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Abstract: The combination of ever-increasing microscopy resolution with cytogenetical tools allows 
for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative 
and quantitative methodologies to detect and interpret chromatin sub-nuclear organization 
dynamics is crucial to decipher the underlying molecular processes. Having access to properly 
automated tools for accurate and fast recognition of complex nuclear structures remains an 
important issue. Cognitive biases associated with human-based curation or decisions for object 
segmentation tend to introduce variability and noise into image analysis. Here, we report the 
development of two complementary segmentation methods, one semi-automated (iCRAQ) and one 
based on deep learning (Nucl.Eye.D), and their evaluation using a collection of A. thaliana nuclei 
with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, 
robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these 
developments, we highlight advantages of semi-automated and deep learning-based analyses 
applied to plant cytogenetics. 
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1. Introduction 
In the last decade, visualization of cellular structures has benefited major technical 

advances in cytochemistry and microscopy, allowing for 2D and 3D analyses at an 
unprecedented resolution of cellular and subcellular structures, such as organelles [1,2], 
cytoskeleton [3], extra cellular vesicles [4], stress granules [5] and chromatin subnuclear 
organization [6–10]. Increasing interest in chromatin-based regulation of DNA-related 
processes, such as transcription, replication and repair, has led to the development of a 
large repertoire of tools enabling qualitative and quantitative image analyses of nuclear 
organization. Cytogenetics studies notably allow for determining how chromosomes are 
structured in the cell nucleus. For example, the distribution of large chromatin domains 
and their possible aggregation as conspicuous structures called chromocenters, visible in 
species such as Arabidopsis thaliana [11] and Mus musculus [12], can be revealed by 4′,6-
Diamidino-2-phenylindol (DAPI). Improvements in cytogenetic techniques and 
microscopic image acquisition generate large high-quality image sets that require 
automation or semi-automation for reliable and accurate interpretation. Furthermore, 
open-source software, web-assisted applications and plugins are increasingly developed 
and improved to assist or automatize the detection of nuclear substructures through 
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intensity thresholding, edge detection and mathematical image transformation [13–16], 
including several automated tools developed for plant chromatin architecture (NucleusJ 
[6], NucleusJ2.0 [17], and NodeJ [18]. However, segmentation of high complexity 
structures exhibiting irregular shapes or intensities still remain challenging for samples 
from peculiar tissues. In addition, manual segmentation can be seen as the golden 
standard, but any decisions made by the user can be associated with cognitive biases and 
carry the risk of distorting the conclusion of an otherwise well-designed experiment. 
Accuracy of user performance likely differs from one laboratory or experimentalist to 
another, especially when analyzing large datasets. Additionally, cognition of each user 
may fluctuate depending on instrumentation, physical and cognitive biases [19]. 
Consequently, reducing the need for human decision at each step of the image analysis 
process is a critical challenge for experimental reproducibility and accuracy [20]. 

Recently, deep learning (DL) tools have opened new perspectives for image analysis. 
DL is a category of machine learning, using training datasets (i.e., images) that will feed 
an artificial neural network, allowing for a task of interest to be automatedly performed. 
DL techniques are typically based on manually segmented datasets (training and 
validation datasets) that are also prone to follow human biases. DL is useful to reduce 
inter-operator variability and to automate the resolution of certain imaging problems. 

When applied to image analysis, DL can outperform classical methods in image 
classification [21] and denoising [22] and complex segmentation [23].  

Unfortunately, despite their added value, DL-based image analysis approaches 
remain hardly accessible to many potential users lacking programming expertise. Only 
recently, the development of user-friendly open-source tools has democratized the use of 
DL and was recognized as an essential objective by the scientific community [24–26].  

In plant biology, increasing efforts are devoted to develop DL-based tools for species 
identification [21], phenotypic analysis of aerial parts [27], roots [28], cells [29] and 
analysis of organellar morphology [30]. As the field of plant epigenetics and 3D genomics 
develops, interest in automated detection of nuclei and of prominent subnuclear 
structures such as chromocenters in microscopy images is rapidly growing [7,31]. In 
interphase nuclei of most Arabidopsis organs, chromocenters are formed by the 
coalescence between centromeres and other “heterochromatic” repeat-rich chromosomal 
domains such as transposable elements (TEs) and pericentromeric and sub-telomeric 
nucleolar organizing regions (NORs) into highly condensed 8-to-10 conspicuous foci 
[10,32]. Organization and morphologies of nuclei and chromocenters undergo major 
changes during several biological transitions such as cell differentiation [33], cell division 
[34], developmental switches [35,36] and upon exposure to environmental stresses [37,38] 
with potentially major consequences on nucleus activities. Automated characterization of 
nucleus organization also constitutes a relevant and timely asset to enable short to large-
scale nuclear phenotype screening of mutations and conditions affecting developmental 
and environmental cellular responses.  

