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Abstract

A recent runtime analysis (Zheng, Liu, Doerr (2022)) has shown that
a variant of the NSGA-II algorithm can efficiently compute the full Pareto
front of the OneMinMax problem when the population size is by a constant
factor larger than the Pareto front, but that this is not possible when the
population size is only equal to the Pareto front size. In this work, we an-
alyze how well the NSGA-II approximates the Pareto front when it cannot
compute the whole front. We observe experimentally and by mathematical
means that already when the population size is half the Pareto front size,
relatively large gaps in the Pareto front remain. The reason for this phe-
nomenon is that the NSGA-II in the selection stage computes the crowding
distance once and then repeatedly removes individuals with smallest crowd-
ing distance without updating the crowding distance after each removal.
We propose an efficient way to implement the NSGA-II using the momen-
tary crowding distance. In our experiments, this algorithm approximates
the Pareto front much better than the previous version. We also prove that
the gaps in the Pareto front are at most a constant factor larger than the
theoretical minimum.

∗Corresponding author.
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1 Introduction

While the theory of evolutionary algorithms (EAs), in particular, the mathematical
runtime analysis, has made substantial progress in the last 25 years [NW10, AD11,
Jan13, DN20], the rigorous understanding of multi-objective EAs (MOEAs) is less
developed and is massively lagging behind their success in practice. However, the
last few years saw significant activity, for example [BQT18, RNNF19, QYT+19,
ZYQ19, QBF20, BFQY20, DZ21, Cra21]. In particular, now the first analyses
of MOEAs that are used in practice (as opposed to synthetic example) have ap-
peared, namely several analyses of the MOEA/D [LZZZ16, HZCH19, HZ20] and
a first analysis of the NSGA-II [ZLD22], the by far dominant algorithm in prac-
tice [ZQL+11].

The analysis of the NSGA-II [ZLD22] proved that several variants of this algo-
rithm can compute the full Pareto front of the OneMinMax benchmark efficiently
when the population size is chosen by a constant factor larger than the size of the
Pareto front (which is n + 1 for the OneMinMax problem). However, it was also
proven that a population size larger than the Pareto front is necessary – if these
two sizes are only equal, then with probability 1 − exp(−Ω(n)) for an exponen-
tial number of iterations the population of the NSGA-II will not cover a constant
fraction of the Pareto front. Experiments show that this fraction is roughly 20%
for the OneMinMax benchmark and roughly 40% for the LOTZ benchmark.

Since we cannot assume that the NSGA-II is usually run with a population size
larger than the Pareto front by a constant factor – both because the algorithm user
does not know the size of the Pareto front and because some problems have a so
large Pareto front that using a comparably large population size is not possible –,
a deeper understanding of the performance of the NSGA-II in such situations is
highly desirable (and this is our target in this work).

There is some reason to be optimistic: The experiments conducted in [ZLD22]
for the case that the population size equals the size of the Pareto front not only
showed that 20% or 40% of the Pareto front was not covered, but they also show
that the missing points are relatively evenly distributed over the Pareto front (the
largest empty interval ever seen was of length 4). Hence the population evolved by
the NSGA-II in these experiments was a good approximation of the Pareto front.

Our more detailed analysis of the approximation qualities of the NSGA-II can-
not fully support this optimism, but still shows a fair approximation capability
of the NSGA-II. More importantly, we detect in the selection mechanism of the
NSGA-II a reason for the lower-than-expected approximation capability, we pro-
pose a modification of the algorithm, and we prove that this modified NSGA-II
approximates well the Pareto front.

In detail, when we ran the experiments for the OneMinMax with problem
size n = 601 and population sizes N = (n + 1)/2 = 301, ⌈(n + 1)/4⌉ = 151,
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and ⌈(n + 1)/8⌉ = 76, empty interval with size at least twice ⌈ (n+1)−1
N−1

⌉ remains.
Unfortunately, due to the complicated population dynamics of the NSGA-II, we
were not able to support these experimental findings with a mathematical analysis.
Nevertheless, the experimental results are quite clear and show that even on a
simple benchmark like OneMinMax, the largest empty interval the population
has on the Pareto front is much larger than the ideal value (n+1)−1

N−1
, which would

result from a perfect distribution of the population on the Pareto front.
To better understand how this discrepancy can arise, we regard two synthetic

examples. We show that when the combined parent and offspring population is
such that each point on the Pareto front is covered exactly once (this implies
that the population size is essentially half the size of the Pareto front), then with
high probability the next parent population does not cover an interval of length
Θ(log n) on the Pareto front (whereas simply removing every second point would
give a population such that each point on the Pareto front has a neighbor that is
covered by the population). We further construct a more artificial example where
the combined parent and offspring population covers the Pareto front apart from
isolated points, but the next parent population does not cover an interval of length
n/3 of the Pareto front.

The reason why we were able to construct such examples is the following prop-
erty of the selection scheme of the NSGA-II. To select the new parent population,
the NSGA-II uses as first criterion the non-dominated sorting and then the crowd-
ing distance. The crowding distance, however is not updated during the selection
process. That is, while removing individuals with smallest crowding distance, the
changing crowding distance of the remaining individuals is not taken into account,
but instead the algorithm proceeds with the initial crowding distance. We assume
that this design choice was made for reasons of efficiency – by not updating the
crowding distance, it suffices to sort the combined parent and offspring population
and then remove the least interesting half of the individuals.

Since, as our examples show, this procedure can lead to very imbalanced se-
lections, we design a version of the NSGA-II which updates the crowding distance
after each removal. Consequently, in the selection step, when comparing individu-
als in the same non-dominated sorting front, it repeatedly removes the individuals
that at that moment have the smallest crowding distance. We note that this pro-
cedure can be implemented very efficiently: The removal of one individual changes
the crowding distance of at most 4 other individuals (in a bi-objective problem), so
at most 4 crowding distance values need to be updated. There is no need for a new
sorting from scratch when we use as a data structure a priority queue. With this
implementation, the whole selection takes not more than O(N log N) operations,
which is the same order of magnitude as the one sorting in the original NSGA-II.

3



For this modified NSGA-II, the problems shown above cannot occur. We prove
that this algorithm for the OneMinMax benchmark computes efficiently a pop-
ulation such that the largest empty interval on the Pareto front has length at
most 4n

N−3
, hence at most a constant factor larger than the theoretical minimum of

(n+1)−1
N−1

. Hence when the population size not large enough to cover the full Pareto
front, this algorithm computes very good approximations to the Pareto front. Our
experiments confirm this finding. For the problem size n = 601, the modified
algorithm could almost reach the ideal MEI value for all three different population
sizes N = 301, 151, and 76, while the traditional NSGA-II have at least twice MEI
value than the ideal one.

This work is organized as follows. Section 2 briefly introduces the bi-objective
optimization and the NSGA-II. Section 3 discusses the approximation assessment
that will be used in this work. The difficulty caused by the survival selection in
traditional NSGA-II is theoretically shown via two synthetic examples in Section 4,
and Section 5 introduces our modified variant and conducts the theoretical analysis
on its approximation ability. Our experimental verifications are shown in Section 6,
and Section 7 concludes this work.

