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Abstract

With a growing demand for quasi-instantaneous communication services such as real-time video streaming, cloud gam-
ing, and industry 4.0 applications, multi-constraint Traffic Engineering (TE) becomes increasingly important. While
legacy TE management planes like MPLS have proven laborious to deploy, Segment Routing (SR) drastically eases the
deployment of TE paths and is thus increasingly adopted by Internet Service Providers (ISP). There is now a clear
need in computing and deploying Delay-Constrained Least-Cost paths (DCLC) with SR for real-time interactive services
requiring both low delay and high bandwidth routes. However, most current DCLC solutions are not tailored for SR.
They also often lack efficiency (particularly exact schemes) or guarantees (by relying on unbounded heuristics). Similarly
to approximation schemes, we argue that the actual challenge is to design an algorithm providing both performances and
strong guarantees. However, conversely to most of these schemes, we also consider operational constraints to provide a
practical, high-performance implementation.

In this work, we extend and further evaluate our previous contribution, BEST2COP. BEST2COP leverages inherent lim-
itations in the accuracy of delay measurements, accounts for the operational constraint added by SR, and provides
guarantees and bounded computation time in all cases thanks to simple but efficient data structures and amortized
procedures. We show that BEST2COP is faster than a state-of-the-art algorithm on both random and real networks of
up to 1000 nodes. Relying on commodity hardware with a single thread, our algorithm retrieves all non-superfluous
3-dimensional routes in under 100ms in both cases. This execution time is further reduced using multiple threads, as the
design of BEST2COP enables a significant speed-up thanks to a highly parallelizable core which also enables a balanced
computing load between threads. Finally, we extend BEST2COP to deal with massive-scale ISP by leveraging the multi-
area partitioning of these deployments. Thanks to our new topology generator specifically designed to model realistic
patterns in such massive IP networks, we show that BEST2COP can solve DCLC-SR in approximately 1 second even for
ISP having more than 100000 routers.

Keywords: Traffic Engineering, Segment Routing, DCLC, CSP, Delay Constrained Least Cost, QoS Routing

1. Introduction interactive applications, the latency is as critical as the
IGP cost.

The Interior Gateway Protocol cost is defined as an
additive metric that usually reflects both the link’s
bandwidth and the operator’s load distribution choices
on the topology. Paths within an IGP are computed by
minimizing this cost. Thus, although delay constraints
are increasingly important, they should not be enforced
to the detriment of the IGP cost. With minimal IGP
distances, the traffic benefits from high-bandwidth links
and follows the operator’s intent in managing the network
and its load. With bounded delays, the traffic can benefit
from paths allowing for sufficient interactivity. It is thus
relevant to minimize the IGP cost while enforcing an

Latency is critical in modern networks for various ap-
plications. The constraints on the delay are indeed in-
creasingly stringent. For example, in financial networks,
vast amounts of money depend on the ability to receive
information in real-time. Likewise, technologies such as
5G slicing, in addition to requiring significant bandwidth
availability, demand strong end-to-end delay guarantees
depending on the service they aim to provide, e.g., less
than 15ms for low latency applications such as motion con-
trol for industry 4.0, VR, or video games [59]. For such
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upper constraint on the latency. Computing such paths
requires to solve DCLC, an NP-Hard problem standing
for Delay Constrained Least Cost.

DCLC: a relevant issue. Although one may expect

April 27, 2022

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license

https://creativecommons.org/licenses/by-nc/4.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1389128622001748
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1389128622001748

FRANKFURT

£
i
&

I3 ’ 250y, BUDAPEST
S0 ) o°° . 100, @
' @0“ st

[ 4 "”6ﬁ“\
3774’ [ 4 @ae o972ms;3

oo 6.79ms ; 4

3.97ms; 10

Figure 1: Practical relevance of DCLC in the GEANT network. IGP
costs are deduced from the bandwidth of each link. Depending on
their needs (in terms of delay and bandwidth), applications can opt
for three non-comparable paths between Frankfurt and Vienna.

the two metrics to be strongly correlated in practice, there
are various cases where the delay and the IGP cost may
be drastically different. For example, the IGP cost may
have been tuned arbitrarily by the operator. Heteroge-
neous infrastructures between countries or geographical
constraints may also create this effect. This can be il-
lustrated on real networks, as displayed by Fig. 1. This
map is a sample of the GEANT transit network [56]. As
fibers often follow major roads, we rely on real road dis-
tances to infer the propagation delay of each link while
the bandwidth, and so the estimated IGP cost, matches
the indications provided by GEANT. A green link has an
IGP cost of 1 while the IGP cost is 2 and 10 respectively
for the yellow and pink ones.

Note that the two metrics are not correlated, hence all
three paths shown between Frankfurt and Vienna offer
diverse interesting options. They are non-comparable
(or non-dominated) paths and form the Pareto-front of
the paths between the two cities. Either solely the delay
matters and the direct link (in pink) should be preferred,
or the ISP prefers to favor high capacity links, and the
green path, minimizing the IGP cost, should be used. The
yellow path, however, offers an interesting compromise.
Out of all paths offering a latency well-below 10ms, it
is the one minimizing the IGP cost. Thus, it allows to
provide strict Service-Level Agreement (< 9ms), while
considering the IGP cost. These kind of paths, retrieved
by solving DCLC, provide more options by enabling
tradeoffs between the two most important networking
metrics. Applications such as videoconferences, for exam-
ple, can then benefit both from real-time interactive voice
exchange (delay) and high video quality (bandwidth).
In addition, IGP costs are also tuned to represent the
operational costs. Any deviation from the shortest IGP
paths thus results in additional costs for the operator.
For all these reasons, there exist a clear interest for
algorithms able to solve and deploy DCLC paths [18§].
However and so far, while this problem has received a lot
of attention in the last decades from the network research
community [30, 24|, no technologies were available for an
efficient deployment of such paths.

Segment Routing, MSD & DCLC’s (large-scale)
rebirth. Segment Routing (SR) is a vibrant technology
gathering traction from router vendors, network operators
and academic communities [53, 69]. Relying on a combi-
nation of strict and loose source routing, SR enables to
deviate the traffic from the shortest IGP paths through a
selected set of nodes and/or links by prepending routing
instructions to the packet itself. Such deviations may for
example allow to route traffic through a path with lower
latency. These deviations are encoded in the form of
segments within the packet itself. To prevent any packet
forwarding degradation, the number of deviations (i.e., in-
structions) one can encode is limited to MSD (Maximum
Segment Depth), whose exact value depends on the
hardware. While this technology is adequate to support
a variety of services, operators mainly deploy SR in the
hopes of performing fine-grained and ECMP!-friendly
tactical Traffic-Engineering (TE) [1], due to its reduced
overhead compared to RSVP-TE [20]. Our discussion
with network vendors further revealed a clear desire from
operators to efficiently compute DCLC paths deployable
with Segment Routing [18]. Such a solution should thus
not only encompass Segment Routing, but also fare well
on large-sized networks of several thousand of nodes, as
already observable in current SR deployments[53]. Indeed,
while we showed in [50] that computing DCLC paths for
Segment Routing (DCLC-SR) is possible in far less than
a second on networks of up to 1000 nodes, scaling to
ten or a hundred times more routers remains an open issue.

Challenges & Overview. In this paper, we extend
our previous contribution, BEST2COP (Best Exact Segment
Track for the 2-Constrained Optimal Paths) [50] to make
DCLC-TE possible on (very) large scale networks. In
order to achieve our goal, we solve several challenges:
(i) provide near-exact algorithms with bounded error
margin and strong guarantees, (ii) efficiently consider the
number of segments to consider the packet manipulation
overhead supported by routers, and (iii) scale with very
large modern networks, despite the difficulty induced
by considering three metrics (cost, delay, and number
of segments)2. We now briefly explain the main design
aspects allowing us to solve these challenges. They will
later be explained more thoroughly in their dedicated
sections.

Guarantees and practical concerns. DCLC is a
well-known NP-Hard problem [72]. While there exist sev-
eral ways to solve DCLC [30, 24|, they usually do not
consider the underlying deployment technologies and real-

1Equal Cost Multi-Path

2While difficult instances are unlikely to occur in practice, our
algorithm can tackle even such corner cases. Thus, our proposal is
not only efficient in practice but provably correct and efficient even
for worst theoretical cases.



life deployment constraints, which often increases the com-
plexity of the problem and limits the available data.

Solution. We keep such considerations at the core of
our design. The nature of the paths we compute relies on
a stable latency metric (the measured propagation delay)
as recommended by [26, 27]. This delay is representative
of the experienced delay in our case, as explained later
on. Second, because of the inherent imprecision of these
measurements and the arbitrary nature of the latency
constraint, a small error margin regarding the delay of
the computed path may be acceptable. BEST2COP may
be easily tuned to remain within this acceptable error
margin and thus offers strong delay guarantees. BEST2COP
also leverages this acceptable error margin to compute
DCLC paths efficiently, despite the NP-Hard nature of
the problem. In addition, we consider the SR deployment
technologies, despite the increase in complexity that the
later brings to the DCLC problem.

Efficiently encompassing the Maximum Segment
Depth constraint (MSD). An SR router can only
prepend up to MSD routing instructions to a packet at
line-rate, i.e., & 10 with the best current hardware. Al-
though we find in our new study, shown in Section 2.3 that
this limit does not prevent from deploying most DCLC
paths in practice, this constraint must still be taken into
account. If ignored, the computed paths have no guaran-
tees to be deployable, as they may exceed MSD.

Solution. To efficiently consider this new additive
metric (the number of segments), we propose in [50] a
new construct, the multi-metric SR Graph, which results
from a transformation of the original graph. Through an
adequate graph exploration of this structure, BEST2COP
manipulates lists of segments natively, and paths requiring
more than MSD segments are natively removed from the
exploration space. While BEST2COP explores this structure
natively, one may also explore the original graph and rely
on this structure to efficiently convert explored paths to
segment lists on the fly. The latter approach may be
more appropriate when adapting existing schemes to fit
SR constraint, as explained later.

Dealing with massive-scale networks efficiently.
As aforementioned, current networks may be quite large,
and growing. As such, modern computation schemes
should maintain good performance even on large instances.

Solution. BEST2COP-E (BEST2COP Extended) leverages
both multi-threaded architectures and the inherent struc-
ture of massive-scale networks to solve DCLC-SR in =~ 1
second for ~ 100000 nodes. Indeed, by slightly modifying
BEST2COP (as presented in [50]), the latter becomes able
to greatly benefit from multi-threaded architectures.
Furthermore, we present a new proposal, BEST2COP-E,
which leverages the logical and physical area-partitioning
usually observed in massive-scale networks. To evalu-
ate our contribution, we create a topology generator,
YARGG, able to construct massive-scale, multi-valuated,

and multi-area topologies based on geographical data.