Here, we present two complementary user-friendly tools to segment A. thaliana 
nuclei and chromocenters acquired using confocal imaging. First, we developed a semi-
automated ImageJ macro [39] that we called Interactive Chromocenter Recognition and 
Quantification (iCRAQ; [40]) for the purpose of facilitating nucleus and chromocenter 
segmentation that reduces inter-user variability while enabling visual validation of each 
segmented object by the user. iCRAQ relies on simple heuristics to guide the user during 
nucleus and chromocenter segmentation and accepts user input for manual curation of 
image segmentation. These validation and curation steps are particularly necessary when 
contaminants are present (debris, vessels or plastids), which can otherwise lead to 
misannotation as nuclei by automated tools. Second, we present Nucl.Eye.D [41], a DL-
empowered automated nucleus and chromocenter segmentation tool. Nucl.Eye.D has 
been written by biologists for biologists and is conceptualized in a way that it can be used 
and adapted with low programming knowledge. Combining these two tools address 
application problems in DL-based modeling implementation such as the production of 
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training repertoires of annotated images (obtained here using iCRAQ) and the capacity to 
accurately analyze highly variable image objects.  

We first compared inter-user variability between manual or iCRAQ semi-automated 
segmentation methods. We then tested the spectrum of nuclear phenotypes that can 
reliably be analyzed with both tools, using images of Arabidopsis cotyledon nuclei in 
conditions and genotypes that trigger massive variations of nucleus size and/or 
chromocenter formation such as dark-grown seedlings [35] and decreased DNA methylation 
1 (ddm1) mutant plants [42]. Both sample types are characterized by extensive 
heterochromatin relaxation of heterochromatin, which is then scattered in poorly defined 
foci often hardly amenable to automated segmentation [35,43]. The image set of DAPI-
stained nuclei developed for this study therefore brings the advantage of containing a 
well-described duality of nuclear phenotypes that allows for testing both the sensitivity 
and accuracy of segmentation methods. Taken together, we documented the issues 
associated with human decision making and developed two segmentation tools, iCRAQ 
and the DL-based tool Nucl.Eye.D, which are also readily usable through Google Colab 
environment [41].  

2. Results and Discussion 
2.1. iCRAQ: A Plug-In Assisted Tool for Segmentation of Nucleus and Chromocenters 

In order to minimize inter-user variability and human decision making in the process 
of nucleus and chromocenter segmentation, we developed an ImageJ macro: iCRAQ [40]. 
iCRAQ provides semi-automatic segmentation assistance, detecting nuclei and 
chromocenters from z-stack images acquired by confocal microscope (see materials and 
methods for details). Depending on the image quality, nucleus segmentation is either 
performed automatically using a minimum cross entropy thresholding method [44], by 
manual thresholding, or by drawing the nucleus outline with the ImageJ freehand 
selection tool. Chromocenter segmentation is performed via the H-watershed ImageJ 
plugin with manual intervention to attain the optimal segmentation (Figure 1; [40]). For 
both nuclei and chromocenters, wrongly detected objects can be individually removed or 
manually added with the freehand selection tool. 

To test iCRAQ performance, three users proficient in image analysis of Arabidopsis 
nuclei independently segmentated nuclei and chromocenters in a contrasted set of more 
than 50 cotyledon nuclei from dark- and light-grown seedlings (hereafter referred to as 
the Dark/Light set) [35]. For comparison, manual segmentation of the Dark/Light set using 
ImageJ [39] was also independently performed by the three users. Both methods produce 
binary masks of nuclei and chromocenters that are either used either directly for inter-
user comparisons or to quantify several nuclear features including the number of visible 
chromocenters (CC) per nucleus, the nuclear area, the relative CC area (area of each CC 
per nucleus), the heterochromatin fraction (HF, i.e., sum of all chromocenters’ area relative 
to the whole nucleus area), the relative heterochromatin intensity (RHI, i.e., chromocenter-
to-nucleus mean intensity ratio) and the relative heterochromatin fraction (RHF, i.e., the 
proportion of stained DNA present in chromocenters; see Materials and Methods for more 
detail).  
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Figure 1. iCRAQ workflow. (a) iCRAQ first step is to detect nuclei in a 2D projection of z-stack im-
ages based on an intensity thresholding (resolving touching nuclei through a watershed step). Two 
examples of segmented nuclei are shown as regions of interest (ROIs) outlined in red. (b) A region 
surrounding each nucleus is defined and cropped from the original stack. For each single-nucleus 
stack, the first eigenvalue of the structure tensor is calculated at each pixel in the image stack and 
projected in z. This projected image is segmented interactively via the H-watershed plugin. (c) The 
final result is an image mask with three levels of gray: black for the image background, gray for the 
nuclear interior outside of chromocenters, and white for chromocenters. See Materials and Methods 
for details. 

