Spyridon Filippas 
  
Quantitative unique continuation for wave operators with a jump discontinuity across an interface and applications to approximate control

Keywords: Unique continuation, Carleman estimate, wave equation, jumps across an interface, approximate control, stability estimates 2010 Mathematics Subject Classification: 35B60, 47F05, 35L05, 93B07, 93B05, 35Q93

In this article we prove quantitative unique continuation results for wave operators of the form

where the scalar coefficient c is discontinuous across an interface of codimension one in a bounded domain or on a compact Riemannian manifold. We do not make any assumptions on the geometry of the interface or on the sign of the jumps of the coefficient c. The key ingredient is a local Carleman estimate for a wave operator with discontinuous coefficients. We then combine this estimate with the recent techniques of Laurent-Léautaud [LL19] to propagate local unique continuation estimates and obtain a global stability inequality. As a consequence, we deduce the cost of the approximate controllability for waves propagating in this geometry.

Introduction

For a wave operator P the question of unique continuation consists in asking whether a partial observation of a wave on a small set ω is sufficient to determine the whole wave. If this property holds, then the next natural question is if we can quantify it. This is expressed via a stability estimate of the form u Ω φ ( u ω , P u Ω , u Ω ) ,

(1.1) with φ satisfying φ(a, b, c)

a,b→0
-→ 0, with c bounded.

Such estimates have numerous applications in control theory, spectral geometry and inverse problems.

Concerning the wave operator a seminal unique continuation result was obtained by Robbiano in [START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF] and refined by Hörmander in [START_REF] Hörmander | A uniqueness theorem for second order hyperbolic differential equations[END_REF]. The optimal version of this qualitative result was finally attained in the so called Tataru, Hörmander, Robbiano-Zuily Theorem [START_REF] Tataru | Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem[END_REF][START_REF] Tataru | Unique continuation for operators with partially analytic coefficients[END_REF][START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF][START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF]. This theorem deals in fact with the more general case of operators with partially analytic coefficients and, in the particular case of a wave operator with coefficients independent of time, gives uniqueness across any non characteristic hypersurface. Recently, in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] the authors proved a quantitative version of the latter theorem which, for the wave equation, is optimal with respect to the observation time and the stability estimate obtained. Note that, a qualitative uniqueness result is equivalent to an approximate controllability result, and a quantified version of it gives an estimate of the control cost. The quantitative unique continuation result of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] applies to (variants of) the operator ∂ 2 t -∆ g where ∆ g is an elliptic operator with C ∞ coefficients. See also [START_REF] Bosi | Stability of the unique continuation for the wave operator via Tataru inequality and applications[END_REF] for a related set of estimates concerning the wave operator.

However, in many contexts, waves propagate through singular media and therefore in the presence of non smooth coefficients. E.g. in the case of seismic waves [START_REF] Symes | A trace theorem for solutions of the wave equation, and the remote determination of acoustic sources[END_REF] or acoustic waves [YDdH + 17, [START_REF] Alessandrini | Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities[END_REF][START_REF] Caday | Reconstruction of piecewise smooth wave speeds using multiple scattering[END_REF] propagating through the Earth's crust. Models proposing to describe such phenomena use discontinuous metrics and more precisely metrics which are piece-wise regular but presenting jumps along some hypersurfaces. See for instance the Mohorovičić discontinuity between the Earth's crust and the mantle. Another example arises in medical imaging. The human brain [START_REF] Vera | Wave onset in central gray matter -its intrinsic optical signal and phase transitions in extracellular polymers[END_REF][START_REF] Morin | Biomechanical modeling of brain soft tissues for medical applications[END_REF] has two main components: white and grey matter. These two have very different electric conductivities and models describing the situation are very similar to the preceding example.

The question of quantitative unique continuation across a jump discontinuity seems to be well understood in the elliptic/parabolic context. One of the first results (in the parabolic case) is [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] where the operator ∂ 2 t -div(c∇•) is studied with a monotonicity assumption imposed on the scalar coefficient c = c(x): the observation should take place in the region where the coefficient c is smaller. In this article a global Carleman estimate was proved. Later, in the elliptic case in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] a similar result was obtained but without any restriction on the sign of the jump of the coefficient. These techniques were extended to the parabolic context in [START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]. The most recent (and general) result to the best of our knowledge is proved by Le Rousseau and Lerner [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] where the anisotropic case (-div(A(x)∇•), with A a matrix jumping across an interface) is treated.

The question of exact control for waves with jumps at an interface has already been addressed in the book [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]. A controllability result is proved for the operator ∂ 2 t -div(c∇•) with c a piece-wise constant coefficient under a geometric assumption on the jump hypersurface and a sign condition on the jump. One of the first Carleman estimates was proved in the discontinuous setting in [START_REF] Baudouin | A global carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF]. With the same assumption on the coefficient and assuming that the interface is convex the authors prove linear quantitative stability estimates. Recently, in [START_REF] Baudouin | Carleman estimates for the wave equation in heterogeneous media with non-convex interface[END_REF] quantitative results were proved as well for interfaces that interpolate between star-shaped and convex. Other related works are [START_REF] Gagnon | Sufficient Conditions for the Controllability of Wave Equations with a Transmission Condition at the Interface[END_REF] and [START_REF] Buffe | Control and exponential stability for a transmission problem of a viscoelastic wave equation[END_REF].

However, to our knowledge the question of stability estimates without any particular geometric assumption on the interface has not been studied yet. This is the main object of this article.

Setting and statement of main results

Let (M, g) be a smooth connected compact n-dimensional Riemannian manifold with or without boundary. We consider S an (n -1)-dimensional submanifold of M without boundary. We assume that M\S = Ω -∪ Ω + with Ω -∩ Ω + = ∅.

We consider a scalar coefficient c(x) = 1 Ω-c -(x) + 1 Ω+ c + (x) with c ± ∈ C ∞ (Ω ± ) satisfying 0 < c min < c(x) < c max uniformly on Ω -∪ Ω + to ensure ellipticity. We shall work with the wave operator P defined as

P = ∂ 2 t -div g (c(x)∇ g ), on R t × Ω -∪ Ω + . (1.2)
We consider for (u 0 , u 1 ) ∈ H 1 0 (M) × L 2 (M) the following evolution problem:

               P u = 0 in (0, T ) × Ω -∪ Ω + u |S-= u |S+ in (0, T ) × S (c∂ ν u) |S-= (c∂ ν u) |S+ in (0, T ) × S u = 0 in (0, T ) × ∂M (u, ∂ t u) |t=0 = (u 0 , u 1 ) in M, (1.3)
where we denote by ∂ ν a nonvanishing vector field defined in a neighborhood of S, normal to S (for the metric g), pointing into Ω + and normalized for g. We denote as well by u |S± the traces of u |Ω± on the hypersurface S.

Notice that there are two extra equations in our system. These are some natural transmission conditions that we impose in the interface. These conditions imply that the underlying elliptic operator is self-adjoint on its domain and one can show using classical methods (for instance with the Hill-Yosida Theorem) that the system (1.3) is well posed. For more details on this we refer to Section 2.

Our first result provides a quantitative unique continuation result from an observation region ω for the discontinuous wave operator P .

In section 1.3 we introduce L(M, ω) = sup x∈M dist(x, ω), the "largest distance" of the subset ω to a point of M, where dist is a distance function adapted to (M, g, c).

Theorem 1.1. Consider (M, g), S, Ω ± and P as defined in (1.2). Then for any nonempty open subset ω of M and any T > 2L(M, ω), there exist C, κ, µ 0 such that for any (u 0 , u 1 ) ∈ H 1 0 (M) × L 2 (M) and u solving (1.3) one has, for any µ ≥ µ 0 ,

(u 0 , u 1 ) L 2 ×H -1 ≤ Ce κµ u L 2 ((0,T )×ω) + C µ (u 0 , u 1 ) H 1 ×L 2 .
If moreover ∂M = ∅ and Γ is a non empty open subset of ∂M, for any T > 2L(M, Γ), there exist C, κ, µ 0 > 0 such that for any (u 0 , u 1 ) ∈ H 1 0 (M) × L 2 (M) and u solving (1.3), we have

(u 0 , u 1 ) L 2 ×H -1 ≤ Ce κµ ∂ ν Γ u L 2 ((0,T )×Γ) + C µ (u 0 , u 1 ) H 1 ×L 2 .
Remark 1.2. In fact one can take µ > 0 in the statement of the above theorem. However we preferred to state it in this way in order to stress out the fact that this estimate is interesting only when µ is large.

With the above one can recover the following qualitative result: "If we do not see anything from ω during a time T strictly larger than 2L(M, ω), then there is no wave at all." Indeed, if u L 2 ((0,T )×ω) = 0, then letting µ → +∞ in the above inequality implies that (u 0 , u 1 ) = 0. (b) The observation takes place inside Ω+. If c-< c+ then a part of the wave may be trapped inside Ω-. Nevertheless, the quantitative unique continuation and its consequences still hold.

An important aspect of this theorem is that there is no assumption on the sign of the jump of the coefficient c and consequently the observation region ω can be chosen indifferently on Ω -or Ω + . Let us explain why this is quite surprising. Suppose, to fix ideas, that c -< c + are two constants. We can then interpret c -and c + as the the speed of propagation of a wave travelling through two isotropic media Ω - and Ω + with different refractive indices, n -and n + respectively (recall that n ± = 1/c ± ). Imagine that a wave starts travelling from a region that is inside Ω -. One has c- c+ = n+ n-and therefore the assumption c -< c + translates to n -> n + . Then Snell-Descartes law states that when a wave travels from a medium with a higher refractive index to one with a lower refractive index there is a critical angle from which there is total internal reflection, that is no refraction at all. At the level of geometric optics, that is to say, in the high frequency regime such a wave stays trapped inside Ω -. Therefore one expects that, at least at high frequency, no information propagates from Ω -to Ω + , following the laws of geometric optics. Our result (see Theorem 1.3) states that the intensity of waves in Ω + is at least exponentially small in terms of the typical frequency Λ of the wave.

We can reformulate Theorem 1.1 in a way closer to quantitative estimates such as (1.1). Indeed, optimizing the inequalities of Theorem 1.1 with respect to µ yields the following result (which we state only in the interior observation case):

Theorem 1.3. Under the assumptions of Theorem 1.1 there exists C > 0 such that for all (u 0 , u 1 ) ∈ H 1 0 (M) × L 2 (M) with (u 0 , u 1 ) = (0, 0) one has:

(u 0 , u 1 ) H 1 ×L 2 ≤ Ce CΛ u L 2 ((0,T )×ω) ,

(u 0 , u 1 ) L 2 ×H -1 ≤ C (u 0 , u 1 ) H 1 ×L 2 log 1 + (u0,u1) H 1 ×L 2 u L 2 ((0,T )×ω)
.

(1.4)

where Λ = (u0,u1) H 1 ×L 2 (u0,u1)

L 2 ×H -1
.

Note that Λ represents the typical frequency of the initial data. Theorem 1.3 is a direct consequence of Theorem 1.1 and Lemma A.3 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. Notice that the function

x → 1 log(1 + 1/x) ,
appearing in the right hand side of (1.4) has been tacitly extended by continuity by 0 when x = 0. In [Rob95, proof of Theorem 2, Section 3] it is shown that such a quantitative information can lead to an estimate for the cost of the approximate controllability. We state the case of internal control, a similar result holds for approximate boundary controllability as well.

Theorem 1.4 (Cost of approximate interior control). Consider M, S and ω ⊂ M as before. Then for any T > 2L(M, ω) there exist C, c > 0 such that for any > 0 and any (u 0 , u 1 ) ∈ H 1 0 (M) × L 2 (M), there exists f ∈ L 2 ((0, T ) × ω) with f L 2 ((0,T )×ω) ≤ Ce c/ (u 0 , u 1 ) H 1 0 (M)×L 2 (M) such that the solution of

               P u = 1 ω f in (0, T ) × Ω -∪ Ω + u |S-= u |S+ in (0, T ) × S (c∂ ν u) |S-= (c∂ ν u) |S+ in (0, T ) × S u = 0 in (0, T ) × ∂M (u, ∂ t u) |t=0 = (u 0 , u 1 ) in M, satisfies (u, ∂ t u) |t=T L 2 ×H -1 ≤ (u 0 , u 1 ) H 1 0 ×L 2 .
In other words, if we act on the region ω during a time T > 2L(M, ω) we can drive our solution from energy 1 (in H 1 × L 2 ) to close to 0 (in L 2 × H -1 ). Additionally, this comes with an estimate of the energy of the control which is of the order of e c/ . In the analytic context and without the presence of an interface it was shown in [START_REF] Lebeau | Contrôle analytique. I. Estimations a priori[END_REF] that this form of exponential cost is optimal in the absence of Geometric Control Condition [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF].

In the more general hypoelliptic context of [START_REF] Laurent | Logarithmic decay for linear damped hypoelliptic wave and Schrödinger equations[END_REF] the result of Theorem 1.4 is stated as approximate observability for the wave equation. It is shown by the authors of this article that such a property implies some resolvent estimates (Proposition 1.11 in [START_REF] Laurent | Logarithmic decay for linear damped hypoelliptic wave and Schrödinger equations[END_REF]) which in turn give a logarithmic energy decay estimate for the damped wave equation (see Theorem 1.5 in [START_REF] Laurent | Logarithmic decay for linear damped hypoelliptic wave and Schrödinger equations[END_REF]). Consequently, Theorem 1.4 combined with the results of [START_REF] Laurent | Logarithmic decay for linear damped hypoelliptic wave and Schrödinger equations[END_REF] provides a different proof for theorems that were already obtained using Carleman estimates for elliptic/parabolic operators (see [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] or [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]).

Remark 1.5. We have assumed that the interface S decomposes M in two disjoint parts Ω + and Ω -. However the same results can be obtained for other more general geometric situations as well. This comes from the fact that the key ingredient is a local quantitative estimate (see Theorem 5.1). See also the figure in [LRLR13, Section 1.3.2]

Strategy of the proof and organization of the paper

The Carleman estimate

One of the main tools for dealing with problems of local unique continuation across a hypersurface {φ = 0} is Carleman estimates. The idea, introduced by Carleman in [START_REF] Carleman | Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes[END_REF], is to prove an inequality involving a weight function ψ and a large parameter τ , of the form e τ ψ P u L 2 e τ ψ u L 2 , τ ≥ τ 0 , uniform in τ . The weight function ψ is closely related to the level sets of the function φ which defines implicitly the hypersurface. In an heuristic way, the chosen weight re-enforces the sets where u is zero and propagates smallness from sets where ψ is big to sets where ψ is small. Since Carleman estimates are already quantitative in nature they provide a good starting point for results of the form (1.1). We point out the fact that this is a local problem. In order to obtain a global result one needs in general to propagate the local one by passing through an appropriate family of hypersurfaces. The core of this article is to prove a local Carleman estimate in a neighborhood of the interface, containing a microlocal weight in the spirit of [START_REF] Tataru | Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem[END_REF][START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF][START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF]. The presence of discontinuous coefficients complicates significantly this task. In general, for a Carleman estimate to hold a condition involving the principal symbol of the operator and the hypersurface needs to hold, the so-called pseudoconvexity condition (see for instance [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]). These results are based on microlocal analysis arguments and some regularity is necessary for the estimate to hold. In our case we explicitly construct an appropriate weight function and show our estimate for this particular weight. Our proof is inspired by that of Lerner-Le Rousseau in the elliptic case [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] and relies in a factorization argument. Even though the behavior of our (hyperbolic) operator may be very different we consider in our context the wave operator as a "perturbation" of a Laplacian, in the spirit of [START_REF] Tataru | Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem[END_REF][START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF][START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF][START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. Let us explain why. For the sake of exposition, consider that M = R n , g is the Euclidean metric and c is piecewise constant with a jump across the hypersurface

S = {x n = 0}. That is c = c + 1 {xn>0} + c -1 {xn<0} . Then the principal symbol of the wave operator = ∂ 2 t -c∆ is σ( ) = -ξ 2 t + c|ξ| 2 .
The inequality we want to prove contains the weight e - D 2 t 2τ which heuristically localizes close to {ξ t = 0}, in other words localizes in a microlocal region where our operator is close to being elliptic.

In order to obtain a Carleman estimate with a weight ψ one obtains an inequality for the conjugated operator P ψ defined by P ψ := e τ ψ P e -τ ψ . In [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] the authors use an idea which can be traced back to Calderón [START_REF] Pedro | Uniqueness in the Cauchy problem for partial differential equations[END_REF]. They factorize the conjugated operator P ψ as a product of two first-order operators and prove estimates for each first order factor. In the elliptic case P = -c∆ and for a weight ψ depending only on x n one has the following factorization:

P ψ = c + (D n + i(τ ψ + |ξ |)) (D n + i(τ ψ -|ξ |)) + c -(D n + i(τ ψ -|ξ |)) (D n + i(τ ψ + |ξ |) = c + (D n + ie + ) (D n + if + ) + c -(D n + if -) (D n + ie -) .
Here the operator has been identified with its symbol in the tangential variables. This allows to work on the normal variable x n and treat the other ones as parameters. In more technical terms, we can use the tools of tangential symbolic calculus in all the variables but x n and try to obtain good one-dimensional estimates for the first order operators D n + ie ± and D n + if ± . The general principle is that the sign of e ± , f ± determines the quality of the one dimensional estimates. The choice of the weight function ψ is made so that the following key property is satisfied: we can cover the tangential dual space by Γ 1 , Γ 2 such that (x , τ, ξ

) ∈ R n-1 × R × R n-1 = Γ 1 ∪ Γ 2 with f + ≥ 0 on Γ 1 and f -≤ 0 on Γ 2 .
In the proof of the present article, in which P is a wave operator, we work essentially in two microlocal zones. In the first zone, the operator P is not microlocally elliptic. In this zone, we consider terms involving D t as admissible errors. Using the operator e - D 2 t 2τ allows us then to obtain the desired estimate. In the second zone, the operator P is microlocally elliptic one can follow the proof provided in the elliptic case in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF].

In Section 2 we give the precise statement of the local Carleman estimate that we prove and we describe adapted local coordinates in a small neighborhood of the interface to prepare the proof. In Section 4 we prove the Carleman estimate. We considered helpful to give first a proof for a toy model (constant coefficients case) in Section 3. In this case one can simply work on the Fourier domain without having to work with pseudodifferential operators (see [Ler19, Chapter 10]). At the same time it allows to understand the core of the arguments which will be used in the general case too.

Using the Carleman estimate

The next step is to use the Carleman estimate. To do this, one needs to obtain a local quantitative version which can be iterated. This has been done in the smooth case by Laurent and Léautaud in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. There, the estimate has the same form as that obtained in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] in a (arbitrarily small) neighborhood of the interface S. Thus, we are able to use it "once" to pass on the other side of S and then combine it with the results of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. In Section 5.1 we show how one can use the techniques of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] to obtain such a local quantitative estimate in a neighborhood of the interface where the coefficients jump. Finally in Section 5.3 we prove that indeed, one can propagate the quantitative estimate by combining our local estimate with the analogous results in the smooth case.

Some notations and definitions

We recall in this Section some elementary geometric facts and we give the precise definition of the distance which is used in the statement of Theorem 1.1 and Theorem 1.4.

Let us recall that the geometric setting is given at the beginning of Section 1.1. The interface S has a natural metric given by the restriction of g to T S. In local coordinates we have:

∂ ν = j ν j ∂ xj , ν j = λ k n k g jk , |ν g | = 1, with g ij g jk = δ ik , λ 2 = i,j g ij n i n j -1
and n is the normal to S for the Euclidean metric in the chosen local coordinates pointing into Ω + . We denote by (•, •) g = g(•, •) the inner product on T M. The Riemannian gradient of a function f is defined in an intrinsic manner by (∇ g f, X) g = df (X), for any smooth vector field X.

The integral of a function f is defined by

f := M f (x)dVol g (x)
, where dVol g (x) is the Riemannian volume element. The divergence operator, acting on a vector field X is defined by the relation

u div g X = -(∇ g u, X) g , for all u ∈ C ∞ 0 (IntM).
Let us recall the expression of these objects in local coordinates. We consider f a smooth function on M and

X = i X i ∂ xi , Y = i Y i ∂ xi two smooth vector fields on M. We have: (X, Y ) g = i,j g ij X i Y j , ∇ g f = i,j g ij (∂ j f )∂ xi , div g (X) = 1 √ det g i ∂ i det gX i .
We finally have:

div g (c(x)∇ g f ) = 1 √ det g i,j ∂ xi cg ij det g∂ xj f , x ∈ Ω -∪ Ω + .
We want to define the natural distance associated to the operator P appearing in Theorem 1.1. Consider the piecewise smooth metric g c by g

c := 1 Ω-c -1 -g + 1 Ω+ c -1 + g. Definition 1. An admissible path C ∞ ([0, 1]; M) γ : [0, 1] → M is a path satisfying the conditions: • γ does not have self-intersections • γ intersects the interface S a finite number of times • γ(t) ∈ S =⇒ γ (t) ⊥ T γ(t) S
In particular, if γ is an admissible path then the map t → |γ (t)| gc(γ(t)) ∈ L ∞ ([0, 1]; M) is bounded and consequently we can define its length by the usual formula:

length(γ) = 1 0 |γ (t)| gc(γ(t)) dt.
We now define the distance we will be working with: Definition 2. The distance of two points x 0 , x 1 ∈ M is defined as:

dist(x 0 , x 1 ) = inf{length(γ)| γ admissible path, γ(0) = x 0 , γ(1) = x 1 }.
We can now as well define the largest distance of a subset E ⊂ M to M by

L(M, E) := sup x∈M dist(x, E), (1.5) where dist(x, E) = inf y∈E dist(x, y).
Remark 1.6. Notice that the conditions imposed on the family of admissible paths do not pose any important restriction since any Lipschitz path can be replaced by an admissible one up to increasing its length by an > 0 arbitrarily small. Since we take the infimum of these lengths the distance remains the same.

The Carleman estimate

The key ingredient for the proof of Theorem 1.1 is a local Carleman estimate. Since we will work in spacetime it is convenient to consider Σ := R t × S with S the smooth interface of the manifold M defined in Section 1.1. Therefore, Σ is a smooth hypersurface of R t × M. We define as well Ω t,± := R t × Ω ± .

General transmission conditions

We want to derive a Carleman estimate for the wave operator

= P := ∂ 2 t -div g (c(x)∇ g ),
where the scalar coefficient c satisfies 0 < c min < c(x) < c max < +∞ uniformly for x ∈ Ω -∪ Ω + to make sure that the ellipticity property is satisfied. We recall as well that c |Ωt,± ∈ C ∞ (Ω t,± ) but it jumps across the interface S. Since the operator P has discontinuous coefficients one needs to be careful with its domain. Indeed, given a function

u = 1 Ωt,-u -+ 1 Ωt,+ u + with u ± ∈ C ∞ (R t × M) one has in the distributional sense ∇ g u = 1 Ωt,-∇ g u -+ 1 Ωt,+ ∇ g u + + (u --u + )δ Σ ν,
where δ Σ is the surface measure on Σ and ν is the unit normal vector field pointing into Ω t,+ . We impose then that

u -|Σ = u +|Σ , (2.1)
and the singular term is removed. Similarly, calculating div(c(x)∇ g u),

we see that the condition

c + ∂ ν u + |Σ = c -∂ ν u -|Σ (2.2)
combined with (2.1) gives the equality

div g (c(x)∇ g u) = 1 Ωt,-div(c -∇ g u -) + 1 Ωt,+ div(c + ∇ g u + ).
We define then W as the space containing functions of the form

u = 1 Ωt,-u -+ 1 Ωt,+ u + , (2.3) with u ± ∈ C ∞ 0 (R t × M)
and such that (2.1) and (2.2) hold. These conditions are called transmission conditions and for u ∈ W one has P u ∈ L 2 . The above calculations show as well that P is formally self adjoint on this domain and therefore by classical methods (energy estimates or semi-group theory) one has that the evolution problem (1.3) is well posed.

Remark 2.1. The first transmission condition expresses the continuity across the interface and the second one the continuity for the normal flux. Notice that the second condition excludes many smooth functions from the space W. On the other hand elements of W are Lipschitz continuous and in particular one has W ⊂ H 1 .