2 Preliminaries

2.1 Bi-objective Optimization

This paper concentrates on the bi-objective optimization problem f = (f1, f2) :
{0, 1}n → R

2 with each objective to be maximized. For x, y ∈ {0, 1}n, we say x
strictly dominates y, denoted by x ≻ y, if f1(x) ≥ f1(y), f2(x) ≥ f2(y) and at least
one of the inequalities holds. If x cannot be strictly dominated by any solution in
{0, 1}n, we say x is Pareto optimal and f(x) a Pareto front point. The set of all
Pareto front points is called Pareto front. The aim for a multi-objective optimizer
is to obtain as many points in the Pareto front as possible.

Here we introduce one popular bi-objective benchmarks, OneMinMax, in evo-
lutionary theory community. OneMinMax is first proposed by [GL10] and stems
from the early COCZ benchmark [LTZ+02]. The first objective of the OneMin-

Max counts the number of zeros in the bit-string, and the second objective counts
the number of ones. More specifically, for any x = (x1, . . . , xn) ∈ {0, 1}n, the
OneMinMax function is defined as

f = (f1, f2) =

(

n −
n
∑

i=1

xi,
n
∑

i=1

xi

)

.

It is not difficult to see that any solution x ∈ {0, 1}n is Pareto optimal, and the
Pareto front is (0, n), (1, n − 1), . . . , (n, 0).
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Our following theoretical and empirical analyses will be conducted on the One-

MinMax to see the approximation ability.

2.2 NSGA-II

We give a brief introduction on the NSGA-II, which is first proposed in [DPAM02],
and the by far dominant algorithm in practice [ZQL+11]. It has a fixed population
size N . Each time new individuals are generated, MOEAs need to adopt a strategy
to remove some individuals to maintain a fixed population size. NSGA-II designs
the complete order that uses the dominance as the first criterion and the diversity
measure (crowding distance) as the second criterion so that every two individuals
in the population are comparable, and removes the worst individuals.

Detailedly, after the random initialization, in each generation, the offspring
Qt with population size of N is generated from the parent population Pt, and
then NSGA-II need to remove N individuals from the combined population Rt =
Pt ∪ Qt. It divides Rt into several fronts F1, F2, . . . where F1 is the set of the non-
dominated solutions in Rt, and Fi, i > 1 is the set of the non-dominated solutions
in Rt \ {F1, . . . , Fi−1}. For the first index i∗ such that the size of ∪i∗

i=1Fi is larger
than N , the NSGA-II will calculate the crowding distance, denoted by cDis of
the individuals in Fi∗ . For each objective, it sorts the individuals according to
their objective values, the cDis value of the first and last points in the sorted list
is infinite, and the cDis of an individual with respect to the current objective is
the distance of the objective values of its two neighbors in the list. The complete
cDis of the individual is the sum of its cDis components for all objectives. Then
|∪i∗

i=1Fi|−N number of individuals in Fi∗ with the smallest crowding distance value
will be removed, and the tie is broken randomly. The procedures for the calculation
of the crowding distance and the NSGA-II framework is respectively shown in
Algorithm 1 and Algorithm 2. Besides, we call it “fair (mating) selection” when
generating N offspring from the parent population that each parent will generate
one offspring, and call it “random selection when generating N offspring via N
times choosing an individual uniformly at random from the parent population.

Zheng, Liu, and Doerr [ZLD22] recently conducted the first mathematical run-
time analysis on the NSGA-II, that is, the first series of theoretical results about
the number of fitness evaluations that the NSGA-II needs to cover the Pareto
front. They showed that the NSGA-II with several mating selection and mu-
tation strategies can efficiently (with the same runtime complexity as the basic
global simple evolutionary multi-objective optimizer (GSEMO) [Gie03], that is,
O(n2 log n) for the n-dimensional OneMinMax and O(n3) for the n-dimensional
LOTZ) cover the full Pareto front when the population size is a constant factor
larger than the Pareto front size of the OneMinMax and LOTZ with the con-
stant properly chosen. However, they also theoretically and empirically showed
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Algorithm 1 crowding-distance(S)

Input: S = {S1, . . . , S|S|}: the set of individuals

Output: cDis(S) =
(

cDis(S1), . . . , cDis
(

S|S|

))

where cDis(Si) is the crowding
distance for Si

1: cDis(S) = 0
2: for each objective fi do

3: Sort S in order of descending fi value: Si.1, . . . , Si.|S|

4: cDis(Si.1) = +∞, cDis
(

Si.|S|

)

= +∞

5: for j = 2, . . . , |S| − 1 do

6: cDis(Si.j) = cDis(Si.j) +
fi(Si.j−1)−fi(Si.j+1)

fi(Si.1)−fi(Si.|S|)
7: end for

8: end for

Algorithm 2 NSGA-II

1: Uniformly at random generate the initial population P0 = {x1, x2, . . . , xN} for
xi ∈ {0, 1}n, i = 1, 2, . . . , N.

2: for t = 0, 1, 2, . . . do

3: Generate the offspring population Qt with size N
4: Using the fast-non-dominated-sort() in [DPAM02] to divide Rt into

F1, F2, . . .
5: Find i∗ > 1 such that | ∪i∗−1

i=1 Fi| < N and | ∪i∗

i=1 Fi| ≥ N , or i∗ = 1 for
|F1| ≥ N

6: Using the crowding-distance() in Algorithm 1 to separately calculate the
crowding distance of each individual in F1, . . . , Fi∗

7: Let F̃i∗ be the N−|∪i∗−1
i=1 Fi| individuals in Fi∗ with largest crowding distance,

chosen at random in case of a tie
8: Pt+1 =

(

∪i∗−1
i=1 Fi

)

∪ F̃i∗

9: end for

the exponential runtime to not cover the full Pareto front with population size the
same as the Pareto front size. As far as we know, [ZLD22] is the only work theo-
retically discussing the runtime (number of iterations or fitness evaluations) about
the NSGA-II, although there is literature about the implementational complexity
of the operations for each iteration, like the original NSGA-II paper [DPAM02].
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3 Approximation Assessment

Although [ZLD22] pointed the inefficiency of the NSGA-II with not proper popu-
lation size (see in the previous section), their experiments also indicated the fair
approximation ability of the NSGA-II as the maximal empty interval size was of
length 4. As this work will focus on the approximation ability, this section will
introduce the approximation assessments for the MOEAs.

3.1 Related Assessment

The approximation of the Pareto front is usually considered when the final set
of the objectives of the Pareto optima that one MOEA reached is smaller than
the full Pareto front for the given problem, or even when the full Pareto front
is not known (usually in the practical applications). For the theoretical analysis,
the multiplicative ε-dominance relation [LTDZ02] is used in [HN08] and [BFN08]
to show that for a large front function the GSEMO cannot have a good approx-
imation in expected polynomial time but the ε-dominance based algorithm and
the (µ + 1)-simple indicator-based evolutionary algorithm ((µ + 1)-SIBEA) can
efficiently reach such approximation. Although we are aware of the other approx-
imation assessments used in practice for both multi-objective and many-objective
optimization [LLTY15], like hypervolume indicator [ZT98], and inverted genera-
tional distance [BT03], we just give a brief introduction on the ε-dominance as it
is used in the theory community, but we are optimistic (and leave it as our future
work) that the assessment discussed in this paper can also be transferred to these
indicators since the analyzed problems are relatively simple.