As shown with representative nuclei from the Dark/Light set (Figure 2A), inter-user 
differences in nucleus and chromocenter manual segmentation can be observed when per-
forming manual segmentation. Whereas segmentations only slightly differ at the edge re-
gions of chromocenters of the light condition wherein these sub-nuclear domains form 
conspicuous foci, users do not always agree on chromocenter segmentation for the dark 
condition characterized by more complex heterochromatic structures and less contrasted 
patterns (Figure 2B). However, trends obtained by all three users were in agreement with 
previous studies reporting a significantly lower HF, RHI and RHF in dark than in light 
conditions (Figure 3) [35]. Noteworthy, depending on the user, the mean RHF for Light 
and Dark nuclei ranges between 15–18% and 8–11%, respectively. With regard to nucleus 
area and relative CC area, both features display variable changes under light and dark 
conditions depending on the user (Figure S1). This sheds light on inter-user variability 
being a significant issue potentially leading to inappropriate conclusions. In addition, for 
all users, RHF also differed between manual and iCRAQ segmentation (Figure 3). In ad-
dition, these comparative analyses put emphasis on the fact that measures of heterochro-
matin organization should always be expressed as relative to an internal control (i.e., wild-
type nuclei originating from control growth condition) as absolute values for the different 
parameters vary between users while the trends are always conserved (Figure 3). 
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Figure 2. Segmentation of nuclei and chromocenters by three different users. (a) Representative 
DAPI stained nuclei from the Light/Dark set. (b) ROIs resulting from manual or iCRAQ segmenta-
tion methods. Merged images show the overlap between segmentation masks, comparing differ-
ences between users and methods. Scale bar = 5 μm. 

 
Figure 3. Comparison of heterochromatin parameters quantified by different users and segmenta-
tion methods. Violin plots illustrating the distribution of heterochromatin fraction (HF), relative 
heterochromatin intensity (RHI) and relative heterochromatin fraction (RHF) in nuclei from the 
Light/Dark set. Each dot represents the measure for one nucleus. The big dot shows the median 
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value. Displayed p values were obtained by the Mann–Whitney–Wilcoxon test (n > 50 per condi-
tion). 

In order to test and compare the iCRAQ segmentation tool for inter-user variability, 
we calculated the Dice coefficient to measure similarities between binary masks obtained 
using manual and iCRAQ segmentation by pairs of users (Figure S2). For each pairwise 
comparison, the nucleus Dice coefficient significantly increased with iCRAQ compared to 
manual segmentation (Figure 4). In parallel, Dice coefficient for chromocenter segmenta-
tion showed an increased inter-user variability as compared to nucleus segmentation, also 
improved by iCRAQ for two of the three users (Figure 4). These observations highlight 
that cognitive biases [21] occurring during manual segmentation induce high variability, 
while assistance, using iCRAQ, can improve the reproducibility of object recognition. 
Taken together, these results show that iCRAQ tends to reduce the inter-user variability, 
a benefit that remains dependent on each user tendency for manual readjustment of the 
segmentation. Hence, while iCRAQ necessitates significant manual intervention to define 
H-watershed thresholds and include or remove individual objects, it provides a robust 
and accurate semi-automated tool for nucleus and chromocenter quantification enabling 
both individual analyses and the production of training datasets.  

Reproducibility also suffers from the objectiveness of the discriminative features of 
the object of interest. Accordingly, while all users agreed on the definition of a chromo-
center as distinct bright foci inside the nucleus (Figure 2A), they may differ on their defi-
nition of “distinct” and “bright”, thus leading to discordant segmentation. Furthermore, 
iCRAQ-assisted segmentation guides segmentation toward objects that meet criteria 
measurable by the software but which only approximate the objects’ distinctive features 
visually recognized by the users.  