For technical reasons it will be useful to work with non-homogeneous transmission conditions as well. More precisely, we shall denote by W θ,Θ the space of functions of the form (2.3) satisfying additionally the following non homogeneous transmission conditions:

u -|Σ = u + |Σ + θ (2.4) c + ∂ ν u + |Σ = c -∂ ν u -|Σ + Θ, (2.5)
where θ and Θ are smooth functions of the interface Σ.

Local setting in a neighborhood of the interface

Since we show a local Carleman estimate we can state it directly in adapted local coordinates. In a sufficiently small neighborhood V of a point x 0 of S one can use normal geodesic coordinates with respect to the spatial variables x (see [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF], Appendix C.5, [LRLR22] Section 9.4 ). In such a coordinate system the interface S is given by S = {x n = 0} and the principal part of the operator P denoted by P 2 takes the form (on both sides of the interface)

P 2 = ∂ 2 t -c(x)(∂ 2 xn -r(x, ∂ x /i)), with r(x, ξ ) a xfamily of second order polynomials in ξ that satisfy r(x, ξ ) ∈ R, C 1 |ξ | 2 ≤ r(x, ξ ) ≤ C 2 |ξ | 2 , for x ∈ V , ξ ∈ R n-1 and 0 < C 1 < C 2 < ∞.
The transmission conditions become after this change of variables:

u -|xn=0 = u + |xn=0 + θ (2.6) c + ∂ xn u + |xn=0 = c -∂ xn u -|xn=0 + Θ, (2.7)
In this setting, the two sides of the interface become Ω t,+ = {x n > 0} and Ω t,-= {x n < 0}. We shall use the notation

H ± = 1 Ωt,± .
and we have for the coefficient c :

c(x) = H -c -(x) + H + c + (x).
The space W θ,Θ consists in this local context of functions u of the form

u = H -u -+ H + u + , u ± ∈ C ∞ 0 (R t × V )
, satisfying also (2.6) and (2.7). We define as well [START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF][START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF] we are seeking to prove a Carleman estimate containing the microlocal weight

P ± := ∂ 2 t -div(c ± ∇•). Following [Tat95,
Q φ δ,τ = e -δ|D t | 2 2τ e τ φ .
(2.8)

We shall take φ in the following form:

φ = φ(x n ) = α -x n + βx 2 n 2 H -+ α + x n + βx 2 n 2 H + , α ± , β > 0.
(2.9)

The parameters α ± and β will be chosen in the sequel. The parameter β will be taken large and is related to the sub-ellipticity property (see for instance [START_REF] Hörmander | Linear Partial Differential Operators[END_REF] or [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]) which is necessary for a Carleman estimate to hold. The choice of α ± comes from the construction in the microlocally elliptic case (see Lemma 4.11). It is a geometric condition on the interface that requires the jump of ∂ xn φ (i.e. α + -α -> 0) to be sufficiently large (see 4.32).

The following is our main Carleman estimate and its proof will occupy a large part of this article: Theorem 2.2. In the geometric situation presented just above let (t 0 , x 0 ) ∈ R t × V . Then there exists an appropriate weight φ and some positive constants C, τ 0 , δ, d, r 0 such that

C H -Q φ δ,τ P -u - 2 L 2 + C H + Q φ δ,τ P + u + 2 L 2 + Ce -dτ τ 3 e τ φ u 2 L 2 + τ H + ∇e τ φ u + 2 L 2 + τ H -∇e τ φ u - 2 L 2 + CT θ,Θ ≥ τ 3 Q φ δ,τ u 2 L 2 + τ H + ∇Q φ δ,τ u + 2 L 2 + τ H -∇Q φ δ,τ u - 2 L 2
, for u ∈ W θ,Θ such that supp u ⊂ B((t 0 , x 0 ), r 0 ) and τ ≥ τ 0 , where

T θ,Θ = τ 3 Q φ δ,τ θ 2 L 2 (Σ) + τ Q φ δ,τ ∇θ 2 L 2 (Σ) + τ Q φ δ,τ Θ 2 L 2 (Σ)
.

(2.10) Several remarks are in order:

Remark 2.3. Observe that the choice of φ is well adapted to the geometric situation: for small |x n | we have that Σ = {x n = 0} = {φ = 0} and the two sides of the interface are given by {φ > 0} and {φ < 0}. We also have (for |x n | sufficiently small) that φ > 0, and consequently φ is larger in Ω + : Ω + is the observation region and the Carleman estimate of Theorem 2.2 will propagate uniqueness from Ω + to Ω -. In particular, the weight function φ is suitable for observation in the sense of [LRL13, Property (1-12)].

Remark 2.4. Notice that in the case of homogeneous transmission conditions θ = Θ = 0 one has T θ,Θ = 0. The calculations carried out in Section 2.1 imply that P u ∈ L 2 and therefore

H -P -u -L 2 + H + P + u + L 2 = P u L 2 .
Using moreover the fact that u ∈ H 1 we can write the estimate of Theorem 2.2 in a more concise way as:

C Q φ δ,τ P u 2 L 2 + e -dτ e τ φ u 2 H 1 τ ≥ τ Q φ δ,τ u 2 H 1 τ ,
where the • H 1 τ norm is defined as

w H 1 τ := τ w L 2 + ∇w L 2 .
Remark 2.5. As in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] we explicitly construct an appropriate weight function φ. It will initially depend only in the variable x n with Σ = {x n = 0}. In Section 4.5 we shall use a perturbation argument to allow dependence upon the other variables as well.

As usual, to prove Theorem 2.2 we work with the conjugated operator P φ,δ defined in our case by the relation:

e

-δ|D t | 2 2τ e τ φ P ± = P ± φ,δ e -δ|D t | 2 2τ e τ φ .
(2.11)

For a general weight φ the operators P ± φ,δ do not exist, however in the case where φ is quadratic in t one can show that we have the following expression for P ± φ,δ (see for instance [Hör97, Chapter 2]):

P ± φ,δ = c ± (x)(D n + iτ φ -δκ t,t D t ) 2 + c ± (x) 1≤j,k≤n-1 b jk (x)(D j + iτ ∂ j φ -δφ t,xj )(D k + iτ ∂ k φ -δφ t,x k ) -(D t + iτ φ t -δφ t,t D t ) 2
(2.12)

This will be used at a later stage where we will convexify our initial weight φ as we know that this is in general a necessary procedure for our Carleman estimate to be used if one wishes to obtain qualitative or quantitative uniqueness results. We shall however initially consider a weight φ depending solely on the variable x n , and a perturbation argument will be used to allow some convexification. In the case where φ is independent of t the conjugated operator e τ φ P e -τ φ commutes with the Fourier multiplier e - δD 2 t 2τ and it takes the following particularly simple form:

P ± φ = c ± (x)(D n + iτ φ ) 2 + c ± (x) 1≤j,k≤n-1 b jk (x)D j D k -D 2 t
As for the smooth case shown by Tataru we will prove a sub elliptic estimate concerning the conjugated operator, which will act on functions of the form w = Q φ δ,τ u for u ∈ W θ,Θ . We therefore have to understand the action of the conjugated operator on the transmission conditions. We use the following expressions:

w ± (t, x) = τ 2πδ 1 2 R e -τ 2δ (t-s) 2 e τ φ u ± (s, x)ds ∂ n w ± (t, x) = τ 2πδ 1 2 R e -τ 2δ (t-s) 2 e τ φ τ φ ± u ± + ∂ n u ± (s, x)ds.

Let us define

V t := R t × V.
(2.13)

One has that u ∈ W θ,Θ is equivalent to w ∈ W θ,Θ φ with the space W θ,Θ φ being defined as the space containing functions w such that

w = H -w -+ H + w + , w ± ∈ C ∞ 0 (V t ),
satisfying additionally the following modified transmission conditions:

w -|Σ = w + |Σ + θ φ (2.14) c + (D n w + + iτ α + w + ) |Σ = c -(D n w -+ iτ α -w -) |Σ + Θ φ , (2.15)
where

θ φ = Q φ δ,τ θ and Θ φ = Q φ δ,τ Θ.
The following proposition is the main step in the proof of Theorem 2.2: Proposition 2.6. Let (t 0 , x 0 ) ∈ Σ. There exist a suitable weight φ and C, τ 0 , r 0 > 0 such that

C P - φ v - 2 L 2 (R n+1 ) + P + φ v + 2 L 2 (R n+1 ) + τ H + D t v + 2 L 2 (R n+1 ) + τ H -D t v - 2 L 2 (R n+1 ) + τ (D t v + ) |Σ 2 L 2 (Σ) + τ (D t v -) |Σ 2 L 2 (Σ) + T θ,Θ ≥ τ 3 v 2 L 2 (R n+1 ) + τ H + ∇v + 2 L 2 (R n+1 ) + τ H -∇v - 2 L 2 (R n+1 ) + τ 3 |v + | 2 L 2 (Σ) + τ 3 |v -| 2 L 2 (Σ) + τ (∇v + ) |Σ 2 L 2 (Σ) + τ (∇v -) |Σ 2 L 2 (Σ) , for v ∈ W θ,Θ φ such that supp v ⊂ B((t 0 , x 0 ), r 0 ) and τ ≥ τ 0 .
Proposition 2.6 provides a sub elliptic estimate for the conjugated operator which contains an admissible error (compared to a standard Carleman estimate) in its left hand side, which we will call E t for convenience in the sequel:

E t (v) := τ H + D t v + 2 L 2 (R n+1 ) + τ H -D t v - 2 L 2 (R n+1 ) + τ (D t v + ) |Σ 2 L 2 (Σ) + τ (D t v -) |Σ 2 L 2 (Σ) . (2.16)

Proof of Theorem 2.2 from Proposition 2.6

One should notice that Theorem 2.2 is not a straightforward consequence of Proposition 2.6. Indeed when one considers w = Q φ δ,τ u the function w is not necessarily compactly supported even though this is the case for u and consequently Proposition 2.6 cannot be applied directly. In particular when we pass from Proposition 2.6 to Theorem 2.2 the Gaussian weight localizes close to {D t = 0} and that is why E t is an admissible remainder term. Nevertheless the passage from Proposition 2.6 to Theorem 2.2 is quite classical ( [START_REF] Tataru | Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem[END_REF][START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF]). In our context one has additionally to deal with the terms coming from the interface. Let us present a proof here:

Proof that Proposition 2.6 implies Theorem 2.2. We consider an element u ∈ W θ,Θ satisfying additionally supp u ⊂ B(0, r/4), with r := r0 2 and r 0 fixed by Proposition 2.6. We define as before w = Q φ δ,τ u = e -δ|D t | 2 2τ e τ φ u which is not compactly supported on the time variable t. We take then ζ ∈ C ∞ 0 ((-r, r); [0, 1]) with ζ = 1 on (-r/2, r/2). This implies that the function v := ζ(t)w(t, x) ∈ W θ,Θ φ satisfies additionally supp v ⊂ B(0, r 0 ) which means that we can apply Proposition 2.6 to it. We neglect the last two surface terms and write the estimate of Proposition 2.6 in a more compact and slightly weaker form to obtain:

± H ± P ± φ v 2 L 2 + τ H ± D t v ± 2 L 2 + τ |D t v ± | 2 L 2 (Σ) + T ζθ,ζΘ τ v 2 H 1 τ + τ 3 |v ± | 2 L 2 (Σ) .
Using the fact that ζ(t) ≤ 1, the definition of T θ,Θ in (2.10) and the property (B.1) of Q φ δ,τ we see that T ζθ,ζΘ ≤ CT θ,Θ . This yields:

± H ± P ± φ v 2 L 2 + τ H ± D t v ± 2 L 2 + τ |D t v ± | 2 L 2 (Σ) + T θ,Θ τ v 2 H 1 τ + τ 3 |v ± | 2 L 2 (Σ) .
(2.17)

Now we estimate for w:

τ v 2 H 1 τ + τ 3 |w ± | 2 L 2 (Σ) τ ζw 2 H 1 τ + τ (1 -ζ)w 2 H 1 τ + τ 3 |ζw ± | 2 L 2 (Σ) + τ 3 |(1 -ζ)w ± | 2 L 2 (Σ) ± H ± P ± φ ζw 2 L 2 + τ H ± D t ζw ± 2 L 2 + τ |D t ζw ± | 2 L 2 (Σ) + T θ,Θ + τ (1 -ζ)w 2 H 1 τ + τ 3 |(1 -ζ)w ± | 2 L 2 (Σ) , (2.18)
thanks to (2.17). For the last two terms we remark that

(1 -ζ)w = (1 -ζ)e -δ|D t | 2 2τ e τ φ u = (1 -ζ)e -δ|D t | 2 2τ ( χe τ φ u),
with χ = χ(t) ∈ C ∞ 0 ((-r/3, r/3)) with χ = 1 in a neighborhood of [-r/4, r/4] which implies that χu = u. Since 1 -ζ is supported away from (-r/2, r/2) one can apply Lemma B.2 which gives:

τ (1 -ζ)w 2 H 1 τ + τ 3 |(1 -ζ)w ± | 2 L 2 (Σ) ≤ Cτ e -c τ δ e τ φ u 2 H 1 τ + Cτ 3 e -c τ δ e τ φ u ± 2 L 2 (Σ) .
Therefore it remains to estimate the following three terms, appearing in the right hand side of (2.18):

• We take a function χ = χ(t) such that χ = 1 on supp(ζ ) and χ = 0 on (-r/3, r/3) and find for the first one:

± H ± P ± φ ζw 2 L 2 ± H ± ζP ± φ w 2 L 2 + H ± [P ± φ , ζ]w 2 L 2 ± H ± P ± φ w 2 L 2 + H ± [P ± φ , ζ]w 2 L 2 = ± H ± P ± φ w 2 L 2 + H ± [P ± φ , ζ] χw 2 L 2 ± H ± P ± φ w 2 L 2 + χw 2 H 1 τ ± H ± P ± φ w 2 L 2 + e -c τ δ e τ φ u 2 H 1 τ (2.19)
where we used the properties of the support of χ and u combined with Lemma B.2.

• For the second term we have, using the support of ζ , as well (to alleviate notation we drop the ±):

τ D t ζw 2 L 2 τ ζ w 2 L 2 + τ D t w 2 L 2 τ e -c τ δ e τ φ u 2 L 2 + τ D t w 2 L 2 .
To estimate τ D t w 2 L 2 we work on the Fourier domain (with respect to the time variable t) and distinguish between the frequencies smaller or bigger than στ for an arbitrary σ > 0 (as in [LL19, Section 5.2]). One has:

D t w L 2 ≤ 1 |Dt|≤στ D t w L 2 + 1 |Dt|≥στ D t w L 2 = 1 |Dt|≤στ D t w L 2 + 1 |Dt|≥στ D t e -δ|D t | 2 2τ e τ φ u ≤ 1 |Dt|≤στ D t w L 2 + max ξt≥στ ξ t e - δξ 2 t 2τ e τ φ u L 2 .
We see that if τ ≥ 1 σ 2 δ the function s → se -δs 2 2τ is decreasing on the interval [στ, +∞). We obtain therefore for τ ≥ max(τ 1 , 1 σ 2 δ ) the estimate:

τ D t w 2 L 2 σ 2 τ 3 w 2 L 2 + σ 2 τ 3 e -τ σ 2 δ e τ φ u 2 L 2 .
(2.20)

Above and in the sequel the hidden constant will be independent of σ.

• For the third term τ |D t ζw ± | 2 L 2 (Σ) in (2.18) one can proceed exactly as above to find:

τ |D t ζw| 2 L 2 (Σ) τ e -c τ δ e τ φ u 2 L 2 (Σ) + σ 2 τ 3 |w| 2 L 2 (Σ) + σ 2 τ 3 e -τ σ 2 δ e τ φ u 2 L 2 (Σ) .
(2.21)

We inject estimates (2.19), (2.20) and (2.21) in the right hand side of (2.18) to obtain:

τ w 2 H 1 τ + τ 3 |w| 2 L 2 (Σ) P φ w 2 L 2 + τ e -c τ δ + σ 2 τ 3 e -τ σ 2 δ e τ φ u 2 H 1 τ + τ 3 e -c τ δ + σ 2 τ 3 e -τ σ 2 δ e τ φ u 2 L 2 (Σ) + σ 2 τ 3 w 2 L 2 + σ 2 τ 3 |w| 2 L 2 (Σ) + T θ,Θ .
We now choose σ sufficiently small to absorb the last two terms above in the left hand side of our estimate. Then there exists d > 0 such that for τ ≥ max(τ 0 , 1 σ 2 δ ):

± τ w ± 2 H 1 τ + τ 3 |w ± | 2 L 2 (Σ) ± H ± P ± φ w ± 2 L 2 + e -dτ e τ φ u ± 2 H 1 τ + e τ φ u ± 2 L 2 (Σ) + T θ,Θ ± H ± P ± φ w ± 2 L 2 + e -dτ e τ φ u ± 2 H 1 τ + T θ,Θ ± H ± Q φ δ,τ P ± u ± 2 L 2 + e -dτ e τ φ u ± 2 H 1 τ + T θ,Θ ,
where we have used the trace estimate e τ φ u

2 L 2 (Σ)
e τ φ u 2 H 1 as well as the definition of the conjugated operator P φ . This concludes the proof of Theorem 2.2 from Proposition 2.6.

Proof of Proposition 2.6 for a toy model

The goal of this section is to prove the subelliptic estimate of Proposition 2.6 in the particular situation where the coefficient c is piecewise constant. This case works as a sketch of proof since it is technically simpler but at the same time it allows to understand the core of the arguments that will be used for the proof of the general case in Section 4.

Notations: Before going further let us fix some useful notations that will be used in the sequel. We write R n+1 + = {x n > 0} × R n with the analogous definition for R n+1 -. In particular R + will refer to {x n > 0} and R -to {x n < 0}. We note a, b the inner product in L 2 (R n+1 ) and x = (x 1 , ..., x n-1 ). The inner product on L 2 (R n+1 + ), L 2 (R n+1 -), Σ will de denoted by (•, •) + , (•, •) -, (•, •) Σ respectively. When we consider norms on Σ the argument will automatically be considered to be restricted in Σ, even though we shall not always write |Σ to simplify our notation. We will simply write v for the partial Fourier transform of v in the variables (t, x ), whose dual variables are (ξ t , ξ ). We recall that the space of functions W θ,Θ φ and the small neighborhood V have been defined in Section 2.2. To alleviate notation we denote

W φ := W 0,0
φ , for the case of homogeneous transmission conditions.

We recall that we work in the setting introduced in Section 2.2. We suppose additionally only in this section that the coefficient c is piecewise constant. We write then c = H -c -+ H + c + with c ± > 0 constants and we consider homogeneous transmission conditions θ = Θ = 0. This allows to write v -(0) = v + (0) = v(0) for v ∈ W φ and it implies as well that P φ v ∈ L 2 (V t ).

Factorization and first estimates

In the sequel when we use the notation or the implicit constant will depend on the coefficients of P φ (here c ± ) and on the coefficients α ± , β of our weight function φ. The constants denoted by C will depend on the same variables and they can be different from one line to another.

In the elliptic case of [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] the authors use a factorization argument which takes advantage of the fact that -∆ is positive and therefore one can define its square root. In our proof of Proposition 2.6 we use and extend this idea of factorization, however as we no longer have the positivity property this factorization is not always possible. Before giving the details let us observe that we can identify the operator P φ with its symbol in the tangential variables (t, x ). Indeed, using Plancherel's theorem and denoting by F t,x the partial Fourier transform in the variables (t, x ) we have:

(2π) n/2 P φ v L 2 (R n+1 ) = F t,x P φ v L 2 (R n+1 ) = H + c + (D n + iτ φ ) 2 + c + |ξ | 2 -ξ 2 t F t→ξt,x →ξ v + L 2 (R n+1 ) + H -c -(D n + iτ φ ) 2 + c -|ξ | 2 -ξ 2 t F t→ξt,x →ξ v -L 2 (R n+1 ) .
Here we used the fact that the coefficients of P (and thus of P φ since φ = φ(x n )) are constant. In the general case, although this identification is no longer valid, symbolic calculus will allow to exploit the core of the arguments carried out below. We write:

P ± φ = c ± (D n + iτ φ ) 2 + |ξ | 2 - 1 c ± |ξ t | 2 .
For > 0 small to be chosen, we distinguish the following regions of the tangential frequency space R n (ξ , ξ t ):

1.

E ± : |ξ | 2 -c -1 ± |ξ t | 2 ≥ (|ξ | 2 + |ξ t | 2
) . This is the elliptic region. Here we can factorize in precisely the same way as in the elliptic case [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] with the same estimates for the first order factors. For (ξ t , ξ ) ∈ E -∩ E + we can proceed exactly as in the elliptic case.

GH

± : |ξ | 2 -c -1 ± |ξ t | 2 < (|ξ | 2 + |ξ t | 2
) . This is the union of the hyperbolic and glancing regions (see for instance [Hör85, Chapter 23.2] or [START_REF] Galkowski | Control from an interior hypersurface[END_REF]). The important fact is that here we have for sufficiently small that |ξ t | |ξ |. Since D t v = ξ t v and |D t v| = |ξ t v| are admissible remainder terms (in view of the statement of Proposition 2.6) we obtain directly a useful estimate on all tangential derivatives. It thus only remains to obtain an estimate on D n v and |D n v|.

We have thus considered two regions adapted to the geometry in each side of the interface (that is {x n < 0} and {x n > 0}). This gives us four regions which cover all of the tangent dual space. Note that making an assumption on the sign of the jump could reduce the number of regions one has to deal with but we do not make such an assumption.

The following simple Lemma will be used in multiple occasions in the sequel:

Lemma 3.1. One has for v ∈ W φ and all τ > 0:

τ |D n v± (0)| 2 τ |D n v∓ (0)| 2 + τ 3 |v(0)| 2
This means that if we have one of the two terms τ

|D n v+ | 2 L 2 (Σ) or τ |D n v-| 2 L 2 (Σ)
we automatically have the other one too, modulo the surface term τ 3 |v| 2 .

Proof. This is a result of the transmission conditions (2.14) and (2.15) and of the fact that partial Fourier transform commutes with restriction on Σ = {x n = 0}. The first transmission condition allows to write v-(0) = v+ (0) = v(0) and (2.15) reads

D n v-(0) = c + c - (D n v+ + iτ α + v+ (0)) -iτ α -v-(0),
and therefore

|c -D n v-(0) -c + D n v+ (0)| τ |v(0)|,
from which the Lemma follows.

Consequently, if for instance one has

P φ v 2 L 2 (R n+1 ) + E t (v) τ |D n v -| 2 L 2 (Σ) + τ 3 |v(0)| 2 L 2 (Σ)
then thanks to Lemma 3.1 we have:

τ |D n v + (0)| 2 L 2 (Σ) τ |D n v -(0)| 2 L 2 (Σ) + τ 3 |v(0)| 2 L 2 (Σ) P φ v 2 L 2 (R n+1 ) + E t (v).
As we aim at proving a Carleman estimate (which involves a large parameter τ ) we expect that regions depending on τ arise. The following lemma furnishes such a region which is rather favorable:

Lemma 3.2. For all τ, c 0 > 0, v ∈ W φ and Y ⊂ {|ξ t | ≥ c 0 (τ + |ξ |)} one has τ D t v + 2 L 2 (R+×Y ) + τ D t v - 2 L 2 (R-×Y ) + τ D t v + (0) 2 L 2 (Σ∩Y ) + τ D t v -(0) 2 L 2 (Σ∩Y ) τ 3 v 2 L 2 (R×Y ) + τ 3 | v(0)| 2 L 2 (Σ∩Y ) + τ ∇ x v(0) 2 L 2 (Σ∩Y ) + τ ∇ x v - 2 L 2 (R-×Y ) + τ ∇ x v + 2 L 2 (R+×Y )
.

Proof. We simply write

τ D t v ± 2 L 2 (R×Y ) = τ ξ t v± 2 L 2 (R×Y ) τ (τ + |ξ |)v ± ) 2 L 2 (R×Y ) τ 3 v± 2 L 2 (R×Y ) + τ ∇ x v 2 L 2 (R×Y )
And:

τ |D t v| 2 L 2 (Σ∩Y ) = τ |ξ t v| 2 L 2 (Σ∩Y ) τ |(τ + |ξ |)v)| 2 L 2 (Σ∩Y ) τ 3 |v| 2 L 2 (Σ∩Y ) + τ ∇ x v 2 L 2 (Σ∩Y )
.