Summary and Contributions. By taking into con-
sideration the operational deployment of constrained paths
with SR, the current scale and structure of modern net-
works, as well as the practicality of the delay mea-
sures and constraints, we designed BEST2COP-E
(BEST2COP Extended), a simple efficient algo-
rithm able to solve DCLC-SR in = 1s in large net-
works of =100 000 nodes.

The main achievements of our proposal follow the orga-
nization of this paper:

e In Section 2, we present SR in further details. Com-
pared to [50], we discuss the context and works related
to DCLC in further detail. We also add an evaluation
regarding the relevance of SR for deploying DCLC
paths;

e In Section 3, we formalize DCLC-SR and also its gen-
eralization (2COP). In particular, we describe the
network characteristics we leverage and define the
construct we use to encompass SR (in Sec. 3.1 and
Sec. 3.2 respectively). In Sec. 3.3, we briefly summa-
rize BEST2COP (initially introduced in [50] and detailed
here in an appendix) and emphasize how it can easily
benefit from multi-threaded architectures.

Besides the more detailed background and the evalua-
tion of SR relevance, the main new contributions in this
extension come in the last three sections:

e In Sec. 3.4, we extend BEST2COP to BEST2COP-E, to
deal with massive scale networks relying on area par-
titioning (as with OSPF with a single metric), making
it able to solve DCLC efficiently in graphs of ~ 100 000
nodes;

e In Sec. 3.5, we formally define the guarantees brought
by BEST2COP and its versatility to solve several TE
optimization problems at once (i.e., the sub-problems
of 2COP), as well as its polynomial complexity;

e Finally, in Section 4, we present our large-scale topol-
ogy generator, YARGG, and evaluate BEST2COP-E on
the resulting topologies and compare our proposal to
the relevant state-of-the-art path computation algo-
rithm.

2. Back to the Future: DCLC vs SR

2.1. Segment Routing Background and Practical Usages

Segment Routing implements source routing by
prepending packets with a stack of up to MSD segments.
In a nutshell, segments are checkpoints the packet has to
go through. There are two main types of segments:



e Node segments. A node segment v indicates that
the packet should (first) be forwarded to v with
ECMP (instead of its final IP destination). Flows are
then load-balanced among the best IGP next hops for
destination v.

e Adjacency segments. Adjacency segments indicate
that the packet should be forwarded through a specific
interface and its link.

Once computed, the stack of segments encoding the de-
sired path is added to the packet. Routers forward packets
according to the topmost segment, which is removed from
the stack when the packet reaches the associated interme-
diate destination.

Adjacency segments may be globally advertised, and
thus be used the same way as node segments, or they
may only have a local scope and, as such, can only be
interpreted by the router possessing said interface. In this
case, the packet should first be guided to the correspond-
ing router, by prepending the associated node segment. In
the following, as a worst operational case, we consider the
latter scenario, as it always requires the highest number of
segments.

Segment Routing attracted a lot of interest from the
research community. A table referencing most SR-related
work can be found in Ventre et al. [69]. While some SR-TE
works are related to tactical TE problems (like minimiz-
ing the maximum link utilization) taking indirectly into
account some delay concerns [37, 35|, most of the works
related to SR do not focus on DCLC, but rather bandwidth
optimization [7, 25, 9], network resiliency [22, 34], mon-
itoring [48, 6], limiting energy consumption [10] or path
encoding (the translation of path to segment lists) [31, 28].
Aubry [5] proposes a way to compute paths requiring less
than MSD segments while optimizing an additive metric
in polynomial time. The number of segments required
is then evaluated. This work, however, considers only a
single metric in addition to the operational constraints.
The problem we tackle (i.e., DCLC paths for Segment
Routing) deals with two metrics (in addition to the op-
erational constraints). This additional dimension drasti-
cally changes the problem, which then becomes NP-Hard.
Some works use a construct similar to ours (presented in
details in Sec. 3.2) in order to prevent the need to perform
conversions from network paths to segment lists, [43] in
particular. However, the authors of [43] do not pretend to
solve DCLC and, as such, do not tune the structure the
same way (i.e., they do not remove dominated segments,
as explained later on), and simply use their construct to
sort paths lexicographically.

As aforementioned, while operators seem to mainly de-
ploy SR to perform fine-grained TE, to the best of our
knowledge, no DCLC variant exists for specifically tackling
SR characteristics and constraints (except for our contri-
bution). Using segments to steer particular flows allows
however to deviate some TE traffic from the best IGP
paths in order to achieve, for example, a lower latency (and

by extension solve DCLC). A realistic example is shown on
Fig. 1 where the node segment Vienna, as well as consid-
ering Vienna as the destination itself, would result in the
packets following the best IGP path from Frankfurt to Vi-
enna, i.e., the green dashed path. To use the direct link
instead (in plain pink) and so minimize the delay between
the two nodes of this example, the associated adjacency
segment would have to be used as it enforces a single link
path having a smaller delay than the best IGP one (in-
cluding here two intermediary routers). Finally, the yellow
path, offering a non dominated compromise between both
metrics (and being the best option if considering a delay
constraint of 8ms), requires the use of the node segment
Budapest to force the traffic to deviate from its best IGP
path in green. Before converting the paths to segment lists
(and actually deploy them with SR), such non-dominated
paths need first to be explored. Computing these paths
while ensuring that the number of segments necessary to
encode them remains under MSD is at least as difficult as
solving the standard DCLC problem since an additional
constraint now applies.

2.2. DCLC (Delay-Constrained, Least-Cost), a Well-
known Difficult Problem having many Solutions?

DCLC belongs to the set of NP-Hard problems (as
well as most related multi-constrained path problems).
Intuitively, solely extending the least-cost path is not
sufficient, as the latter may exceed the delay constraint.
Thus, paths with greater cost but lower delays must be
memorized and extended as well. These non-dominated
paths form the Pareto front of the solution, whose size
may grow exponentially with respect to the size of the
graph. However, DCLC in particular, and related variants
and extensions in general, does possess several interesting
applications such as mapping specific flows to their
appropriate paths (in terms of interactive quality). Thus,
these problems have been extensively studied in the past
decades. Many solutions have been proposed so far, as
summarized in these surveys [42, 24, 30]: they range from
to heuristics and approximations to exact algorithms, or
even genetic approaches.

Heuristics.  Because DCLC is NP-Hard, several
polynomial-time heuristics have been designed to limit the
worst-case computing time, but at the detriment of any
guarantees. For example, [44] only returns the least-cost
or least-delay path if one is feasible (i.e., respect the con-
straints). More advanced proposals try to explore the de-
lay and cost space simultaneously, by either combining in
a distributed manner the least-cost and least-delay sub-
paths [63, 73, 46] or by aggregating both metrics into one
in a more or less intricate manner.

Aggregating metrics in a linear fashion [38, 4] preserves
the subpaths optimality principle (isotonicity of best single-
metric paths) and therefore allows to use standard shortest
paths algorithms. However, it leads to a loss of relevant in-
formation regarding the quality and feasibility of the com-



puted paths [72], in particular if the hull of the Pareto
Front is not convex. Some methods try to mitigate this
effect by using a k-shortest path approach to possibly find
more feasible paths [39, 40], but such an extension may re-
sult in a large increase of execution time and may not pro-
vide more guarantees. Other heuristics rely on non-linear
metric aggregation. While it seems to prevent loss of rel-
evant information, at first glance, such algorithms expose
themselves to maintain all non-dominated paths (towards
all nodes) as the isotonicity does not hold anymore (while
it holds with linear metrics). Since the Pareto Front may
be exponential with respect to the size of the graph, those
algorithms either simply impose a hard limit on the num-
ber of paths that can be maintained (e.g., TAMCRA [15]
and LPH [71]), or specifically chose the ones to maintain
through previously acquired knowledge (HMCOP [41]).
Finally, other works like [17, 32] rely on heuristics designed
to solve a variant of DCLC, the MCP problem (Multi-
Constrained Paths, the underlying NP-Complete decision
version of DCLC — with no optimization objective). It
mainly consists of sequential MCP runs using a conserva-
tive cost constraint iteratively refined.

Relying on heuristics is tempting, but their lack of
guarantees can prevent to enforce strict SLAs even
when a suitable path actually exists. One can argue
it is particularly unfortunate, as DCLC is only weakly
NP-hard: it can be solved exactly in pseudo-polynomial
time, i.e., polynomial in the numerical value of the
input [23]. Said otherwise, DCLC is polynomial in the
smallest largest weight of the two metrics once translated
to integers. Consequently, it is possible to design FPTAS3
solving DCLC while offering strong guarantees [58].

Approximations. Numerous FPTAS have been pro-
posed to solve DCLC and related constrained shortest path
problems. All the following algorithms fall into this cat-
egory. The common principle behind these schemes is to
reduce the precision (and/or magnitude) of the consid-
ered metrics. This can be performed either directly, by
scaling and rounding the weights of each link, or indi-
rectly, by dividing the solution space into intervals and
only maintaining paths belonging to different intervals (In-
terval partitioning) [64]. Scaling methods usually consider
either a high-level dynamic programming scheme or a low-
level practical Dijkstra/Bellman-Ford core with pseudo-
polynomial complexity, and round the link costs to turn
their algorithms into an FPTAS (see for example Has-
sin [36], Ergun et al. [16] or Lorenz and Raz [47] methods).
Goel et al. [29], in particular, chose to round the delay in-
stead of the cost and can consider multiple destinations
(as our own algorithm).

Most interval partitioning solutions explore the graph
through a Bellman-Ford approach. The costs of the
paths are mapped to intervals, and only the path with

3Fully Polynomial Time Approximation Scheme.

the lowest delay within a given interval is kept. The
size of the intervals thus introduces a bounded error
factor [36, 67]. In particular, HIPH [66] offers a dynamic
approach between an approximation and exact scheme.
It proposes to maintain up to x non-dominated paths for
each node and stores eventual additional paths using an
interval partitioning strategy. This allows the algorithm
to be exact on simple instances (resulting in a limited
Pareto front, i.e., polynomial in the number of nodes,
in particular when it is bounded by x) and offer strong
guarantees on more complex ones. This versatility is an
interesting feature, as most real-life cases are expected
to be simple instances with a bounded Pareto front size,
in particular because one of the metrics may be coarse
by nature. For these reasons, not only approximation
schemes can offer practical solutions (with a bounded
margin error) but also exact algorithms (with controlled
performance), as they may be viable in terms of comput-
ing time for simple real-life IP networking instances.

