cyclopentenone 37 directly from styryl-propargyl alcohol 34 

[36]. This type of reaction has not been described before. It 

represents an interesting alternative to the Rautenstrauch 

rearrangement. Selective monodemethylation using BBr3 

efficiently afforded phenol 38 in a 75% yield (Scheme 5). 

Unfortunately, all our attempts to construct the flavagline 

scaffold from this compound, including variation around the 

strategy developed by Ragot and coll. were unsuccessful. 

This explains also why these authors didn’t use this method 

to synthesize compounds substituted with the methoxys 

groups necessary for a pharmacological activity. 
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Scheme 5. Gold and rhenium-catalyzed formation of 

cyclopentanone 38 and failed attempt to prepare rocaglaol (2) [36]. 

 

These two methoxys were also found to modulate the 
chemical reactivity of flavaglines. Thus, we found that 
acylation of amine 39 with dimethylcarbamoyl chloride at 
reflux in dichloromethane afforded a mixture of carbamates 
45 and 46 in a 83/17 ratio (Scheme 6) [37]. This unusual 
inversion of configuration of an aminoalcohol was not 
observed with flavagline 47. The mechanism of this reaction 
probably involves the benzylic carbocation 40, which may 
either afford the styrylurea 43 or undergo a ring closure to 
form the oxazolidinone dimethyliminium salt 41. The latter 
may also undergo a rearrangement into 43. Upon protonation 
and hydration 43 may generate the hydroxyureas 45 and 46 
via the carbocations 42 and 44, with a strong preference for 
the thermodynamically more stable isomer 45.  

This possibility to generate a stabilized carbocation was 
exploited to introduce an azide in position 1a from the cyclic 
sulfite 50 (Scheme 7) [38]. Reduction and acylation thereof 
provided the formamide 52 and the sulfonamide 53, which, 
unfortunately, were found to be pharmacologically inactive. 

 

 

Scheme 6. Carbamoylation of flavaglines 39 and 47 [38] . 

 

 

 

 

 

 

 

 

 

Scheme 7. Synthesis of 1-azaisosteres 52 and 53 [38]. 

 

4. MECHANISM OF ACTION AND 
PHARMACOLOGICAL ACTIVITIES 

Flavaglines mediate their biological activities by inhibiting 

the mRNA helicases eIF4A and DDX3 and also by 

modulating the activity of the scaffold proteins prohibitins-1 

and [2 (PHB1/2) (Figure 3). eIF4A is a helicase that unwinds 

strongly structured mRNA. Only a small number of mRNAs, 

which mainly code for proteins involved in cancer, need this 

helicase for their translation. Flavaglines stabilize eIF4A 

complexed to mRNAs, which prevents the liberation and 

recycling of eIF4A, leading to an inhibition of its activity 

[39]. Importantly, this inhibition seems to affect every cancer 

cell type, including persister cells that usually tolerate 

anticancer drugs and are at the origin of acquired resistance 
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and cancer relapse. The inhibition of eIF4A also relieves the 

resistance to BRAF and MEK inhibitors in a murine model 

of metastatic melanoma, prevents the immune escape of 

tumor cells by blocking inhibitory checkpoints, abrogate 

taxane resistance in prostate cancer and synergizes with 

MEK inhibitors to kill NRAS-mutant cancer cell lines. 

 

Recently, using the O-nitrobenzoxadiazole-conjugated 

derivative of rocaglamide 54, Iwasaki and coll. found that 

flavaglines also target the helicase DDX3 [20]. Indeed this 

probe was found to perform a proximity-specific 

fluorescence labeling of both eIF4A and DDX3 (Figure 4). 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Proximity-specific fluorescence labeling of the mRNA 

helicases eIF4A and DDX3 [20]. 

Like eIF4A, DDX3 belongs to the DEAD-box helicase 
family, which is quite conservative, explaining why 
flavaglines inhibit both of these proteins that are attractive 
targets against cancers. 