The multiplicative ε-dominance relation generalizes the common “dominance”
concept by not requiring the exact comparison of the function values between two
solutions but the comparison of the function values of one solution multiplied with
(1 + ε) and the exact function value of the other solution. In this definition, more
solutions could be comparable, and the MOEA with good approximation ability
should obtain a set of solutions (population) that every Pareto optimal solutions
can be ε-dominated by at least one solution in the population. Here is the formal
definition. It is not difficult to see that the smaller ε, the better approximation
one algorithm could obtain.

Definition 1 (Multiplicative ε-dominance relation [LTDZ02]). Let ε > 0 and
m > 0 be the number of objectives. For u, v ∈ R

m, we say u ε-dominates v,
denoted by u �ε v, if and only if (1 + ε)u ≥ v, that is, (1 + ε)ui ≥ vi for all
i = 1, . . . , m.

Let W = {u | u ∈ R
m} be the whole objective vector set for a given problem.

We say a subset S ⊂ W is an ε-approximation for this problem if and only if for
each v ∈ W , there exists u ∈ S such that u �ε v.
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3.2 Maximal Empty Interval Size

The ε-dominance is a general measure for the problem with known Pareto front.
For the n-dimensional OneMinMax that this paper will analyze, each possible
objective value is on the Pareto front and the first objective values of full Pareto
front are exactly 0, 1, . . . , n. Any missing Pareto front point can be directly seen
in [0..n], hence, we now simply use a measure about the size of the maximal empty
interval, denoted as MEI, inside [0..n] in terms of the solutions that one MOEA
could reach and with respect to f1 values. If the maximal empty interval size is
as small as possible, then the MOEA can approximate the Pareto front as well
as possible. We will also show the transformation from the MEI to the general
ε-dominance in Section 3.3. The formal definition of the MEI of one set U with
respect to one metric h is shown in the following.

Definition 2. For a given metric h : {0, 1}n → R≥0 and a given set U =
{u1, . . . , um} ⊂ {0, 1}n with size of m, let v1, v2, . . . , vm be one sorted list of
h(u1), . . . , h(um) in the order of decreasing value of h. We define the maxi-
mal empty interval size of U w.r.t. h, denoted by MEI(U, h), as MEI(U, h) =
max{vi − vi+1 | i = 1, . . . , m − 1}.

It is not difficult to see that the ideal (smallest) MEI for OneMinMax and
an MOEA with a fixed population size happens when the population is evenly
distributed. We explicitly formalize it in the following lemma as it is the tight lower
bound of the MEI, and could reflect the discrepancy about how well an MOEA
could approximate the Pareto front for the OneMinMax both theoretically and
empirically.

Lemma 3. Consider one MOEA with fixed population size N to optimize the
n-dimensional OneMinMax. The ideal (smallest) MEI is ⌈ n

N−1
⌉.

3.3 Transformation Between Two Measures

As noted before, for the simple problem OneMinMax that this paper will discuss,
our considered MEI approximation measure can be easily transferred to the ε-
approximation measure that used in the theory community. The transformation is
shown in the following lemma, which can be easily obtained from the definitions.
We are also optimistic that for the OneMinMax, MEI can also be transferred to
the hypervolume and inverted generational distance. Due to the limited space, we
will omit it and leave as our near future work.

Lemma 4. Let f = (f1, f2) be the OneMinMax function defined on bit-strings
of length n. Let P be a population of solutions of f . Assume that 0n, 1n ∈ P and
that k := MEI(P, f1) < n

2
. Then P is an ε-approximation of f for all ε ≥ 2k−2

n−2k+2
.
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Proof. Let v = (i, n − i), i ∈ [0..n] be any point in the objective space of f . If
v ∈ f(P ), then from the definition of ε-dominance, we know v �ε v for any ε > 0.
Hence, in the following, we just consider the case that v /∈ f(P ). That is, since
{0n, 1n} ⊂ P , we just consider i = [1..n − 1]. By symmetry, we may assume
that i ≥ n

2
. Let ε ≥ 2k−2

n−2k+2
. We show that there is an element x ∈ P with

(1 + ε)f(x) ≥ v.
Let j ∈ [0..i − 1] maximal such that there is an x ∈ P with f(x) = (j, n − j).

Since j < i, we have n − j > n − i and thus in particular (1 + ε)(n − j) ≥ n − i.
By definition of MEI(·, ·), we have j ≥ i − k + 1 ≥ n

2
− k + 1. We compute

(1 + ε)j = j + εj ≥ j + ε(n
2

− k + 1) ≥ j + k − 1 ≥ i, the latter again by definition
of MEI(·, ·). This shows the claim.

Since our MEI measure is more intuitive and can be easily transferred to the
ε-approximation that utilized in the theory community, we will use MEI as the
approximation measure to see how close that one MOEA could achieve to the ideal
⌈ n

N−1
⌉ in the remaining of this work.

4 Difficulties for the NSGA-II to Approximate

the Pareto Front

In this section, we show that the traditional way how the NSGA-II selects the
next population, namely by relying on the initial crowding distance, can lead to
not perfect approximations of the Pareto front. The experiments in Section 6
show that the large gap between the MEI for the traditional NSGA-II and the
ideal one, like at least 24 for the first quantile among all data in 20 independent
runs while the ideal MEI is 9 for the population size N = 76 on the 601-dimensional
OneMinMax. In the following, we analyze the result of the selection from two
different combined parent and offspring populations. These examples demonstrate
quite clearly that the traditional selection can lead to unwanted results. We note
that these results do not prove completely that the NSGA-II has difficulties to find
good approximations since we do not know how often the NSGA-II enters exactly
these situations. Unfortunately the population dynamics of the NSGA-II are too
complicated for a full proof. Our experimental results, however, indicate that the
phenomena we observe in these synthetic situations (in particular, the first one)
do show up.

We start by regarding at the ideal-looking situation that the combined parent
and offspring population for each point on the Pareto front contains exactly one
individual. Hence by removing the individual corresponding to (essentially) every
second point on the Pareto front, one could obtain a very good approximation of
the front. Surprisingly, the NSGA-II does much worse. Since all solutions apart
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from the two extremal ones have the same crowding distance, the NSGA-II removes
a random set of N out of these 2N − 2 inner solutions. As we show now, with
high probability this creates an uncovered interval on the Pareto front of length
Θ(log n). The upper bound for the expectation is proved via calculating of the
probability to remove an interval with size c log n (for a certain large constant
c) and a union bound among all possible such intervals as the upper bound of
o(1/nc−1) for MEI ≥ c log n, and then comes the expectation of O(log n). For
the lower bound in expectation, the key is to use the following removal process
(with respect to the empty interval size) to deal with the stochastic dependency in
the traditional removal process: first selecting N inner individuals with repetition,
and then repeating removing random inner individuals until N individuals are
removed.