Exact methods. Numerous exact methods have in-
deed also been studied extensively to solve DCLC. Some
methods simply use a k-shortest path approach to list all
paths within the Pareto front [55, 57]. On the other hand,
Constrained Bellman-Ford [70] (ironically, also called Con-
strained Dijkstra as it uses a priority queue — denoted PQ
in the following) explores paths by increasing delays and
lists all non-dominated paths towards each node. Sev-
eral algorithms use the same principle but order the paths
differently within the queue, relying either on a lexico-
graphical ordering, ordered aggregated sums, or a sim-
ple FIFO/LIFO ordering [51, 52, 8]. Most notably, A*
Prune [45] is a multi-metric adaptation? of A* relying on a
PQ where paths known to be unfeasible are pruned. Two-
phase methods [62] first find paths lying on the convex
hull of the Pareto front through multiple Dijkstra runs,
before finding the remaining non-dominated path through
implicit enumerations.

Finally, SAMCRA [68] is a popular and well-known multi-
constrained path algorithm. Similarly to other Dijkstra-
based algorithms, SAMCRA relies on a PQ to explore the
graph but instead of the traditional lexicographical order-
ing, it relies on non-linear cost aggregation. Among feasi-
ble paths (others are natively ignored) it first considers the
one that minimizes its maximum distance to the multiple
constraints. Such a path ranking to deal with the PQ is
supposed to increase its performance with respect to other
PQ organizations.

As we have seen so far, while many solutions exist, most
possess certain drawbacks or lack certain features to rec-
oncile both the practice and the theory. Heuristics do
not always allow to retrieve the existing paths enforcing
strict SLAs, while exact solutions are not able to guaran-
tee a reasonable maximum running time when difficult in-

4This adaptation is exact, i.e., not a heuristic, as the estimated
cost underestimates the actual distance towards the destination.



Algorithms

Practical Features

Exactitude vs Performance

Multi-Dest SR Multi-thread Bounded Coarse All
Single Run  Ready Ready Pareto Front Metric  Cases
LARAC [40] X X X X v x v ox v
LPH [71] V. x x v v Jox o/
HMCOP [41] X X X X v x v o ox Vv
HIPH [66] v X X v v v o v
Hassin [36] X X X v v v
Tsaggouris et al. [67] v X X v v v4
Raith et al. [62] X X X v v v v /X
A* Prune. [45] X X X v v v v /X
SAMCRA [68] v X X v v VARV
BEST2COP v v v v v v o v

Table 1: Qualitative summary of a representative subset of DCLC-compatible algorithms showcasing their practicality, exactitude, and
performance. In the Practical Features column, the green check-mark indicates whether the algorithm supports the corresponding feature
(while the red cross denotes the opposite). In the Ezactitude vs Performance column, the two subcolumns associated which each three
scenarios show how the latter impact (i) the exactitude (exact, strong guarantees, no guarantees) and (ii) the performance of the algorithm
(polynomial time or not). While the orange tilde denotes strong guarantees in terms of exactitude, green check-marks (and red crosses
respectively) either indicate exact results (no guarantees resp.) or polynomial-time execution (exponential at worst resp.) for performance.
For both subcolumns Bounded Pareto Front and Coarse Metric, we consider the case where their spreading is polynomial with respect to the
number of vertices in the input graph (and as such predictable in the design/calibration of the algorithm).

stances arise, although both features are essential for real-
life deployment. On the other hand, FPTAS can provide
both strong guarantees and a polynomial execution time.
However, they are often found in the field of operational
research where, at best, possible networking applications
and assumptions are discussed, but are not investigated.
Because of this, the deployment of the computed paths,
with SR and its MSD in particular, is not taken into con-
sideration. It is worth to note that the number of segments
is not a standard metric as it is not simply a weight as-
signed to each edge in the original graph (that is, without
a specific construct, it requires to be computed on the fly
for each visited path). Considering the latter can have a
drastic impact on the performance of the algorithms not
designed with this additional metric in mind. In addi-
tion, not all the algorithms presented here and in Table 1
are single-source multiple-destinations. Finally, none of
these algorithms evoke the possibility to leverage multi-
threaded architectures, an increasingly important feature
as such computations now tend to be performed by dedi-
cated Path Computation Elements or even in the cloud.

Our contribution, BEST2COP, aims to close this gap by
mixing the best existing features (such as providing both
a limited execution time and strong guarantees in terms
of precision in any cases) and adapt them for a practical
modern usage in IP networks deploying SR. Table 1 sum-
marizes some key features of a representative subset of the
related work. Similarly to FPTAS, BEST2COP rounds one of
the metrics of the graph. However, conversely to most al-
gorithms, BEST2COP does not sacrifice accuracy of the cost
metric, but of the measured delay. Because of the native
inaccuracy of delay measurements (and the arbitrary na-

ture of its constraint), this does not prevent BEST2COP from
being technically exact in most practical cases. In addition
(and akin to [66]), BEST2COP can easily be tuned to remain
exact on all simple instances with a bounded Pareto front
regardless of the accuracy of the metrics. Thus, BEST2COP
can claim to return exact solutions in most scenarios and,
at worst, ensure strict guarantees in others (for theoretical
exponential instances). In all cases, BEST2COP possesses a
pseudo-polynomial worst-case time complexity. BEST2COP
was designed while keeping the path deployment aspect
of the problem in mind. A single run allows to find all
DCLC paths (and many variants as we will see later) to
all destinations. The MSD constraint related to SR is
taken into account natively. As a result, paths requiring
more than MSD segments are excluded from the explo-
ration space. The outer loop of BEST2COP can be easily
parallelized, leading to a non-negligible reduction in the
execution time. In Sec. 4, relying on a performance com-
parison between BEST2COP and SAMCRA, we will show that
BEST2COP outperforms SAMCRA when running SAMCRA as
published in [68]. While SAMCRA reaches similar perfor-
mance when benefitting from SR-aware methods from our
own design (explained thoroughly in the remainder of this
paper), BEST2COP outperforms its competitor when relying
on multi-threading.

Last but not least, BEST2COP has been adapted for multi-
area networks and leverages the structures of the latter,
allowing it to solve DCLC on very large (= 105000 nodes)
domains in one second. To the best of our knowledge,
such large-scale experiments and results have neither been
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Figure 2: Required number of segments for all DCLC solutions, in a
network of 45 000 nodes generated by YARGG, with delay constraints
of up to 100ms.

conducted nor achieved within SR domains °.

2.8. SR is Relevant for DCLC: MSD is not a Limit

Given the MSD constraint, one may question the choice
of SR for deploying DCLC paths in practice. Indeed, in
some cases, in particular if the metrics are not aligned®,
constrained paths may required more than MSD detours
to satisfy a stringent latency constraint.

While it has been shown that few segments are required
for most current SR usages (e.g. for TI-LFA 7 or when con-
sidering only one metric) [19, 5], to the best of our knowl-
edge, there is no similar study for our specific use-case,
i.e. massive scale networks with two valuation functions
(delay and IGP cost). This is probably one of the most
exciting challenge for SR as DCLC is a complex applica-
tion. However, since such massive-scale computer network
topologies are not available publicly, we rely on our own
topology generator whose detailed description is available
in section 4.2. These topologies follow a standard OSPF-
like area division. and both metrics (delay and IGP cost)
follow a realistic pattern. For this analysis, we opt for a
worst-case graph having ~ 45000 nodes and = 92 000 edges
scattered in 140 areas.

For this analysis, we keep track, for each destination, of
all the solutions solving DCLC for all delay constraints up
to 100ms, and extract the necessary number of segments.

5Some elementary algorithms (such as Multi-constrained Dijk-
stra) and more intricate solutions exhibit impressive computing times
on even more massive road networks [33]. However, such networks
are less dense than IP ones (and with metrics that are also even more
correlated).

6The delay and the IGP costs in particular. Since node segments
represent best IGP paths, the IGP cost and the number of segments
will most likely be aligned by design

"Topology Independent Loop Free Alternate

In other words, we show the number of segments required
to encode all non-dominated (and thus practically relevant
for some given constraint) paths, considering all delay con-
straints up to 100ms. The results are shown in Fig. 2.

One can see that most paths require less than 10 seg-
ments, meaning that performant hardware should be able
to deploy most DCLC paths. However, some corner-cases
requiring more than 10 segments do exist, probably arising
from stringent delay constraints. In addition, less perfor-
mant hardware (e.g., with MSD = 5), while able to deploy
the majority of DCLC paths, can not deploy any DCLC
path. Note that several mechanisms exist to bypass this
limit. Flexible Algorithms [60] allows to compute shortest
paths and create segments with other metrics (e.g., the
delay). Binding segments [21] allows to "compress" a seg-
ment list in a single segment, which is uncompressed when
popped from the list. However, both techniques increases
the message exchange, number of states to maintain, and
overall complexity. Their usage should thus be limited to
a few corner cases.

Consequently, our analysis exhibits two main points.
First, SR is appropriate to deploy TE paths. Indeed, the
majority of DCLC paths should be deployable within the
MSD constraint, if not all when using performant hard-
ware. Second, since there may however exist DCLC paths
requiring more than MSD segments, this limit must be
considered to compute feasible paths correctly. Other-
wise, a single non-feasible path dominating feasible ones is
enough to lead to an incorrect algorithm. The underlying
path computation algorithm must then efficiently consider
delay, IGP cost and the number of segments to ensure its
correctness.

3. BEST2COP(E): Efficient Data Structures and
Algorithms for Massive Scale Networks

This section presents our contributions. We introduce
and define preliminary notations and concepts used to de-
sign BEST2COP, before describing the data structures used
by our algorithm. In section 3.3, we describe our algo-
rithm, BEST2COP, and show how we extend it for massive-
scale networks divided in several areas in section 3.4.

We have shown that SR seems indeed appropriate (as
desired) for fine-grained delay-based TE. We thus aim to
solve DCLC in the context of an ISP deploying SR, leading
to the DCLC-SR problem that considers the IGP cost, the
propagation delay, and the number of segments.

For readability purposes, we denote:

e M, the metric referring to the number of segments,
with the constraint ¢g = MSD applied to it;

e M the delay metric, with a constraint cy;
e M5 the IGP metric being optimized.

Given a source s, DCLC-SR consists in finding, for all
destinations, a segment list verifying two constraints, cg



and c1, respectively on the number of segments (My) and
the delay (M;), while optimizing the IGP distance (M3).
We denote this problem DCLC-SR(s, cg,c1). On Fig. 1,
we would have DCLC-SR(Frankfurt,3,8) D> Frankfurt —
Budapest — Vienna. This DCLC path (shown in yellow
in Fig 1), is indeed the best option to reach Vienna when
considering an arbitrary delay constraint of 8ms. Since the
best IGP path from Frankfurt to Vienna (the green one)
does not go through Budapest, encoding this DCLC path
requires at least one detour, i.e. one segment (here, a node
segment instructing the packet to go through Budapest
first).