In addition to these helicases, flavaglines also target 
prohibitins-1 and -2 (PHB1/2). These scaffold proteins exists 
as two isoforms in the animal kingdom where they regulate 
the activity of a myriad of signaling proteins [40-43].  

PHBs are characterized by a stomatin/prohibitin/flotillin/ 
HflK/HflC (SPFH) domain that is present in an 
evolutionarily conserved family of proteins in archaea, 
bacteria and eukaryotes [44]. Thus, through their actions on 
PHBs, flavaglines inhibit the activation of KRAS and C-
RAF, to block the C-RAF/MEK/ERK pathway critical to the 
survival of many cancer cell types [45, 46]. In bladder 
cancer, flavaglines inhibit PHB1 phosphorylation by Akt, 
leading to removal of PHB1 in mitochondria and also 
upregulate GADD45α to arrest cell cycle progression at the 
G2/M phase [47]. They also promote the expression of Axin 
1 to inhibit Wnt/β-catenin signaling and combat intestinal 
tumorigenesis [48]. Moreover, flavaglines block mitophagy 
and energy productions by inhibiting the effects of PHB2 on 
the mitochondrial inner protease PARL and LC3-II and by 
disrupting the complex PHB/SH2D4/STAT3 in 
mitochondria [49]. Indeed, they prevent the interleukine-6-
induced phosphorylation of STAT3 leading to a reduction 
STAT3 transcriptional activity and HIF1α stabilization in 
hepatocellular carcinoma. 

Flavaglines can also induce apoptosis of cancer cells by 
activating AIF, and caspase-8 through yet uncharacterized 
mechanisms. 

In addition to their antitumor effects, flavaglines protect the 

heart of mice against the adverse effects of doxorubicin, a 

widely used anticancer medicine that induces a severe 

cardiotoxicity in patients. This cardioprotective effect is also 

mediated by prohibitins: flavaglines induce a 

cardioprotection by inducing a translocation of PHB1 and 

STAT3 to mitochondria, a phosphorylation of HSP27 and an 

overexpression of PHB1 in cardiomyocytes [50, 51] 

Altogether, these data suggest that flavaglines could improve 

the efficacy of chemotherapies and alleviate in the same time 

their adverse effects. 

 

In line with the use of Aglaia extracts in traditional Chinese 

medicine to treat inflammatory diseases, flavaglines protect 

mice in a model of Crohn’s disease in which inflammation is 

driven by epithelial ulceration of the colon [52]. Indeed, FL3 

(6) decreased the inflammation of the colon and in the same 

time promoted the survival of the intestinal epithelial cells 

against the inflammatory stress.  

 
Through their effects on eIF4A and/or PHBs, flavaglines 
have been shown to display potent antiviral activities against 
several types of viruses, including Chikungunya virus and 
coronaviruses [53-58].  

 

5. DEVELOPMENT OF ZOTATIFIN (EFT226) 

Founded in 2012 in California, eFFECTOR Therapeutics is a 

pharmaceutical company that developed the first flavagline 

to enter clinical trials [19]. When this project started, many 

patents had been filed by academic laboratories and several 

pharmaceutical companies (Bayer and its spin-off, IMD 

Natural Solutions (Germany), Infinity Pharmaceuticals 

(USA) and Pierre Fabre (France)) [59-62]. To generate 

some intellectual property, the chemists at eFFECTOR came 

up with the idea of replacing one of the carbons in the 

flavagline backbone with a nitrogen. In the course of their 

investigations, they noticed that compounds with a 40-degree 

aryl−aryl torsion as a preferred low-energy conformation 

tend to display higher potency (Figure 5).  

 
 

Figure 5. Conformational analysis. At the lowest energy 

conformation, ϴ = 40° is optimal for the inhibition of eIF4A [19]. 