The following lemma allows to obtain the volume derivatives modulo the reminder of the terms of the right hand-side of Proposition 2.6. Lemma 3.3. One has for v ∈ W φ and τ ≥ τ 0 :

P φ v 2 L 2 (R n+1 ) + E t (v) + τ 3 v 2 L 2 (R n+1 + ) + τ 2 |v(0)| 2 L 2 (Σ) + |D n v + (0)| 2 L 2 (Σ) + |D n v -(0)| 2 L 2 (Σ) τ ∇v - 2 L 2 (R n+1 - ) + τ ∇v + 2 L 2 (R n+1 + ) .
Remark 3.4. Lemma 3.3 allows to forget the volume norm of the derivatives in the proof of our proposition. From now on we will try to obtain all the other terms of Proposition 2.6. Notice also that there is no restriction on the frequency support of v.

Proof. We start with the positive half-line. One has the following elementary inequality:

P + φ v + 2 L 2 (R n+1 + ) + τ 2 v + 2 L 2 (R n+1 + ) ≥ 2τ Re(P + φ v + , H + v + ).
Now we can integrate by parts. Indeed, recall that:

P + φ = c + (D 2 n + τ β + 2iτ φ D n -τ 2 |φ | 2 ) + c + |D | 2 -D 2 t
and that the definition of the weight function φ gives φ (x n ) = α ± + βx n , therefore:

2τ Re(P + φ v, H + v) = c + 2τ D n v + 2 L 2 (R n+1 + ) + 2τ R n Re(∂ xn v + (0)v + (0))dx dt + 2τ 2 β v + 2 L 2 (R n+1 + ) -2τ 2 α + |v + (0)| 2 -2τ 2 β v + 2 L 2 (R n+1 + ) -2τ 3 φ v + 2 L 2 (R n+1 + ) + 2τ D v + 2 L 2 (R n+1 + ) -2τ D t v + 2 L 2 (R n+1 + ) . (3.1)
As one has 2τ

R n Re(∂ xn v + (0)v + (0))dx dt |D n v + (0)| 2 L 2 (Σ) + τ 2 |v + (0)| 2 L 2 (Σ) ,
(3.1) can be rewritten as

2τ Re(P + φ v, H + v)) L 2 (R n+1 + ) = Cτ ∇v + 2 L 2 (R n+1 + ) + R, with |R| τ 3 v + 2 L 2 (R n+1 + ) + τ D t v + 2 L 2 (R n+1 + ) + τ 2 |v + (0)| 2 L 2 (Σ) + |D n v + (0)| 2 L 2 (Σ)
. which implies the desired inequality for v + . Since the proof above is insensitive to the sign of the boundary terms coming from the integration by parts in (3.1) we also obtain the desired inequality for the negative half-line.

The following simple calculation will be at the core of the one dimensional estimates that will be used in the sequel, with s = x n :

Lemma 3.5. One has for γ > 0, λ ∈ C and v ∈ C 1 c (R): (D s + iγs + λ)v 2 L 2 (R + ) = D s v + Re λv 2 L 2 (R + ) + (γs + Im λ)v 2 L 2 (R + ) (3.2) + γ v 2 L 2 (R + ) + Im λ|v(0)| 2 ,
and

(D s + iγs + λ)v 2 L 2 (R -) = D s v + Re λv 2 L 2 (R -) + (γs + Im λ)v 2 L 2 (R -) (3.3) + γ v 2 L 2 (R -) -Im λ|v(0)| 2 .
In particular one can deduce the following downgraded estimates:

(D s + iγs + λ)v 2 L 2 (R + ) ≥ (γs + Im λ)v 2 L 2 (R + ) + Im λ|v(0)| 2 , (3.4) (D s + iγs + λ)v 2 L 2 (R -) ≥ γ v 2 L 2 (R -) + (γs + Im λ)v 2 L 2 (R -) -Im λ|v(0)| 2 . (3.5)
Proof of Lemma 3.5. We develop:

(D s + Re λ + iγs + i Im λ)v 2 L 2 (R + ) = (D s + Re λ)v 2 L 2 (R + ) + (γs + Im λ)v 2 L 2 (R + ) + 2 Re(H + (D s + Re λ)v, iγsv + i Im λv).
We have Re(H + Re λv, iγsv + i Im λv) = 0 and then integrate by parts:

(H + D s v, i Im λv) = Im λ|v(0)| 2 -(H + D s v, i Im λv),
and

(H + D s v, iγsv) = γ v 2 L 2 (R + ) -(H + D s v, iγsv
), which allows to explicitly obtain the real parts and get the stated equality. For the proof of (3.3) observe that the boundary term comes out with a negative sign.

We first deal with the case τ |ξ | + |ξ t |. Here we can use the ellipticity of (D n + iτ φ ) 2 as an 1D operator, and then a perturbation argument. Recall that V t has been defined in (2.13).

Lemma 3.6. There exists σ 0 , τ 0 > 0 and V V t such that for all v ∈ W φ with supp v ⊂ V and

Y ⊂ {τ ≥ 1 σ (|ξ t | + |ξ |)} (3.6)
one has for all σ ≤ σ 0 and τ ≥ τ 0 :

P φ v 2 L 2 (R×Y ) + τ D t v + 2 L 2 (R+×Y ) + τ D t v - 2 L 2 (R-×Y ) + τ D t v + (0) 2 L 2 (Σ∩Y ) + τ D t v -(0) 2 L 2 (Σ∩Y ) τ 3 v 2 L 2 (R×Y ) + τ 3 v(0) 2 L 2 (Σ∩Y ) + τ (∇v + )(0) 2 L 2 (Σ∩Y ) + τ (∇v -)(0) 2 L 2 (Σ∩Y )
.

Proof. We identify, with a slight abuse of notation, the operator with its symbol. One has:

c -1 + P + φ = (D n + iτ φ ) 2 + |ξ | 2 -c -1 + ξ 2 t := A + + R + where A + := (D n + iτ φ ) 2 is elliptic as a 1D operator and R + := |D | 2 -c -1 + D 2 t . One has with w = (D n + iτ φ ) v + = (D n + iτ α + + iτ βx n ) v + , using (3.4): A + v + 2 L 2 (R+×Y ) = (D n + iτ α + + iτ βx n )w 2 L 2 (R+×Y ) ≥ (τ βx n + τ α + )w 2 L 2 (R+×Y ) + α + τ |w| 2 L 2 (Σ∩Y ) τ 2 w 2 L 2 (R+×Y ) + |w| 2 L 2 (Σ∩Y ) τ 2 D n v + 2 L 2 (R+×Y ) + (τ α + + τ βx n ) v + 2 L 2 (R+×Y ) + τ α + | v + | 2 L 2 (Σ∩Y ) + α + τ |(D n + iτ α) v + | 2 L 2 (Σ∩Y ) .
In particular we find that

A + v + 2 L 2 (R+×Y ) τ 4 v + 2 L 2 (R+×Y ) +τ 3 | v + | 2 L 2 (Σ∩Y ) +τ |(D n + iτ α) v + | 2 L 2 (Σ∩Y )
, and then using

τ 3 |D n v + | 2 L 2 (Σ∩Y ) τ 3 | v + | 2 L 2 (Σ∩Y ) + τ |(D n + iτ α) v + | 2 L 2 (Σ∩Y ) we get A v + 2 L 2 (R+×Y ) τ 4 v + 2 L 2 (R+×Y ) + τ 3 | v + | 2 L 2 (Σ∩Y ) + τ |D n v + | 2 L 2 (Σ∩Y ) .
Lemma 3.1 then implies:

A + v + 2 L 2 (R+×Y ) τ 4 v + 2 L 2 (R+×Y ) + τ 3 | v + | 2 L 2 (Σ∩Y ) + τ |D n v + | 2 L 2 (Σ∩Y ) + τ |D n v -| 2 L 2 (Σ∩Y ) . (3.7)
Recalling that A + = P φ -R + we now explain how R + v + L 2 (R+×Y ) can be absorbed as an error term. We estimate as follows:

P + φ v+ 2 L 2 (R+×Y ) ≥ C A + v + 2 L 2 (R+×Y ) -R + v + 2 L 2 (R+×Y ) ≥ C τ 4 v + 2 L 2 (R+×Y ) + τ 3 | v + | 2 L 2 (Σ∩Y ) + τ |D n v + | 2 L 2 (Σ∩Y ) -R + v + 2 L 2 (R+×Y ) = (Cτ 4 -R * R) v + , v + + + Cτ 3 | v + | 2 L 2 (Σ∩Y ) + Cτ |D n v + | 2 L 2 (Σ∩Y ) .
Using (3.6) we have

Cτ 4 -R * R = Cτ 4 -(|ξ | 2 -c + ξ 2 t ) 2 ≥ C -σ 4 (1 + c -1 + ) 2 τ 4 . Then, taking σ ≤ C 2(1 + c -1 + ) 2 1/4
we deduce

P + φ v+ 2 L 2 (R+×Y ) τ 4 v + 2 L 2 (R+×Y ) + τ 3 | v + | 2 L 2 (Σ∩Y ) + τ |D n v + | 2 L 2 (Σ∩Y ) .
Using the fact that τ |ξ | together with the transmission condition (2.14) we obtain the tangential terms :

τ 3 | v + | 2 L 2 (Σ∩Y ) τ (|ξ | 2 + |ξ t | 2 ) 1/2 v 2 L 2 (Σ∩Y ) = τ ∇v 2 L 2 (Σ∩Y )
. This yields

P + φ v+ 2 L 2 (R+×Y ) τ 4 v + 2 L 2 (R+×Y ) + τ 3 |v| 2 L 2 (Σ∩Y ) + τ ∇ x v 2 L 2 (Σ∩Y ) + τ |D n v + | 2 L 2 (Σ∩Y ) .
and finally thanks to Lemma 3.1:

P + φ v+ 2 L 2 (R+×Y ) + v + 2 L 2 (R+×Y ) τ 4 v + 2 L 2 (R+×Y ) + τ 3 |v| 2 L 2 (Σ∩Y ) + τ ∇v - 2 L 2 (Σ∩Y ) + |∇ v + | 2 L 2 (Σ∩Y ) .
(3.8) The only missing term is the volume norm on the negative half-line. Here one needs to use P - φ . We write

c -1 -P - φ = (D n + iτ φ ) 2 + |ξ | 2 -c -1 -ξ 2 t = A -+ R -, A -:= (D n + iτ φ ) 2
In the region under consideration

R -v L 2 (R-×Y ) is a perturbation of A -v L 2 (R-×Y ) .
After repeating the same steps as for the positive half-line one finds:

P - φ v- 2 L 2 (R-×Y ) + τ 3 |v| 2 L 2 (Σ∩Y ) + τ ∇v - 2 L 2 (Σ∩Y ) τ 4 v- 2 L 2 (R-×Y ) . (3.9)
To finish the proof of the Lemma one can simply multiply (3.8) by a sufficiently large constant and add it to (3.9).

We now give a Lemma for the region

τ |ξ | + |ξ t |. Lemma 3.7. For all c 1 , c 2 > 0 there exists V V t and τ 0 > 0 such that for all v ∈ W φ with supp v ⊂ V and Y ⊂ {τ ≤ c 1 (|ξ t | + |ξ |)} ∩ {|ξ t | ≥ c 2 |ξ |}
one has:

P φ v 2 L 2 (R×Y ) + τ D t v + 2 L 2 (R+×Y ) + τ D t v - 2 L 2 (R-×Y ) + τ D t v + (0) 2 L 2 (Σ∩Y ) + τ D t v -(0) 2 L 2 (Σ∩Y ) τ 3 v 2 L 2 (R×Y ) + τ 3 v(0) 2 L 2 (Σ∩Y ) + τ (∇v + )(0) 2 L 2 (Σ∩Y ) + τ (∇v -)(0) 2 L 2 (Σ∩Y )
.

for τ ≥ τ 0 .

Proof. Observe that in such a region one has in particular

|ξ t | |ξ | + τ,
and consequently we are in the regime of Lemma 3.2. This implies:

P + φ v + 2 L 2 (R+×Y ) + τ D t v + 2 L 2 (R+×Y ) + τ D t v + (0) 2 L 2 (Σ∩Y ) τ 3 v + 2 L 2 (R+×Y ) + τ ∇ x v + 2 L 2 (R+×Y ) + τ 3 v(0) 2 L 2 (Σ∩Y ) + τ (∇v + )(0) 2 L 2 (Σ∩Y ) + τ (∇v -)(0) 2 L 2 (Σ∩Y ) . (3.10)
The only remaining term is then τ

|D n v+ | 2 L 2 (Σ∩Y )
. To obtain it we use the commutator technique (see [LR95, Section 3A]). we write c -1

+ P + φ = Q 2 + iτ Q 1 , with Q 2 = D 2 n -τ 2 |φ | 2 + |ξ | 2 -c -1 + |ξ t | 2 and Q 1 = φ D n + D n φ .
We integrate by parts taking into account the boundary terms to find:

c -1 + P + φ v+ 2 L 2 (R+×Y ) = Q 2 v+ 2 L 2 (R+×Y ) + τ 2 Q 1 v+ 2 L 2 (R+×Y ) + iτ ([Q 2 , Q 1 ]v + , v+ ) + + τ B(v). (3.11)
With B(v) the boundary term which can be written as (see for instance [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] or [LRLR22, Proposition 3.24]):

B(v) = 2 (φ D n v, D n v) Σ∩Y + (M 1 v, D n v) Σ∩Y + M 1 D n v, v Σ∩Y + (M 2 v, v) Σ∩Y ,
where M j is a Fourier multiplier by a polynomial of degree j in (ξ , ξ t , τ ). Using this as well as the Young inequality yields, for arbitrary δ > 0:

|B(v) -2 (φ D n v, D n v) Σ∩Y | τ 2 |v| 2 L 2 (Σ∩Y ) + (1 + δ -1 ) |∇ x v| 2 L 2 (Σ∩Y ) + δ |D n v+ | 2 L 2 (Σ∩Y ) .
We combine this last inequality with (3.11), recalling that φ > 0 in the support of v and by choosing δ sufficiently small to find, for τ sufficiently large:

P + φ v+ 2 L 2 (R+×Y ) + τ 3 |v + | 2 L 2 (Σ∩Y ) + τ |∇ x v+ | 2 L 2 (Σ∩Y ) Q 2 v+ 2 L 2 (R+×Y ) + τ 2 Q 1 v+ 2 L 2 (R+×Y ) + iτ ([Q 2 , Q 1 ]v + , v+ ) + + τ |D n v+ | 2 L 2 (Σ∩Y ) .
(3.12) This almost gives us the desired term: we need to take care of the commutator. In our case, this can be done in a very simple way. Indeed, one can write:

i[Q 2 , Q 1 ] = B 0 Q 2 + B 1 Q 1 + B 2 ,
with B j a Fourier multiplier by a polynomial of degree j in (ξ , ξ t , τ ). This implies that:

|iτ (B 0 Q 2 v+ , v+ )| τ -1 2 Q 2 v+ 2 L 2 (R+×Y ) + τ 5 2 v+ 2 L 2 (R+×Y ) , as well as |iτ (B 1 Q 1 v+ , v+ )| τ Q 1 v+ 2 L 2 (R+×Y ) + τ 3 v+ 2 L 2 (R+×Y ) + τ 1 2 ∇ x v + 2 L 2 (R+×Y ) + τ D t v 2 L 2 (R+×Y ) and |iτ (B 2 v+ , v+ )| τ 3 v+ 2 L 2 (R+×Y ) + τ ∇ x v + 2 L 2 (R+×Y ) + τ D t v 2 L 2 (R+×Y )
.

We can now inject these three estimates in the commutator term in (3.12) taking τ ≥ τ 0 , τ 0 large to absorb the terms Q 1 2 , Q 1 2 to finally find:

P + φ v + 2 L 2 (R+×Y ) + τ D t v + 2 L 2 (R+×Y ) + τ D t v + (0) 2 L 2 (Σ∩Y ) + τ 3 v + 2 L 2 (R+×Y ) + τ ∇ x v + 2 L 2 (R+×Y ) + τ 3 v(0) 2 L 2 (Σ∩Y ) τ |D n v + (0)| 2 L 2 (Σ∩Y ) . (3.13)
We can now multiply (3.10) by a large constant and add it to (3.13) to conclude the proof of Lemma 3.7.

End of the proof for the toy model

We finish here the proof of Proposition 2.6 for the constant coefficient case. One has to deal with all the possible cases and put together the estimates Section 3.1. We have the following partition of R n (ξ , ξ t ):

R n = {τ ≥ 1 σ (|ξ | + |ξ t |)} {τ < 1 σ (|ξ | + |ξ t |)} ∩ E -∩ E + {τ < 1 σ (|ξ | + |ξ t |)} ∩ G H = Y σ 1 Y σ, 2 Y σ, 3 with Y σ 1 := {τ ≥ 1 σ (|ξ |+|ξ t |)}, Y σ, 2 := {τ < 1 σ (|ξ |+|ξ t |)}∩E -∩E + , Y σ, 3 := {τ < 1 σ (|ξ |+|ξ t |)}∩ G H -∪ G H + .
We recall the notations/definitions of Section 3.1. The crucial remark is that in all of the above regions with the exception of

E -∩ E + we have |ξ t | |ξ |.
In this particular toy model we are dealing with here, we work on the Fourier domain and we can simply restrict ourselves in each of those regions and prove the sought estimate. In the general case treated in Section 4 symbolic calculus will be used and as a result we will have to use overlapping regions and an associated smooth partition of unity. This being said we deal with the three regions above to conclude:

Y σ
1 Here we just apply the result of Lemma 3.6 which gives:

P φ v 2 L 2 (R×Y σ 1 ) + τ D t v + 2 L 2 (R+×Y σ 1 ) + τ D t v - 2 L 2 (R-×Y σ 1 ) + τ D t v + (0) 2 L 2 (Σ∩Y σ 1 ) + τ D t v -(0) 2 L 2 (Σ∩Y σ 1 ) τ 3 v + 2 L 2 (R+×Y σ 1 ) + τ 3 v(0) 2 L 2 (Σ∩Y σ 1 ) + τ (∇v + )(0) 2 L 2 (Σ∩Y σ 1 ) + τ (∇v -)(0) 2 L 2 (Σ∩Y σ 1 ) . (3.14) This region fixes the choice of σ ≤ σ 0 . Y σ, 2
In this region our operator is elliptic and one can follow the proof of [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]. Indeed here one has an elliptic factorization on both sides of the interface. That is

c -1 + P + φ v + = (D n + iτ φ + im + )(D n + iτ φ -im + )v + , φ = α + + βx n , and c -1 -P - φ v -= (D n + iτ φ + im -)(D n + iτ φ -im -)v -, φ = α -+ βx n . with m ± = |ξ | 2 -c -1 ± ξ 2 t |ξ | + |ξ t |.
Consequently the arguments used in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] can be used in this microlocal region as well. We refer to Lemma 4.11 for a rigorous proof in the general case. Notice that this region forces:

α + α - > sup xn=0 m + m - .
We obtain the following estimate:

P φ v 2 L 2 (R×Y σ, 2 ) + τ D t v + 2 L 2 (R+×Y σ, 2 ) + τ D t v - 2 L 2 (R-×Y σ, 2 ) + τ D t v + (0) 2 L 2 (Σ∩Y σ, 2 ) + τ D t v -(0) 2 L 2 (Σ∩Y σ, 2 ) τ 3 v + 2 L 2 (R+×Y σ, 2 ) + τ 3 v(0) 2 L 2 (Σ∩Y σ, 2 ) + τ (∇v + )(0) 2 L 2 (Σ∩Y σ, 2 ) + τ (∇v -)(0) 2 L 2 (Σ∩Y σ, 2 ) . (3.15) Y σ, 3
Here we are in the situation of Lemma 3.7. We obtain:

P φ v 2 L 2 (R×Y σ, 3 ) + τ D t v + 2 L 2 (R+×Y σ, 3 ) + τ D t v - 2 L 2 (R-×Y σ, 3 ) + τ D t v + (0) 2 L 2 (Σ∩Y σ, 3 ) + τ D t v -(0) 2 L 2 (Σ∩Y σ, 3 ) τ 3 v + 2 L 2 (R+×Y σ, 3 ) + τ 3 v(0) 2 L 2 (Σ∩Y σ, 3 ) + τ (∇v + )(0) 2 L 2 (Σ∩Y σ, 3 ) + τ (∇v -)(0) 2 L 2 (Σ∩Y σ, 3 ) . (3.16)
End of the proof of proposition 2.6 for the toy model. We can now finish our proof in this particular setting by simply putting together the results of the three above regions. Indeed, adding (3.14), (3.15) and (3.16) yield:

P φ v 2 L 2 (R×R n ) + τ D t v + 2 L 2 (R+×R n ) + τ D t v - 2 L 2 (R-×R n ) + τ D t v + (0) 2 L 2 (Σ) + τ D t v -(0) 2 L 2 (Σ) τ 3 v 2 L 2 (R×R n ) + τ 3 v(0) 2 L 2 (Σ) + τ (∇v + )(0) 2 L 2 (Σ) + τ (∇v -)(0) 2 L 2 (Σ)
, which using the Plancherel theorem translates to,

P φ v 2 L 2 (R n+1 ) + τ H + D t v + 2 L 2 (R n+1 ) + τ H -D t v - 2 L 2 (R n+1 ) + τ |(D t v + )| 2 L 2 (Σ) + τ |(D t v -)| 2 L 2 (Σ) τ 3 v 2 L 2 (R n+1 ) + τ 3 |v| 2 L 2 (Σ) + τ |(∇v + )| 2 L 2 (Σ) + τ |(∇v -)| 2 L 2 (Σ) . (3.17)
Notice that the only missing term from (3.17) is the volume norm of the gradients. Proposition 2.6 is then a result of (3.17) and Lemma 3.3.

Proof of Proposition 2.6 for the general case 4.1 Notation, microlocal regions and first estimates

The proof for the general case uses essentially the ideas introduced in Section 3. The main difference is that one needs to consider this time sub-regions of the whole phase space and not only of the frequency space. To do so one needs to use some microlocal analysis tools. We refer to Appendix A for some basic properties that will be used in the sequel. We first define, for m ∈ R the class of standard tangential smooth symbols S m . These are the functions a ∈ C ∞ (t, x, ξ t , ξ ) satisfying for all (α, β) ∈ N n+1 × N n : sup

(t,x,ξt,ξ ) (1 + |ξ | 2 + |ξ t | 2 ) -m+|β| 2 (∂ α t,x ∂ β ξt,ξ )a(t, x, ξ t , ξ ) < ∞.
We will also work in the class of smooth tangential symbols depending on a large parameter. This class will be denoted by S m τ and contains the functions a ∈ C ∞ (t, x, ξ t , ξ , τ ) satisfying for all (α, β)

∈ N n+1 × N n : sup (t,x,ξt,ξ ) τ ≥1 (τ 2 + |ξ | 2 + |ξ t | 2 ) -m+|β| 2 (∂ α t,x ∂ β ξt,ξ )a(t, x, ξ t , ξ , τ ) < ∞.
To an element a of S m we associate an operator op w (a) ∈ Ψ m1 , which is an element of the class of tangential pseudodifferential operators. Notice that to alleviate our notation we do not use the tangential notation for the symbols, since all of the symbols we will consider will be tangential. The same remark applies to the notation Ψ m which refers to tangential operators even though it is not explicit in the notation. We have the analogous notation for

Ψ m τ = op w (S m τ ).
Let us denote

λ 2 := 1 + |ξ | 2 + |ξ t | 2 and λ 2 τ = τ 2 + |ξ | 2 + |ξ t | 2 .
We introduce the following Sobolev norms, defined in the tangential variables:

|u(x n , •)| H s = |op w (λ s )u(x n , •)| L 2 (R n ) , |u(x n , •)| H s τ = |op w (λ s τ )u(x n , •)| L 2 (R n ) .
Remark 4.1. In the sequel we will have to consider symbols a ∈ S m independent of τ . However the natural symbol class for our Carleman estimate is S m τ . Lemma A.2 provides with a sufficient condition for making use of pseudodifferential calculus mixing operators in Ψ m and Ψ m τ .