To solve such a challenging problem, efficient data struc-
tures are required. In the following, we first introduce the
constructs we leverage and how we benefit from the inac-
curacy of real delay measurements in particular.

3.1. DCLC and True Measured Delays

3.1.1. Leveraging measurement inaccuracy

As mentioned, DCLC is weakly NP-Hard, and can be
solved exactly in pseudo-polynomial time. In other words,
as long as either the cost of the delay possesses only a lim-
ited number of distinct values (i.e., paths can only take a
limited number of distinct distances), the Pareto front of
the paths’ distances is naturally bounded in size as well,
making DCLC tractable and efficiently solvable®. Such a
metric thus has to be bounded and possess a coarse ac-
curacy (i.e., be discrete). Although this has little impact
when solving DCLC in a theoretical context, it can be
strongly leveraged to solve DCLC efficiently thanks to the
characteristics of real ISP networks.

We argue that the metrics of real ISP networks do in-
deed possess a limited number of distinct values. Although
BEST2COP can be adapted to fit any metric, we argue that
M, the propagation delay, is the most appropriate one. In-
deed, IGP costs depend on each operators’ configurations.
For example, while some may rely on few spaced weights,
others may possess intricate weight systems where small
differences in weights may have an impact. Thus, bound-
ing the size of the Pareto front based on the IGP costs
is not only operator-dependant, but might still result in a
very large front.

On the other hand, the delay (i) is likely strongly
bounded, and (ii) can be handled as if having a coarse
accuracy in practice. For TE paths, the delay constraint
is likely to be very strict (10ms or less). Second, while
the delay of a path is generally represented by a precise
number in memory, the actual accuracy, i.e., the trueness
t of the measured delay is much coarser due to technical
challenges [3, 2]. In addition, delay constraints are usually

8Metric Mg is omitted for now as this trivial distance is only re-
quired for SR and discussed in details later. While dealing with a
three-dimensional Pareto front seems more complex at first glance,
we will show that SR eventually reduces the exploration space be-
cause its operational constraint is very tight in practice and easy to
handle efficiently.

formulated at the millisecond granularity with a tolerance
margin, meaning that some loss of information is accept-
able.

Thus, floating numbers representing the delays can be
truncated to integers, e.g., taking 0.1ms as unit. This al-
lows to easily bound the number of possible non-dominated
distances to ¢1 Xy, with y being the desired level of ac-
curacy of Mj (the inverse of the unit of the delay grain,
here 0.1ms). For example, with ¢; = 100ms and a delay
grain of 0.1ms (y = 55 = 10), we have only 1000 distinct
(truncated) non-dominated pairs of distances to track at
worst. This leads to a predictable and bounded Pareto
front. One can then store non-dominated distances within
a static array, indexed on the M;-distance (as there can
only be one non-dominated couple of distances (M7, Ms)
for a given M;-distance).

In the remaining of the paper, I denotes the size al-
located in memory for this Pareto front array (i.e., I' =
c1 Xy). When ¢, i.e., the real level of accuracy, is lower
(or equal) than vy, the stored delay can be considered to be
exact. More precisely, it is discretized but with no loss of
relevant information. When ¢ is too high, one can choose
v such that vy < ¢, to keep I at a manageable value. In
this case, some relevant information can be lost, as the
discretization is too coarse. While this sacrifices the ex-
actitude of the solution (to the advantage of computation
time), our algorithm is still able to provide predictable
guarantees in such cases (i.e., a bounded error margin on
the delay constraint). This is further discussed in Sec-
tion 3.5.2.

8.1.2. Fine, but which delay?

Referring to a path’s delay may be ambiguous. Indeed,
this characteristic is not monolithic. The total delay is
mainly composed of the propagation delay and the queu-
ing delay. Both delays may play an important part in
the overall latency, though none can be stated to be the
main factor [65]. Although the propagation delay is sta-
ble, the queuing delay may vary depending on the traffic
load. However, in order to compute TE paths, the delay
metric must be advertised (usually within the IGP itself).
For this reason, it is strongly recommended to use a stable
estimate of the delay, as varying delay estimations may
lead to frequent re-computations, control-plane message
exchanges, and fluctuating traffic distribution [26, 27].

For this reason, we use the propagation delay, as recom-
mended in [26, 27]. The latter is usually measured through
the use of a priority queue, ignoring so the queuing delay.
Its value is deduced as a minimum from a sampling win-
dow, increasing so its stability [13]. Using this delay not
only makes our solution practical (as we rely on existing
measurements and respect protocol-related constraints),
but is actually pertinent in our case. In practice, flows
benefitting from DCLC paths benefit from a queue with
high priority and experience negligible queueing delays.
In addition, the amount of traffic generated by such pre-
mium interactive flows can be controlled to remain small



enough if it is not limited by design. Consequently, not
only is there no competition between premium flows and
best-effort traffic, but these flows do not generate enough
traffic to lead to significant competition between them-
selves. Thus, the experienced delay is actually agnostic of
the traffic load for our use-case, making the propagation
delay a relevant estimate. Consequently, we use the dis-
cretized propagation delay, enabling both practical deploy-
ment and the limitation of the number of non-dominated
distances, within our structure used to encompass Segment
Routing natively, the SR graph.

3.2. The SR Graph and 2COP

To solve DCLC-SR efficiently, as well as its comprehen-
sive generalization, 2COP, we rely on a specific construct
used to encompass SR, the delay, and the IGP cost: the
multi-metric SR graph.

3.2.1. Turning the Physical Graph into a Native SR Rep-
resentation

This construct represents the segments as edges to na-
tively deal with the My metric and its constraint, c¢o =
MSD. The valuation of each edge depends on the dis-
tance of the path encoded by each segment. While the
weights of an adjacency segment are the weights of its as-
sociated local link, the weights of a node segment are the
distances of the ECMP paths it encodes: the (equal) IGP
cost (i.e., , M2-distance), and the lowest guaranteed delay
(i.e., , the Ml-distance), i.e., the worst delay among all
ECMP paths. Hence, computing paths on the SR graph is
equivalent to combining stacks of segments (and the phys-
ical paths they encode), as stacks requiring x segments are
represented as paths of x edges in the SR graph (agnosti-
cally to its actual length in the raw graph). The SR graph
can be built for all sources and destinations thanks to an
All Pair Shortest Path (APSP) algorithm. Note that this
transformation is inherent to SR and leads to a complex-
ity of O(n(nlog(n) +m)), for a raw graph having n nodes
and m edges, with the best-known algorithms and data
structures. This transformation (or rather, the underlying
APSP computation) being required for any network de-
ploying TE with SR (the complexity added by our multi-
metric extension being negligible), we do not consider it
as part of our algorithm presented later.

This transformation is shown in Fig. 3, which shows the
SR counterpart of the raw graph provided in Fig. 1. To
describe this transformation more formally, let us denote
G = (V,E) the original graph, where V and E respectively
refer to the set of vertices and edges. As G can have mul-
tiple parallel links between a pair of nodes (u,v), we use
E (u,v) to denote all the direct links between nodes 1 and v.
Each link (u, v) possesses two weights, its delay w?((u, v))
and its IGP cost wg((u, v)). The delay and the IGP cost
being additive metrics, the M7 and M5 distances of a path
p (denoted d? (p) and dg; (p) respectively) are the sums of
the weights of its edges.

From G, we create a transformed multigraph, the SR
graph denoted G’ = (V, E’). While the set of nodes in G’
is the same as in G, the set of edges differs because E’
encodes segments as edges representing either adjacency
or node segments encoding respectively local physical link
or sets of best IGP paths (with ECMP). The M;-weight
of an edge in G’ is denoted w?'((u,v)). However, to al-
leviate further notations, we denote simply d;(p) the M;
distance of a path in G’ instead of dl.Gl(p). Note that if G
is connected, then G’ is a complete graph thanks to node
segments.

SR graph: Node segment encoding. A node seg-
ment, encoding the whole set Pg (u, v) of ECMP best paths
between two nodes u and v, is represented by exactly one
edge in E’(u,v). The Ma-weight wg/((u,v)) of a node
segment is the (equal) Ms-distance of Pg(u,v). Since,
when using a node segment, packets may follow any of
the ECMP paths, we can only guarantee that the delay
of the path will not exceed the maximal delay out of all
ECMP paths. Consequently, its M;-weight w?/((u,v)) is
defined as the maximum M;-distance among all the paths
in Pg(u,v). Links representing node segments in G’ thus
verify the following:

W?:((Lt, V)) = MaXpePs (u,v) d?(ﬁ)
wg ((u,v)) = dzc(p) for any p € Pg(u,v)

SR graph: Adjacency segment encoding. An ad-
jacency segment corresponds to a link in the graph G and
is represented by an edge (uy,v) in E’(u,v), whose weights
are the ones of its corresponding link in G, only if it is
not dominated by the node segment (u,v)g for the same
pair of nodes, i.e., if WIG/((M,V)) > w?((ux,v)), or by any
other non-dominated adjacency segments (uy,v), i.e., if
WG (1) > WO ((1z,v) or WG ((uy)) > wG (. v)),
where (uy,v) and (uy,,v) are two different outgoing links
of u in E(u,v)*.

Fig. 3 illustrates the result of such a transformation: one
can easily identify the three non-dominated paths between
Frankfurt and Vienna, bearing the same colors as in Fig. 1.
The green path (i.e., the best My path) is encoded by a
single node segment. The pink, direct path (i.e., the best
M path) is encoded by an adjacency segment (the double
line in Fig. 3). The yellow paths (the solution of DCLC-
SR(Frankfurt, 3, 8) and an interesting tradeoff between
M; and M) requires an additional segment, in order to
be routed through Budapest. Note that in practice, the
last segment is unnecessary if it is a node segment, as
the packet will be routed towards its final IP destination
through the best My paths natively.

Our multi-metric SR graph (or equivalent constructs
gathering the multi-metric all-pair shortest path data)
is mandatory to easily consider the number of segments

9If two links have exactly the same weights, we only add one
adjacency segment in G’
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Figure 3: This Figure shows the network from Fig. 1 translated into
an SR graph. The SR graph encodes segments as edges. Plain edges
represent node segments, i.e., sets of ECMP paths. Double-lines are
adjacency segments, here only (Frankfurt, Vienna), and are visible
only if they are not dominated by other segments. Colored edges
refer to the paths highlighted in Fig. 1.

necessary to encode the paths being explored. However,
its usage can differ in practice. We envision two modes
which allow to consider this additional "off the graph"
metric, using our SR Graph.