 
Figure 4. Dice coefficient between segmentation masks from three different users using manual or 
iCRAQ segmentation. All objects from segmentation masks are compared between users for both 
segmentation methods. A Dice coefficient of 1 signifies that the object was identically segmented by 
User_A and User_B. Statistical comparison was performed in between the segmentation methods 
according to the Mann–Whitney–Wilcoxon test. Each dot represents the measure for one object. The 
big dot shows the median value. n = 50 for nuclei and n > 400 for chromocenters. 
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2.2. Nucl.Eye.D: A Fully Automated Deep Learning Pipeline for Segmentation of Nucleus and 
Subnuclear Structures 

To enable fast and high-throughput image analysis and to overcome low segmenta-
tion reproducibility due to intra- and inter-user variability, we set up a fully automated 
DL-based tool for nucleus and chromocenter segmentation: Nucl.Eye.D ([41]; Figure 5). 
Importantly, this tool was developed to reproduce realistic average lab conditions, such 
as the availability of limited training image datasets displaying inter-user diversity in 
sample preparation and image acquisition. The script includes all necessary codes and 
explanations for any user with basic programming skills to easily train his/her own model 
with his/her own images in case the provided pre-trained model is not fitted for the in-
tended use [41]. In this example, training was performed using two sets of 300 and 150 
images (with an average of 5 nuclei/image) for nucleus and chromocenter segmentation, 
respectively. Considering that segmentation by a DL-based tool can only be efficient if the 
provided training annotation set reflects the wide range of structures present in the sets 
to be analyzed, our training sets compiled different sample types including mutant plants 
and abiotic treatments [38,43] in order to maximize variability of nucleus and chromocen-
ter morphologies.  
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Figure 5. The Nucl.Eye.D pipeline. Nucl.Eye.D consists of three successive neuronal U-networks. In 
a first step, the nucleus training set is fed into a Region Proposal U-Net Model that aims at making a 
raw trim window of regions in the image containing a single nucleus. In a second step, the predicted 
bounding boxes are used to produce small image fragments, which will in turn feed the Nucleus 
Segmentation U-Net model. This second model precisely predicts the boundaries of each nucleus pre-
viously identified by the Region Proposal U-Net Model. Finally, nuclei from the chromocenter training 
set are successively segmented using the Region Proposal U-Net Model and Nucleus Segmentation U-
Net model, providing small image fragments that will be used to train the Chromocenter Segmentation 
U-Net model. To prevent model overfitting, which can be a consequence of small training datasets, 
the pipeline includes optional data-augmentation steps. The training period takes around 12 h for 
detection of both nuclei and chromocenters using a training set composed of 300 and 150 images, 
respectively. Prediction takes about 2 s per Dark/Light test-set image. 

After settling a training set displaying a wide range of nuclear phenotypes, object 
annotation constituted the second critical step since DL algorithms are far from being de-
prived of human-like biases [45–47]. Consequently, the first step for preventing algorithm 
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bias consists in reducing user-specific biases in the training set segmentation. In order to 
study inter-user differences using Nucl.Eye.D, the set of training images was annotated 
either manually by a single user (One_User) or by ten users (Ten_Users, each user analyz-
ing a tenth of the images), or else by using iCRAQ by the same ten users (Ten_Us-
ers_iCRAQ). Nucl.Eye.D was released as a pipeline composed of three successive U-net 
neuronal networks [48] (Figure 5).  

The release of a binary segmentation mask by Nucl.Eye.D relies on an uncertainty 
heatmap, with intensities ranging from 0 to 1 according to the certainty of the pixel to be 
part of the target object (Figure S2). Thus, in order to obtain a binary mask, a threshold 
needs to be set and is chosen by trial-and-error process, until the segmentation fits the best 
with the users’ expectations. However, to minimize human decision bias, the threshold is 
set to 0.5 by default. In this case, as soon as the model reaches a higher probability for a 
pixel to be defined as part of the object rather than the background, the pixel is kept within 
the segmentation. Training of the three successive models takes around 12 h (about 192 
000 images, after data augmentation).  

Once trained, models can be used to predict nuclear and chromocenter structures on 
any unannotated images. Upon the prediction process, input images are also refined into 
image fragments, with one nucleus per image, and a full-image prediction mask is auto-
matically reconstructed from the different image fragments. This user-friendly output for-
mat allows masks to be overlaid to the original input images for calculating desired pa-
rameters (areas, signal intensities and shapes; Figure 5). In contrast to the training process, 
prediction of large datasets using the trained model can be performed within a few 
minutes (as an example, one image per second).  

2.3. Nucl.Eye.D-Based Analysis of Nucleus and Chromocenters 
We first used a Light/Dark dataset (Figure 5) to evaluate the accuracy of nucleus and 

chromocenter segmentation using Nucl.Eye.D. This Light/Dark set was not part of the 
training set and was newly produced independent using biological replicates, sample 
preparation, and image acquisition protocols to reflect variable laboratory conditions 
wherein one can use a given version of trained Nucl.Eye.D for analyzing its own data. As 
shown in Figure 6A, segmentation performed by Nucl.Eye.D shows a coherent overlay 
among different training sets. Whereas the One_User and Ten_Users models lead to rela-
tively similar results, the Ten_Users_iCRAQ model recognized a few more chromocenters 
in Dark nuclei (Figures 6B and S3).  