Remark 4.2. Of crucial importance is the fact that the Carleman estimate we are seeking to prove (in fact most Carleman estimates in general) is insensitive to perturbations with respect to elements of the class

Ψ 1 + τ Ψ 0 + Ψ 0 D n ,
up to taking even larger values for our parameter τ . Let us briefly recall why. Suppose that Proposition 2.6 is proved for P φ and consider

T ∈ Ψ 1 + τ Ψ 0 + Ψ 0 D n , that is T = S 1 + τ S 0 + S0 D n for S j tangential operators of order j. Since (P φ + T )v L 2 (R n+1 ) ≤ P φ v L 2 (R n+1 ) + T v L 2 (R n+1 ) one simply needs to show that T v L 2 (R n+1
) can be absorbed in the right hand side of our estimate. By Sobolev regularity of the pseudo differential calculus one has:

S 1 v L 2 (R n+1 ) v L 2 (R;H 1 ) , which yields τ 3 2 v L 2 (R n+1 ) + τ ∇ x v L 2 (R n+1 ) -S 1 v L 2 (R n+1 ) τ 3 2 v L 2 (R n+1 ) + τ ∇ x v L 2 (R n+1 ) , ∀ τ ≥ τ 0
for τ sufficiently large. Similarly, using

τ S 0 v L 2 (R n+1 ) τ v L 2 (R n+1 ) , S0 D n v L 2 (R n+1 ) D n v L 2 (R n+1 ) ,
we see that the perturbation is absorbed in our estimate. We can therefore from now on replace without any loss of generality our operator P φ by an element of

P φ + Ψ 1 + τ Ψ 0 + Ψ 0 D n . Remark as well that if L ∈ D 1 is a differential operator of order one then L φ = e τ φ Le -τ φ ∈ Ψ 1 + τ Ψ 0 + Ψ 0 D n .
Recall that we are working in the local setting of Section 2.2 with the operator:

P ± 2 = -D 2 t + c ± (x)D 2 n + c ± (x)Q(x, D x ), with Q(x, ξ ) := 1≤j,k≤n-1 b jk (x)ξ j ξ k (4.1) and b jk satisfying b 1 |ξ | 2 ≤ Q(x, ξ ) ≤ b 2 |ξ | 2 , b 1 , b 2 > 0.
The conjugated operator is given then by

P φ = H -P - φ + H + P + φ , where c -1 ± (x)P ± φ = (D n + iτ φ ) 2 + Q(x, D x ) -c -1 ± (x)D 2 t .
We now consider the analog of the microlocal regions used in the toy model, for > 0 small to be chosen:

E • := {(t, x, ξ , ξ t ) ∈ R × R n × R n-1 × R such that Q(x, ξ ) -c -1 • (x)ξ 2 t ≥ (|ξ | 2 + |ξ t | 2 )}, (4.2) GH • := {(t, x, ξ , ξ t ) ∈ R × R n × R n-1 × R such that Q(x, ξ ) -c • (x)ξ 2 t ≤ 2 (|ξ | 2 + |ξ t | 2 )}. (4.3)
Notice that for • = + or • = -, E • and GH • overlap and are conic in (ξ t , ξ ) which will allow to construct an associated partition of unity. Another important remark is that whenever we are in the regions GH • we have (for sufficiently small) thanks to the ellipticity of b jk that |ξ t | |ξ |.

The Carleman estimate we want to show (see Proposition 2.6) concerns functions v supported in a compact set K ⊂ V . However the space of compactly supported functions is not stable by pseudo differential operators. Let us denote by π t,x the projection in the physical space of an element of R t × R x × R ξt × R ξ . The natural space in which we will be working is the Schwartz space S and we will use cut-off functions χ satisfying π t,x (supp χ) ⊂ K. That is the projection of their support on the physical space will be contained on a compact set K. This will allow us to suppose that (t, x) lies on a compact set. Indeed, if we consider an additional cut-off function χ = χ(t, x) to the left of our operator, with supp χ ⊂ K and χ = 1 on π t,x (supp χ) then we have for u ∈ S (R n+1 ):

P φ op w (χ)u L 2 (R n+1 ) ≥ χP φ op w (χ)u L 2 (R n+1 ) -(1 -χ)P φ op w (χ)u L 2 (R n+1 ) , since (1 -χ)P φ op w (χ) ∈ Ψ -∞ τ for χ ∈ S 0
τ , the last term above yields an error term which can be absorbed in our estimate. Up to replacing P φ by χP φ we can indeed suppose that (t, x) lies on a compact set of R n+1 .

We shall work in the space

S c = {u ∈ S (R n+1 ); there exists η > 0, supp u ⊂ R t × R n-1 x × (-η, η) xn }.
Since all of the pseudo differential operators we consider are tangential, the support of a function in the x n direction is preserved and the above space is therefore stable by application of pseudodifferential operators in Ψ m or Ψ m τ .

In the sequel, the implicit constants may depend on the coefficients b jk , c ± of P φ , on the coefficients of φ (α ± , β) and they may also depend on . However the value of will be a small fixed value depending on α ± , b jk and c ± . More precisely, is fixed by the above remark guaranteeing that being in the regions GH ± implies that |ξ t | |ξ |. Once the value of has been fixed in this way, the implicit constants depend on b jk , c ± , α ± , β. The choice of the coefficients α ± and β is done in Lemma 4.11. We take α ± such that the geometric condition (4.32) is satisfied and β large such that the sub-ellipticity condition (4.31) is satisfied.

Let us recover some of the basic estimates of Section 3. Recall the definition of the space W θ,Θ φ as well as the setting given in Section 2.2. In particular, elements of W θ,Θ φ have small support contained in V t . We start with the lemma giving the trace of the normal derivatives modulo the surface norm: Lemma 4.3. Let ṽ = H -ṽ-+ H + ṽ+ ∈ W θ,Θ φ and suppose that χ ∈ S 0 or that χ ∈ S 0 τ . Consider v ± = op w (χ)ṽ ± . Then one has:

τ |D n v ± | 2 L 2 (Σ) τ |D n v ∓ | 2 L 2 (Σ) + τ 3 |v + | 2 L 2 (Σ) + τ 3 |v -| 2 L 2 (Σ) + T θ,Θ + |ṽ ∓ | 2 L 2 (Σ) .
Proof. This is a result of the transmission conditions and of the fact that op w (χ) is a tangential operator. This implies that it commutes with restriction on Σ (here restriction on x n = 0). We use then (2.14) and (2.15). The first one allows to write v -(0) = v + (0) + op w (χ)θ φ and (2.15) reads

D n v -(0) = c + (x) c -(x) (D n v + (0) + iτ α + v + (0)) -iτ α -v -(0) + 1 c -(x) op w (χ)Θ φ + [D n , op w (χ)]ṽ + . Since |[D n , op w (χ)]ṽ ± | = |op w (∂ xn χ)ṽ ± |
, using the fact that 0 < c min < c(x) < c max we find that there exist constants C 1 , C 2 and C 3 depending on c ± and α ± such that

τ |D n v -| 2 L 2 (Σ) ≤ C 1 τ |D n v + | 2 L 2 (Σ) + C 2 τ 3 |v ± | 2 L 2 (Σ) + C 3 T θ,Θ + |ṽ ± | 2 L 2 (Σ)
, where we have used the fact that since χ ∈ S 0 one has op w (χ) L 2 →L 2

1. This gives one of the two desired inequalities and we can get the second one using again (2.15).

Recall that E t (v) has been defined in (2.16). The following lemma allows to obtain the volume norms of the derivatives modulo the remainder of the terms. This corresponds to Lemma 3.3 in the toy model of Section 3. Lemma 4.4. There exists τ 0 > 0 such that for v ∈ W θ,Θ φ and τ ≥ τ 0 we have:

H -P φ v - 2 L 2 (R n+1 ) + H + P φ v + 2 L 2 (R n+1 ) + E t (v) + τ 3 v 2 L 2 (R n+1 + ) + τ 2 |v -(0)| 2 L 2 (Σ) + τ 2 |v + (0)| 2 L 2 (Σ) + |D n v + (0)| 2 L 2 (Σ) + |D n v -(0)| 2 L 2 (Σ) τ ∇v - 2 L 2 (R n+1 - ) + τ ∇v + 2 L 2 (R n+1 + ) .
Proof. We start with the positive half-space R n+1

+ . One has the following elementary inequality:

P + φ v + 2 L 2 (R n+1 + ) + τ 2 v + 2 L 2 (R n+1 + ) ≥ 2τ Re(P + φ v + , H + v + ).
Now we can integrate by parts. Indeed, recall the form of our operator:

c -1 + (x)P + φ = (D 2 n + τ β + 2iτ φ D n -τ 2 |φ | 2 ) + Q(x, D x ) -c -1 + (x)D 2 t
and that the definition of the weight function φ gives φ (x n ) = α ± + βx n , therefore:

2τ Re(P + φ v, H + v) 2τ D n v + 2 L 2 (R n+1 + ) + 2τ R n Re(∂ xn v + (0)v + (0))dx dt + 2τ 2 β v + 2 L 2 (R n+1 + ) -2τ 2 α + |v + | 2 L 2 (Σ) -2τ 2 β v + 2 L 2 (R n+1 + ) -2τ 3 φ v + 2 L 2 (R n+1 + ) + 2Cτ D v + 2 L 2 (R n+1 + ) -2Cτ D t v + 2 L 2 (R n+1 +
) .

Here we used the fact that c is bounded as well as the ellipticity of b jk . Indeed, up to adding an element of Ψ 1 (which does not have any influence on the estimate we are seeking to prove, see Remark 4.2) we can replace

Q(x, D x ) by -div(B • ∇ x ) with B = (b jk ) 1≤j,k≤n-1 which satisfies (-div(B • ∇ x )v, v) + ∇ x v + 2 L 2 (R n+1 + ) .
As one has 2τ

R n Re(∂ xn v + (0)v + (0))dx dt |D n v + | 2 L 2 (Σ) + τ 2 |v + | 2 L 2 (Σ) ,
the above inequality can be written as

2τ Re(P + φ v, H + v) L 2 (R n+1 + ) τ ∇v + 2 L 2 (R n+1 + ) + R, with |R| τ 3 v + 2 L 2 (R n+1 + ) + τ D t v + 2 L 2 (R n+1 + ) + τ 2 |v + | 2 L 2 (Σ) + |D n v + | 2 L 2 (Σ)
. which gives the sought result. Since the proof above is insensitive with respect to the sign of the boundary terms coming from the integration by parts we also obtain the desired inequality on the negative half-space R n+1

-.

When we are in a microlocal region where |ξ t | is large compared to τ and |ξ | we automatically have a very good estimate:

Lemma 4.5. Let c 0 > 0 and χ ∈ S 0 τ with supp(χ) ⊂ V × {|ξ t | ≥ c 0 (τ + |ξ |)} .
Then there exists τ 0 such that:

τ D t v 2 L 2 (R n+1 ± ) + u 2 L 2 (R n+1 ± ) + |u| 2 L 2 (Σ) + τ |D t v| 2 L 2 (Σ) τ v 2 L 2 (R±;H 1 τ ) + τ 3 |v| 2 L 2 (Σ) + τ ∇ x v 2 L 2 (R n+1 ± ) + τ |∇ x v| 2 L 2 (Σ) , for τ ≥ τ 0 , u ∈ S c (R n+1 ) and v = op w (χ)u.
Remark 4.6. Notice that thanks to Lemma A.2 the support assumption on χ implies that if χ 0 is an element of S 0 independent of τ one has in fact that op w (χ 0 )op w (χ) ∈ Ψ 0 τ .

Proof. Let 0 ≤ χ ≤ 1 satisfy the same properties as χ with moreover χ = 1 on supp χ. Defining

S 2 τ ã := ξ 2 t χ + (1 -χ)λ 2 τ , we notice that ã λ 2 τ .
Let a := ξ 2 t and remark that op w (a)op w (χ) = op w ( χa)op w (χ) + R with R = op w ((1 -χ)a)op w (χ) ∈ Ψ -∞ τ , since χ = 1 on supp χ. We then obtain:

(op w (a)op w (χ)u, op w (χ)u) + (4.4) = (op w (ã)op w (χ)u, op w (χ)u) + -(op w ((1 -χ)λ 2 τ )op w (χ)u, op w (χ)u) + + (Ru, op w (χ)u) + The last two terms yield an operator in Ψ -∞ τ which implies in particular

| -(op w ((1 -χ)λ 2 τ )op w (χ)u, op w (χ)u) + + (Ru, op w (χ)u) + | τ -1 u 2 L 2 (R n+1 
+
) .

We now can apply Gårding's inequality in the context of tangential pseudodifferential calculus with a large parameter (Lemma A.1) to the first term to find (recall that v = op w (χ)u):

Re(op w (ã)v, v) + v 2 L 2 (R+;H 1 τ ) .
The estimates above combined with the equality (4.4) yield

D t v 2 L 2 (R n+1 + ) = (op w (a)v, v) + v 2 L 2 (R+;H 1 τ ) -τ -1 u 2 L 2 (R n+1 + ) ,
We multiply the above estimate by τ and write the H 1 τ norm as

• 2 H 1 τ ∼ τ 2 • 2 L 2 + ∇• 2 L 2 , to deduce τ D t v 2 L 2 (R n+1 + ) + u 2 L 2 (R n+1 + ) τ 3 v 2 L 2 (R n+1 + ) + τ ∇ x v 2 L 2 (R n+1 +
) . In a similar fashion, using the same notation we apply Gårding's inequality on Σ (which here is R n ). Notice that since the operators considered above are tangential they commute with the restriction on Σ and we find Re(op

w (ã)v, v) Σ |v| 2 H 1 τ -τ -1 |u| 2 L 2 (Σ) , which implies in particular τ |D t v| 2 L 2 (Σ) + |u| 2 L 2 (Σ) τ 3 |v| 2 L 2 (Σ) + τ |∇ x v| 2 L 2 (Σ) .
We obtain the same estimates when integrating in the negative half-line.

We shall now show the desired estimate when micro-localized in a region where

τ |ξ t | + |ξ |.
From an heuristic point of view, in a such a region (D n + iτ φ ) 2 is the most important term of P φ . Since D n + iτ φ is elliptic as an 1D operator we expect that this will give a good estimate. Let us define (as in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]) ψ ∈ C ∞ (R) nonnegative with ψ = 0 in [0, 1] and ψ = 1 in [2, +∞) and then

ψ σ (τ, ξ t , ξ ) := ψ στ (1 + |ξ t | 2 + |ξ | 2 ) 1 2 ∈ S 0 τ , (4.5)
with σ small to be chosen. The choice of ψ implies that τ ≥ (|ξ t | 2 + |ξ | 2 ) 1/2 /σ on the support of ψ σ . We have the following lemma:

Lemma 4.7. There exists σ 0 , τ 0 and V V t such that for 0 < σ < σ 0 we have:

H -P φ v - 2 L 2 (R n+1 ) + H + P φ v + 2 L 2 (R n+1 ) + u 2 L 2 (R n+1 ) + |u + | 2 L 2 (Σ) + |u -| 2 L 2 (Σ) + T θ,Θ τ v 2 L 2 (R;H 1 τ ) + τ 3 |v + | 2 L 2 (Σ) + τ 3 |v -| 2 L 2 (Σ) + τ |∇v + | 2 L 2 (Σ) + τ |∇v -| 2 L 2 (Σ) , for all τ ≥ τ 0 , u ∈ W θ,Θ φ with supp u ⊂ V and v = op w (ψ σ )u.
Remark 4.8. In fact here we obtain a slightly better estimate (without the loss of a half-derivative in the volume norm). But we prefer to state it like this since that is how we use it in view of the final estimate, when all regions are put together.

Proof. Recall that we write u = H -u -+ H + u + and v ± = op w (ψ σ )u ± . We start by working in the positive half-space R n+1 + . As one could expect this is where we obtain most terms of the sought estimate, since it is the observation region.

We write:

c -1 + (x)P + φ = (D n + iτ φ ) 2 + Q(x, D x ) -c -1 + D 2 t := A + + R + , where we have defined A + := (D n + iτ φ ) 2 and R + := Q(x, D x ) -c -1 + D 2 t .
One has with w = (D n + iτ φ )v + = (D n + iτ α + + iτ βx n )v + , using (3.4) twice:

A + v + 2 L 2 (R n+1 + ) = (D n + iτ α + + iτ βx n )w 2 L 2 (R n+1 + ) ≥ (τ βx n + τ α + )w 2 L 2 (R n+1 + ) + α + τ |w| 2 L 2 (Σ) τ 2 D n v + 2 L 2 (R n+1 + ) + (τ α + + τ βx n )v + 2 L 2 (R n+1 + ) + τ α + |v + | 2 L 2 (Σ) + α + τ |(D n + iτ α)v + | 2 L 2 (Σ) .
In particular using the fact that α + > 0 and taking |x n | sufficiently small we find that for u supported in a small neighborhood V V t one has

A + v + 2 L 2 (R n+1 + ) τ 4 v + 2 L 2 (R n+1 + ) + τ 3 |v + | 2 L 2 (Σ) + τ |(D n + iτ α)v + | 2 L 2 (Σ) .
We deduce then

A + v + 2 L 2 (R n+1 + ) τ 4 v + 2 L 2 (R n+1 + ) + τ 3 |v + | 2 L 2 (Σ) + τ |D n v + | 2 L 2 (Σ) .
Recalling that A + = c -1 P + φ -R + we obtain

P + φ v + 2 L 2 (R n+1 + ) ≥ C A + v + 2 L 2 (R n+1 + ) -R + v + 2 L 2 (R n+1 + ) ≥ C τ 4 v + 2 L 2 (R + ) + τ 3 |v + | 2 L 2 (Σ) + τ |D n v + | 2 L 2 (Σ) -R + v + 2 L 2 (R n+1 + ) = (Cτ 4 -R * + R + )v + , v + + + Cτ 3 |v + | 2 L 2 (Σ) + Cτ |D n v + | 2 L 2 (Σ) , (4.6) 
with C positive constant depending on the coefficients of P φ and of φ. Observe now that the principal

symbol r 2 + = Q(x, ξ ) -c -1 + (x)|ξ t | 2 2 = 1≤j,k≤n-1 b jk (x)ξ j ξ k -c -1 + (x)|ξ t | 2 2 of R * + R + ∈ Ψ 4 satisfies r 2 + ≤ max(b 2 , c -1 min )(|ξ t | 2 + |ξ | 2 ) 2 .
Using the fact that

τ ≥ 1 σ (1 + |ξ t | 2 + |ξ | 2 ) 1 2 ,
on the support of ψ σ one obtains the existence of σ 0 sufficiently small depending on the coefficients of P φ and of φ such that for all 0 < σ ≤ σ 0 :

Cτ 4 -r 2 + ≥ λ 4 τ , (4.7)
on the support of ψ σ . We consider now ψ ∈ C ∞ (R + ) with ψ = 1 in [1/3, ∞) and ψ = 0 in [0, 1/4] and then define ψσ similarly to ψ σ :

ψσ (τ, ξ t ) := ψ στ (1 + |ξ t | 2 + |ξ | 2 ) 1 2 ∈ S 0 τ .
We write:

(Cτ 4 -R * + R + )v + , v + = (Cτ 4 -R * + R + )op w ( ψσ )v + , v + + + (Cτ 4 -R * + R + )(op w (1 -ψσ )v + , v + + . (4.8)
Observe that ψσ = 1 on the support of ψ σ and that τ |ξ | + |ξ t | on the support of 1 -ψσ and this gives thanks to Lemma A.2 that in fact op w (1 -ψσ )op w (ψ σ ) ∈ Ψ -∞ τ . As a consequence, we have in particular:

(Cτ 4 -R * + R + )(op w (1 -ψσ )v + , v + + u + 2 L 2 (R n+1 + ) .
We consider now ã(t, x, ξ t , ξ , τ ) = (Cτ 4 -r 2 + ) ψσ + (1 -ψσ )λ 4 τ λ 4 τ , by construction of ψσ and (4.7). We obtain therefore the following relation:

(Cτ 4 -R * + R + )op w ( ψσ )v + , v + + = (op w (ã)v + , v + ) + -op w ((1 -ψσ )λ 4 τ )v + , v + + + (Sv + , v + ) + ,
where S ∈ Ψ 3 τ is a subprincipal term coming from the pseudodifferential calculus. Indeed, remark that in fact Cτ

4 -R * + R + ∈ D 4 τ ⊂ Ψ 4 τ .
In particular one can control this term by

(Sv + , v + ) + v + 2 L 2 (R+;H 3/2 τ )
As before, using that op w (1

-ψσ )op w (ψ σ ) ∈ Ψ -∞ τ one has op w ((1 -ψσ )λ 4 τ )v + , v + + u + 2 L 2 (R n+1 + ) .
We use then the fact that ã λ 4 τ which thanks to Gårding's inequality with a large parameter (Lemma A.1) yields:

(op

w (ã)v + , v + ) + v + 2 L 2 (R+;H 2 τ ) .
(4.9)

Putting (4.6), (4.8), (4.9) together we find, taking τ large enough

P + φ v + 2 L 2 (R n+1 + ) + u + 2 L 2 (R n+1 + ) τ 4 v + 2 L 2 (R + ) + τ 3 |v + | 2 L 2 (Σ) + τ |D n v + | 2 L 2 (Σ) .
Since v + localizes in a region where τ |ξ | one can simply control the trace of the tangential derivatives (thanks also to the transmission condition (2.14)):

τ 3 |v + | 2 L 2 (Σ) + T θ,Θ τ 3 |v ± | 2 L 2 (Σ) = τ |τ v± | 2 L 2 (Σ) τ |λv ± | 2 L 2 (Σ) = τ |∇ x v ± | 2 L 2 (Σ) .
This yields:

P + φ v + 2 L 2 (R n+1 + ) + u + 2 L 2 (R n+1 + ) + T θ,Θ τ 4 v + 2 L 2 (R + ) + τ 3 |v + | 2 L 2 (Σ) + τ |∇ x v -| 2 L 2 (Σ) + τ |∇ x v + | 2 L 2 (Σ) + τ |D n v + | 2 L 2 (Σ) .
and finally thanks to Lemma 4.3:

P + φ v + 2 L 2 (R n+1 + ) + u + 2 L 2 (R n+1 + ) + |u -| 2 L 2 (Σ) + T θ,Θ τ 4 v + 2 L 2 (R n+1 + ) + τ 3 |v -| 2 L 2 (Σ) + τ 3 |v + | 2 L 2 (Σ) + τ |∇v -| 2 L 2 (Σ) + |∇v + | 2 L 2 (Σ) . (4.10)
The only missing term is the volume norm on the negative half-line. Here one needs to use P - φ . We write

c -1 -(x)P - φ = (D n + iτ φ ) 2 + Q(x, D x ) -c -1 -D 2 t = A -+ R -.
In the region under consideration

R -v L 2 (R n+1 - ) is a perturbation of A -v L 2 (R n+1 -
) . The difference is that here we integrate on the negative half-line and the boundary terms come with the opposite sign when one calculates A -v 2 L 2 (R n+1 -) . More precisely, after repeating the same steps as above one finds

P + φ v - 2 L 2 (R n+1 - ) + u - 2 L 2 (R n+1 - ) + τ 3 |v -| 2 L 2 (Σ) + τ 3 |v + | 2 L 2 (Σ) + τ |∇v -| 2 L 2 (Σ) + T θ,Θ τ 4 v - 2 L 2 (R n+1 - ) . (4.11)
To finish the proof of the Lemma one can simply multiply (4.10) by a sufficiently large constant and add it to (4.11).

Microlocal estimates in the non-elliptic regions

In (4.2) and (4.3) we have defined two microlocal regions on each side of the interface. In this section we prove microlocal estimates inside the non elliptic regions. As expected most surface terms are estimated by the positive half-space where the observation takes place. Lemma 4.7 proves the appropriate estimate in the sub-region τ |ξ t | + |ξ |. We can consequently localize in its complementary region in the sequel. The following lemma deals with the microlocal subregions where the operator P φ is not elliptic microlocally. In this case the error terms in ξ t become very useful.