Using the SR Graph to perform path con-
versions. One of the two options is to run the path
computation algorithm on the original topology, and con-
vert the paths being explored to segment lists. Performing
this conversion is however not trivial. One must return
the minimal encoding of the given path (with respect
to the number of segments) while correctly managing
the (forced) path diversity brought by ECMP, which
may exhibit heterogeneous delays. However, one can
efficiently perform such conversion when relying on our
SR graph. By summarizing the relevant information
(i.e., the worst-case delay within ECMP paths), the SR
Graph allows to easily consider the ECMP nature of SR
within a multi-metric context. However, the segment
metric My is peculiar. Extending a path does not always
imply an increase in the number of necessary segments.
Furthermore, the number of segments required to encode
two distinct paths may evolve differently, even when the
latter are extended from the same node with the same
edge. Because of these properties, the way to check paths
for dominancy must be revised. This extended dominance
check may lead to an increased number of paths to extend,
and thus to a higher worst-case complexity. Further de-
tails regarding the conversion algorithm and the extended
dominancy check can be found in Appendix B.

Using the SR Graph natively. Another method is
to run the path computation algorithm directly on the SR
graph we described. Note that this forces the algorithm to
run on a complete graph, which may significantly increase
the overall complexity. However, the segment metric
My, originally an "off the graph" metric with singular
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properties, becomes a standard graph metric, as it is now
expressed by the number of edges that compose the paths
(a path encoded by x segments has x edges within the SR
Graph). This method also allows using standard, known
algorithms as-is to solve the DCLC-SR problem.

When designing our algorithm, BEST2COP, we use the
second approach. Indeed, by using a bellman-ford-like ex-
ploration of the SR Graph, one can not only easily prune
paths requiring more than MSD segments, but also ben-
efit from efficient Pareto front management and multi-
threading. These various features allow BEST2COP to ef-
ficiently solve not only DCLC-SR, but also 2COP, a more
general and practically relevant problem regarding the
computation of constrained paths within an SR domain.
Note, however, that we will provide our competitor with
both approaches to make the evaluation as fair as possible.

3.2.2. The 2COP Problem(s)

Solving DCLC-SR exactly requires, by definition, to
visit the entirety of the Pareto front for all destinations.
However, although only some of these paths are DCLC-SR
solutions for a given delay constraint, all paths visited dur-
ing this exploration may be of some practical interest. In
particular, some of them solve problems similar to DCLC
but with different optimization strategies and constraints.
By simply memorizing the explored paths (i.e., storing
the whole Pareto front within an efficient structure), one
can solve a collection of practically relevant problems. For
instance, one may want to obtain a segment path that
minimizes the delay, another the IGP-cost, or the num-
ber of segments. Solving 2COP consists in finding, for all
destinations, paths optimizing all three metrics indepen-
dently, and respecting the given constraints. We formalize
this collection of problems as 2COP. Solving 2COP en-
ables more versatility in terms of optimization strategies
and handles heterogeneous constraints for different desti-
nations. Simply put, while DCLC-SR is a one-to-many
DCLC variant taking MSD into account, 2COP is more
general as it includes all optimization variants.

With initial constraints cq,c1,c2, BEST2COP solves
2COP, i.e., returns in a single run paths that satisfy
smaller constraints c(), c},c5 for any ¢ < ¢;, i = 0,1,2,
offering more flexibility than simply returning the DCLC-
SR solution.

Definition.

(2COP)
Let f(Mj,co,c1,c2,5,d) be a function that returns a
feasible segment path from s to d (if it exists), verifying
all constraints ¢;,0 < i < 2 and optimizing M;,j € 0,1,2.
For a given source s and given upper constraints cg, c1, 2,
we have

2-Constrained Optimal Paths

2C0P(s,co,c1,e2) = | ) f(Mj.chrel,chs,d)
YdeV,
¥j€{0,1,2},
Vel <cj



Observe that, for any s € V, DCLC-SR(s, cg, ¢1) consists
of the paths in 2COP(s, cg, c1, %) minimizing M. Looking
at Fig. 3, we have two interesting examples (we rely on the
first capital letter of the cities):

f(M2,3,70,00, F, V) = (F, B)|(B,V) (67,4)
f(M1,3,T,00,G,B) = (G,M)|(M,B) (77,4)

In the second example, recall that the M1-distances are
truncated to obtain integer values and I' is the maximum
¢1 constraint we consider (multiplied by 7).

When the delay accuracy allows to reduce the problem’s
complexity sufficiently, BEST2COP can solve exactly any of
the variants within 2COP and return any desired output
of the image of f.

In Sec. 3.5.2, we detail how we can handle each 2COP
variant with guarantees when the delay accuracy is too
high to provide exact solutions while remaining efficient.
Solving 2COP can be implemented as efficiently as solving
only DCLC-SR.

3.8. Our Core Algorithm for Flat Networks

In this section, we describe BEST2COP, our algorithm effi-
ciently solving 2COP (and so DCLC-SR). Its implementa-
tion is available online'?. Although BEST2COP was already
described in our previous contribution, a complete and far
more detailed algorithmic description can be found in Ap-
pendix A for the interested reader.

Akin to the SR graph computation, BEST2COP can be
run on a centralized controller but also by each router. Its
design is centered around two properties. First, the graph
exploration is performed so that paths requiring i node
segments are found at the i** + 1 iteration'!, to natively
tackle the MSD constraint. Second, BEST2COP’s structure
is easily parallelizable, allowing to benefit from multi-core
architectures with low overhead.

Simply put, at each iteration, BEST2COP starts by ex-
tending the known paths by one segment (one edge in the
SR graph) in a Bellman-Ford fashion (a not-in-place ver-
sion to be accurate). Paths found during a given iteration
are only checked loosely (and efficiently) for dominancy
at first. This extension is performed in a parallel-friendly
fashion that prevents data-races, allowing to easily paral-
lelize our algorithm. Only once at the end of an iteration
are the newly found paths filtered and thoroughly checked
for dominancy, to reflect the new Pareto front. The re-
maining non-dominated paths are in turn extended at the
next iteration. These steps only need to be performed
MSD =~ 10 times, ignoring so all paths that are not de-
ployable through SR. When our algorithm terminates, the
results structure contains, for each segment number, all the
distances of non dominated paths from the source towards

Onttps://github.com/talfroy/BEST2COP

HNote that each adjacency segment translates to at least one nec-
essary segment, two if they are not globally advertised and not sub-
sequent.
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all destinations. The interested reader may find further
details regarding how 2COP solutions are extracted from
the results structure in Appendix 3.

The good performance of BEST2COP comes from several
aspects. First, the fact that paths requiring more than
MSD segments are natively excluded from the exploration
space. Second, well-chosen data structures benefiting from
the limited accuracy of the delay measurements to limit
the number of paths to extend. This allows to manipu-
late arrays of fixed size, because the Pareto front of dis-
tances towards each node is limited to I at each step (en-
abling very efficient read /write operations). Third, using a
Bellman-Ford approach allows not only to easily parallelize
our algorithm but also to perform lazy efficient update of
the Pareto front. Indeed, a newly found path may only
be extended at the next iteration. Thus, we can efficiently
extract the non-dominated paths from all paths discovered
during the current iteration in a single pass, once at the
end of the iteration. Conversely, other algorithms tend
to either check for dominancy whenever a path is discov-
ered (as the later may be re-extended immediately), or
not bother to check for dominancy at all, e.g., by relying
solely on interval partitioning to limit the number of paths
to extend.

8.4. For Massive Scale, Multi-Area Networks

As shown in [50], this algorithms exhibits great per-
formance on large-scale networks of up to 1000 nodes
(~ 15ms). However, since the design of BEST2COP implies
a dominant factor of |V|? in term of time complexity'?
(the SR graph being complete), recent SR deployments
with more than 10 000 nodes would not scale well enough.
The sheer scale of such networks, coupled with the in-
herent complexity of TE-related problems, makes 2COP
very challenging if not impossible to practically compute
at first glance. In fact, even BEST2COP originally exceeds
20s when dealing with ~15 000 nodes. As we will see in the
evaluations, this is much worse with concurrent options.

In this section, we extend BEST2COP in order to deal
efficiently with massive scale networks. By leveraging the
physical and logical partitioning usually performed in such
networks, we manage to solve 2COP in = 1s even in net-
works of 100 000 nodes.

~
=~

8.4.1. Scalabity in Massive Network & Area decomposition

The scalability issues in large-scale networks do not arise
solely when dealing with TE-related problems. Standard
intra-domain routing protocols encounter issues past sev-
eral thousands of nodes. Naive network design creates a
large, unique failure domain resulting in numerous compu-
tations and message exchanges, as well as tedious manage-
ment. Consequently, networks are usually divided, both
logically and physically, in areas. This notion exists in

12The detailed complexity is given in section 3.5.1



both major intra-domain routing protocols (OSPF and IS-
IS). In the following, we consider the standard OSPF archi-
tecture and terminology but our solution can be adapted
to fit any one of them

Areas can be seen as small, independent sub-networks
(usually of around 100 - 1000 nodes at most). Within
OSPF, routers within an area maintain a comprehensive
topological database of their own area only. Stub-areas
are centered around the backbone, or area 0. Area Bor-
der Routers, or ABRs, possess an interface in both the
backbone area and a stub area. Being at the intersection
of two areas, they are in charge of sending a summary of
the topological database (the best distance to each node)
of one area to the other. There are usually at least two
ABRs between two areas. We here (and in the evaluation)
consider two ABRs, but the computations performed can
be easily extended to manage more ABRs. Summaries
of a non-backbone area are sent through the backbone.
Upon reception, ABRs inject the summary within their
own area. In the end, all routers possess a detailed topo-
logical database of their own area and the best distances
towards destinations outside of their own area.

3.4.2. Leveraging Area Decomposition

This partitioning creates obvious separators within the
graph, the ABRs. Thanks to the latter, we can lever-
age this native partition in a similar divide-and-conquer
approach, adapted to the computation of 2COP paths,
by running BEST2COP at the scale of the areas before ex-
changing and combining the results. We do not only aim
to reduce computation time, but also to keep the number
and size of the exchanged messages manageable.

We now explain how we perform this computation in

detail. For readability purposes, we rely on the following
notations: A, denotes area x. A, denotes the ABR
between the backbone and A,. When necessary, we
may distinguish the two ABR Al, and A2,. Finally,
b2cop(Ay, s,d) denotes the results (the non-dominated
paths) from s to d within A,. When d is omitted, we
consider all routers within A, as destination. Figure 4
illustrates a network with three areas, x, y and 0, the
backbone area.
We here chose to detail a simple distributed and router-
centric variant of our solution. However, our solution may
well be deployed in other ways, e.g. relying on controllers,
or even a single one. In such cases, the computation could
be parallelized per area if needed. Such discussion is left
for future work.