Lemma 5. Let n ≥ 7. Consider using the NSGA-II to optimize the n-dimensional
OneMinMax function. Let the population size N = (n + 1)/2. Suppose that for
a certain generation t ≥ 0, the combined parent and offspring population Rt fully
covers the Pareto front, that is, f(Rt) = {(0, n), (1, n − 1), . . . , (n, 0)}. Then with
probability 1−exp(−n2/3/ ln n), we have MEI(Pt+1, f1) ≥ ⌊1

3
ln n⌋. On the positive

side, E[MEI(Pt+1, f1)] = Θ(log n) and Pr[MEI(Pt+1, f1) ≥ c log3/2 n] = n1−c for
any constant c > 1.

Proof. We note that Rt has size at least n + 1, since it covers the Pareto front,
which has a size of n + 1. From our assumption N = (n + 1)/2, we thus conclude
that every point in the Pareto front has only one corresponding individual in Rt.
Hence, except the individuals 0n and 1n that have infinite crowding distance, all
other individuals have the equal crowding distance of 4/n. Consequently, the
original NSGA-II survival selection will randomly select N individuals from the
2N − 2 inner individuals (all individuals in Rt except 0n and 1n) to be removed.

To prove the logarithmic lower bound on the expectation, we argue as follows.
Let k = ⌊1

3
ln n⌋. Let M ⊆ [1..n − k] such that |M | = ⌈n/ ln n⌉ and for any two

m1, m2 ∈ M , we have |m1 − m2| ≥ k or m1 = m2 (note that such a set exists since
k|M | ≤ n − 1 by definition of k and M). Consequently, for different m ∈ M , the
intervals Im = [m..m + k − 1] are disjoint.

To cope with the stochastic dependencies, we regard a particular way to sample
the N individuals to be removed. In a first phase, we select N times independently
(with repetition) an individual x with f1(x) ∈ [1..n − 1], recall that these are the
ones with smallest crowding distance. This defines a random set of individuals
of cardinality at most N (but most probably less than N), and we remove these
individuals from the combined parent and offspring population. In a second phase,
we repeat removing random individuals x with f1(x) ∈ [1..n − 1] until we have
removed a total of N individuals.

10



We now prove that already after the first phase, with high probability an inter-
val of length k on the Pareto front is not covered by the population. Apparently,
such an interval is also not covered by the final population. Denote by Ãm,k the
probability that all individuals x with f1(x) ∈ Ik are removed in the first phase.
Then

Pr[Ãm,k] =
(

1 −
(

1 − 1
n−1

)N
)k

≥
(

1 − exp
(

− N
n−1

))k

≥
(

1 − e−1/2
)k

≥ (1/e)k ≥ n−1/3.

By construction, the events Ãm,k, m ∈ M , are independent. Hence

Pr[∀m ∈ M : ¬Ãm,k] ≤ (1 − n−1/3)|M | ≤ exp
(

−n−1/3 n

ln n

)

= exp

(

−
n2/3

ln n

)

.

This proves that with probability at least 1 − exp(−n2/3/ ln n), after the selection
phase there is an interval of length k of the Pareto front such that none of its
points is covered by the new population Pt+1. This also implies E[MEI(Pt+1, f1)] ≥
(1 − exp(−n2/3/ ln n))k = Ω(log n).

We now turn to the upper bounds. Let k ∈ [1..N ] and m ∈ [1..n − k], and let
Ak,m be the event that all individuals with f1 value in Im = [m..m + k − 1] are
selected to be removed. Then

Pr[Am,k] =

(

2N−2−k
N−k

)

(

2N−2
N

) =

(2N−2−k)!
(N−k)!(N−2)!

(2N−2)!
N !(N−2)!

=
N(N − 1) · · · (N − k + 1)

(2N − 2)(2N − 3) · · · (2N − 1 − k)
.

It is not difficult to see that if Am,k happens for some m, then MEI(Pt, f1) ≥ k.
Hence, by a union bound over all possible m, we obtain

Pr[MEI(Pt+1, f1) ≥ k] ≤ (n − k) Pr[Am,k] =
(n − k)N(N − 1) · · · (N − k + 1)

(2N − 2)(2N − 3) · · · (2N − 1 − k)

≤ (n − k)
(

N

2N − 2

)k

≤ n

(

1

2 − 2/N

)k

≤ n
(

2

3

)k

,

where the last inequality uses n ≥ 7 and thus N = (n + 1)/2 ≥ 4. Hence for any
constant c > 2, we know that

Pr[MEI(Pt+1, f1) ≥ c log3/2 n] ≤ n
(

2
3

)c log3/2 n
= 1

nc−1 ,

and

E[MEI(Pt+1,f1
)] =

+∞
∑

k=0

Pr[MEI(Pt+1, f1) ≥ k] =
N
∑

k=0

Pr[MEI(Pt+1, f1) ≥ k]

11



=

c log3/2 n−1
∑

k=0

Pr[MEI(Pt+1, f1) ≥ k] +
N
∑

k=c log3/2 n−1

Pr[MEI(Pt+1, f1) ≥ k]

≤ c log3/2 n + (N − c log3/2 n + 1)n
(

2
3

)c log3/2 n
≤ c log3/2 n + o(1).

The example above showed that even in a perfectly symmetric situation, the
NSGA-II with high probability selects a new parent population with high irregu-
larities and relatively large areas on the Pareto front that are not covered by the
population.

We now show that even more extreme examples can be constructed. We do
not expect these to come up often in a regular run of the NSGA-II, but they
underline that the drawbacks of working with the initial crowding distance can be
tremendous. The constructed example is the combined population of the parent
and offspring with the mutually different f1 values for different individuals, and
f1(R) = [0..1

3
n + 1] ∪ {1

3
n + 2i | i ∈ [1..1

3
n]}. The the traditional survival selection

will remove all individuals with f1 value in [1..1
3
n + 1].

Lemma 6. For all n ∈ 3N, there is a combined parent and offspring population
R such that 0n, 1n ∈ R and MEI(R, f1) = 2, but the population P ′ selected by the
NSGA-II satisfies MEI(P ′, f1) = 1

3
n + 2.

Proof. Let R be such that f1(R) = [0..1
3
n + 1] ∪ {1

3
n + 2i | i ∈ [1..1

3
n]} and

that for any x, x′ ∈ R, we have f1(x) 6= f1(x′). By construction, 0n, 1n ∈ R and
MEI(R, f1) = 2. We note that exactly those x ∈ R with f1(x) ∈ [1..1

3
n + 1] have

the smallest occurring crowding distance of 4
n
. Since these are 1

3
n + 1 elements of

R and since N = 1
2
|R| = 1

3
n + 1 elements that have to be removed, they will all

be removed in the selection step, leaving all points (i, n − i) with i ∈ [1..1
3
n + 1]

uncovered by the selected population.