Lemma 4.9 (Non-elliptic positive half-space). Let K ⊂ R n+1 be a compact set, c 0 > 0, Y ⊂ {|ξ t | ≥ c 0 |ξ |}. Consider χ ∈ S 0 with supp(χ) ⊂ Y and π t,x (supp χ) ⊂ K. Then for all σ > 0 there exists τ 0 > 0 such that one has:

P + φ v 2 L 2 (R n+1 + ) + τ D t v 2 L 2 (R n+1 + ) + τ |D t v| 2 L 2 (Σ) + τ u 2 L 2 (R n+1 + ) + τ |u| 2 L 2 (Σ) τ v 2 L 2 (R+;H 1 τ ) + τ 3 |v| 2 L 2 (Σ) + τ |∇v| 2 L 2 (Σ) , for all τ ≥ τ 0 , u ∈ S c (R n+1 ) and v = op w (χ)op w (1 -ψ σ )u.
Proof. Here we are microlocally in a region where ξ t is large. We consider as before an auxiliary function ψ ∈ C ∞ (R + ) with ψ = 1 in [4, ∞) and ψ = 0 in [0, 3] and then define ψσ similarly to ψ σ :

ψσ (τ, ξ t ) := ψ στ (1 + |ξ t | 2 + |ξ | 2 ) 1 2 ∈ S 0 τ .
To simplify notation we consider additionally θ σ := 1 -ψ σ and θσ := 1 -ψσ . Remark then θ σ and θσ localize in a region where |ξ t | + |ξ | τ with moreover θσ = 1 on supp θ σ . We introduce also χ satisfying the same properties as χ with χ = 1 on supp χ.

Observe now that on the one hand one has |ξ t | + |ξ | τ on the support of θσ , and on the other hand |ξ t | |ξ | on the support of χ. Consequently θσ χ localizes in the regime of Lemma 4.5 and belongs to S 0 τ thanks to Lemma A.2. This yields the estimate:

τ D t op w ( θσ χ)v 2 L 2 (R n+1 + ) + v 2 L 2 (R n+1 + ) + |v| 2 L 2 (Σ) + τ D t op w ( θσ χ)v 2 L 2 (Σ) τ 3 op w ( θσ χ)v 2 L 2 (R n+1 + ) + τ 3 op w ( θσ χ)v 2 L 2 (Σ) + τ ∇ x op w ( θσ χ)v 2 L 2 (R n+1 + ) + τ ∇ x op w ( θσ χ)v 2 L 2 (Σ)
. (4.12) One then has:

τ 3 2 op w ( θσ χ)v L 2 (R n+1 + ) = τ 3 2 v -op w (1 -θσ χ)v L 2 (R n+1 + ) ≥ τ 3 2 v L 2 (R n+1 + ) -τ 3 2 op w (1 -θσ χ)v L 2 (R n+1 + ) = τ 3 2 v L 2 (R n+1 + ) -τ 3 2 Ru L 2 (R n+1 + ) , with R = op w (1 -θσ χ)op w (χ)op w (θ σ ). Since supp (1 -θσ χ) ∩ supp θ σ ∩ supp χ = ∅, one has immediately that R ∈ Ψ -∞ . Since θ σ ∈ S 0 τ has support in a region where τ |ξ t | + |ξ | Lemma A.2 implies R ∈ Ψ -∞ τ and therefore τ 3 2 Ru L 2 (R n+1 + ) u L 2 (R n+1 + ) .
We control in a similar fashion all the terms in (4.12) in which op w ( θσ χ) appears. Taking then τ ≥ τ 0 , τ 0 large yields

τ D t v 2 L 2 (R n+1 + ) + τ |D t v| 2 L 2 (Σ) + u 2 L 2 (R n+1 + ) + |u| 2 L 2 (Σ) τ 3 v 2 L 2 (R n+1 + ) + τ 3 |v| 2 L 2 (Σ) + τ ∇ x v 2 L 2 (R n+1 + ) + τ |∇ x v| 2 L 2 (Σ) . (4.13)
The only term we need now is the trace of the normal derivative. Here we have no factorization and we will use the commutator technique (see [LR95, Section 3A], [LRLR22, Chapter 3.4]). In our case we already control almost all of the terms thanks to (4.13). We write

c -1 + (x)P + φ = Q 2 + iτ Q 1 , with Q 2 = D 2 n -τ 2 |φ | 2 + Q(x, D x ) -c -1 + (x)D 2 t (4.14)
and

Q 1 = φ D n + D n φ . (4.15)
We integrate by parts taking into account the boundary terms to find:

c -1 + P + φ v 2 L 2 (R n+1 + ) = Q 2 v 2 L 2 (R n+1 + ) + τ 2 Q 1 v 2 L 2 (R n+1 + ) + iτ ([Q 2 , Q 1 ]v, v) + + τ B(v). (4.16)
After some calculations (which are the same as in [LRLR22, Chapter 3.4]) we see that the boundary term B(v) can be written as:

B(v) = 2 (φ D n v, D n v) Σ + (M 1 v, D n v) Σ + M 1 D n v, v Σ + (M 2 v, v) Σ ,
where M j ∈ D j ,τ , that is a tangential differential operator of order j depending on τ (see Section A.1 for a definition). Using this as well as the Young inequality yields, for arbitrary δ 2 > 0:

|B(v) -2 (φ D n v, D n v) Σ | (1 + δ -1 2 ) τ 2 |v| 2 L 2 (Σ) + |∇ x v| 2 L 2 (Σ) + δ 2 |D n v| 2 L 2 (Σ) .
We want to combine this last inequality with (4.16). To do this we recall that φ > 0 close to Σ (that is for |x n | small enough) and we choose δ 2 sufficiently small. One finds then, for τ sufficiently large:

P + φ v 2 L 2 (R n+1 + ) + τ 3 |v| 2 L 2 (Σ) + τ |∇ x v| 2 L 2 (Σ) Q 2 v 2 L 2 (R n+1 + ) + τ 2 Q 1 v 2 L 2 (R n+1 + ) + iτ ([Q 2 , Q 1 ]v, v) + + τ |D n v| 2 L 2 (Σ) . (4.17)
We need to take care of the commutator to deduce an estimate on τ |D n v| 2 L 2 (Σ) . We simply write:

i[Q 2 , Q 1 ] = B 0 D 2 n + C 1 D n + C 2 ,
with C j tangential operators of order j depending on τ . Since φ > 0 close to Σ we can use (4.14) and (4.15) to express D 2 n and D n in terms of Q 2 , Q 1 . This yields the following expression:

i[Q 2 , Q 1 ] = B 0 Q 2 + B 1 Q 1 + B 2 ,
with B j tangential operators of order j depending on τ . This implies that:

|iτ (B 0 Q 2 v, v)| τ -1 2 Q 2 v 2 L 2 (R n+1 + ) + τ 5 2 v 2 L 2 (R n+1 +
) , as well as

|iτ (B 1 Q 1 v, v)| τ Q 1 v 2 L 2 (R n+1 + ) + τ 3 v 2 L 2 (R n+1 + ) + τ ∇ x v 2 L 2 (R n+1 + ) + τ D t v 2 L 2 (R n+1 + ) and |iτ (B 2 v, v)| τ 3 v 2 L 2 (R n+1 + ) + τ ∇ x v 2 L 2 (R n+1 + ) + τ D t v 2 L 2 (R n+1 +
) . We inject now these last three estimates in the commutator term in (4.17) and take τ ≥ τ 0 , τ 0 large to absorb the terms with Q 2 and Q 1 to find:

P + φ v 2 L 2 (R n+1 + ) + τ 3 v 2 L 2 (R n+1 + ) + τ ∇ x v 2 L 2 (R n+1 + ) + τ 3 |v| 2 L 2 (Σ) + τ |∇ x v| 2 L 2 (Σ) τ |D n v| 2 L 2 (Σ) (4.18)
We multiply finally (4.13) by a large constant and add it to (4.18) to obtain:

P + φ v 2 L 2 (R n+1 + ) + τ D t v 2 L 2 (R n+1 + ) + τ |D t v| 2 L 2 (Σ) + u 2 L 2 (R n+1 + ) + |u| 2 L 2 (Σ) τ 3 v 2 L 2 (R n+1 + ) + τ 3 |v| 2 L 2 (Σ) + τ |D n v| 2 L 2 (Σ) + τ ∇ x v 2 L 2 (R n+1 + ) + τ |∇ x v| 2 L 2 (Σ) ,
which gives immediately the sought estimate.

Lemma 4.10 (Non elliptic negative half-space).

Let K ⊂ R n+1 be a compact set, c 0 > 0, Y ⊂ {|ξ t | ≥ c 0 |ξ |}. Consider χ ∈ S 0 with supp(χ) ⊂ Y and π t,x (supp χ) ⊂ K.
Then for all σ > 0, there exists τ 0 > 0 such that:

τ D t v 2 L 2 (R n+1 - ) + τ |D t v| 2 L 2 (Σ) + u 2 L 2 (R n+1 - ) + |u| 2 L 2 (Σ) τ v 2 L 2 (R-;H 1 τ ) ,
for all τ ≥ τ 0 , u ∈ S c (R n+1 ) and v = op w (χ)op w (1 -ψ σ )u.

Proof. We introduce, as in the proof of Lemma 4.9 the function θσ and χ such that θσ χ has a support contained in the region of Lemma 4.5, that is {τ |ξ t |+|ξ |}. We obtain as above the sought estimate.

Microlocal estimate in the elliptic region

We now state the desired estimate in a microlocal region where the operator P φ is elliptic. In this case we adapt step by step the proof of [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]. Indeed, here we can factorize our operator as in [LRL13, Eq. 2-17] and obtain the same estimates for the first order factors. Notice that in this regime the error terms in D t in the left hand side are useless. We recall that ψ σ has been defined in (4.5). The aim of this subsection is to prove the following lemma: Lemma 4.11 (Elliptic region). Let K ⊂ R n+1 be a compact set, χ ∈ S 0 with supp(χ) ⊂ E -∩ E + and π t,x (supp χ) ⊂ K. Then for all σ > 0 there exist V V t and τ 0 > 0 such that:

H -P φ v + 2 L 2 (R n+1 ) + H + P φ v + 2 L 2 (R n+1 ) + u 2 L 2 (R n+1 ) + |u + | 2 L 2 (Σ) + |u -| 2 L 2 (Σ) + T θ,Θ τ v 2 L 2 (R;H 1 τ ) + τ 3 |v + | 2 L 2 (Σ) + τ 3 |v -| 2 L 2 (Σ) + τ |∇v + | 2 L 2 (Σ) + τ |∇v -| 2 L 2 (Σ) + ∇v + 2 L 2 (R n+1 + ) + ∇v - 2 L 2 (R n+1 - ) , for all τ ≥ τ 0 and v ± = op w (1 -ψ σ )op w (χ)u ± with u ∈ W θ,Θ φ satisfying supp u ⊂ V .
To simplify we remove the ± notation from v±. Let χ satisfy the same properties as χ, satisfying additionally χ = 1 on supp χ and define

s(x, ξ t , ξ ) := Q(x, ξ ) -c -1 + (x)ξ 2 t ,
which means that c -1 + (x)P + φ = (D n + iτ φ ) 2 + op w (s) + R+ , where R+ ∈ Ψ 1 . We write:

c -1 + (x)P + φ v = (D n + iτ φ ) 2 + op w (s χ) v + op w ((1 -χ)s)op w (1 -ψ σ )op w (χ)u + R+ u. (4.19)
The support condition on χ guarantees that op w ((1 -χ)s)op w (1 -ψ σ )op w (χ) ∈ Ψ -∞ τ . We define now the symbol

m 2 + := s χ + (1 -χ)λ 2 . (4.20)
To justify the slightly abusive notation of m 2 + we notice that by definition of the region E + (see (4.2)) one has s λ 2 , on the support of χ and consequently m 2 + λ 2 . This means that m 2 + ∈ S 2 is elliptic positive and therefore it is indeed a square of another symbol in S 1 . We now write:

op w (s χ)v = op w (m 2 + )v -op w ((1 -χ)λ 2 )op w (1 -ψ σ )op w (χ)u, with op w ((1 -χ)λ 2 )op w (1 -ψ σ )op w (χ) ∈ Ψ -∞ τ .
Coming back to (4.19) we have obtained

c -1 + (x)P + φ v = (D n + iτ φ ) 2 + op w (m 2 + ) v + R+ u + R + u, with R + ∈ Ψ -∞ τ . In particular R + u 2 L 2 (R n+1 + ) u 2 L 2 (R n+1 +
) , which can be absorbed in the left hand side of the sought estimate. Using the positive ellipticity of m 2 + we define its square root which we denote by m + ∈ S 1 . Using symbolic calculus we obtain

c -1 + (x)P + φ v = (D n + iτ φ ) 2 + M 2 + v + R + 1 u = (D n + iτ φ -iM + )(D n + iτ φ + iM + )v + R + 2 u = (D n + iτ φ + iM + )(D n + iτ φ -iM + )v + R + 3 u, (4.21)
where M + = op w (m + ) ∈ Ψ 1 and the operators R + j ∈ Ψ 1 +τ Ψ 0 +Ψ 0 D n which is an admissible perturbation (see Remark 4.2). Similarly, using that supp(χ) ⊂ E -∩ E + we may write:

c -1 -(x)P - φ v = (D n + iτ φ ) 2 + M 2 -v + R - 1 u = (D n + iτ φ -iM -)(D n + iτ φ + iM -)v + R - 2 u = (D n + iτ φ + iM -)(D n + iτ φ -iM -)v + R - 3 u, (4.22)
where M -= op w (m -) and m -∈ S 1 is (similar to m + ) positive elliptic and homogeneous of degree one. Recall as well that op w (1 -ψ σ ) localizes in a region where τ |ξ t | + |ξ |. We can therefore suppose without loss of generality, up to introducing an admissible error in our estimate, that m ± ∈ S 1 τ . So far we have obtained microlocally a factorization as in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] with the same weight φ and with operators M ± having real, positive elliptic, homogeneous symbols of degree one. This is sufficient for the proof of the elliptic case to hold in our context too. Let us present the arguments of [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] in the present context.

We have two first-order factors on each side of the interface. Using the same notation as in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] we write:

D n + i(τ φ + M ± ) := D n + iE ± , e ± = τ φ + m ± , E ± = op w (e ± ) D n + i(τ φ -M ± ) := D n + iF ± , f ± = τ φ -m ± , F ± = op w (f ± ).
The crucial remark here is that one has always S 1 τ e ± λ τ , thanks to the positive ellipticity of m ± , whereas the sign of f ± may change. The quality of the estimate obtained depends on the ellipticity/positivity of the factors above, therefore one needs to distinguish cases concerning their sign.

We collect now a series of lemmas giving some first order estimates. These correspond in the elliptic case to the estimates obtained in [LRL13, Sections from 3.2 to 3.7] and the proofs are similar.

For the elliptic factors e ± one has:

Lemma 4.12 (Positive factor on the positive half-space). Let e + ∈ S 1 τ such that e + λ τ and E + = op w (e + ). Then for all l ∈ R there exists τ 0 > 0 such that

(D n + iE + )v L 2 (R+;H l τ ) |v| H l+1/2 τ + v L 2 (R+;H l+1 τ ) + D n v L 2 (R+;H l τ ) , (4.23) for τ ≥ τ 0 and v ∈ S c (R n+1 ).
Proof. We sketch the proof for l = 0. An integration by parts in the x n variable yields:

2 Re ((

D n + iE + )v, iop w (λ τ )v) + = |v| 2 H 1/2 τ + 2 Re (E + v, op w (λ τ )v) + ,
and then we simply use the fact that e + λ τ as well as Gårding's inequality with a large parameter which implies:

(E + v, op w (λ τ )v) + = (op w (λ τ )E + v, v) + v 2 L 2 (R+;H 1 τ )
, and (4.23) without the term D n v follows for l = 0 from Young's inequality. To introduce D n v in our estimate we simply use the expression

(D n + iE + )v 2 L 2 (R n+1 + ) = D n v 2 L 2 (R n+1 + ) + 2 Re(D n v, iE + v) + + E + v 2 L 2 (R n+1 + ) ,
and we bound from above the last two terms by v

2 L 2 (R+;H 1 τ ) . For general l we just consider 2 Re (D n + iE + )v, iop w (λ 2l+1 τ )v + instead of 2 Re ((D n + iE + )v, iop w (λ τ )v) + .
Estimate 4.23 is of great quality as one could expect since we have an elliptic factor in the observation region. In the sequel, to alleviate notation, we sketch the proofs for l = 0. Lemma 4.13 (Positive factor on the negative half-space ). Let e -∈ S 1 τ such that e - λ τ and E -= op w (e -). Then for all l ∈ R we have that there exists τ 0 > 0 such that

(D n + iE -)v L 2 (R-;H l τ ) + |v| H l+1/2 τ v L 2 (R-;H l+1 τ ) + D n v L 2 (R-;H l τ ) , (4.24) for τ ≥ τ 0 and v ∈ S c (R n+1 ).
Proof. The proof is the same as for (4.23) but the boundary term comes with different sign.

Since the factors f ± do not have a constant sign we need to consider appropriate microlocal regions.

Lemma 4.14 (Positive f + on the positive half-space). Let f + ∈ S 1 τ and F + = op w (f + ). We consider c 0 > 0 and χ = χ(t, x, ξ t , ξ , τ ) ∈ S 0 τ such that f + ≥ c 0 λ τ on supp χ. Then for all l ∈ R there exists τ 0 > 0 such that

(D n + iF + )op w (χ)v L 2 (R+;H l τ ) + v L 2 (R n+1 + ) (4.25) |op w (χ)v| H l+1/2 τ + op w (χ)v L 2 (R+;H l+1 τ ) + D n op w (χ)v L 2 (R+;H l τ ) , for τ ≥ τ 0 and v ∈ S c (R n+1 ).
Proof. The proof only uses the positive ellipticity of f + on the support of χ and is exactly the same as the proof of Lemma 3.3 in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]. The (harmless) error term on the left hand side comes from the microlocalization.

Lemma 4.15 (Positive f -on the negative half-space). Let e -∈ S 1

τ such that e - λ τ and E -= op w (e -). Let f -∈ S 1 τ and F -= op w (f -). We consider c 0 > 0 and χ = χ(t, x, ξ t , ξ , τ ) ∈ S 0 τ such that f -≥ c 0 λ τ on supp χ. Then for all l ∈ R there exists τ 0 > 0 such that

(D n + iF -)(D n + iE -)op w (χ)v L 2 (R-;H l τ ) + v L 2 (R n+1 - ) + D n v L 2 (R n+1 - ) + |(D n + iE -)op w (χ)v| H l+1/2 τ (D n + iE -)op w (χ)v L 2 (R-;H l+1 τ ) , (4.26) for τ ≥ τ 0 and v ∈ S c (R n+1 ).
Proof. The proof is as [LRL13, Lemma 3.4]. We set u = (D n + iE -)op w (χ)v and write 2 Re((

D n + iF -)u, op w (λ τ )u) -= -|u| H 1/2 τ + 2 Re(F -u, op w (λ τ )u) -.
We then use the fact that f -≥ c 0 λ t on the support of χ combined with Gårding's inequality with a large parameter.

Even though one would expect that the crucial surface terms should come from the observation region R n+1 there is a situation in which the "good estimate" arises from the negative side R n+1 -. This is the content of the next estimate.

Lemma 4.16 (Negative f -on the negative half-space). Let e -∈ S 1

τ such that e - λ τ and E -= op w (e -). Let f -∈ S 1 τ and F -= op w (f -). We consider c 0 and χ = χ(t, x, ξ t , ξ , τ ) ∈ S 0 τ such that f -≤ -c 0 λ τ on supp χ. Then there exists τ 0 > 0 such that

(D n + iF -)(D n + iE -)op w (χ)v L 2 (R n+1 - ) + v L 2 (R n+1 - ) + D n v L 2 (R n+1 - ) |(D n + iE -)op w (χ)v| H 1/2 τ + (D n + iE -)op w (χ)v L 2 (R-;H 1 τ ) , (4.27) for τ ≥ τ 0 and v ∈ S c (R n+1 ).
Proof. This is the analogue of Lemma 3.5 in [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]. The proof is in the previous Lemma, here however the fact that f -is negative elliptic on the support of χ will allow us to control the crucial surface term.

We finally give the estimate when f ± has no constant sign. Here we exhibit an estimate with loss of a half derivative. Notice that in the estimates above, no assumption on the coefficients of the weight function φ was made. The sub-ellipticity (pseudoconvexity) assumption below (4.31) is used in the next region. As in the classic case (with no interface) (see for example [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Chapter 28]) this translates into taking β large enough. We sketch the proof. We recall that the weight φ is defined in (2.9). Lemma 4.17 (Changing signs for f ± ). Let m ± ∈ S 1 τ be real positive elliptic homogeneous symbols. Define f ± = τ φ -m ± and F ± = op w (f ± ). Then for all l ∈ R there exist V V t and τ 0 > 0 such that

(D n + iF ± )v ± L 2 (R±;H l τ ) + |v ± | H l+1/2 τ τ -1 2 v ± L 2 (R n+1 ± ;H l+1 τ ) + D n v ± L 2 (R n+1 ± ;H l τ ) , (4.28) for τ ≥ τ 0 and v ∈ S c (R n+1 ) with supp v ⊂ V.
Proof. We do the proof for l = 0. Since the symbol of F + ∈ Ψ 1 τ is real we have F * + = F + , according to the Weyl quantization. We compute then

(D n + iF + )v 2 L 2 (R n+1 + ) = D n v 2 L 2 (R n+1 + ) + F + v 2 L 2 (R n+1 + ) + (D n v, iF + v) + + (iF + v, D n v) + ≥ F + v 2 L 2 (R n+1 + ) + (D n v, iF + v) + + (iF + v, D n v) + = Re (F 2 + v, v) + + i([D n , F + ]v, v) + + (F + v, v) Σ ≥ Re τ -1 µ(F 2 + v, v) + + i([D n , F + ]v, v) + + (F + v, v) Σ = τ -1 Re(µF 2 + + iτ [D n , F + ]v, v) + + Re(F + v, v) Σ , (4.29)
for all τ ≥ µ. Now since F + ∈ Ψ 1 τ one has

| Re i(F + v, v) Σ | |v| 2 H 1/2 τ (4.30)
which goes to the left hand side of (4.28). We need therefore to estimate the term

Re(µF 2 + + iτ [D n , F + ]v, v) + .
The principal symbol of

µF 2 + + iτ ([D n , F + ]v, v) + in the class Ψ 2 τ is µf 2 + + τ {ξ n , f + } = µf 2 + + τ ∂ xn f + ∈ S 2 τ .
Notice in particular that the commutator kills the non tangential part. This is the point where the sub-ellipticity condition appears. Indeed, for β sufficiently large one has that for µ sufficiently large,

µf 2 + + τ {ξ n , f + } λ 2 τ . (4.31)
To prove (4.31) we start by noticing that there exists 1 > 0 such that the following implication holds:

|f + | ≤ 1 λ τ =⇒ τ ∼ λ = (|ξ | 2 + |ξ t | 2 ) 1 2 ,
where the notation τ ∼ λ means that there exists C > 0 such that 1/Cτ ≤ λ ≤ Cτ . The above implication is a consequence of the facts f + = τ φ -m + , φ 1 and m + λ. We distinguish two cases:

1. Suppose that |f + | ≤ 1 λ τ . Then the above implies τ ∼ λ and we can compute as follows

{ξ n , f + } = τ β -∂ xn m + βλ -∂ xn m + .
Using homogeneity and compactness we obtain that for β large enough one has

βλ -∂ xn m + λ,
and since τ ∼ λ this implies τ {ξ n , f + } λ 2 τ , which implies (4.31). 2. If |f + | ≥ 1 λ τ then again by homogeneity and compactness one has for µ sufficiently large and all τ ≥ µ the sought estimate (4.31).