Working at area scale. Due to the area decompo-
sition, routers do not possess the topological information
to compute a full, complete SR graph of the whole net-
work. Thus, we make routers only compute the SR graph
of their own area(s). Because exchanging the SR graphs
themselves implies a large volume of information to share,
we instead make the ABRs exchange their 2COP paths
(i.e., the non dominated paths to all destinations of their
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Figure 4: The set of solutions across areas is obtained from the
cartesian product of the solutions in each area.

areas) since we limit their numbers to I' at worst. This
exchange still provides enough information for all routers
to compute all 2COP paths for every destination.

More formally, each ABR A, computes b2cop(Ay, Ax)
and exchange the results with A,,Vy # x. Areas being
limited to a few hundreds routers on average, this com-
putation is very efficient. Note that ABRs also compute
b2cop(Ap, Ay), but need not exchange it, as all ABRs
perform this computation. Exchanging the computed 3D
Pareto front has a message complexity of |V| X ¢o X T" at
worst in theory. In practice, we expect both the size of
Pareto fronts and the number of relevant destinations to
consider to be fairly low (<< ' and << |V] resp.). In the
case of non-scalable Pareto fronts, one can opt for sending
only part of them but at the cost of relaxing the guarantees
brought by BEST2COP.

After exchanging messages, any ABR A, should know
the non-dominated paths from itself to A,,Vy # x, and
the non-dominated paths from A, to all nodes within
Ay. By combining this information, we can compute the
non-dominated paths from Ay to all nodes within A,, as
we will now detail.

Cartesian product. Since ABRs act as separators
within the graph, to reach a node within a given area A,,
it is necessary to go through one of the corresponding
ABRs Ay. It thus implies that non-dominated paths to
nodes within A, from Ay can be found by combining
beop(Ag, Ax, Ay) with beop(Ay, Ay). In other words, by
combining, with a simple cartesian product, the local non-
dominated paths towards the ABRs of a given zone with
the non-dominated paths from said ABRs to nodes within
the corresponding distant areas, one obtains a superset of
the non-dominated paths towards the destinations of the
distant area. In practice, since several ABR can co-exist,
it is necessary to handle the respective non-dominated
paths (bcop(Ay, Aly) and bcop(Ay, A2,)) with careful
comparisons to avoid incorrect combinations.

Post-processing and merging. To ensure that the
results obtained through the cartesian product afore-
mentioned are correct, some post-processing is required.
When combining segment lists, the latter are sim-
ply concatenated. More precisely, the resulting seg-
ment list necessarily possesses the following structure:



(uo,u1)| ... [(ui, A)|(A,vo)l ... [(vj-1,vj), with A denoting
an ABR. However, A being a separator, it is likely that
the best IGP path from u; to vy natively goes through A
without the need of an intermediary segment. Thus, seg-
ments of the form (u;, A)|(A,vg) can often be replaced by
a single segment (u;,vg). Such anomalies should be cor-
rected, as an additional useless segment may render the
path falsely unfeasible, even though it actually fits the
MSD constraint. This correction can be performed easily.
Let Al be the separator, if (u;, A1) and (Al,vq) are node
segments, and all best IGP paths from u; to vg go through
Al (or possess the same cost and delay as the best IGP
ones going through A2), the two node segments can be
replaced by a single one.

This correction is performed quickly and relies solely
on information available to the router (the local SR graph
and the received distances summary). Finally, after having
performed and corrected the cartesian products for all the
ABRs of the area, the latter are merged in a single Pareto
front.

Once performed for all areas, an ABR A, now possesses
all 2COP paths to all considered destinations within the
network. These can then be sent to routers within Ay,
who will need to perform similar computations to compute
non-dominated paths to all routers within a different area.
Note that the 2COP paths for each destination can be
sent as things progress, so that routers can process such
paths progressively (and in parallel) if needed.

Summary. By running BEST2COP within each area, be-
fore exchanging and combining the results, one can find
all non-dominated paths to each destination within a net-
work of 100000 nodes in less than 900ms. The induced
message complexity is manageable in practice and can be
further tuned if required. Our method can be adapted for
controller-oriented deployments.

3.5. A Limited Complexity with Strong Guarantees

3.5.1. An Efficient Polynomial-Time Algorithm

The flat BEST2COP. In the worst-case, for a given node
v, there are up to degree(v) XI" paths that can be extended
towards it. Observe that degree(v) is at least |V| (because
G’ is complete) and depends on how many parallel links v
has with its neighbors. With L being the average number
of links between two nodes in G’, on average we thus have
degree(v) = |V| x L X I paths to extend to a given node,
at worst. These extensions are performed for each node v
and up to MSD times, leading to a complexity of

O(co-T-|V|* L)

Using up to |V| threads, one can greatly decrease the
associated computation time. Note that, while the algo-
rithm is easily parallelizable with regular loads between
cores, the exhibited speedup ultimately depends on the
underlying hardware characteristics and the difficulty of
the problem instance. As such, while we will see that
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the speedup observed is significant, it is unlikely that
the theoretical (quasi-linear) speedup can be reached in
practice.

The Cartesian Product. Its complexity is simply
the size of the 2COP solution space squared, for each
destination, thus at worst O((cq -T')? - |V|). Note that we
can reach a complexity of O(c% -T'2), again with the use of
|V| threads since each product is independent. This worst
case is not expected in practice as metrics are usually
mostly aligned to result in Pareto fronts whose maximal
size is much smaller than c¢q - T'.

Overall, BEST2COP-E (multi-area) exhibits a com-
plexity of

0] (Co - (Co -+ L- maxVie[l..m](lvil)))

with V; denoting the set of nodes in each area i (m be-
ing their number) and the use of |V| threads and sufficient
CPU resources (this bound is achievable ideally because
the load is perfectly balanced and bottlenecks negligible).
Note that the cartesian product dominates this worst-case
analysis as long as the product V;- L remains small enough.
However, with realistic weighted networks, we argue that
the contribution of the Cartesian product is negligible in
practice, so BEST2COP-E is very scalable for real network-
ing cases.

3.5.2. What are the Guarantees one can expect when the
Trueness exceeds the Accuracy, i.e., if t >y ?

If propagation delays are measured with a really high
trueness (e.g., with a delay grain of 1 us or less), BEST2COP
(and so, BEST2COP-E) can either remain exact but slower,
or, on the contrary, rapidly produce approximated results.
In practice, if one prefers to favor performance by choos-
ing a fixed discretization of the propagation delay (to keep
the computing time reasonable rather than returning truly
exact solutions), this may result in an array not accurate
enough to store all non dominated delay values, i.e., two
solutions might end up in the same cell of such an array
even though they are truly distinguishable. Nevertheless,
we can still bound the margin errors, relatively or in ab-
solute, regarding constraints or the optimization objective
of the 2COP variant one aims to solve.

In theory, note that while no exact solutions remain
tractable if the trueness of measured delays is arbitrarily
high (for worst-case DCLC instances), it is possible to set
these error margins to extremely small values with enough
CPU power. If t < vy, each iteration of our algorithm in-
troduces an absolute error of at most % for the My metric,
r

i.e., the size of one cell in our array (recall that y = o
is the accuracy level and is the inverse of the delay grain
of the static array used by BEST2COP). So our algorithm
may miss an optimal constrained solution p¥ (for a desti-
nation d) only if there exists another solution p4 such that



d1(pa) = d1(p}) but the M; distance of both solutions as-
sociated to the same integer (that is stored in the same
cell of the dist array) i.e., only if d1(pa) < d1(p}) + 670.
In this case, we have da(p4) < d2(p];) because otherwise,
p;; would have been stored instead of py. From this ob-
servation, depending on the minimized metric, BEST2COP
ensures the following guarantees.

If one aims to minimize My or Ma (e.g., when solving
DCLC), then BEST2COP guarantees a solution p, that opti-
mizes the given metric, but this solution might not satisfy
the given delay constraint ¢ < ¢;. As an example, for

DCLC-SR (optimizing Ms), we have

do(pa) < co

d(pa) <c+c7°

da(pa) < d2(p})

With p? denoting the optimal constrained solution. When
minimizing M, the solution returned by BEST2COP for a
given destination d, pg4, will indeed verify the constraints
on My and Mz, and we have d1(pa) < di(p}) +c7°. The in-
duced absolute error of cg/y regarding the delay of paths
becomes negligible as the delay constraint increases. If
¢ ~ c1, the latter translates to a small relative error of
co/T". Conversely, it becomes significant if ¢ << ¢1. When
minimizing My or My, it is thus recommended to set ¢y
as low as possible regarding the relevant sub-constraint(s)
¢ < ¢ if necessary. Similarly, to guarantee a limited rel-
ative error when minimizing My, it is worth running our
algorithm with a small ¢ as we can have d1(p};) << c1.
However, note that this later and specific objective (in
practice less interesting than DCLC in particular) requires
some a priori knowledge, either considering the best delay
path without any c¢o and ¢y constraints, or running twice
BEST2COP to get d1(pyg) as a first approximation to avoid
set up ¢1 blindly initially (here ¢ is not a real constraint,
only co and ¢ apply as bounds of the problem, c¢; just
represents the absolute size of our array and, as such, the
accuracy one can achieve).

Even though BEST2COP exhibits strong and tunable
guarantees, it may not return exact solutions once two
paths end up in the same delay cell, which may happen
even with simple instances exhibiting a limited Pareto
front. Fortunately, a slight tweak in the implementation
is sufficient to ensure exact solutions for such instances.
Keeping the original accuracy of M; distances, one can
rely on truncated delays only to find the cell of each dis-
tance. Then, one possible option consists of storing up to
k distinct distances in each cell'3. Thus, some cells would

13In practice, note that several implementation variants are possi-
ble whose one consists of using the array only when the stored Pareto
front exceeds a certain threshold. Moreover, k can be set up at a
global scale shared for all cells or even all destinations, instead of a
static value per cell, to support heterogeneous cases more dynami-
cally. These approaches were also evoked in [66]
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form a miniature, undiscretized Pareto front of size kK when
required. This trivial modification allows the complexity
to remain bounded and predictable: as long as there exists
less than k distances within a cell, the returned solution
is exact. Otherwise, the algorithm still enforces the afore-
mentioned guarantees. While this modification increases
the number of paths we have to extend to k - I'" at worst,
such cases are very unlikely to occur in average. Notably,
our experiments show that 3D Pareto fronts for each desti-
nation contain usually less than ~ 10 elements at most on
realistic topologies, meaning that a small £ would be suf-
ficient in practice. In summary, BEST2COP is efficient and
exact to deal with simple instances and/or when ¢ > vy,
while it provides approximated but bounded solutions for
difficult instances if ¢t < y to remain efficient and so scal-
able even with massive scale IP networks.