 
Figure 6. Comparison of nucleus and chromocenter segmentation between Nucl.Eye.D trained with 
manual or iCRAQ segmented image sets. (a) The same nuclei from the Light/Dark set used in Figure 
2 were segmented by the three different Nucl.Eye.D segmentation approaches. The One_User 
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Nucl.Eye.D was trained with an image set manually segmented by a single user. The Ten_User pipe-
line was trained with the same image set divided in ten image batches, each of them being manually 
segmented by a different user. The Ten_User_iCRAQ model was trained similarly to Ten_User but 
using the iCRAQ tool instead of manual segmentation. The borders of nucleus segmentation masks 
are shown as lines and chromocenter masks are overlayed on the images. To help comparisons, 
segmentation of the same nuclei performed by User_3 who produced the training set for the 
One_User Nucl.Eye.D model is shown. In addition, the merge of manual and iCRAQ segmentation 
by three users is shown. Merged images show the overlap between masks, comparing the One_User, 
Ten_Users and Ten_User_iCRAQ Nucl.Eye.D models. Scale bar = 5 μm. (b) Higher magnification of 
the overlap between masks obtained by One_User, Ten_Users and Ten_User_iCRAQ Nucl.Eye.D 
models. White arrow shows a CC segmented only by the Ten_User_iCRAQ Nucl.Eye.D model. (c) 
Distribution of HF, RHI and RHF of the nuclei from the Light/Dark Set (at least 50 nuclei per condi-
tion). Each black dot represents the measure for one nucleus. The large dot shows the median value. 
The p values were calculated according to the Mann–Whitney–Wilcoxon test. 

When calculating HF, RHI and RHF using the segmentation masks produced by 
Nucl.Eye.D, lower values of these features were expectedly observed in Dark nuclei, inde-
pendently of the training set initially used (Figure 6A). Mean RHF values range from 8% 
to 10% and 4% to 6% in Light and Dark nuclei, respectively (Figure 6A). This indicates 
that chromocenter area or number predominantly influence RHF (Figures 3 and S1). This 
may also reflect a high uncertainty for chromocenter prediction of the Light/Dark set, 
which may be linked to differences in sample preparation or image acquisition between 
the training and analyzed image sets. However, a close overlap with the results obtained 
with the manual segmentation was reached when defining a lower threshold for the chro-
mocenter model (Figure 7).  

 
Figure 7. Segmentation of nuclei and chromocenters using different threshold settings in 
Nucl.Eye.D. (a) Nuclei from the Light/Dark set were segmented by the One_User Nucl.Eye.D pipeline 
that was trained with an image set manually segmented by User3. Manual segmentation of User3 
is shown as comparison. The prediction was performed using three different couple values of 
threshold settings for nucleus/chromocenter: 0.5/0.5, 0.5/0.25 and 0.8/0.2. Borders of the nucleus seg-
mentation masks are shown as lines and chromocenter masks as transparent color overlays. Scale 
bar = 5 μm. (b) RHF of nuclei from the Light/Dark Set (at least 50 nuclei analyzed) for the three 
different couple values of threshold settings used with the One_User Nucl.Eye.D pipeline and for 
the manual segmentation of User 3. Each black dot represents the measure for one nucleus. The 
large dot shows the median value. p values were calculated according to the Mann–Whitney–Wil-
coxon test. 
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generated by User3 who segmented the One_User training set. Accuracy of the segmen-
tation method was evaluated using the Dice coefficient (Figure 8). This analysis shows 
that, for nuclei segmentation, DL-based methods exhibit a high Dice coefficient with the 
segmentation masks of User 3 (Figure 8). Additionally, DL approaches display reduced 
variability as compared to most inter user or inter-method comparisons (Figure 8). The 
One_Users model, in which the training set was built by User3, shows a significantly 
higher Dice coefficient in comparison to the inter-method (User3 Icraq) and inter-user 
(User1 Man., User2 Man.) comparisons (Figure 8). This result can notably be explained by 
the characteristic of the Ten_Users models in which the specific traits of the objects have 
been learned by the detection convergence of ten people, thus reducing the personal bi-
ases of each user.  