One can then apply Gårding's inequality with a large parameter which gives

Re(µF 2 + + iτ [D n , F + ]v, v) + v 2 L 2 (R+;H 1 τ ) .
Combined with (4.29) and (4.30), this proves inequality (4.28) in the positive half-space. The proof for the negative half-space is exactly the same.

We have presented the first order estimates that we will iterate. In order for the iteration to work, we need to impose a condition on the coefficients of the weight function φ. The crucial assumption that we use is the following geometric hypothesis of [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]. We choose the coefficients α -, α + such that:

α + α - > sup t,x ,ξt,ξ |(ξt,ξ )|≥1 m + (t, 0, x , ξ t , ξ ) m -(t, 0, x , ξ t , ξ ) ,
where the symbols m ± defined above (see (4.7)) are real positive elliptic and homogeneous of degree one. This geometric hypothesis can be stated as well by saying that:

∃ µ > 1, α + α - = µ 2 sup t,x ,ξt,ξ |(ξt,ξ )|≥1 m + (t, 0, x , ξ t , ξ ) m -(t, 0, x , ξ t , ξ ) . (4.32)
We now recall how the geometric assumption on the weight (4.32) allows to effectively combine all of the above estimates. This is expressed through the following lemma. Lemma 4.18. Let µ 0 > µ > 1 and α ± , be positive numbers such that (4.32) holds. For s > 0 define the following subsets of R n x ,t × R n ξt,ξ × R * + by:

Γ s = {(t, x , ξ t , ξ , τ ); |(ξ , ξ t )| < 2 or τ α + > sm + (t, 0, x , ξ t , ξ ), Γs = {(t, x , ξ t , ξ , τ ); |(ξ , ξ t )| > 1 and τ α + < sm + (t, 0, x , ξ t , ξ )}.
Then there exists η, τ 0 > 0 such that for

|x n | ≤ η and τ ≥ τ 0 we have R n x ,t × R n ξt,ξ × R * + = Γ µ0 ∪ Γµ and Γ µ0 ⊂ {(t, x , ξ t , ξ , τ ) ∈ R n × R n × R * + ; f + (t, x, ξ t , ξ ) ≥ Cλ τ for 0 ≤ x n ≤ η}}, Γµ ⊂ {(t, x , ξ t , ξ , τ ) ∈ R n × R n × R * + ; f -(t, x, ξ t , ξ ) ≤ -Cλ τ for -η ≤ x n ≤ 0}.
The proof of this Lemma uses the ellipticity and homogeneity of m ± and is exactly the same as in Section 4A of [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF].

The end of the proof is also similar to [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF]. Let us sketch it here for the sake of completeness. The crucial property of Lemma 4.18 is that we have covered the tangential dual space by two regions such that f + is positive elliptic on the one region and f -is negative elliptic on the other. We consider a homogeneous partition of unity

1 = χ Γ,0 (t, x , ξ t , ξ , τ ) + χ Γ,1 (t, x , ξ t , ξ , τ ), supp χ Γ,0 ⊂ Γ µ0 , supp χ Γ,1 ⊂ Γµ .
Remark that the derivatives of χ Γ,j are supported in a region where τ |ξ | + ξ t and consequently one has χ Γ,j ∈ S 0 τ . We now prove the estimate of Lemma 4.11 in the interior of each of the microlocal sub-regions given by Lemma 4.18. After this, the last step will be to put together these two microlocal estimates.

Estimate in Γ µ0

We consider Ξ 0 = op w (χ Γ,0 ) ∈ Ψ 0 τ . We start by applying (4.23) to get:

(D n + iE + )(D n + iF + )Ξ 0 v + L 2 (R n+1 + ) |(D n + iF + )Ξ 0 v + | H 1/2 τ + (D n + iF + )Ξ 0 v + L 2 (R+;H 1 τ ) .
The localization of χ Γ,0 allows to use Lemma (4.25) which gives

(D n + iF + )Ξ 0 v + L 2 (R+;H 1 τ ) + v + L 2 |Ξ 0 v + | H 3/2 τ + Ξ 0 v + L 2 (R+;H 2 τ ) + D n Ξ 0 v + L 2 (R+;H 1 τ )
. We obtain therefore:

(D n + iE + )(D n + iF + )Ξ 0 v + L 2 (R n+1 + ) + v + L 2 |(D n + iF + )Ξ 0 v + | H 1/2 τ + |Ξ 0 v + | H 3/2 τ + Ξ 0 v + L 2 (R+;H 2 τ ) + D n Ξ 0 v + L 2 (R+;H 1 τ ) . Using the fact that |(D n + iF + )Ξ 0 v + | H 1/2 τ ≥ |D n Ξ 0 v + | H 1/2 τ -|F + Ξ 0 v + | H 1/2 τ ≥ |D n Ξ 0 v + | H 1/2 τ -C |Ξ 0 v + | H 3/2 τ , we finally get (D n + iE + )(D n + iF + )Ξ 0 v + L 2 (R n+1 + ) + v + L 2 (4.33) |D n Ξ 0 v + | H 1/2 τ + |Ξ 0 v + | H 3/2 τ + Ξ 0 v + L 2 (R+;H 2 τ ) + D n Ξ 0 v + L 2 (R+;H 1 τ ) .
For the negative half-space we start by using (4.28) for l = 1/2 which yields:

(D n + iF -)(D n + iE -)Ξ 0 v -L 2 (R n+1 - ) + |(D n + iE -)Ξ 0 v -| L 2 (D n + iE -)Ξ 0 v -L 2 (R-;H 1/2 τ ) .
Estimate (4.24) gives:

(D n + iE -)Ξ 0 v -L 2 (R-;H 1/2 τ ) + |Ξ 0 v -| H 1 τ Ξ 0 v -L 2 (R-;H 3/2 τ ) + Ξ 0 D n v -L 2 (R-;H 1/2 τ ) ,
and consequently

(D n + iF -)(D n + iE -)Ξ 0 v -L 2 (R n+1 - ) + |D n Ξ 0 v -| L 2 + |Ξ 0 v -| H 1 τ (4.34) Ξ 0 v -L 2 (R-;H 3/2 τ ) + Ξ 0 D n v -L 2 (R-;H 1/2 τ ) .
We can now multiply (4.33) by a large constant and add it to (4.34), take τ large and use the transmission conditions to find:

P + φ Ξ 0 v + L 2 (R n+1 + ) + P - φ Ξ 0 v - L 2 (R n+1 - ) + T 1/2 θ,Θ + τ 1/2 |v + | L 2 (Σ) + v + L 2 (R n+1 + ) (4.35) τ 1/2 |Ξ 0 D n v -| L 2 (Σ) + |Ξ 0 D n v + | L 2 (Σ) + |Ξ 0 v -| H 1 τ + |Ξ 0 v + | H 1 τ + Ξ 0 v L 2 (R;H 3/2 τ ) + Ξ 0 D n v -L 2 (R;H 1/2 τ ) + Ξ 0 D n v + L 2 (R;H 3/2 τ ) .
This gives the desired estimate in the microlocal region Γ µ0 .

Estimate in Γµ

We consider Ξ 1 = op w (χ Γ,1 ) ∈ Ψ 0 τ . We apply estimate (4.23) which gives:

(D n + iE + )(D n + iF + )Ξ 1 v + L 2 (R n+1 + ) |(D n + iF + )Ξ 1 v + | H 1/2 τ + (D n + iF + )Ξ 1 v + L 2 (R+;H 1 τ ) . (4.36)
Thanks to the localization of χ Γ,1 we can use the estimate (4.27) for the negative half-space:

(D n + iF -)(D n + iE -)Ξ 1 v -L 2 (R n+1 + ) + v -L 2 (R n+1 - ) + D n v -L 2 (R n+1 - ) |(D n + iE -)Ξ 1 v -| H 1/2 τ + (D n + iE -)Ξ 1 v -L 2 (R-;H 1 τ ) . ( 4.37) 
Estimates (4.36) and (4.37) imply in particular that we control:

c + P φ Ξ 1 v + L 2 (R n+1 + ) + c -P φ Ξ 1 v + L 2 (R n+1 - ) + v -L 2 (R n+1 - ) + D n v -L 2 (R n+1 - ) τ 1/2 |c + (D n + iF + )Ξ 1 v + | L 2 (Σ) + |c -(D n + iE -)Ξ 1 v -| L 2 (Σ) .
Using the transmission conditions (2.14), (2.15) as well as the triangle inequality we find:

τ 1/2 |c + (D n + iF + )Ξ 1 v + | L 2 (Σ) + |c -(D n + iE -)Ξ 1 v -| L 2 (Σ) ≥ τ 1/2 |(c -M -+ c + M + )Ξ 1 v + | L 2 (Σ) -C T 1/2 θ,Θ + τ 1/2 |v + | L 2 (Σ) .
We now use the positive ellipticity of M ± combined with Lemmata A.1 and A.2 to obtain:

|(D n + iE -)Ξ 1 v -| H 1/2 τ + (D n + iE -)Ξ 1 v -L 2 (R-;H 1 τ ) + T 1/2 θ,Θ + τ 1/2 |v + | L 2 (Σ) |Ξ 1 v -| H 1 τ + |Ξ 1 v + | H 1 τ .

Hence we control

c + P φ Ξ 1 v + L 2 (R n+1 + ) + c -P φ Ξ 1 v + L 2 (R n+1 - ) + v -L 2 (R n+1 - ) + D n v -L 2 (R n+1 - ) + T 1/2 θ,Θ + τ 1/2 |v + | L 2 (Σ) τ 1/2 |Ξ 1 v -| H 1 τ + |Ξ 1 v + | H 1 τ + |Ξ 1 D n v -| L 2 (Σ) + |Ξ 1 D n v + | L 2 (Σ) + (D n + iF + )Ξ 1 v + L 2 (R+;H 1/2 τ ) + (D n + iE -)Ξ 1 v + L 2 (R+;H 1/2 τ
) .

From here one can proceed as for the region Γ µ0 by using estimate (4.24) for the term

(D n + iE -)Ξ 1 v + L 2 (R+;H 1/2 τ )
and estimate (4.28) for

(D n + iF + )Ξ 1 v + L 2 (R+;H 1/2 τ
) . We finally obtain the desired estimate microlocalized in Γµ :

P + φ Ξ 1 v + L 2 (R n+1 + ) + P - φ Ξ 1 v - L 2 (R n+1 - ) + T 1/2 θ,Θ + τ 1/2 |v + | L 2 (Σ) + v + L 2 (R n+1 + ) (4.38) + D n v -L 2 (R n+1 - ) τ 1/2 |Ξ 1 D n v -| L 2 (Σ) + |Ξ 1 D n v + | L 2 (Σ) + |Ξ 1 v -| H 1 τ + |Ξ 1 v + | H 1 τ + Ξ 1 v L 2 (R;H 3/2 τ ) + Ξ 1 D n v -L 2 (R;H 1/2 τ ) + Ξ 1 D n v + L 2 (R;H 3/2 τ ) .
End of the proof of Lemma 4.11. To finish the proof of Lemma 4.11 one has to add estimates (4.35) and (4.38). This yields the estimate:

P φ Ξ 0 v L 2 (R n+1 ) + P φ Ξ 1 v L 2 (R n+1 ) + T 1/2 θ,Θ + τ 1/2 |v + | L 2 (Σ) + v L 2 (R n+1 ) + D n v -L 2 (R n+1 - ) j=0,1 τ 1/2 |Ξ j D n v -| L 2 (Σ) + |Ξ j D n v + | L 2 (Σ) + |Ξ j v -| H 1 τ + |Ξ j v + | H 1 τ + Ξ j v L 2 (R;H 3/2 τ ) + Ξ j D n v -L 2 (R;H 1/2 τ ) + Ξ j D n v + L 2 (R;H 3/2 τ
) . The right hand side can be estimated from below by simply using the triangle inequality as well as the fact that Ξ 0 + Ξ 1 = Id. To bound from above the left hand side we argue with commutators noticing that

P ± φ ∈ Ψ 2 τ , Ξ 0 , Ξ 1 ∈ Ψ 0 τ and therefore [P ± φ , Ξ j ] ∈ Ψ 1 τ .
This, combined with Sobolev regularity of the pseudo differential calculus allows to estimate as follows:

P ± φ Ξ j v ± L 2 (R n+1 ± ) ≤ Ξ j P ± φ v ± L 2 (R n+1 ± ) + [P ± φ , Ξ j ]v ± L 2 (R n+1 ± ) P ± φ v ± L 2 (R n+1 ± ) + v ± L 2 (R±;H 1 τ ) .
We take τ ≥ τ 0 , τ 0 large to absorb the error term v ± L 2 (R±;H 1 τ ) . This concludes the proof of Lemma 4.11.

Patching together microlocal estimates: End of the proof of Proposition 2.6

End of the proof of Proposition 2.6. We are now ready to finish the proof of the sub-elliptic estimate for P . We have considered above two regions on each side of the interface (given in our local coordinates by Σ = {x n = 0}). This yields the following covering of

R × R n × R × R n-1 (t, x, ξ t , ξ ): R × R n × R × R n-1 = E -∩ E + ∪ Y.
where we have defined

Y := E -∩ GH + ∪ E + ∩ GH -∪ GH -∩ GH + .
Let us recall that the regions above have been defined in (4.2) and (4.3). The crucial remark here is that the definition of our microlocal regions implies that Y ⊂ GH -∪ GH + so that

|ξ t | |ξ | on Y.
Notice that the definition of the conic regions above imply in particular that Y and E -∩ E + overlap due to the factor 2 in the definition of GH ± . That means that we can consider an associated homogeneous partition of unity. More precisely, given a compact set K of R n+1 we can introduce χ j ∈ S 0 homogeneous, supp

χ 1 ∩ {|ξ | + |ξ t | ≥ 1} ⊂ E -∩ E + , supp χ 2 ∩ {|ξ | + |ξ t | ≥ 1} ⊂ Y 2 , π t,x (supp χ j ) ⊂ K and χ 1 + χ 2 = 1.
We pick now an element u of W θ,Θ φ which is compactly supported and write

op w (1 -ψ σ )u = v 1 + v 2 , v j := op w (χ j )op w (1 -ψ σ )u, j = 1, 2.
One needs now to simply put together the estimates already obtained according to the microlocalization of v 1 and v 2 :

• We apply Lemma 4.11, with v 1 = op w (χ 1 )op w (1 -ψ σ )u and we obtain the desired estimate microlocalized in E -∩ E + :

P φ v 1 2 L 2 (R n+1 ) + u 2 L 2 (R n+1 ) + |u| 2 L 2 (Σ) + T θ,Θ τ v 1 2 L 2 (R;H 1 τ ) + τ 3 |v 1 | 2 L 2 (Σ) + τ ∇v + 1 2 L 2 (Σ) + τ ∇v - 1 2 L 2 (Σ) , (4.39)
where we write

v 1 = H -v - 1 + H + v + 1 . • We consider v 2 = op w (χ 2 )op w (1 -ψ σ )u = H -v - 2 + H + v + 2 .
Since χ 2 localizes in particular in a region where |ξ t | |ξ | we can apply Lemma 4.10 to v - 2 to find:

P - φ v - 2 2 L 2 (R n+1 - ) + τ D t v - 2 2 L 2 (R n+1 - ) + τ D t v - 2 2 L 2 (Σ) + u 2 L 2 (R n+1 - ) + |u| 2 L 2 (Σ) τ v - 2 2 L 2 (R-;H 1 τ )
. (4.40) Thanks to the localization of χ 2 we can apply Lemma 4.9 as well to v + 2

P + φ v + 2 2 L 2 (R n+1 + ) + τ D t v + 2 2 L 2 (R n+1 + ) + τ D t v + 2 2 L 2 (Σ) + u 2 L 2 (R n+1 + ) + |u| 2 L 2 (Σ) τ v + 2 2 L 2 (R+;H 1 τ ) + τ 3 v + 2 2 L 2 (Σ) + τ ∇ x v + 2 2 L 2 (Σ) .
We use then Lemma 4.3 and (2.15) to control the trace of the derivative of v - 2 to deduce

P + φ v + 2 2 L 2 (R n+1 + ) + τ D t v + 2 2 L 2 (R n+1 + ) + τ D t v + 2 2 L 2 (Σ) + u 2 L 2 (R n+1 + ) + |u| 2 L 2 (Σ) + T θ,Θ τ v + 2 2 L 2 (R+;H 1 τ ) + τ v + 2 2 L 2 (Σ) + τ ∇ x v + 2 2 L 2 (Σ) + τ ∇ x v - 2 2 L 2 (Σ) . (4.41)
We can then multiply as usual the above estimate (4.41) by a large constant and add it to (4.40) to obtain:

P φ v 2 2 L 2 (R n+1 ) + τ D t v ± 2 2 L 2 (R n+1 - ) + τ D t v ± 2 2 L 2 (Σ) + u 2 L 2 (R n+1 - ) + |u| 2 L 2 (Σ) + T θ,Θ τ v 2 2 L 2 (R;H 1 τ ) + τ 3 |v 2 | 2 L 2 (Σ) + τ ∇v + 2 2 L 2 (Σ) + τ ∇v - 2 2 L 2 (Σ) . (4.42)
Summarising, we have thus shown, for j ∈ {1, 2}:

P φ op w (χ j )op w (1 -ψ σ )u 2 L 2 (R n+1 ) + τ D t op w (χ j )op w (1 -ψ σ )u ± 2 L 2 (R n+1 ± ) + τ |D t op w (χ j )op w (1 -ψ σ )u ± | 2 L 2 (Σ) + u 2 L 2 (R n+1 - ) + |u| 2 L 2 (Σ) + T θ,Θ τ op w (χ j )op w (1 -ψ σ )u 2 L 2 (R;H 1 τ ) + τ 3 |op w (χ j )op w (1 -ψ σ )u| 2 L 2 (Σ) + τ |∇op w (χ j )op w (1 -ψ σ )u ± | 2 L 2 (Σ) .
We add the two estimates above. We control the right hand side from below by using the triangle inequality as well as the fact

op w (1 -ψ σ )u = j op w (χ j )op w (1 -ψ σ )u.
For the left hand side we argue with commutators. For instance we control:

P φ op w (χ j )op w (1 -ψ σ )u L 2 (R n+1 ) ≤ op w (χ j )P φ op w (1 -ψ σ )u L 2 (R n+1 ) + [P φ , op w (χ j )]op w (1 -ψ σ )u L 2 (R n+1 ) .
Recall the notations θσ = 1 -ψσ and θ σ = 1 -ψ σ with ψσ as defined in the proof of Lemma 4.9. We write

[P φ , op w (χ j )] = [P φ , op w (χ j )op w ( θσ )] + [P φ , op w (χ j )op w (1 -θσ )].
Now on the one hand supp (1 -θσ ) ∩ supp θ σ = ∅ and on the other hand θ σ localizes in a region where

τ |ξ | + |ξ t |. This implies that [P φ , op w (χ j )op w (1 -θσ )]op w (θ σ ) ∈ Ψ -∞ τ , therefore [P φ , op w (χ j )op w (1 -θσ )]op w (θ σ )u L 2 (R n+1 ) u L 2 (R n+1 ) .
We have [P φ , op w (χ j )op w ( θσ )] ∈ Ψ 1 τ . The above considerations as well as the fact that op w (χ j ) ∈ Ψ 0 finally yield:

P φ op w (χ j )op w (1 -ψ σ )u L 2 (R n+1 ) ≤ op w (χ j )P φ op w (1 -ψ σ )u L 2 (R n+1 ) + [P φ , op w (χ j )]op w (1 -ψ σ )u L 2 (R n+1 ) op w (1 -ψ σ )u L 2 (R;H 1 τ ) + u L 2 (R n+1 ) + P φ op w (1 -ψ σ )u L 2 (R n+1 ) .
We use the same argument for the other terms of the right hand side (noticing that ξ t ∈ S 1 τ ). We finally obtain, taking also τ large to absorb the error terms (as for instance op w (1

-ψ σ )u L 2 (R;H 1 τ ) ) P φ op w (1 -ψ σ )u 2 L 2 (R n+1 ) + τ D t op w (1 -ψ σ )u + 2 L 2 (R n+1 + ) + τ D t op w (1 -ψ σ )u - 2 L 2 (R n+1 - ) + τ |D t op w (1 -ψ σ )u + | 2 L 2 (Σ) + τ |D t op w (1 -ψ σ )u -| 2 L 2 (Σ) + u 2 L 2 (R n+1 ) + |u| 2 L 2 (Σ) + T θ,Θ τ op w (1 -ψ σ )u 2 L 2 (R;H 1 τ ) + τ 3 |op w (1 -ψ σ )u| 2 L 2 (Σ) + τ |∇op w (1 -ψ σ )u + | 2 L 2 (Σ) + τ |∇op w (1 -ψ σ )u -| 2 L 2 (Σ) . (4.43)
Lemma 4.7 furnishes an estimate in the complementary sub-region:

P φ op w (ψ σ )u 2 L 2 (R n+1 ) + u 2 L 2 (R n+1 ) + T θ,Θ + |u -| 2 L 2 (Σ) + |u + | 2 L 2 (Σ) τ op w (ψ σ )u 2 L 2 (R;H 1 τ ) + τ 3 |op w (ψ σ )u| 2 L 2 (Σ) + τ |∇op w (ψ σ )u + | 2 L 2 (Σ) + τ |∇op w (ψ σ )u -| 2 L 2 (Σ) . (4.44)
To finish the proof we add (4.43) and (4.44). For the right hand side we simply use the triangle inequality. For example:

op w (1 -ψ σ )u L 2 (R n+1 ) + op w (ψ σ )u L 2 (R n+1 ) ≥ u L 2 (R n+1 ) , since op w (1 -ψ σ ) + op w (ψ σ ) = Id.
For the left hand side we argue with commutators as before. We notice that:

P φ ∈ D 2 τ , op w (ψ σ ) ∈ Ψ 0 τ , 1 -op w (ψ σ ) ∈ Ψ 0 τ and D t ∈ Ψ 1 τ . Therefore in particular [P φ , op w (ψ σ )] ∈ Ψ 1 τ , [P φ , 1 -op w (ψ σ )] ∈ Ψ 1 τ and [D t , 1 -op w (ψ σ )] ∈ Ψ 0 τ .
We take as usual τ sufficiently big to absorb the errors terms and we have thus proven:

P φ u 2 L 2 (R n+1 ) + τ D t u + 2 L 2 (R n+1 + ) + τ D t u - 2 L 2 (R n+1 - ) + τ |D t u + | 2 L 2 (Σ) + τ |D t u -| 2 L 2 (Σ) + u 2 L 2 (R;H 1 τ ) + |u| 2 L 2 (Σ) + T θ,Θ τ u 2 L 2 (R;H 1 τ ) + τ 3 |u| 2 L 2 (Σ) + τ |∇u + | 2 L 2 (Σ) + τ |∇u -| 2 L 2 (Σ) . (4.45)
Observe that the only term that is missing in the above estimate compared to the statement of Proposition 2.6 is the volume norm of the derivatives. The latter are estimated thanks to Lemma 4.4. Indeed, we multiply (4.45) by a large constant and add it to the estimate of Lemma 4.4. This finishes the proof of Proposition 2.6.

Convexification: A perturbation argument

For the sequel it is important to notice that the quality of the estimates obtained for the first order factors (such as (4.23) etc) depend on the imaginary part of the operator only. Indeed, consider L, M ∈ Ψ 1 with real symbols. One has:

(D n + L + iM )v 2 = (D n + L)v 2 + M v 2 + 2 Re(D n v, iM v) + 2 Re(Lv, iM v).
Now the fact that L and M have real principal symbols implies (since we are working with the Weyl quantization) that 2 Re(Lv, iM v

) = i([L, M ]v, v). Consequently one has [L, M ] ∈ Ψ 1 and |([L, M ]v, v)| v 2 L 2 (R;H 1/2
) , which can be absorbed in first-order factor estimates such as (4.23).

The Carleman estimate we have obtained so far involves a weight function φ depending only on the variable x n which in our local coordinates describes the interface Σ = {x n = 0}. However it is important for applications to allow dependence in the other variables too. We show here that indeed this is possible if one changes "slightly" the weight function φ. Recall that we have φ = α ± x n + βx 2 n 2 , and consider the new weight ψ = φ + κ(t, x n , x ), κ real valued quadratic polynomial.