4. Performance Evaluation

In this section, we evaluate the computation time of our
solution. We start by evaluating BEST2COP on various flat
network instances, ranging from worst-case scenario to real
topologies, and compare it to another existing approach
based on the Dijkstra algorithm, SAMCRA [68]. Then, after
having introduced our multi-area topology generator, we
evaluate the extended variant of our solution, BEST2COP-E,
on massive scale networks. In the following, we consider
our discretization to be exact (i.e., I' is high enough to
prevent loss of relevant information).

To conduct our evaluations, we consider that:

e cog = MSD = 10, as it is close to the best hardware
limit;

e L = 2: while some pairs of nodes may have more
than two parallel links connecting them in G, we argue
that, on average in G’, one can expect that the total
number of links in E’ is lower than 2|V|2.

e I'=1000, although this value is tunable to reflect the
expected product trueness-constraint on M;, we con-
sider here a fixed delay grain of 0.1ms (so an accuracy
level of y = 10) regarding a maximal constraint ¢; =
100ms. This I' limitation is realistic in practice and
guarantees the efficiency of BEST2COP even for large
complex networks as it becomes negligible considering
large |V|.

Note that the delays fed to SAMCRA are also discretized
in the same fashion as for BEST2COP, allowing the number
of non-dominated paths that SAMCRA has to consider to be
bounded and reduced. In addition, as SAMCRA is not de-
signed with the SR Graph in mind, it is difficult to know
which of the two methods mentioned in Section 3.2.1 is
the most suited to consider the segment metric. Thus,
we compare ourselves to both variants. First, we run
SAMCRA on the fully-meshed SR Graph, which allows to



use the SAMCRA algorithm nearly as-is. We call this vari-
ant SAMCRA+SRG. Second, we implement our conversion al-
gorithm, which allows to efficiently convert multi-metric
paths to segment lists. This method requires however fur-
ther modification of the SAMCRA algorithm, not only by
adding the conversion algorithm but also by extending its
dominancy checks (details can be found in Appendix Ap-
pendix B). We refer to this variant as SAMCRA+LCA.

Finally, note that our implementation of SAMCRA (both
SAMCRA+SRG and SAMCRA+LCA) is purely sequential. While
it may be possible to parallelize some inner loops (or the
outer one by adapting methods used to parallelize the Di-
jkstra algorithm [14]), doing so raises several challenges to
verify the correctness and actual efficiency of the resulting
algorithm in our context. As these issues were, to the best
of our knowledge, not discussed for the SAMCRA algorithm,
we prefer to remain close to its original design and leave
such challenges for future works.

All our experiments are performed on an Intel(R)
Core(TM) i7-9700K CPU @ 3.60GHz x 8.

4.1. Computing Time & Comparisons for Flat Networks

This section illustrates the performance of our algorithm
BEST2COP using three flat network scenarios. In particular,
we do not take advantage of any area decomposition to
mitigate the computing time.

As shown in [50] by forcing BEST2COP to explore its
full iteration space, our algorithm cannot exceed 80s at
worst on topologies of 1000 nodes. This upper bound can
however be drastically reduced through the use of multi-
threading, reaching a worst-case of ~ 10s when relying
on 8 threads, highlighting the parallel nature of our al-
gorithm 4. Additional information can be found in Ap-
pendix Appendix C for the interested reader.

We will see that in practice, BEST2COP is far from
reaching these upper bounds, even on random networks.
In the following, we will evaluate BEST2COP and compare
it to SAMCRA in two main scenarios: a real network with
real link valuations, and random networks of up to 10000
nodes.

Real network. We start by considering a real IP net-
work topology. We use our largest available ISP topology,
consisting of more than 1100 nodes and 4000 edges. This
topology describes the network of a Tier-1 operator and is
not available to the public *. While the IGP costs of each
link were available, we do not have their respective delays.
We thus infer delays thanks to the available geographical
locations we do possess: we set the propagation delays as
the orthodromic distances between the connected nodes
divided by the speed of light, and run both algorithms
on the obtained topology. The execution times are then

14 Additional experiments on a high-performance grid showed that
BEST2COP may reach a speed-up of 23 when running on 30 cores.

15While public topology datasets exist, these topologies are often
too small for our use-case and/or do not possess any link valuation.
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shown in Fig. 5. BEST2COP (1, 2, 8 threads) and SAMCRA
(with LCA and SRG) are run for every node as source,
resulting in the distributions showcased.

One can see that SAMCRA+SRG (4.e., SAMCRA run directly
on the SR Graph) exhibits the worst execution times out
of all the algorithms and variants presented, averaging at
100ms, and reaching 250ms at worst. Interestingly, this
shows that exploring the SR Graph itself may be detri-
mental to some algorithms (in particular priority-queue-
based ones) due to its high density. Hence, algorithms not
designed to take advantage of its features may fare better
by exploring the original, sparser topology, and using the
information within the SR Graph to compute the number
of necessary segments to encode the paths being explored.
This is visible on SAMCRA+LCA computation times. Our
construct, coupled with our conversion algorithm, allowed
SAMCRA+LCA to reach computation times very similar to
the mono-threaded variant of BEST2COP, with an average
execution time of ~ 60ms. Note that BEST2COP, which runs
on the SR Graph itself, shows equivalent execution time
when relying on a single thread. However, when relying
on multiple threads, BEST2COP outperforms its competi-
tor in all runs, reaching a computation time of ~ 25ms at
worst when using 8 threads, i.e., three times faster than
its competitor.

These low execution times are not only due to the
efficiency of the algorithms presented, but also to the
realistic link valuations, which tend to be correlated in
practice. In realistic cases, BEST2COP can thus work with
I' > 1000 and so with a supported accuracy ¢t >> 0.1ms
(to deal with a micro-second grain) for small enough delay
constraint (i.e., , << 100ms), while keeping the execution
time in the hundreds of milliseconds. One may notice that
(almost) perfectly aligned metrics reduce the usefulness of
any DCLC-like algorithm, but such metrics are not always
aligned for all couples in practice (even with realistic cases,
we observe that the average size of the 3D Pareto front
is strictly greater than 1, typically ~ 4). Our algorithm
deals efficiently with easy cases and remains exact'® and
efficient for more complex cases, e.g., with random graphs.

Random networks. The number of publicly available
large topologies being limited, we continue our evaluation
with random scenarios to assess the computation time of
the aforementioned algorithms on a larger number of sce-
narios.

We generate raw connected graphs of |[V| nodes by using
the Erdos-Rényi model. The generated topologies have a
degree of log(|V]). Both the delays and the IGP weights
are picked uniformly at random. IGP weights are chosen
within the interval [1,232/|V|/10], to ensure that no paths
possesses a cost higher than 232. Delays are chosen within
the interval [0,0.01 X ¢1], with ¢; = 100ms, to ensure that
a high number of feasible paths exist.

160r at least near exact for difficult instances having both high
trueness and exponential increasing Pareto fronts.
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Figure 5: Computation time of BEST2COP and SAMCRA on various experiments. Although the results can be close when considering mono-
threaded BEST2COP and SAMCRA, our algorithm always outperforms its competitor when using multi-threading. In some cases, multi-threading

is not even necessary

We start by running BEST2COP and SAMCRA for |V| rang-
ing from 100 to 1000 (with steps of 100). To account for
the randomness of both valuation functions, we generate
30 differently weighted distinct topologies for each value of
|V|. We run BEST2COP and SAMCRA for 30 nodes selected as
representative sources (randomly picked uniformly). Com-
puting times are shown in Fig 5.

While the computation times are slightly higher (due
to the random valuations which lead to a higher number
of non-dominated paths), the results are similar to the
previous experiment. These results display more clearly
that SAMCRA does not benefit from exploring the SR Graph.
Indeed, on random networks, SAMCRA+SRG is about 7 times
slower than the other algorithms displayed. However, as
on real networks, SAMCRA+LCA shows results close (if not
equal) to BEST2COP execution time. Nevertheless, even
on random networks, BEST2COP remains three times faster
than its competitor when relying on 8 threads.

Interestingly, BEST2COP mono-threaded and SAMCRA+LCA
computation times get closer as |V| increases. Thus, we
continue our comparison on networks of 2000 to 10000
nodes. Given the long computation times of SAMCRA+SRG,
we here only consider SAMCRA+LCA. The results are shown
in Fig. 5. On such networks, BEST2COP (mono-threaded)
exhibits an execution time of 7s, while SAMCRA+LCA
remains under 5s. The quadratic complexity of BEST2COP
(whose main factor is |V|?) is here clearly visible.
SAMCRA+LCA exhibits a less steep growth. However, when
relying on multiple-thread, BEST2COP remains far more
efficient. While two threads already allow to reach an
execution time slightly lower than SAMCRA (4s), 8 threads
allow BEST2COP to remain 3.3 times faster than its
competitor.

~
I~

Summary. The way to use the SR Graph has a high
impact on the underlying algorithm. As the SR Graph is
not at the core of SAMCRA’s design, exploring the latter
lead to high execution time due to its density. However,
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adding our conversion algorithm (which relies on the
SR Graph data) within SAMCRA allowed the latter to
reach competitive execution times while solving 2COP.
BEST2COP, which explores the SR Graph directly, exhibits
an execution similar to SAMCRA+LCA when relying on a
single thread. When using multi-threading, BEST2COP
clearly outperforms its competitor in all scenarios.

In any case, it is interesting to note that even BEST2COP
takes more than one second on networks of 10000 nodes.
To showcase the performance of our contribution on
massive-scale networks, we now evaluate the execution
time of its extension, BEST2COP-E, which supports and
leverages OSPF-like area division. This version is adapted
to tackle TE problems in massive-scale hierarchical net-
works. In the following, we only consider our approach. In-
deed, the latter showcased better performance that SAMCRA
even without relying on multiple threads when considering
a topology size |V| < 1000, which encompasses the size of
standard OSPF areas.

However, before continuing analyzing the computing
time results, we first introduce our generator for massive-
scale, multi-areas, realistic network having two valuations
(IGP cost & delays).

4.2. Massive Scale Topology Generation

To the best of our knowledge, although such networks
exist in the wild, there are no massive scale topologies
made publicly available which exhibit IGP costs, de-
lays, and area subdivision. For example, the graphs
available in the topology zoo (or sndlib) datasets do
not exceed 700 nodes in general. Moreover, the ones
for which the two metrics can be extracted, or at least
inferred, are limited to less than 100 nodes. Thus, at first
glance, performing a practical massive-scale performance
evaluation of BEST2COP-E is highly challenging if not
impossible. There exist a few topology generators [61, 54]
able to generate networks of arbitrary size with realistic



networking patterns, but specific requirements must be
met to generate topologies onto which BEST2COP-E can
be evaluated, in particular the need for two metrics and
the area decomposition.