The above two synthetic situations indicate the possible difficulties for the
NSGA-II to approximate the Pareto front. We note here that in Section 6, our
experiments shows the fair but not perfect approximation ability of the NSGA-II
on the OneMinMax function, like for the problem size n = 601 and population
size 76, at least 24 for the first quartile of MEI, while the ideal MEI is only 9.
Although the above are not complete proofs, the drawbacks of the traditional
survival selection indeed exist.

5 Updating Crowding Distance Can Help

As we have seen in the preceding section, the traditional way the NSGA-II se-
lects the next parent population can lead to a not very evenly distributed parent
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population. The proofs of Lemmas 5 and 6 also reveal a possible reason for this
shortcoming: Since the crowding distance is computed only once and then used
for all removals of individuals, it may happen that individuals are removed which,
at the time of their removal, have a much larger crowding distance than at the
start of the selection phase.

This phenomenon is heavily exploited in the construction of the very negative
example in the proof of Lemma 6. In this example, the individuals x with f1(x) ∈
[1..1

3
n] all have the smallest crowding distance of 4/n, and thus are all removed

in some arbitrary order. When the last individual is removed, its neighors on the
front have objective values (0, n) and (1

3
n + 1, n − (1

3
n + 1)). Consequently, this

individual at the moment of its removal has a crowding distance of 2/3+2/n which
is (for large n) much larger than its initial value of 4/n, but also much larger than
the crowding distance of 8/n, which most of the remaining individuals still have.
This example shows very clearly the downside of working with the initial crowding
distance and at the same time suggests to work with the current crowding distance
instead.

This is the road we will follow in this section. We first argue that there is
an efficient implementation of the NSGA-II that repeatedly selects an individual
with smallest crowding distance. We then show that this selection mechanism
leads to much more balanced selections for the OneMinMax benchmark. We
prove that the modified NSGA-II can achieve an MEI of at most 4n

N−3
, which is

only by roughly a 4 factor larger than the ideal MEI of (1+o(1)) n
N

. Reaching such
a balanced distribution is very efficient – once the two extremal points are found
(in time O(Nn log(n))), it only takes additional time O(Nn) to find a population
satisfying the MEI guarantee above. From this point on, the MEI never increases
above 4n

N−3
.

5.1 Implementation of an NSGA-II algorithm Using the

Current Crowding Distance for the Removal of Indi-

viduals

We first notice that the removal of one individual changes the crowding distance of
at most four other individuals: The deleted individual has at most two neighbors
in the sorted list of the front of population for each objective. Consequently, it
suffices to update, that is, recompute, the crowding distance of these individuals.
While this gives some optimism that an efficient implementation of the selection
based on the current crowding distance exists, some more details have to be taken
into account.

To describe them in sufficient clarity, let us assume that we have a set R of
individuals which pairwise are not comparable (none dominates the other) or have
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the same objective value. When optimizing OneMinMax, this set R will be the
combined parent and offspring population; in the general case it will be the front
Fi∗ . Let us call r = |R| the size of this set. Let us assume that we want to
remove some number s of individuals from R, sequentially by repeatedly removing
an individual with smallest current crowding distance, breaking ties randomly.

Besides keeping the crowding distance updated (which can be done in constant
time per removal, as we just saw), we also need to be able to efficiently find and
remove an individual with smallest (current) crowding distance, and moreover,
a random one in case of ties. The detection and removal of an element with
smallest key calls for a priority queue. Let us ignore for the moment the random
tie-breaking and only discuss how to use a priority queue for the detection and
removal of an individual with smallest crowding distance. We recall that a priority
queue is a data structure that stored items together with a key, a numerical value
assigned to each item. Standard priority queues support at least following three
operations: Adding new items to the queue, removing from the queue an item with
smallest key, and decreasing the key of an item in the queue. They do so with a
time complexity that is only logarithmic in the current length of the queue.

For our problem, at the start of the selection phase, we add all individuals
with their crowding distance as key to the priority queue. We repeatedly remove
individuals according to the following scheme: (i) We find and remove from the
priority queue an individual x with smallest key. We also remove x from R. (ii)
We find the up to four neighbors of x in the two sortings of R according to the
two objectives, compute their crowding distance, and update their keys in the
priority queue accordingly. This is not a decrease-key operation (but an increase
of the key), but such an increase-key can be simulated by first decreasing the key
to an artificially small value (smaller than all real values that can occur, here for
example −1), then removing the item with smallest key (which is just this item),
and then adding it with the new key to the queue.

These two steps can be implemented in logarithmic time, since all operations
of the priority queue take at most logarithmic time, except that we still need
to provide an efficient way to find the neighbors of an element in the sortings.
This is necessary to determine the up to four neighbors of x, but also to compute
their crowding distance (which needs knowing their neighbors). To enable efficient
computations of such neighbors, we use an additional data structure, namely for
each objective a doubly-linked list that stores the current set R sorted according
to this objective. This list data-structure must enable finding predecessors and
successors (provided they exist) as well as the deletion of elements. Standard
doubly-linked lists support these operations in constant time. We use this list in
step (ii) above to find the desired neighbors. We also need to delete the removed
individual x in step (i) from this list.
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To allow finding individuals in the priority queue or the doubly-linked list,
we need a helper data structure with pointers to the individuals in these data
structures. This can be a simple array indexed by the initial set R.

With this setup, we can repeatedly remove an element with currently smallest
crowding distance in logarithmic time. To add the random tie-breaking, it suffices
to give each individual x a random second-priority key, e.g., a random number
rx ∈ [0, 1]. They key of an individual x used in the priority queue now is composed
of the current crowding distance and this number rx, where a key is smaller than
another when its crowding distance is smaller or when the crowding distances are
equal and the rx number is smaller (lexicographic order of the two parts of the
key). With these extended keys, the individuals with currently smallest crowding
distance have the highest priority, and in case of several such individuals, the
number rx serves as random tie-breaker.

With this tie-breaking mechanism, we have now implemented a way to repeat-
edly remove an individual with smallest current crowding distance, breaking ties
randomly, in time logarithmic in r, the size of the set R. Overall, thus our selection
using the current crowding distance takes time at most O(N log N), which is small
compared to the non-dominated sorting step, which takes quadratic time.

Without going into details, we note that when the possible crowding distance
values are known and they are not too numerous, say there is an upper bound of S
for their number, then using a bucket queue instead of a standard priority queue
would give an complexity of order O(S +N). This is slightly superior to the above
runtime, e.g., for OneMinMax when N = Ω(n/ log n).

5.2 Runtime Analysis and Approximation Quality of the

NSGA-II with Current Crowding Distance

We now conduct a mathematical analysis of the NSGA-II with survival selection
based on the current crowding distance. The following lemma shows that invi-
diduals with at least a certain crowding distance will certainly enter the next
generation. The key argument in this proof is an averaging argument based on the
observation that the sum of the crowding distances of all individuals other than
the ones with infinite crowding distance is at most 4.