For chromocenters, the Dice coefficients only slightly vary between methods and us-
ers (Figure 8). DL-based chromocenter segmentation shows a comparable or slightly 
higher Dice coefficients when compared to inter-user or inter-method comparisons. Im-
portantly, applying the nucleus/chromocenter 0.5/0.25 threshold used in the One_User 
model largely improves the Dice coefficient as compared to the 0.5/0.5 threshold, indicat-
ing the importance of fine-tuning these parameters for accurate segmentation (Figure 8).  

Although DL efficiently reduces inter-user differences, thus providing ground for 
more powerful analysis of subtle changes, assisted segmentation by iCRAQ or any soft-
ware is biased in the set of measurable features. While DL methods also suffer from the 
same drawbacks, the space of distinctive features they based their decision on is much 
larger and allows them to theoretically outperform any assisting software. 
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Figure 8. Dice coefficient calculated in between Nucl.Eye.D-based segmentation masks from differ-
ent training sets. Segmentation masks obtained from different segmentation methods are compared 
with manually drawn segmentation masks from User 3. User 3 performed the segmentation of the 
training set for the One_User model, which serves here as reference. Statistical comparison was per-
formed in between the segmentation methods according to the Mann–Whitney–Wilcoxon test. Each 
dot represents the measure for one object. The big dot shows the median value. n > 50 for nuclei and 
n > 400 for chromocenters. 

2.4. Nucl.Eye.D Analysis of the Ddm1 Dataset  
In order to confirm the ability of Nucl.Eye.D to measure altered or non-canonical het-

erochromatin features, we used mutant Arabidopsis plants for DDM1 These exhibit more 
pronounced alterations of heterochromatin patterns than the dark-grown plants 
[35,43,49]. We used the three different Nucl.Eye.D models to automatically segment a da-
taset of more than 150 wild-type (WT) and 150 ddm1 nuclei, prepared following the same 
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procedure as the one used to produce the training images. As shown in Figure 9A, the 
One_User, Ten_Users and Ten_Users_iCRAQ pipelines produced a coherent segmenta-
tion of low contrasted nuclei and small atypical ddm1 chromocenters (Figure S4).  

 
Figure 9. Segmentation of ddm1 nuclei and chromocenters using Nucl.Eye.D. (a) DAPI-stained leaf 
nuclei from WT and ddm1 plants were segmented by the three different Nucl.Eye.D pipelines: 
One_User, Ten_User and Ten_User_iCRAQ. Merged images show the overlap between masks, com-
paring the different pipelines. Scale bar = 5 μm. (b) Distribution of HF, RHI and RHF in a population 
of at least 150 nuclei per genotype. Each black dot represents the measure for one nucleus. The large 
dot shows the median value. p values were calculated according to a Mann–Whitney–Wilcoxon test. 

The three Nucl.Eye.D pipelines allow for detecting chromocenter morphology and 
accurately reporting the well-described defects of the ddm1 mutant [43,49] (Figure 9B). The 
mean RHF in WT plants ranges between 12.5 and 14% [43,50], whereas ddm1 nuclei exhibit 
an expected mean RHF from 5 to 8% [43] with reduced area of both nucleus and CC (Fig-
ures 7 and 9). Analysis of this image set demonstrates the performance of Nucl.Eye.D for 
fast nuclei and chromocenter segmentation to identify significant differences in nucleus 
morphologies and phenotypes.  

3. Materials and Methods 
3.1. Plant Material and Growth Conditions 

For the training set, wild-type (WT) Col-0 and ddm1-2 [43] plants were grown in vitro 
on solid GM medium (MS salts (Duchefa), 1% sucrose, 0.8% Agar-agar ultrapure (Merck), 
pH 5.8) in a culture chamber under a 16 h light (light intensity ∼150·μmol m−2·s−1; 21 °C) 
and 8 h dark (19 °C) photoperiod.  

For the Dark/Light set, seeds from wild-type (WT) Col-0 arabidopsis plants were sur-
face-sterilized, plated on filter papers lying on MS medium supplemented with 0.9% agar 
and exposed to either a 16-/8-h (23/19 °C) white light/dark photoperiod or constant dark 
conditions (wrapped in 3 layers of aluminum foil). White light is generated by fluorescent 
bulbs (100 μmol·m−2·s−1). Seedlings are harvested under light condition or under safe green 
light for the dark condition [35]. 