Topology generation requirements. First, the
experimental topologies must be large, typically between
10000 and 100000 nodes. Second, they must possess
two valuation functions as realistic as possible, one for
the IGP cost and the other modeling the delay. Third,
since the specific patterns exhibited by real networks
impact the complexity of TE-related problems, the
generated topologies must possess realistic structures
(e.g., with respect to redundancy in the face of failures
in particular). Finally, for our purposes, the topology
must be composed of different areas centered around a
core backbone, typically with two ABRs between each to
avoid single points of failure. Since we do not know any
generator addressing such requirements, we developed
YARGG (Yet Another Realistic Graph Generator),
a python tool(Code available online '7) which allows
one to evaluate its algorithm on massive-scale realistic
IP networks. In the following, we describe the gener-
ation methods used to enforce the required characteristics.

High-level structure. One of the popular ISP
structure is the three-layers architecture [11], illustrated
in Fig. 7. The access layer provides end-users access to
the communication service. Traffic is then aggregated
in the aggregation layer. Aggregation routers are con-
nected to the core routers forming the last layer. The
aggregation and access layers form an area, and usually
cover a specific geographical location. The core routers,
the ABRs connecting the backbone other areas, and
their links, form the backbone area that interconnect
the stub areas, i.e., the aggregation and access layers
of the different geographical locations. Core routers are
ABRs and belong both to a sub-area, per couple of 2 for
redundancy. Thus, while the access and aggregation layers
usually follow standard structures and weight systems
recommended by different network vendors, the backbone
can vastly differ among different operators, depending
on geographical constraints, population distribution, and
pre-existing infrastructure.  Taking these factors into
account, YARGG generates large networks by following
this 3-layer model, given a specific geographical location
(e.g., a given country).

Generating the core network and the areas.
YARGG is a heuristic that generates the core network
by taking the aforementioned considerations into account:
existing infrastructures, population, and geographical con-
straints. An example of a core network as generated by
YARGG may be seen in Fig. 6. Given a geographical lo-

Thttps://github.com/JroLuttringer/YARGG

Figure 6: Core network (before step 5) generated by YARGG in
France. While we consider the road distances, we represent the links
in an abstract fashion for readability purposes. The color and width
of the links represent their bandwidth (and thus their IGP costs).

cation (e.g., a country or a continent), YARGG builds the
structure of the core network by

1. Extracting the x most populated cities in the area.
Close cities are merged in a single entity. The merge
trigger value may change (the exact values used here
can be found in [49]).

2. Constructing a minimum Spanning-Tree covering all
cities of the area, using road distances as the metric.
Links between cities totaling more than 30% of the
total population are normalized in order to be highly
prioritized.'®

3. Remowing articulation-points. YARGG picks one bi-
connected component, and adds the smallest link (in
terms of road distances) that bridges this compo-
nent with another. This process is repeated until no
articulation point remains (i.e., the topology is bi-
connected).

4. Adding links increasing the connectivity and resilience
for a limited cost. YARGG considers all links meeting
certain criterias. The two cities/nodes must be closer
than 20% of the largest road distance. Their cur-
rent degree must be lower than 4. The link, if added,
should reduce the distance (and so, the delay) be-
tween the nodes by at least 25%. Among these links,
YARGG adds the one with the highest attractiveness,
expressed as the sum of the distance reduction and the
population of the cities (normalized).

5. Doubling the obtained topology. The topology is dou-
bled. There are now two nodes (/routers) per city.
Links are added between the two routers of the same
city, making the topology tri-connected.

18The parameters tuned may be easily modifier. For now, the
latter are purely empirical.
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Figure 7: Weights and structures of an area generated by YARGG.

The couple of routers located at each city within this
generated backbone area become the ABRs between the
backbone and their area, which is generated next.

Access & aggregation layers. These last two
layers make up a non-backbone area and span a reduced
geographical area. Thus, one access and one aggregation
layer are located in each city considered by YARGG. Sev-
eral network equipment vendors recommend a hierarchical
topology, such as the three-layer hierarchical model [12].
An illustration can be seen in Fig. 7. Simply put, there
should be two core routers (the ABRs) at the given
location (a city in YARGG’s case). Each core router is
connected to all aggregation routers. For better resiliency,
the aggregation layer is divided into aggregation groups,
composed of two connected routers. Finally, routers
within an aggregation group are connected to access-layer
routers. To achieve areas of ~ 300 nodes, we consider 30
access routers per aggregation group. This results in a
large, dense, and realistic graph.

Weights. In the backbone, the weights generated
by YARGG are straightforward. The delays are extracted
from the road distances between the cities, divided by 60%
the speed of light (close to the best performing fiber optic).
The IGP cost is 1 for links between large cities since these
links usually have a high bandwidth (in black in Fig. 6), 2
for standard links, necessary to construct a tri-connected
graph (added at step 3, in red in Fig. 6), and 5 for links
that are not mandatory, but that increase the overall con-
nectivity (added at step 4, in orange in Fig. 6).

Within an area, the IGP costs follow a set of realistic
constraints, according to two main principles: (i) access
routers should not be used to route traffic (except for the
networks they serve), (ii) links between routers of the
same hierarchical level (e.g., between the two core routers
or the two aggregation routers of a given aggregation
group) should not be used, unless necessary (e.g., multiple
links or node failures). These simple principles lead to
the IGP costs exhibited in Fig. 7. The delays are then
chosen uniformly at random. Since access routers and
aggregation routers are close geographically, the delay of
their links is chosen between 0.1 and 0.3ms. The delay
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between aggregation routers and core routers is chosen
between 0.3ms and the lowest backbone link delay. Thus,
links within an area necessarily possess a lesser delay than
core links.

Summary. YARGG computes a large, realistic, and
multi-area topology. The backbone spans a given geo-
graphical location and possesses simple IGP weights and
realistic delays. Other areas follow a standard three-layer
hierarchical model. Weights within a stub area are cho-
sen according to a realistic set of usual ISP constraints.
Delays, while chosen at random within such areas, remain
consistent with what should be observed in practice.

4.8. Computing Time for Massive Scale Multi-Areas Net-
works

Using YARGG, we generate five massive scale,
continent-wide topologies, and run BEST2COP on each one
of them. The topologies ranges from 10000 to 100000
nodes. Each non-backbone area possess around 320 nodes.
The topologies, their geographical representations and
some of the associated network characteristics can be
found online [49].

We run BEST2COP on each ABR as a source (around
[V]/320 X 2 sources). The time corresponding to the mes-
sage exchange of the computed Pareto front (step 2 of
BEST2COP-E) is not taken into consideration. Thus, the
computation time showcased is the sum of the average
time taken by ABRs to perform the preliminary intra-area
BEST2COP (and the distances to segment lists conversions)
plus the time taken to perform the |V|/320x2-2 Cartesian
products (for all other ABRs of all other areas).

Note that we consider an ABR as a source and not an
intra-area destination. In practice, the ABR would send
the computed distances to the intra-area nodes, who in
turn would have to perform a Cartesian product of these
distances with its own distances to said ABR. However,
both the ABR and the intra-area node have to consider
the same number of destinations (|V]), and the results
computed by the ABR can be sent as they are generated
(destination per destination), allowing both the ABR and
the intra-area nodes to perform their Cartesian product
at the same time. In addition, intra-area nodes may ben-
efit from several optimizations regarding their Cartesian
product, if the constraints of the desired paths are known
(these optimizations will not be used nor detailed in this
paper). For these reasons, we argue that the time mea-
sured here, using an ABR as a source, is representative of
the total actual time required, i.e., the overall worst time
for the last treated destination at each source.

The results of this experiment are shown in the vio-
lin plot of Fig. 8. By leveraging the network structure,
BEST2COP-E exhibits very good performance despite the
scale of the graph. For 10000 nodes, BEST2COP-E ex-
hibits a time similar to the one taken by its flat variant
for |V| = 2000. Furthermore, BEST2COP-E seems to scale
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Figure 8: BEST2COP-E computation time on 5 continent-wide topologies generated by YARGG.

linearly with the number of nodes, remaining always un-
der one second for |V| ~ 75000. Even once the network
reaches a size of ~ 100000, BEST2COP-E is able to solve
2COP in less than one second for a non-negligible fraction
of the sources, and never exceeds 1.5s.

Note that the times showcased here rely on a single
thread. While BEST2COP-E’s Cartesian product can be
parallelized locally (both at the area and the destination
scale), this parallelization hardly has any effect. This is
explained by the fact that these individual computations
are in fact fairly efficient, hence the overhead induced by
the creation and management of threads is heavier than
their workload. In addition, since BEST2COP deals with
very large topologies, some complex memory-related ef-
fects might be at play. Indeed, we notice these results to
surprisingly vary depending on the underlying system, op-
erating system, and architecture due to the differences in
terms of memory management.

Thus, while massive scale deployments seem to a priori
prevent the usage of fine-grained TE, their structures can
be leveraged, making complex TE problems solvable in less
than one second even for networks reaching 100 000 nodes.
The computations performed for each area can also be
distributed among different containers within the cloud, if
handled by a controller.

5. Conclusion

While the overhead of MPLS-based solutions lead to a
TE winter in the past decade, Segment Routing marked
its rebirth. In particular, SR enables the deployment of a
practical solution to the well-known DCLC problem. Our
algorithm, BEST2COP [50] (Best Exact Segment Track for
2-Constrained Optimal Paths), iterates on the SR Graph
to natively solve DCLC in SR domains with strong guar-
antees, through simple and efficient data structures and
concepts.

In this paper, we went several steps further with the
following achievements:
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e experimentally demonstrating that SR is a relevant
technology to deploy DCLC paths;

e for massive scale ISPs relying on area-subdivision, we
extend BEST2COP to BEST2COP-E, partitioning 2COP
into smaller sub-problems, to further reduce its overall
complexity (time, memory and churn);

e through extensive evaluations, relying on multi-
threading and our own multi-metric/multi-areas net-
work generator, we have shown that BEST2COP-E is
very efficient in practice. This was confirmed through
a comparison with a relevant state-of-the-art algo-
rithm, which benefited from a novel path to segment
multi-metric conversion algorithm that we designed.

To the best of our knowledge, BEST2COP is the first prac-
tically exact and efficient solution for 2COP within SR
domains, making it the most practical candidate to be
deployed for such a TE flavor in today ISPs. It is able
to solve 2COP on massive scale realistic networks hav-
ing 100000 nodes in less than a second. For large ar-
eas having thousands of routing devices, we have shown
that BEST2COP(-E) can easily deal with random topolo-
gies while its competitors do not scale.

More advanced and flexible structures can be envisioned
to deal with high trueness requirements, while deploying
novel flex-algo strategies can help to mitigate the rare SR
limit drawbacks. Finally, exploring the efficiency of paral-
lel Dijkstra-based solutions and associated trade-offs in a
multi-metric context is also an interesting perspective.
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