Lemma 7. Let N ≥ 4. Consider using the NSGA-II with survival selection based
on the current crowding distance to optimize the n-dimensional OneMinMax

function. Let t0 be the first generation such that the two extreme points 0n and 1n

are in Pt0
. Let t ≥ t0. Consider the selection of the next population Pt+1 from Rt,

which consists of N times removing an individual with smallest current crowding
distance. Assume that at some stage of this removal process the individual x has
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Algorithm 3 NSGA-II with the survival selection using the current crowding
distance

1: Uniformly at random generate the initial population P0 = {x1, x2, . . . , xN} for
xi ∈ {0, 1}n, i = 1, 2, . . . , N.

2: for t = 0, 1, 2, . . . do

3: Generate the offspring population Qt with size N
4: Using the fast-non-dominated-sort() in [DPAM02] to divide Rt into

F1, F2, . . .
5: Find i∗ > 1 such that | ∪i∗−1

i=1 Fi| < N and | ∪i∗

i=1 Fi| ≥ N , or i∗ = 1 for
|F1| ≥ N

6: Using the crowding-distance() in Algorithm 1 to separately calculate the
crowding distance of each individual in F1, . . . , Fi∗

%% Survival selection using the current crowding distance

7: while | ∪i∗

i=1 Fi| 6= N do

8: Let x be the individual with the smallest crowding distance in Fi∗ , chosen
at random in case of a tie

9: Find four neighbors of x, two in the sorted list with respect to f1 and two
for f2. Update the crowding distance of these four neighbors

10: Fi∗ = Fi∗ \ {x}
11: end while

12: Pt+1 =
(

∪i∗

i=1Fi

)

13: end for

a crowding distance of 4
N−3

or higher. Then x ∈ Pt+1. Also, Pt+1 surely contains
the two extreme points.

Proof. We consider first a single removal of an individual at some moment of the
selection phase. Let R be the set of remaining individuals from the combined
parent and offspring population. Note that r := |R| > N . Note also that, by
definition of the crowding distance, there can be at most 4 individuals with in-
finite crowding distance. Since N ≥ 4, such individuals are never removed, and
consequently, R surely contains 0n and 1n. Let y1, . . . , yr be the sorting of R
by increasing f1 value and z1, . . . , zr be the sorting of R by increasing f2 value
that are used for the computation of the crowding distance. For x ∈ R, let
i, j ∈ [1..r] such that x = yi = zj (we assume here that individuals have unique
identifiers, so they are distinguishable also when having the same genotype; con-
sequently, these i and j are uniquely defined). From the definition of cDis(x),
we know the following. If {i, j} ∩ {1, r} 6= ∅, then cDis(x) = ∞. Otherwise,
cDis(x) = (f1(yi+1) − f1(yi−1) + f2(zj+1) − f2(zj−1))/n.
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We compute

r−1
∑

i=2

f1(yi+1) − f1(yi−1) =
r−1
∑

i=2

f1(yi+1) − f1(yi) + f1(yi) − f1(yi−1)

≤ 2
r−1
∑

i=1

f1(yi+1) − f1(yi)

= 2(f1(yr) − f1(y1)) = 2(n − 0) = 2n,

the latter by our insight that R contains the two extremal individuals. An analo-
gous estimate holds for f2 and the zj. This allows the estimate

∑

x∈R∗

n cDis(x) ≤
r−1
∑

i=1

f1(yi+1) − f1(yi−1) +
r−1
∑

j=1

f2(zj+1) − f2(zj−1) ≤ 4n,

where we write R∗ for the individuals in R having a finite crowding distance. Since
|R∗| ≥ r − 4, a simple averaging argument shows that there is an x ∈ R∗ with
cDis(x) ≤ 4

r−4
. Hence also the individual that is removed has a crowding distance

of at most 4
r−4

≤ 4
N−3

.
Now looking at all removals in this selection step, we see that never an indi-

vidual with crowding distance above 4
N−3

is removed.

The result just shown implies that no large empty interval is created by the
removal of a solution from Rt in the selection phase. Slightly more involved ar-
guments are necessary to argue that the MEI-value decreases relatively fast. It
is not too difficult to see that if the set of f1 values in Pt contains a large empty
interval (the same will then be true for f2), then this interval can be reduced in
length by at least one via the event that one of the individuals corresponding to the
boundaries of the empty interval create an offspring “inside the interval”. What
needs more care is that we require such arguments for all large empty intervals
in parallel. For this, we regard how an empty interval shrinks over a longer time.
Since this shrinking is composed of independent small steps, we can use strong
concentration arguments to show that an interval shrinks to the desired value in
the desired time with probability at least 1 − exp(−Ω(n)). This admits a union
bound argument to extend this result to all empty intervals.

A slight technical challenge is to make precise what “one interval” means over
the course of time (recall that in one iteration, we generate N offspring and then
remove N individuals from Rt). We overcome this by regarding a half-integral
point i + 0.5 and the corresponding interval

Ii = [max{f1(x) | x ∈ Pt, f1(x) ≤ i + 0.5}.. min{f1(x) | x ∈ Pt, f1(x) ≥ i + 0.5}].

17



This definition is unambiguous. It gives room to some strange effects, which
seem hard to avoid, nevertheless. Assume that Ii = [i..b] for some b sufficiently
larger than i. Assume that there is a single individual x with f1(x) = i in Pt.
Assume that x has an offspring y with f1(y) = i + 1. If both x and y survive
into the next generation, then Ii has suddenly shrunk a lot to [i..i + 1]. If y
survives but x does not, then Ii has changed considerably to [a..i + 1], where
a = max{f1(x) | x ∈ Pt, f1(x) ≤ i}. Since in each iteration N individuals are
newly generated and then N are removed, we do not see a way to define the empty
intervals in a more stable manner. Nevertheless, our proof below will be such that
it covers all these cases in a relatively uniform manner.

We recall from Section 2 that fair selection means that each individual of the
parent population generates exactly one offspring and random selection means that
N times an individual is chosen uniformly at random from the parent population
to generate one offspring.

Lemma 8. Let N ≥ 4. Consider using the NSGA-II with fair or random par-
ent selection, with one-bit mutation, and with survival selection using the current
crowding distance, to optimize the n-dimensional OneMinMax function. Let t0

be the first generation that the two extreme points 0n and 1n are contained in Pt0
.

Let t1 ≥ t0 be the first generation such that MEI(Pt1
, f1) ≤ max{ 4n

N−3
, 1} =: L.

Then t1 − t0 = O(n), both in expectation and with probability 1 − o(1). Also, for
all t > t1, we have MEI(Pt, f1) ≤ L with probability one.

Proof. Let i ∈ [0..n − 1]. Let t ≥ t0 and Xt be the length of the empty interval in
f1(Pt) containing i + 0.5, that is,

Xt = min{f1(x) | x ∈ Pt, f1(x) ≥ i + 0.5} − max{f1(x) | x ∈ Pt, f1(x) ≤ i + 0.5}.