 

This observation has been used prospectively to select the 

compounds to synthesize. The isostere 56 with a nitrogen in 

position 8 was found to be 25-fold less cytotoxic than 

rocaglamide in MDA-MB-231 breast cancer cells (Figure 6). 

In accordance with a previous report by another biotech 

company, Infinity Pharmaceuticals [61], the replacement of 

the methoxy in position 4’ by a nitrile (57) enhanced the 

activity. Shifting the nitrogen and the methoxy (57→58) 

improved further the cytotoxicity, but at the expense of 

CACO permeability and solubility. These two problems 

could be overcome by reducing the tertiary amide to a 

dimethylamine 59. By shifting the nitrogen to position 7 and 

reinstalling the methoxy that had been removed, a compound 
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as cytotoxic as rocaglamide with improved solubility and 

permeability was identified. This compound, eFT226 (10), 

has successfully passed US regulatory preclinical 

requirements and entered phase 1/2 clinical trial against 

advanced solid tumors refractory or intolerant to standard 

treatments, under the name zotatifin [19]. To develop this 

clinical candidate, more than 20 000 flavagline derivatives 

were synthesized.  
 

Thanks to the basic dimethylamino side chain, eFT226 is 

much more soluble than rocaglamide (>20 mg/mL), which 

greatly facilitates intravenous administration. eFT226 (1 

mg/kg, intravenous administration) inhibited tumour growth 

in a MDA-MB-231 triple negative breast cancer orthotopic 

xenograft model treated once weekly for 2 weeks. 

 

 
Figure 6. Summary of the development of eFT226 (Zotatifin) from 

rocaglamide by eFFECTOR scientists [19]. 
 

Biophysical studies demonstrated that eFT226 enhances the 

binding of polypurine RNA motifs to eIF4A independently 

of ATP similarly to eIF4A1. The mutation of phenylalanine 

163 to leucine, which inhibits the binding of eIF4A to 

flavaglines, reduced the antiproliferative effects of eFT226 

by a factor of 60, demonstrating that eIF4A is the main target 

to mediate its anticancer properties. Up to now, the effect of 

this compound on PHB signaling has not been reported. 

Zotatifin is not expected to be efficient against every type of 

tumors. eFFECTOR’s scientist found that this drug is 

particularly effective in cancers where the kinase mTOR is 

driving mRNA translation, such as diffuse large B-cell 

lymphoma (DLBCL), and Burkitt lymphoma. In mouse 

models of these two types of lymphoma, eFT226 displayed 

impressive anticancer activities at low doses (1 mg/kg/week 

i.v.) [63].  

 

The synthesis of zotatifin was achieved using Porco’s 

biomimetic synthesis to construct the flavagline scaffold 

prepared by lithiation of pyridine derivative 61 using 

classical reactions.  

 

6. Conclusion and perspective 

 

Since their discovery in 1982; flavaglines have attracted the 

attention of many organic chemists due to the challenge 

posed by the complexity of their structure. So far only two  

 
 
Scheme 8. Synthesis of zotatifin, ((-)-eFT226) [19]. 
 
 

methods are used in medicinal chemistry: that of Taylor and 

Dobbler, and that of Porco. 
 

Regarding the pharmacological studies of these compounds, 
these are dominated by their anticancer effects, with as a 
culmination the entry of Zotatifin in clinical trials against 
advanced solid tumors refractory or intolerant to standard 
treatments. In this area, the major obstacle is to identify how 
to combine flavaglines with other drugs to optimize their 
anticancer effects in patients. Although in vivo 
cytoprotective, antiviral, anti-inflammatory and 
immunosuppressive effects have been demonstrated, the 
exploration of these effects should increase in the coming 
years, even if it remains marginal for the moment compared 
to studies in oncology. 

In addition to their potential, flavaglines have been shown to 
be useful as chemical tools to explore the function of 
prohibitins and eIF4A. To our knowledge, the involvement 
of these targets in the mechanism of action of traditional 
medicine preparations incorporating Aglaia extract has not 
yet been reported. 
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