We have taken κ quadratic polynomial for technical reasons related to the action of e -δ D 2 t 2τ (see [START_REF] Tataru | Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem[END_REF][START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF][START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF][START_REF] Laurent | Unique continuation and applications[END_REF]). However this should be sufficient for the applications. We shall now verify that if κ L ∞ is sufficiently small then the steps carried out in the preceding sections remain valid. Proposition 4.19 (Geometric convexification). Consider the new weight ψ = φ + κ(t, x n , x ) with κ a real valued quadratic polynomial. Then there exist η, δ 0 > 0 depending on the coefficients of φ and P such that if κ L ∞ ≤ η and δ ≤ δ 0 then the estimates of Proposition 2.6 and consequently of Theorem 2.2 remain valid with the weight ψ.

We shall show that the crucial sub-elliptic estimate estimate Proposition 2.6 remains valid with the new weight. To do so, we shall revisit the key arguments and show that up to taking κ L ∞ small we can see the new conjugated operator as a perturbation of the conjugated operator with the weight depending only on x n .

Recall the microlocal weight Q ψ δ,τ and the conjugated operator P ± ψ have been defined in (2.8) and (2.11).

Recall as well that we have the following formula for P ψ : (see [LL20, Chapter 3.3.1] or [START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF])

c -1 ± (x)P ± ψ = (D n + iτ φ + iτ κ xn -δκ t,t D t ) 2 + 1≤j,k≤n-1 b jk (x)(D j + iτ ∂ j κ -δκ t,xj D t )(D k + iτ κ x k -δκ t,x k D t ) -c -1 ± (x)((1 -δκ t,t )D t + iτ ∂ t κ) 2 .
In the sequel we shall denote by Pψ the principal part of the operator P ψ . Notice that since κ is supposed to be quadratic κ t,xj , κ t,t are actually constants. We shall write ψ xn = ∂ xn ψ. Let us start by showing that the result of Lemma 4.4 remains valid, up to taking small values for δ and κ L ∞ . We write:

c -1 + (x) Pψ = (D n + iτ ψ xn ) 2 -2δκ t,t D t (D n + τ ψ xn ) + Q(x, D x ) -c -1 + (x)(1 -δκ t,t )D 2 t + R+ ,
with R+ a tangential differential operator (see Section A.1) satisfying

(τ R+ v, v) + κ L ∞ τ ∇ x v 2 L 2 (R n+1 + ) + τ 3 v 2 L 2 (R n+1 + ) + τ δ ∇ t,x 2 L 2 (R n+1 + ) . (4.46)
We notice that ψ xn (0) = α ± + κ xn (0, t, x ), therefore for |x n | sufficiently small and for α ± / κ L ∞ sufficiently large the estimates involving φ remain valid for ψ as well. One obtains then:

Pψ v 2 L 2 (R n+1 + ) + τ 2 v 2 L 2 (R n+1 + ) ≥ 2τ Re( Pψ v, v) + τ Re(P + φ v, v) + + (τ R+ v, v) + -2τ δκ t,t (D n v + iτ ψ xn v, D t v) + τ Re(P + φ v, v) + + (τ R+ v, v) + -(τ δ D n v 2 L 2 (R n+1 + ) + δτ 3 v 2 L 2 (R n+1 + ) + δτ D t v 2 L 2 (R n+1 + ) ).
Using (4.46) combined with the estimate obtained in Lemma 4.4 for τ Re(P + φ v, v) + we obtain, up to taking δ ≤ δ 0 the same result as in Lemma 4.4 but for the convexified weight.

We now investigate what happens with respect to the microlocal regions considered in Section 4 and show that in fact we have the same estimates. We recall that there are three main regions. The first is the one where τ is large compared to |ξ | + |ξ t |, the second is the non-elliptic region and the third is the elliptic one.

• We localize with op w (ψ σ ) in a region where τ ≥ 1 σ (|ξ | + |ξ t |). (recall that ψ σ has been defined in (4.5)). This is the region covered in Lemma 4.7 and we check that the change of weight function from φ to ψ only adds acceptable error terms. Indeed we write: ) . We calculate for the first order factor:

c -1 + (x) Pψ = (D n -
(D n -δκ t,t D t + iτ ψ xn ) 2 v 2 L 2 (R n+1 + ) = (D n -δκ t,t D t ) 2 2 L 2 (R n+1 + ) + τ ψ xn v 2 L 2 (R n+1 + ) + 2 Re(D n v, iτ ψ xn v) + -2δ Re(D t v, iτ ψ xn v) + .
Since an integration by parts in the t variable yields 2δ Re(D t v, iτ ψ xn v) + = 0, we obtain the usual estimate:

(D n -δκ t,t D t + iτ ψ xn ) 2 v 2 L 2 (R n+1 + ) τ 2 v 2 L 2 (R n+1 + ) + τ |v| 2 L 2 (Σ) .
We iterate twice to get, exactly as in the proof of Lemma 4.7:

A + v 2 L 2 (R n+1 + ) τ 4 v 2 L 2 (R n+1 + ) + τ 3 |v| 2 L 2 (Σ) + τ |D n v| 2 L 2 (Σ) .
This is the region E -∩ E + with the definition of (4.2). Here we are in the situation of Lemma 4.11 and we follow [LRL13, Section 4E]. We revisit the factorization argument. To do this we check that in this microlocal region one can define a square root for the operator

S := 1≤j,k≤n-1 b jk (x)(D j + iτ κ xj -δκ t,xj D t )(D k + iτ κ x k -δκ t,x k D t ) -c -1 (x)((1 -δκ t,t )D t + iτ ∂ t κ) 2 .
(4.48)

Since its principal symbol s is no longer real, we study its real part. A sufficient condition for defining a square root is that its real part is positive elliptic. We thus compute:

Re(s) = 1≤j,k≤n-1 b jk (x) ξ j ξ k -δκ t,xj ξ j ξ t -τ 2 κ xj κ x k -δκ t,x k ξ t ξ k + δ 2 κ t,xj κ t,x k ξ 2 t -c -1 (x)(1 -δκ t,t ξ 2 t + c -1 (x)τ 2 (κ t ) 2 = Q(x, ξ ) -c -1 (x)ξ 2 t + r, with |r| δ κ L ∞ (|ξ | 2 + |ξ t | 2 ) + τ 2 κ 2 L ∞ . (4.49) When microlocalized in E -∩ E + one has Q(x, ξ ) -c -1 (x)ξ 2 t ≥ (|ξ | 2 + |ξ t | 2
). Combining this with estimate (4.49) we see that for δ ≤ δ 0 we have

Re(s) ≥ C (|ξ | 2 + |ξ t | 2 ) -τ 2 κ 2 L ∞ . Recalling that τ ≤ 1 σ (|ξ | 2 + |ξ t | 2
) in the support of op w (1 -ψ σ ) we obtain that up to taking η small enough we have for κ L ∞ ≤ η in the elliptic region:

Re(s) |ξ | 2 + |ξ t | 2 .
Using a cut-off χ which localizes in the elliptic region we define then (as for the definition of m + in 4.7):

s := χs + (1 -χ)λ 2 .

We use then the principal value of the square root for complex numbers to define

m = s 1 2 ∈ S 1 , Re m (|ξ | + |ξ t |).
Consequently we obtain the following almost-factorization:

c -1 (x) Pψ v = D n -δκ t,t D t + iτ ψ xn -iop w ( m) D n -δκ t,t D t + iτ ψ xn + iop w ( m) v + Rv, where v = op w (1 -ψ σ )op w (χ)u with u ∈ S c (R n+1 ), χ ∈ S 0 with supp(χ) ⊂ E -∩ E + and R ∈ Ψ 1 + τ Ψ 0 + Ψ 0 D n .
We have already seen in the beginning of Section 4.5 that the imaginary part of the first-order factors determines the quality of the estimate we obtain. We write then:

c -1 (x) Pψ = D n -δκ t,t D t + op w (Im m) + i(τ ψ xn -op w (Re m)) • D n -δκ t,t D t -op w (Im m) + i(τ ψ xn + op w (Re m)) v + Rv,
and we focus on the imaginary part of the first order factors above. Since op w (Re m) satisfies the same estimates (elliptic positive) as m (as defined in Section 4.3) the proof remains valid, up to taking α ± / κ L ∞ sufficiently large and under the same geometric hypothesis similarly to [LRL13, Section 4.5].

Taking everything into account we have obtained the same estimates as in Section 4 with ψ in place of φ and in the same microlocal regions. One can then patch these estimates together and obtain the desired result with the convexified weight, exactly as in Section 4. This finishes the perturbation argument and therefore the proof of Proposition 4.19. 

Proof of Theorem 5.1

We work as usual in geodesic normal coordinates as explained in the local setting of Section 2.2. This does not pose any problem since the estimate we are seeking to prove is invariant by change of coordinates in the x variable. In our context, the first and most important step for the proof of Theorem 5.1 will be to state a Carleman estimate with a geometrically convexified weight. That is the purpose of Proposition 5.3. This estimate will provide the analogue of Corollary 3.6 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] and will be the starting point of the quantified version of Theorem 5.1.

Proposition 5.3. Let (t 0 , x 0 ) ∈ Σ given locally by Σ = {φ = 0} = {x n = 0}. Then there exist Ω a neighborhood of (t 0 , x 0 ), a function ψ : Ω → R which is a quadratic polynomial in t and R 0 > 0 such that B((t 0 , x 0 ), 4R 0 ) ⊂ Ω and for any R ∈ (0, R 0 ], there exist , δ, ρ, r, d, τ 0 , C > 0 such that δ ≤ d 8 and

1. The Carleman estimate

C Q ψ ,τ P u 2 L 2 (Ωt,-∪ Ωt,+) + e -dτ e τ ψ u 2 H 1 τ + T θ,Θ ≥ τ Q ψ ,τ u 2 H 1 τ ,
holds for all τ ≥ τ 0 and all u ∈ W θ,Θ with supp u ⊂ B((t 0 , x 0 ), 4R);

2. One has

(B((t 0 , x 0 ), 5R/2)\B((t 0 , x 0 ), R/2) ∩ {-9δ ≤ ψ ≤ 2δ}) {φ > 2ρ} ∩ B((t 0 , x 0 ), 3R), (5.2) {δ/4 ≤ ψ ≤ 2δ} ∩ B((t 0 , x 0 ), 5R/2) {φ >2ρ} ∩ B((t 0 , x 0 ), 3R), (5.3) B((t 0 , x 0 ), 2r) {-δ/2 ≤ ψ ≤ δ/2} ∩ B((t 0 , x 0 ), R).
(5.4)

Remark 5.4. The first item is the Carleman estimate we have already obtained and the second one says that we can have this estimate with a weight function whose level sets are appropriately curved with respect to the interface Σ. This is the geometric convexification part.

Proof. We suppose to simplify that (t 0 , x 0 ) = 0. Theorem 2.2 gives us the desired estimate with a weight function φ defined in (2.9). Proposition 4.19 gives the existence of δ sufficiently small such that the same estimate is valid with the weight ψ defined as

ψ = φ -δ|(t, x)| 2 .
(5.5)

More precisely one has the existence of R 0 , , d, τ 0 and C such that

C Q ψ ,τ P u 2 L 2 (Ωt,-∪ Ωt,+) + e -dτ e τ ψ u 2 H 1 τ + T θ,Θ ≥ τ Q ψ ,τ u 2 H 1 τ ,
for all τ ≥ τ 0 and all u ∈ W θ,Θ with supp u ⊂ B(0, 4R) and R ≤ R 0 . Consider now δ > 0 such that

δ ≤ δR 2 4 • 10 ⇔ δR 2 4 ≥ 10δ.
This implies that for z = (t, x) ∈ B(0, 5R/2)\B(0, R/2) ∩ {-9δ ≤ ψ ≤ 2δ} one has

ψ ≥ -9δ ⇒ φ ≥ δ|z| 2 -9δ ≥ δ R 2 4 -9δ ≥ δ.
We choose then ρ = δ 10 and (5.2) is satisfied. For the second condition we consider again z = (t, x) ∈ {δ/4 ≤ ψ ≤ 2δ} and we have

ψ ≥ δ 4 ⇒ φ ≥ δ 4 > 2ρ = δ 5 ,
which shows that (5.3) is satisfied as well. The last property is simply a continuity statement. Indeed, since ψ(0) = φ(0) = 0 and ψ is continuous there exists 0 < r < R/2 sufficiently small such that

B(0, 2r) {-δ/2 ≤ ψ ≤ δ/2} ∩ B(0, R).
We choose δ ≤ min( δR 2 4•10 , d 8 ) and , with ρ = δ/10 and r as above, the proposition is proved. From this point on, one would like to follow the proof of Theorem 3.1 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] from Step 2: Using the Carleman estimate (in the present setting Proposition 5.3). The major difference is that in our context the coefficients of P are no longer smooth, neither is the weight ψ. We show however that one can overcome this difficulty with a few modifications. Since this is a rather long and technical proof we only sketch the key arguments and explain, where necessary, what changes in our situation.

Remark 5.5. Recall that the weight φ constructed in Section 2 is Lipschitz continuous and in particular one has φ, ψ ∈ W 1,∞ (B(0, 4R)).

Remark 5.6. With the notation introduced in Section 2 one has

Q ψ ,τ P u 2 L 2 (Ωt,-∪ Ωt,+) = H -Q ψ ,τ P -u -L 2 + H + Q ψ ,τ P + u + L 2 .
We suppose to simplify that (t 0 , x 0 ) = 0 ∈ Σ. We consider then φ, ψ, R, d, τ 0 , C as given by Proposition 5.3. We shall use the localization and regularization parameters λ, µ > 0 and we will suppose that λ ∼ µ, that is 1/ Cµ ≤ λ ≤ Cµ, for some C > 0.

We introduce now some cut-off functions that will allow us to localize and apply our Carleman estimate. We define χ(s) as a smooth function supported in (-8, 1) such that χ(s) = 1 for s ∈ [-7, 1/2] and set χ δ (s) := χ(s/δ).

(5.6)

We define as well χ with χ = 1 on (-∞, 3/2) and supported in s ≤ 2, then χδ (s) := χ(s/δ).

Following [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF], for u ∈ W compactly supported we wish to apply our Carleman estimate of Proposition 5.3 to

σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u, {φ = 0} Σ = {x n = 0} Ω t,- Ω t,+ {φ = 2ρ} {ψ = 0} {ψ = 2δ} {ψ = -9δ} r R/2
Figure 3: We have appropriately curved the level sets of φ with the help of the convexified weight ψ, so that properties (5.2) to (5.4) of Proposition 5.3 are satisfied. Notice that the level sets of ψ present a singularity when crossing the interface Σ.

where we recall that σ R has been defined in (5.1). Note that, even though u ∈ W the function σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u does not satisfy the homogeneous transmission conditions. This is why we need to consider non homogeneous transmission conditions.

One should notice that the fact that the operator e -|D t | 2 λ is tangential with respect to the variable

x n implies that f ∈ W θ,Θ φ =⇒ f λ ∈ W θ λ ,Θ λ φ .
Now the definition of σ R in (5.1) gives (∂ xn σ R ) |Σ = 0 and (∂ xn σ R,λ ) |Σ = 0. This is true for χδ (ψ) also.

To see this, we observe that by definition the derivative ∂ xn χδ (ψ) is supported in {ψ ≥ 3/2δ} which according to the definition of ψ in (5.5) is away from the interface Σ. However, the term χ δ (ψ) may not be constant on Σ. More precisely, we have that:

σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u ∈ W θ,Θ , with θ = 0 (since σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u remains continuous) and Θ = (c + -c -)σ 2R σ R,λ χδ (ψ)u∂ xn (χ δ,λ )(ψ) |Σ .
Notice that the definition of χ δ implies that

supp ∂ xn χ δ |Σ ⊂ Σ ∩ {-8δ ≤ ψ ≤ -7δ}.
This support property combined with Lemma B.7 allow to estimate the term T θ,Θ appearing in the left hand side of the estimate of Proposition 5.3 in the following way:

T θ,Θ = τ e -|D t | 2 2τ e τ ψ Θ 2 L 2 (Σ) τ e τ ψ Θ 2 L 2 (Σ) = τ e τ ψ (c + -c -)σ 2R σ R,λ χδ (ψ)u∂ xn (χ δ,λ )(ψ) |Σ 2 L 2 (Σ) τ µe -14δτ e τ 2 µ |u| 2 L 2 (Σ) τ µe -14δτ e τ 2 µ u 2 H 1 .
(5.7)

The other term in the left hand side of Proposition 5.3 that we need to estimate is

Q ψ ,τ P σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u L 2 (Ωt,-∪ Ωt,+) .
We use again supp χ δ ⊂ (-∞, δ) with Lemma B.7 to obtain

Q ψ ,τ P σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u L 2 (Ωt,-∪ Ωt,+) ≤ Q ψ ,τ σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)P u L 2 (Ωt,-∪ Ωt,+) + Q ψ ,τ [σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), P ]u L 2 (Ωt,-∪ Ωt,+) µ 1/2 e C τ 2 µ e δτ P u L 2 (B(0,4R)∩(Ωt,-∪ Ωt,+)) + Q ψ ,τ [σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), P ]u L 2 (Ωt,-∪ Ωt,+) . (5.8)
We need therefore to estimate the commutator appearing in (5.8). This is the purpose of the following Lemma.

Lemma 5.7. There exists R 0 > 0 such that for any R ∈ (0, R 0 ) there exist r, ρ > 0 such that for any

θ ∈ C ∞ 0 (R n+1 ) such that θ(x) = 1 on a neighborhood of {φ ≥ 2ρ} ∩ B(0, 3R), there exist C > 0, c > 0 and N > 0 such that Ce 2δτ M 2µ λ θ λ u H 1 + Cµ 1/2 τ e -8δ + e -µ 2 8τ + e -cµ e δτ e C τ 2 µ e δτ u H 1 (5.9) ≥ Q ψ ,τ [σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), P ]u L 2 (Ωt,-∪ Ωt,+) ,
(5.10)

for any u ∈ W compactly supported, µ ≥ 1, λ ∼ µ and τ ≥ 1. This is the difference with respect to the situation of Lemma 3.7 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]: the coefficients p α are no longer smooth. They remain bounded however and the regularization-localization operators are tangential to the interface where the coefficients may jump. This allows to use the same techniques. Moreover in our situation we can exploit the fact that the coefficients p α are independent of t and therefore they commute with Q ψ ,τ .

Proof. The preceding remark allows us to write our operator as

P = |α|≤2 p α (x)∂ α , with p α = H -p - α + H + p + α and p ± α = p ± α (x) smooth functions independent of t. This implies: ± H ± Q ψ ,τ [σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), P ± ]u ± L 2 = |α|≤2 H ± Q ψ ,τ [σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), p α (x)∂ α ]u L 2 = |α|≤2 Q ψ ,τ p α (x)[σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), ∂ α ]u L 2 = |α|≤2 p α (x)Q ψ ,τ [σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), ∂ α ]u L 2 ≤ C |α|≤2 Q ψ ,τ [σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), ∂ α ]u L 2 . (5.11)
To prove Lemma 5.7 one needs to provide appropriate estimates for a generic term from each of the four groups defined above. What happens is that terms containing derivatives of a non regularized function (that is without the subscript λ) are easier to handle since they localize exactly. To deal with derivatives of regularized functions requires more work since they produce additional errors coming from the non exact localization properties.

Estimating B -(defined in 5.12). We use Lemma B.7 applied to χ - δ to find:

Q ψ ,τ B -u L 2 ≤ e τ ψ B -L 2 ≤ C δ λ 1/2 e -7δ e τ 2 λ u H 1 ≤ Cµ 1/2 e -7δ e C τ 2 µ u H 1 .
Estimating B 2 . We use Lemma B.1 applied to b and ∂ β (σ R,λ ) which have supports away from each other. We apply then Lemma B.7 to χ (k) δ using its support properties to find:

Q ψ ,τ B 2 u L 2 ≤ e τ ψ B 2 u L 2 ≤ b∂ β (σ R,λ ) L ∞ χ (k) δ u L 2 ≤ Cλ 1/2 e δτ e τ 2 λ e -cλ u H 1 ≤ Cµ 1/2 e δτ e C τ 2 µ e -cµ u H 1 .
Estimating B 4 . We use Lemma B.1 applied to (χ δ,λ ) (k) (ψ) and 1 [3δ/2,2δ] to find thanks to the localization of χ δ (ψ):

Q ψ ,τ B 4 u L 2 ≤ e τ ψ B 4 u L 2 ≤ Ce 2δτ e -cµ u H 1 .
First estimates on B + (defined in (5.12)) and B 3 . These are the most difficult terms since here the derivative does not localize exactly. We have for B * with * = + or * = 3:

Q ψ ,τ B * u L 2 = e -|D t | 2 2τ e τ ψ B * u L 2 ≤ e -|D t | 2 2τ M µ λ e τ ψ B * u L 2 + e -|D t | 2 2τ (1 -M µ λ )e τ ψ B * u L 2 ≤ M µ λ e τ ψ B * u L 2 + Cλ 1/2 e -µ 2 8τ + e -cµ e C τ 2 µ e δτ u H 1 ,
where we have applied successively Lemma B.8 and Lemma B.7. We estimate now the first term in the above inequality, with B * = b * ∂ γ :

M µ λ e τ ψ B * u L 2 ≤ M µ λ e τ ψ b * (1 -M 2µ λ )∂ γ u L 2 + M µ λ e τ ψ b * M 2µ λ ∂ γ u L 2 .
We apply then Lemma B.9 which gives

M µ λ e τ ψ b * (1 -M 2µ λ )∂ γ u L 2 ≤ Cτ N e C τ 2 µ e 2δτ -cµ u H 1 .
Using the fact that

M µ λ e τ ψ b * M 2µ λ ∂ γ u L 2 ≤ e τ ψ b * M 2µ λ ∂ γ u L 2
we have thus obtained

Q ψ ,τ B * u L 2 ≤ e τ ψ b * M 2µ λ ∂ γ u L 2 + Cµ 1/2 τ N e -µ 2 8τ + e δτ e -cµ e C τ 2 µ e δτ u H 1 .
That is we "almost commuted"M µ λ with e τ ψ B * . To finish the proof of Lemma 5. 

+ ∂ γ = f bλ χ + δ,λ (ψ) χ(ψ)∂ γ , where b = ∂ β (σ R ), |β| ≤ 1, is supported in B(0, 2R) and f is bounded. We decompose R n+1 as R n+1 = O 1 ∪ O 2 ∪ O 3 , with O 1 = {ψ / ∈ [δ/4, 2δ]} ∩ B(0, 5R/2), O 2 = B(0, 5R/2) c , O 3 = {ψ ∈ [δ/4, 2δ]} ∩ B(0, 5R/2).
For the region O 1 we use the fact that χ + δ is supported in [δ/2, δ] and then Lemma B.1 with f 2 = 1 [δ/4,2δ] c . For the region O 2 we exploit as well the almost localization by using Lemma B.1 and Lemma B.7.

For the region O 3 we start by noticing that thanks to the geometric convexification property (5.3) one can find a smooth θ with θ = 1 on a neighborhood of O 3 and supported in {φ > 2ρ} ∩ B(0, 3R). We estimate then

e τ ψ b + M 2µ λ ∂ γ u L 2 (O3) ≤ Ce δτ M 2µ λ ∂ γ u L 2 (O3) ≤ Ce δτ θλ M 2µ λ ∂ γ u L 2 .
The final step is to commute θ λ with M 2µ λ . Let θ ∈ C ∞ 0 be such that θ = 1 on a neighborhood of supp θ and supported in {φ > 2ρ ∩ B(0, 3R)}. Now recall that from the assumption of Theorem 5.1 we are given θ ∈ C ∞ 0 with θ = 1 on {φ > 2ρ} ∩ B(0, 3R) and consequently one has that θ = 1 in a neighborhood of supp θ. We use then Lemma B.4 which gives

θλ M 2µ λ ∂ γ u L 2 ≤ C θM 2µ λ u H 1 + Ce -cλ u H 1 ,
and then Lemma B.6:

θM 2µ λ u H 1 ≤ M 2µ λ θ λ u H 1 + Ce -cµ u H 1 .
Consequently, we have obtained in each region O * an estimate of the same type as is (5.9). This gives the estimate for B + .