We first prove that once Xt ≤ L, we have Xt′ ≤ L for all t′ ≥ t with probability 1.
Let X ′

t be the length of the empty interval in f1(Rt) that contains i + 0.5. Since
Xt ≤ L and Rt ⊇ Pt, we have X ′

t ≤ Xt ≤ L. We prove now the slightly stronger
statement that once X ′

t ≤ L, we have Xt′ ≤ L for all t′ ≥ t. It suffices to regard
one iteration, so assume by way of contradiction that Xt+1 > L. Note that Pt+1

is obtained from Rt by repeatedly removing an individual with smallest crowding
distance. Consider the first removal step after which the empty interval containing
i + 0.5 is larger than L. Let [a..b] be the empty interval containing i + 0.5 before
the removal. To increase the size of this empty interval, one of a and b must be
removed. Assume, without loss of generality, that this was a. Removing a, by
definition of the crowding distance, creates an empty interval of length at most
n times the current crowding distance of a. By Lemma 7, this current crowding
distance is at most 4

N−3
, contradicting our assumption that the removal of a creates

an empty interval of length larger than L.
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We now consider the situation that Xt > L. Let a and b with a ≤ b be the two
ends of the interval in f1(Pt) that contains i + 0.5. Let xa, xb ∈ Pt respectively be
individuals with f1 value a and b. When using fair parent selection, the probability
to create an offspring with f1 value in {a + 1, b − 1} is at least

1 −
a

n

n − b

n
≥ 1 −

(

a + n − b

2n

)2

≥
3

4
=: p.

For random parent selection, noting that one of n−a
n

and b
n

is at least 1
2
, this

probability is at least 1
2
(1 − (1 − 1/N)N) ≥ 1

2
(1 − 1/e) =: p.

Let us assume that this positive event has happened, that is, at least one
individual with f1 value in {a + 1, b − 1} was created. Then the interval in f1(Rt)
containing i + 0.5 has length X ′

t ≤ Xt − 1 (note that, depending on the value of i
and the outcome of the offspring generation, this interval can be any of [a..a + 1],
[a..b − 1], [a + 1..b − 1], [a + 1..b], and [b − 1..b], but all arguments below hold for
any of these cases). By our earlier argument, we now have Xt+1 ≤ Xt − 1 with
probability one. This argument shows that in any iteration starting with Xt > L,
regardless of what happened in previous iterations, we have a probability of at
least p of reducing Xt by at least one.

Now we consider the probability of the event A that Xt drops below L
in T = ⌈2(1/p)n⌉ generations. We consider a random variable Y =

∑T
i=1 Yi

where Y1, . . . , YT are independent Bernoulli random variables with success prob-
ability of p. Then Xt0

− Xt0+T =
∑T −1

t=t0
(Xt − Xt+1) stochastically dominates

Z := min{Y, Xt0
− L}. Since E[Y ] ≥ 2n, applying the multiplicative Chernoff

bound (see, e.g., [Doe20, Theorem 1.10.7]), we have

Pr[Y ≤ Xt0
− L] ≤ Pr[Y ≤ n − L] ≤ Pr[Y ≤ n] ≤ exp(−n/2).

Hence

Pr[A] ≥ Pr[Xt0
− Xt0+T ≥ Xt0

− L] ≥ Pr[Z ≥ Xt0
− L] ≥ 1 − exp(−n/2).

Together with the first part in this proof, we know that once A happens, for any
generation t′ ≥ t0 + T , we have Xt′ ≤ L.

Note that the above discussed Xt is corresponding to one given i ∈ [0..n−1]. A
union bound over all i ∈ [0..n−1] gives that for any generation after the (t0 +T )-th
generation, with probability at least

1 − n exp(−n/2)

all empty intervals in the population will have the length at most L, that is, we
have MEI(Pt, f1) ≤ L for all t ≥ t0 + T . This proves the claimed bound with high
probability.
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For the claimed bound on the expectation, we note that we can repeat our
argument above since we did not make any particular assumptions on the ini-
tial state. Consequently, the probability that MEI(Pt0+λT , f1) > L is at most
(n exp(−n/2))λ. This immediately implies that that the expected time to have all
empty intervals of length at most L is at most t0 + O(1)T = t0 + O(n).

It remains to analyze the time it takes to have the two extreme points 0n and
1n in the population. This analysis is very similar to the analysis of the original
NSGA-II with population size large enough that the full Pareto front is found
in [ZLD22, Theorems 2 and 6]. Since the proof below also applies to the original
NSGA-II, we formulate the following result for both algorithms.

Lemma 9. Consider using the NSGA-II (Algorithm 2 or 3) with one of the fol-
lowing six ways to generate the offspring, namely, applying fair selection, random
selection, or binary tournament selection and applying one-bit mutation or stan-
dard bit-wise mutation. Then after an expected number of O(n log n) iterations,
that is, an expected number of O(Nn log n) fitness evaluations, the two extreme
points 0n and 1n are contained in the population.

Proof. We first consider the time to generate 1n, that is, the unique search point
with largest f1 value. Let t ≥ 0. Let xmax be an individual in the parent population
Pt with largest f1 value and with infinite crowding distance. Let k = f1(xmax).
Let pk

s denote the probability that xmax appears at least once in the N individu-
als selected to generate offspring and let pk

+ denote the probability of generating
an individual with larger f1 value from xmax via the mutation operator. Note
that if there exists individuals with f1 value larger than f1(x), then one such in-
dividual will survive to Pt+1, and Pt+1 will have an individual with f1 fitness at
least f1(xmax) + 1. The expected number of iterations until this happens is at
most 1/(pk

spk
+). It is not difficult to see that the largest f1 value in Pt cannot

decrease. Since f1(1
n) = n, the expected number of iterations to reach 1n is at

most
∑n−1

k=0
1

pk
s pk

+

.

It is not difficult to see that pk
s = 1 for the fair selection and at least 1 −

(1 − 1/N)N ≥ 1−1/e for random selection. For binary tournament selection, there
are at most two individuals with infinite crowding distance but f1 value different

from f1(xmax). Hence pk
s ≥ 1 −

(

1 − 1
N

N−2
N

)N
= 1 − exp(−(N − 2)/N) = Θ(1) in

this case. It is also not difficult to see that pk
+ = (n−k)/n for the one-bit mutation,

and pk
+ ≥ n−k

n
(1 − 1

n
)n−1 ≥ n−k

en
. Hence the expected number of iterations to find

1n is at most

n−1
∑

k=0

1

pk
spk

+

= O

(

n−1
∑

k=0

n

n − k

)

= O(n log n).
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Similarly, we could show that the expected number of iterations to have 0n in
the population is also O(n log n). Hence, the expected number of iteration to have
the two extreme points in the population is O(n log n). Since each iteration uses N
fitness evaluations, the expected number of fitness evaluations is O(Nn log n).

From Lemmas 8 and 9, we easily obtain the following theorem on the approx-
imation ability of the NSGA-II using the current crowding distance.

Theorem 10. Let N ≥ 4. Consider using the NSGA-II with fair or random parent
selection, with survival selection using the current crowding distance, and one-bit
mutation to optimize the n-dimensional OneMinMax function. Then after an
expected number of O(Nn log n) fitness evaluations, a population containing the
two extreme points 0n and 1n and with MEI(Pt, f1) ≤ 4n

N−3
is reached and kept for

all future time.