3.2. Tissue Fixation and Nuclei Preparation for the Training Set 
Leaves 3 and 4 from 21-day-old wild-type (WT) Col-0 and ddm1-2 plants were 

washed 4 times (4 °C), at least 5 min, in fixative solution (3:1 ethanol/acetic acid; vol/vol). 
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Leaves nuclei were extracted by chopping fixed tissue in LB-01 Buffer (15 mM Tris-HCl 
pH 7.5, 2 mM EDTA, 0.5 mM spermine, 80 mM KCl, 29 mM NaCl, 0.1% Triton X-100) with 
a razor blade. The nuclei containing solution was filtered through 20 μm nylon mesh and 
centrifugated 1 min (1000 g). Supernatant was spread on poly-lysine slides (Thermo Sci-
entific, Waltham, MA, USA) and post fixation was performed using a 1:1 acetone/metha-
nol (vol/vol) solution for 2 min. Slides were washed with Phosphate Buffer Saline x1 and 
incubated for 1 h at room temperature in permeabilization buffer (8% BSA, 0.01% Triton-
X in Phosphate Buffer Saline ×1). Finally, 15 μL of Fluoromount-G (Southern Biotechnol-
ogy CAT NO 0100–01) with 2 μg/mL 4′,6-Diamidino-2-phenylindol (DAPI) were added 
as mounting solution before deposing the coverslip. Image acquisition was performed on 
a Zeiss LSM 780 confocal microscope using an objective Plan-Aprochromat 63×/1.4 Oil 
DIC M27. Then, 405 nm laser excitation wavelength is used for DAPI. Emission is meas-
ured between 410 nm and 585 nm wavelength each image acquisition consisted in a Z-
stack capture. Col0/ddm1 images were acquired using the following settings: pictures were 
0.1 × 0.1 × 0.43 μm/averaging by mean: 4/scan speed: 8. For training set, different gain and 
slice distances were used to diversify the set. All images are available at [41]. 

3.3. Tissue Fixation and Nuclei Preparation of Dark/Light Test Set 
Seedlings were fixed in 4% formaldehyde for 3 h under the light or dark condition, 

and treated with a solution containing 0.5% cellulose Onozuka R10 (Yakult, Tokyo, Japan), 
0.25% macerozyme R10 (Yakult), and 0.1% Triton X-100 for 1 h 30 min. Cotyledons were 
isolated and squashed on a glass slide, flash frozen in liquid nitrogen, and incubated with 
PEMSB (50 mM Pipes pH 7.3, 5 mM EGTA pH 7.1, 5 mM MgSO4, 0.05% saponin, 5% 
(wt/vol) BSA) before being mounted with Vectashield (Vector laboratories) supplemented 
with 2 μg·mL−1 DAPI (4′,6′-diamidino-2-phenylindole). Images were acquired using a 
confocal laser-scanning microscope (SP5, Leica). All confocal pictures used were 0.05 × 
0.05 × 0.35 μm. The objective 63× with a numerical aperture of 1.40 was used, a zoom factor 
of 4.8 and acquired in 16 bit, 1024 × 1024. All images are available at [41].  

3.4. Mask Preparation  
Manual segmentation of nuclei and chromocenters was performed on ImageJ using 

the freehand tool and converted into binary masks. Image names were randomized prior 
to annotation. For training set #1, the segmentation was performed by a single user. For 
the training sets #2 and #3, 10 users each segmented 10% of the total set of images either 
manually (set #2) or using the iCRAQ tool (set #3).  

3.5. iCRAQ Analysis 
iCRAQ is a tool written in ImageJ macro language that relies on the FeatureJ 

(http://imagescience.org/meijering/software/featurej/, accessed on 1 January 2022) and In-
teractive H_Watershed (https://imagej.net/plugins/interactive-watershed, accessed on 1 
January 2022) plugins; here, we used a version adapted from [40] to annotate images. Nu-
clei were detected via global thresholding of the median filtered z-projection (either stand-
ard deviation or maximum intensity) of the stack and the corresponding regions were 
saved as ImageJ regions of interest (ROIs). Incorrectly detected nucleus ROIs were sup-
pressed manually. Likewise, missed nuclei were added manually. The input stack was 
cropped around each nucleus ROI. For chromocenter segmentation, the largest 3D struc-
ture tensor eigenvalue was calculated using the FeatureJ plugin, and its z-projection served 
as an input for the interactive H-watershed plugin. Image regions labeled as chromocen-
ters were also saved as ROIs. Chromocenter ROIs could also be manually added or re-
moved. Finally, binary masks of nucleus and chromocenter ROIs were used to produce 
an annotated image with three gray levels: 0 for the background, 128 for the nucleus and 
255 for the chromocenters. 
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3.6. Nucl.Eye.D 
The Nucl.Eye.D script was written in python using Keras and TensorFlow libraries 

for Neuronal network designing. U-net networks were built according to the original pa-
per from Olaf Ronneberger [48]. Model training was performed using Google Collab allo-
cated a Cuda v 11.2; Tesla P100-16 Go HBM2 GPU and Intel(R) Xeon(R) CPU @ 2.20 GHz 
CPU [40]. Full script, images and trained models are available in [41]. Importantly, train-
ing set was performed using images captured from tissue fixed with either formaldehyde 
or ethanol:acetic acid. 