Recalling from Lemma 3 that the ideal maximal empty interval size is n
N−1

,
Theorem 10 shows that the gaps in the Pareto front are at most by around a
factor of 4 larger than this theoretical minimum. Also, comparing the runtimes in
Lemma 8 with those in Lemma 9 or Theorem 10, we see that the cost for reaching
a good approximation is asymptotically negligible compared to the one proven for
reaching the two extreme points.

6 Experiments

In Section 4 we only conducted a theoretical analysis of two synthetic situations
to show the risk that the traditional NSGA-II has difficulties in approximating the
Pareto front since the complicated population dynamics prevented us from a com-
plete mathematical analysis of this question. Hence, it remains to experimentally
evaluate the approximation ability of this algorithm. In Section 5, we proved that
the modified NSGA-II leaves gaps on the Pareto front that are asymptotically at
most a factor of 4 larger than those given by a perfect approximation of the Pareto
front. Since we do not prove a matching lower bound, it is again necessary to ex-
perimentally investigate how larges these gaps are in actual runs. This section will
focus on the above two aspects.

6.1 Settings

To investigate the questions above, we conduct experiments with the following
settings.

• Problem: OneMinMax. OneMinMax is the analyzed benchmark in our
theoretical results in Sections 4 and 5.
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• Problem size n: 601. Given that the OneMinMax problem is an easy multi-
objective problem, this is a moderate problem size. Such a choice is sensible,
since on a too small size we will not gain reliable insights, whereas insights
obtained on a large problem size raise the question whether they still apply
to practically relevant problem sizes. We use the odd number n = 601 to
include the setting discussed in Lemma 5.

• Algorithms: We regard the classic NSGA-II using the initial crowding dis-
tance for the selection and our variant, using the current crowding distance.
As in the first runtime analysis of the NSGA-II [ZLD22], we do not use
crossover. That is, the mutation is the only operator to generate the off-
spring population.

• Mating selection and mutation strategy: fair selection and one-bit mutation.
These two are discussed in the runtime for the NSGA-II with the survival
selection using the current crowding distance, see Theorem 10. They are
enough to verify our findings about the approximation difficulty of the tra-
ditional NSGA-II and improved approximation ability for the modified one
with the survival selection using the current crowding distance. We believe
similar behaviors for other popular strategies.

• Population size N : (n+1)/2 = 301, ⌈(n+1)/4⌉ = 151, and ⌈(n+1)/8⌉ = 76.
We choose (n + 1)/2 as this value is used in Lemma 5. We did not regard
larger population sizes, since for N = n + 1 experiments where conducted
in [ZLD22]. Other two smaller population sizes are used to see a more general
approximation ability of the NSGA-II.

• 20 independent runs for each setting.

6.2 Results

Our focus in our experiments is the maximal length of an empty interval on the
Pareto front, that is, the MEI value defined earlier. As long as the population
has not fully spread out on the Pareto front, that is, the extremal solutions 0n

and 1n are not yet part of the population, enlarging the spread of the population
is more critical than a balanced distribution in the known part of the front. For
this reason, we only regard times after both extremal solutions have entered the
population.

To see whether the approximation quality changes over time, we regard sep-
arately the two intervals of [1..100] and [3001..3100] generations after finding the
two extremal solutions. We collect statistical data on the MEI value in these
intervals in Table 1 and we display exemplary runs in Figure 1.
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Figure 1: The maximal empty interval sizes MEI for [1..100] and [3001..3100]
generations after two extreme points are reached in one exemplary run.
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Table 1: The first, second, and third quartiles (collected in the format of (·, ·, ·)) for
the maximal empty interval sizes MEI within [1..100] and [3001..3100] generations
after the two extremal points have entered the population.

Generations [1..100] [3001..3100]

N = 301
Initial CD (7,8,9) (7,8,9)

Current CD (3,3,3) (3,3,3)

N = 151
Initial CD (14,15,17) (13,14,16)

Current CD (5,5,6) (5,5,6)

N = 76
Initial CD (25,27.5,30) (24,26,30)

Current CD (11,11,12) (11,11,12)

The ideal MEI value ⌈n/(N − 1)⌉ for OneMinMax with n = 601 and popula-
tion size N = 301, 151, 76 is 3, 5, and 9, respectively. From Table 1, we see that the
modified NSGA-II with the survival selection using the current crowding distance
can reach the ideal MEI for N = 301 and 151 and is slightly above the ideal value
for N = 76. In contrast, the traditional NSGA-II shows median MEI values of
8, 14, 26 in the later (better) time interval. This is more than twice the ideal MEI
and the median values of our variant of the NSGA-II. We observe minimally worse
values for the classic NSGA-II in the first time interval (right after the extremal
points were found), but the difference is small and rather suggests that also before
the extremal points are found, the population is evenly spread out (in the part of
the Pareto front explored so far).

In Figure 1, we see that the MEI value oscillates considerably for the classic
NSGA-II, whereas it is relatively stable for the NSGA-II using the current crowding
distance for the selection. This appears to be a second advantage of our new variant
of the NSGA-II.

Our experimental data is not sufficient to answer the question if the tradi-
tional NSGA-II suffers from super-constant MEI values. Our theoretical result in
Lemma 5 could be seen as an indication that logarithmic MEI values can show
up (or MEI values of order Θ( n

N
log N) for general values of N ≤ n). To answer

this question, significantly more experiments with truly large problem sizes would
be necessary (due to the slow growth behavior of logarithmic functions). For our
purposes, our results, however, are fully sufficient. They show clearly that the ver-
sion of the NSGA-II proposed in this work leads to much smaller and more stable
MEI values. Not surprisingly, the experimentally observed MEI values for the new

24



algorithm variant are much better than the mathematical guarantee given in The-
orem 10. Explaining this discrepancy, most likely by sharpening the mathematical
guarantees, is another interesting problem for future research.

7 Conclusion

The so far only previous runtime analysis of the NSGA-II [ZLD22] did not regard
the case that the population size is smaller than the size of the Pareto front. In this
work, we regard this situation and discuss how well the population evolved by the
NSGA-II approximates the Pareto front. Our theoretical analysis of two artificial
cases and our experiments give a mixed picture. However, they also suggest that
the reason for the not fully satisfying approximation behavior is the fact that the
selection of the next parent population is based on the initial crowding distance
of individuals in the combined parent and offspring population, which can be very
different from the crowding distance at the moment when an individual is removed.
This may lead to large uncovered areas on the Pareto front. We therefore propose
to build the selection on the current crowding distance. We show that this selection
strategy can be implemented efficiently. We then prove that this selection leads
to gaps in the Pareto front of OneMinMax that are only a constant factor larger
than in an ideal solution. Our experiments confirm the superiority of the new
selection strategy.

From our proofs, we conjecture that similar results can be obtained for other
classic benchmark problems such as LOTZ or the large front problem [HN08]. We
are also optimistic that our results and methods can give interesting results for
other approximation measures such as the hypervolume and the inverted genera-
tional distance.
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