3.7. Morphometric Parameters Measurements 
Each image acquisition consisted in a Z-stack capture with either a 0.35 or 0.43 μm 

slice distance, and the image was reconstructed using the z max plugin of ImageJ.  
- Relative CC area, also called relative CC area fraction (RAF): area of each CC/nucleus 

area 
- Heterochromatin fraction (HF): sum of all chromocenters’ areas/nucleus area 
- Relative heterochromatin intensity (RHI): mean intensity of CC/mean intensity of 

nucleus 
- Relative heterochromatin fraction (RHF): HF × RHI  

3.8. Data Display and Statistics 
Violin plots and statistics (Mann–Whitney–Wilcoxon test) were performed with 

RStudio, using ggplot2 [51].  

4. Conclusions 
Our work describes user-specific issues in manual nucleus and chromocenter detec-

tion and proposes improved segmentation tools: the semi-automatic ImageJ plug-in 
iCRAQ and the DL-based tool Nucl.Eye.D. The central motivation of this work was to test 
and provide plug-in assisted methods, which can be used to facilitate the production of 
training datasets to build a fully automated DL tool.  

Both tools reduce the time of analysis and inter-user variability. iCRAQ can be easily 
implemented on a local computer (downloadable from [40] with a demonstration guide), 
and Nucl.Eye.D can be used directly online on a dedicated Google Collab environment to 
produce the binary masks [41]. The masks are then treated on ImageJ with a dedicated 
combination of macro [41] to compute the different nuclear and chromocenter morpho-
metric parameters. In recent years, unsupervised learning techniques such as contrastive 
learning improved, especially for segmentation of medical images [52,53]. These have the 
benefit of needing much less (semi-supervised training) or no annotated images (self-su-
pervised/unsupervised training) [53]. Consequently, these methods also reduce the risk 
of inducing a bias through the segmentation method used to build training set. However, 
to which extent these more recently developed methods can outperform the established 
CNN models for the segmentation of nuclei and subnuclear structures remains to be eval-
uated. 

Although Nucl.Eye.D was trained here with a dataset composed of about 300 images, 
it provides accurate segmentation of nuclei and chromocenters, even on images produced 
from different protocols witnessing its adaptability. Nucl.Eye.D as DL-based approach for 
segmentation of nuclear and subnuclear structures should provide an interesting leap in 
the field of plant cytogenetics, and complete the existing range of DL-based tools already 
existing for phenotypic analyses in organs [28], leaves [27] or individual cells [29].  

In contrast to tools such as DeepImage J [25] and cellPose [54], Nucl.Eye.D easily enables 
the training with user-specific datasets and purposes, and provides a ready to use work-
flow for object segmentation tasks inside ROI, without the need of self-building a work-
flow as previously proposed by ZerocostDL4Mic [55], providing a larger choice of com-
binable models.  
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Our methodology assists nuclei and subnuclear structure segmentation, possibly en-
couraging biologists to include DL-based methods to minimize human-derived biases in 
quantitative approaches of nucleus imaging.  

Collectively, our study highlights that algorithm- and DL-based tools are not free of 
human biases introduced during the training process when it results from image choice 
and object segmentation. The “programmer”-based bias starts to be investigated as a po-
tential explanation for dataset-specific performance [45,56]. Additionally, according to our 
thoughts, the growing trend of automatizing image segmentation and analysis should be 
accompanied by substantial efforts in assessing inter-user variability of the segmentation 
method [57]. We strongly recommend using DL based tools to enhance reproducibility (in 
the case that the dataset is large enough, we further recommend to retrain the DL tool on 
your own data, which then will be facilitated by iCRAQ).  

In perspective, Nucl.Eye.D should contribute to expend the use of a DL-based ap-
proach in chromatin biology, offering the possibility to segment any subnuclear structures 
revealed by FISH- or immuno-staining (e.g., histone post-translational modifications, his-
tone variants or chromatin binding factors). 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/epigenomes6040034/s1, Figure S1: Comparison of nuclear and chro-
mocenter parameters quantified by different users and segmentation methods. Figure S2: From pre-
diction to the comparison of binary segmentation masks Figure S3: Comparison of nuclear and chro-
mocenter parameters quantification using NucleEyeD on Dark/Light image dataset.; Figure S4: Com-
parison of nuclear and chromocenter parameters quantification using NucleEyeD on a WT/ddm1 im-
age dataset. 
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