Estimating B 3 . This is done in a similar manner to B + .

We have finally obtained estimates of the type of (5.9) for all of the generic terms of the commutator. This proves Lemma 5.7.

With the commutator estimate at hand we can now show: Lemma 5.8. There exists R 0 > 0 such that for any R ∈ (0, R 0 ) there exist r, ρ > 0 such that for any θ ∈ C ∞ 0 (R n+1 ) such that θ(x) = 1 on a neighborhood of {φ > 2ρ} ∩ B(0, 3R), there exist µ 0 , C, c, N > 0 such that:

Cµ 1/2 e C τ 2 λ e δτ P u L 2 (B(0,4R)) + Cµ 1/2 τ N e -8δτ + e -µ 2 8τ + e δτ -cµ e C τ 2 µ e δτ u H 1 + Ce 2δτ M 2µ λ θ λ u H 1 ≥ τ Q ψ ,τ σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u H 1 τ , for u ∈ W compactly supported, µ ≥ µ 0 , λ ∼ µ and τ ≥ τ 0 .
Proof. We apply the estimate of Proposition 5.3 to w := σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)u. This gives:

C Q ψ ,τ P w 2 L 2 (Ωt,-∪ Ωt,+) + e -dτ e τ ψ w 2 H 1 τ + T θ,Θ ≥ τ Q ψ ,τ w 2 H 1 τ ,
We need therefore to estimate the three terms appearing in the left hand side of the above inequality.

Proof. Recall that ψ ∈ H 1 (see (5.5)). For any test function f ∈ S (R n+1 ) we define then the distribution

h f , w E (R),C ∞ (R) := (M βµ f σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ), w(ψ) H -1 (R n+1 ),H 1 0 (R n+1
) . We work with w = η δ,λ and estimate the quantity h f , η δ,λ E (R),C ∞ (R) . This done exactly as in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. We use the formula for the Fourier transform of a compactly supported distribution to obtain an a priori estimate on ĥf (ξ) for ξ ∈ R. Then we use Lemma 5.8 to obtain an estimate for h f (ζ) for ζ = iτ . All the complex analysis arguments that follow remain valid in our context. Indeed, these arguments do not involve the t, x space but they are carried out in the complexification of our Carleman large parameter τ .

End of the proof of Theorem 5.1. We are ready to finish the proof the local quantitative estimate. The last thing we need to do is to estimate the term

M βµ σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)u H 1
appearing in the right hand side of Lemma 5.9. This is done as in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. Indeed, all the operations are tangential and thanks to our Proposition 5.3 the geometric context is the same is in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. We sketch the end of the proof in a concise way.

We have:

M βµ λ σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)u H 1 ≤ M βµ 2 λ (1 -M βµ )σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)u H 1 + M βµ 2 λ M βµ σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)u H 1 .
To control the first term we use Lemma B.1. For the second one we use Lemma 5.9. We find for 0 < β < β 0 , for all µ ≥ τ0 β and λ = 2c 1 µ:

M βµ λ σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)u H 1 ≤ Ce -cµ e κµ M 2µ λ θ λ u H 1 + P u L 2 (B(0,4R)) + u H 1 .
Next we combine the above estimate with Lemma B.6:

M βλ 4 σ r,λ u H 1 ≤ Ce -cµ e κµ M 2µ λ θ λ u H 1 + P u L 2 (B(0,4R)) + u H 1 + σ r,λ M βµ 2 λ (1 -σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)) u H 1
, where r is given by Proposition 5.3. In particular Proposition 5.3 implies thanks to the property (5.4) that σ R = χ δ (ψ) = χδ (ψ) = η δ (ψ) = 1 on a neighborhood of supp σ r . We can then finish the proof exactly as in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. Indeed, we take Π ∈ C ∞ 0 with Π = 1 on a neighborhood of supp σ r and such that σ 2R = σ R = χ δ (ψ) = χδ (ψ) = η δ (ψ) = 1 on a neighborhood of supp Π. Then

σ r,λ M βµ 2 λ (1 -σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)) u H 1 ≤ σ r,λ M βµ 2 λ (1 -σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)) (1 -Π)u H 1 + σ r,λ M βµ 2
λ (1 -σ 2R σ R,λ χδ (ψ)χ δ,λ (ψ)η δ,λ (ψ)) Πu By assumption (see Section 1.3), the path γ intersects the interface S a finite number of times N . We call x S,j , j ∈ {1, 2, ..., N } the intersection points. Moreover, the conditions made on the family of admissible paths imply that we can use the same coordinates as in [LL19, proof of Theorem 6.3] , [START_REF] Lebeau | Contrôle analytique. I. Estimations a priori[END_REF]) in a neighborhood of this path. In particular, in these coordinates the path is straighten out, that is γ(s) = (0, sl). We now apply Corollary 5.12 to x S,1 ∈ S which gives us some constants r S,1 , ρ S,1 . We then choose a point x0 with x0 ∈ {0 < φ S,1 < ρ/4} ∩ B(x S,1 , r S,1 ) ∩ γ (γ -1 (x 0 ), γ -1 (x S,1 -)) .

Let us now look at the path joining x 0 to x0 . This path is entirely either in Ω + or Ω -and in particular one can apply the results of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. More precisely one can construct an appropriate foliation such that one can apply Theorem 4.7 of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. The construction is exactly as in the proof of Theorem 6.3 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. The difference is that here we only use the foliation to apply Theorem 4.7 which solely concerns low frequency information. That is because in our case, this is only the first step of the propagation. Indeed, since we will need to continue the iteration we can not consider high frequencies yet.

Applying Theorem 4.7 of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] gives us a set U ⊂ R t × Ω + such that U [-T, T ] × ω, and the precise construction of [LL19, Proof of theorem 6.3] implies that U contains a set of the form [-T 0 , T 0 ] × {φ S,1 > ρ 2 } ∩ B(x S,1 , r S,1 ), 4R) U.

(5.18)

The time T 0 is equal to T 0 = T -T0 where T0 is the time given by [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] to propagate the information from x 0 to x0 . This is any time greater than the length of the path joining those two points.

We can now apply Lemma 5.15 which ensures that for arbitrary > 0 there exists r with [-T 0 + 2 , T 0 -2 ] × B(x S1 , r ) U.

Since by construction of U we have U [-T, T ] × ω, using once again the transitivity of we have finally shown that [-T 0 + 2 , T 0 -2 ] × B(x S,1 , r ) [-T, T ] × ω.

Recalling that x S,1 ∈ S the above property says that we managed to pass on (a possibly very small) neighborhood of the other side of the interface, and this by losing an arbitrarily small time. In particular we have shown that we can find a x 1 ∈ γ γ -1 (x S,1 ), 1] such that [-T 0 + 2 , T 0 -2 ] × V (x 1 ) [-T, T ] × ω, (5.19)

where V (x 1 ) is a (small) neighborhood of x 1 . We can now repeat this propagation procedure starting from the point x 1 . We consider a point x1 which is on the same side of the interface as x 1 , that is x1 ∈ γ (γ -1 (x S,1 ), γ -1 (x S,2 )) and sufficiently close to the interface and we propagate the information

x x 0 x0 T -T T 0 -T 0 T 0 -2 -T 0 + 2 x S,1 x 1 T 1 -T 1 x1
x S,j xj-1 x j y 0 η y0 -η y0 ω γ Figure 5: The iteration process of the proof of Theorem 5.14 in space-time. We transport information from a point x 0 ∈ ω to y 0 ∈ M by following the path γ. The points x S,j are the intersection points of γ with S. The green arrows correspond to propagation of information in the smooth context where we use the results of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. The orange arrows propagate the information through the interface using Theorem 5.1 and this, by losing an arbitrarily small time. from x 1 to x1 using Theorem 4.7 of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. Then we pass on the other side of the interface using Lemma 5.15. Iterating this process N times and using the transitivity of gives [-T N + 2N , T N -2N ] × V (y 0 ) [-T, T ] × ω, with T N = T -0≤j≤N Tj and Tj any number strictly larger than the length of the path joining x j to xj . Notice that the definition of L(M, ω) (see (1.5)) implies thanks to our assumption T > L(M, ω) that T N > 0 and since can be chosen arbitrarily small we can have η y0 := T N -2N > 0.

To sum up, for an arbitrary y 0 ∈ M we were able to find an η y0 > 0 and a neighborhood V (y 0 ) of y 0 such that [-η y0 , η y0 ] × V (y 0 ) [-T, T ] × ω.

(5.20)

We have thus completed the iteration procedure.

Step 2: Unfolding the definition of

The last part of the proof will be to write down the definition of and obtain the desired estimate using a compactness argument for M.

Define U y0 as U y0 := [-η y0 , η y0 ] × V (y 0 ).

Consider a sufficiently small neighborhood Ṽ (y 0 ) of y 0 such that K U y0 , where we define K as

K := - η y0 2 , η y0 2 × Ṽ (y 0 ).
If moreover M = ∅ and Γ is a non empty open subset of ∂M, for any T > L(M, Γ), there exist C, κ, µ 0 > 0 such that for any (u 0 , u 1 ) ∈ H 1 0 (M) × L 2 (M), f ∈ L 2 ((-T, T ) × M) and u solving (5.24), we have (u 0 , u 1 ) L 2 ×H -1 ≤ Ce κµ ∂ ν Γ u L 2 ((-T,T )×Γ) + f L 2 (-T,T )×M + C µ (u 0 , u 1 ) H 1 ×L 2 .

A A few facts on pseudodifferential calculus

We collect here some facts and notations concerning the symbolic calculus which is an essential ingredient for the proof of the Carleman estimate. We follow here the exposition of [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF] 

A.2 Standard tangential classes

For m ∈ R we define the class tangential symbols S m as the smooth functions on R n+1 × R n such that for all (α, β) ∈ N n+1 × N n , sup (t,x,ξt,ξ )

(1 + |ξ | 2 + |ξ t | 2 ) -m+|β| 2 |(∂ α t,x ∂ β ξt,ξ )a(t, x, ξ t , ξ )| < ∞.
We shall mainly work with the Weyl quantization which associates to a ∈ S m an operator denoted by op w (a) defined by (op w (a)u)(t, x , x n ) = (2π) -n R 2n

e i((t,x )-(s,y ))•(ξt,ξ ) a t + s 2 , x + y 2 , x n , ξ u(y , s, x n )dsdy dξ dξ t .

These integrals may not be defined in the classical sense (Lebesgue integration). They are however well defined as oscillatory integrals.

We denote by Ψ m the set of these pseudodifferential operators. We define as well

S -∞ := m∈R S m , Ψ -∞ := m∈R Ψ m .
Notice that even though the operators above are tangential we do not use any special notation since all pseudodifferential operators we consider are tangential. A basic feature of the Weyl quantization is that we have the exact equality:

(op w (a)) * = op w (ā),

where we denote by * the adjoint operator on L 2 . In particular, operators associated to real valued symbols are (formally) self-adjoint.

For a ∈ S m we call principal symbol, σ(a), the equivalence class of a in S m /S 1. op w (a 1 )op w (a 2 ) = op w (a 1 a 2 ) + op w (r 1 ), r 1 ∈ S m1+m2-1 .

2. [op w (a 1 ), op w (a 2 )] = op w 1 i {a 1 , a 2 } + op w (r 3 ), r 3 ∈ S m1+m2-2 .

A.3 Tangential classes with a large parameter

Since we want to show a Carleman estimate which involves a large parameter, the natural class in our context is that of pseudodifferential operators with a large parameter. For τ ≥ 1 we define

λ 2 τ = τ 2 + |ξ | 2 + |ξ t | 2 ,
The class denoted by S m τ contains the functions a ∈ C ∞ (t, x, ξ t , ξ , τ ) satisfying for all (α, β) ∈ N n+1 We denote by (•, •) the inner product on L 2 (R n+1 ) defined by (f, g) = R n+1 f ḡ and by (•, •) ± its restriction on L 2 (R n+1 ± ). We introduce the following Sobolev norms, defined in the tangential variables:

|u(x n , •)| H s = |op w (λ s )u(x n , •)| L 2 (R n ) , |u(x n , •)| H s τ = |op w (λ s τ )u(x n , •)| L 2 (R n ) .
The above norms define the (usual) Sobolev space H s and the Sobolev space including a large parameter H s τ . We use many times that for s = 1 one has the equivalence

• 2 H 1 τ ∼ τ 2 • 2 L 2 + ∇• 2 L 2 .
All the properties listed in Section A.2 in the classical case remain valid in the context of the large parameter. In particular we have the Sobolev regularity property, for a ∈ S τ m :

We use many times the fact that

f λ L 2 ≤ e -|•| 2 λ L ∞ (Rt) F t (f )(ξ t , x) L 2 = f L 2 .
Notice also that we have f ≥ 0 =⇒ f λ ≥ 0, and consequently f ≥ g =⇒ f λ ≥ g λ . (B.1)

We now recall several Lemmas from [LL19] that we use in the main part of this article.

Lemma B.1 (Lemma 2.3 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). For any d > 0, there exist C, c > 0 such that for any f 1 , f 2 ∈ L ∞ (R n+1 ) such that dist(supp f 1 , supp f 2 ) ≥ d and all λ ≥ 0, we have

f 1,λ f 2 L ∞ ≤ Ce -cλ f 1 L ∞ f 2 L ∞ , f 1,λ f 2,λ L ∞ ≤ Ce -cλ f 1 L ∞ f 2 L ∞ .
Lemma B.2 (Lemma 2.4 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). Let f 2 ∈ C ∞ (R n+1 ) with all derivatives bounded, and d > 0. Then for every k ∈ N, there exist C, c > 0 such that for all f 1 ∈ H k (R n+1 ) such that dist(supp f 1 , supp f 2 ) ≥ d and all λ ≥ 0 we have

f 1,λ f 2 H k ≤ Ce -cλ f 1 H k .
Lemma B.3. Let ψ : R n+1 → R be a Lipschitz continuous function, f 1 ∈ C ∞ (R n+1 ) with bounded derivatives and f 2 ∈ C ∞ 0 (R n+1 ) such that dist(supp f 1 (ψ), supp f 2 ) > 0. Then, for k ∈ {0, 1} there exist C, c > 0 such that for all λ > 0, we have

f 1,λ (ψ)f 2 H k →H k ≤ Ce -cλ .
Lemma B.3 is essentially Lemma 2.5 from [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. In its statement the Lemma requires for ψ to be smooth. However, since we only need to control derivatives of order at most one Lipschitz regularity is sufficient.

Lemma B.4 (Lemma 2.6 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). Let f 1 , f 2 ∈ C ∞ 0 (R n+1 ) such that f 1 = 1 in a neighborhood of supp f 2 . Then there exist C, c > 0 such that for all λ > 0, and all u ∈ H 1 (R n+1 ), we have

f 2,λ ∂ α u L 2 ≤ C f 1,λ u H 1 + Ce -cλ u H 1 , for all |α| ≤ 1.
We recall that the operators M µ λ have been defined in Section 5.1. Lemma B.5 (Lemma 2.10 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). Let f 1 and f 2 be in C ∞ bounded as well as their derivatives with dist(supp f 1 , supp f 2 ) ≥ d > 0. Then for any k ∈ N, there exist C, c > 0 such that for all µ > 0 and λ > 0, we have

f 1,λ M µ λ f 2,λ H k →H k ≤ C -c µ 2 λ + Ce -cλ , f 1,λ M µ λ f 2 H k →H k ≤ C -c µ 2 λ + Ce -cλ
Lemma B.6 (Lemma 2.11 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). Let f ∈ C ∞ 0 (R n+1 ). Then there exist C, c > 0 such that for all µ > 0, λ > 0 and u ∈ H 1 (R n+1 ), one has

f λ M µ λ u H 1 ≤ f λ M 2µ λ u H 1 + C e -c µ 2 λ + e -cλ u H 1 .
Lemma B.7 (Lemma 2.13 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). There exists C > 0 such that for all D ∈ R, χ ∈ L ∞ (R) such that supp χ ⊂ (-∞, D], for all λ, τ > 0, we have

e τ ψ χλ (ψ) L ∞ ≤ C χ L ∞ λ 1/2 e Dτ e τ 2
λ , for all ψ ∈ C 0 (R n+1 ; R).

  (a) The observation takes place inside Ω-.
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 2 Figure 2: Geometry of the local quantitative estimate. The function θ localizes in the blue region and σ in the red one. This allows to propagate information from the blue to the red region.

  7 we need therefore to estimate e τ ψ b * M 2µ λ ∂ γ u L 2 , for b * = b + and b * = b 3 . This is done exactly as in [LL19]. As we have already seen in the course of this proof, in our case b * is less regular. However, u ∈ H 1 , and b * ∈ L ∞ satisfies the same localization properties as in [LL19]. For the sake of completeness we sketch the estimate for b + . Estimating B + . A generic term of B + has the form b

H 1 .

 1 We control from above the first term by using Lemma B.5 and for the second one we combine Lemmata B.1 and B.3.This finishes the proof of Theorem 5.1 up to renaming the constants appearing in the statement of the theorem.
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 4 Figure4: First step of the iteration process for the proof of Theorem 5.14. Information is propagated from x 0 to x 1 . The process is then repeated starting from x 1 .
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  A.1) with ω(a, b; c, d) = c • b -a • d. This formula implies:

  ×N n : sup (t,x,ξt,ξ ) τ ≥1 λ -m+|β| τ (∂ α t,x ∂ β ξt,ξ )a(t, x, ξ t , ξ , τ )| < ∞.We set Ψ m τ := {op w (a), a ∈ S m τ } and

  δκ t,t D t + iτ ψ xn ) 2 = Ã+ + R+ , where Ã+ = (D n -δκ t,t D t + iτ ψ xn ) 2 and R+ has a principal symbol r+ satisfying r+ |ξ | 2 + |ξ t | 2 + κ

	2 L ∞ τ 2 .	(4.47)
	As in the proof of Lemma 4.7 we have a very good estimate for Ã+ v	2 L 2 (R n+1 +

  For (t, x) ∈ R t × R nx we write (t, x) = (t, x , x n ). The variable x n is normal to the interface. We use as well the notation D xj := 1 i ∂ xj . We denote by D m τ the set of differential operators depending on τ , that is operators of the formP (t, x, D t , D x , τ ) =The set of tangential operators depending on the large parameter τ is denoted by D m ,τ and contains operators of the form P (t, x, D t , D x , τ ) =

	and [LRLR22,
	Chapter 2].
	A.1 Differential operators

j+|α|≤m a j,α (t, x)τ j D α t,x .

Their principal symbols are defined as

σ(P ) = j+|α|=m a j,α (t, x)τ j (ξ t ξ) α . j+|α|≤m a j,α (t, x)τ j (D t D x ) α

with principal symbols defined as σ(P ) = j+|α|=m a j,α (t, x)τ j (ξ t ξ ) α .

  m-1 . Many times we refer to the Sobolev regularity property of pseudodifferential calculus, namely:op w (a) : L 2 (R xn ; H s+m (R n t,x )) → L 2 (R xn ; H s (R n t,x )) continuously,where a ∈ S m . Consider now a 1 ∈ S m1 and a 2 ∈ S m2 . Then there exists a c ∈ S m1+m2 such that we have op w (a 1 )op w (a 2 ) = op w (c), and we denote c := a 1 a 2 where is called the Moyal product. One has, for any N ∈ N the following asymptotic formula:(a 1 a 2 )(t, x, ξ t , ξ) -

j<N (iω(D t,x , D ξt,ξ ; D y , D η )) j a 1 (t, x, ξ t , ξ)a 2 (y, η)| y=(t,x),η=(ξt,ξ) ∈ S m1+m2-N ,

Notice that in our definition we use the Weyl quantization and not the standard one.

In fact one has to construct the partition of unity on the cosphere bundle. That is the reason why we excluded a compact set which includes the zero section. However this does not pose any problem since a function localized on a compact subset of the phase space yields a residual operator and does not have any impact on our estimates.

Here and all along the proof we write directly, with a slight abuse of notation, the estimates in an invariant way. In fact one writes down the estimates given by the definition of in some appropriate coordinates and then passes into the global ones. This does not pose any problem since the estimates we consider are invariant by changes of coordinates.
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And we estimate in the same way:

with C positive constant depending on the the coefficients of P φ and of φ. According to (4.47) we now have

Choosing κ 2 L ∞ ≤ η 2 with η sufficiently small depending on C and C we have

Then one can choose σ ≤ σ 0 small such that

on the support of ψ σ . This fixes the choice of σ 0 . Then we obtain the same estimate as in Lemma 4.7 with the weight ψ.

• We localize now with op w (1 -ψ σ ) in the sub-region where τ

In this region on has for κ L ∞ ≤ η, with η sufficiently small that

for some C > 0.

We now investigate the non-elliptic and elliptic regions.

Non elliptic region

We can treat the non elliptic region as in the proof of Lemmata 4.9 and 4.10. In this region the localization of op w (1 -ψ σ ) implies that τ |ξ | + |ξ t | and being outside the elliptic region implies that |ξ t | |ξ | and thus |ξ t | τ + |ξ |. Therefore by the same arguments as in the proofs of Lemmata 4.9 and 4.10 one needs to obtain only one of the trace of the normal derivatives (for the other one we use as again Lemma 4.3). The commutator technique works here exactly as before. Indeed, we consider Q2 = c(x) -1 Pψ + P * ψ 2 , Q1 = c(x) -1 Pψ -P * ψ 2i , and we decompose c(x) -1 Pψ = Q2 + iτ Q1 .

We observe that Q2

where T j are tangential operators of order j. We can then proceed exactly as in the proof of Lemma 4.9. What is crucial in the proof of this lemma is the sign of φ (0) (which is positive close to Σ). If φ is replaced by ψ one can also have ψ xn (0) > 0, if we choose α + / κ L ∞ = φ (0 + )/ κ L ∞ is sufficiently large.

Elliptic region 5 The quantitative estimates

With Theorem 2.2 at hand we are now ready to obtain the desired quantitative estimates following [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF].

Firstly we obtain a local quantitative estimate (the analogue of Theorem 3.1 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). This estimate allows to propagate the information quantitatively from a small neighborhood of one point belonging to one side of the interface to some other neighborhood of the other side. For this estimate one needs to make sure that the methods used in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] can also be adapted to our context. We can then use this new local quantitative estimate to cross the interface and then continue the propagation process by directly using the results of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] which are valid as soon as the coefficients of our operator are smooth with respect to the space variable.

Some definitions and statement of the local estimate

Before stating the Theorem we need to introduce some notation from [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. We only propagate low frequency information with respect to time. Let m(t) be a smooth radial function, compactly supported in |t| < 1 such that m(t) = 1 for |t| < 3/4. We shall denote by M µ the Fourier multiplier defined

Therefore the upper index µ translates to an operator that localizes to times frequencies smaller than µ.

We shall also use a regularization operator. Given a function f ∈ L ∞ (R n+1 ) we set

That is, the lower index λ produces an analytic function with respect to the time variable. We will need also the combination of the two procedures above. Given λ, µ > 0, we write M µ λ for the Fourier multiplier defined by M µ λ = m λ ( Dt µ ) or more precisely:

That is, we first regularize and then localize. Let us consider as well a smooth function σ ∈ C ∞ (R) such that σ = 1 in a neighborhood of (-∞, 1], and σ = 0 in a neighborhood of [2, +∞). Given a point (t 0 , x 0 ) ∈ Σ we write

(5.1)

We can now state the local quantitative estimate. We recall that Σ is defined as R t × S and that we are in the geometric situation presented in Section 1.1.

Theorem 5.1. Let (t 0 , x 0 ) ∈ Σ given locally by Σ = {φ = 0}. Then there exists R 0 > 0 such that for any R ∈ (0, R 0 ) there exist r, ρ, τ0 > 0 such that for any θ ∈ C ∞ 0 (R t × M) with θ(x) = 1 on a neighborhood of {φ ≥ 2ρ} ∩ B((t 0 , x 0 ), 3R), for all c 1 , κ > 0 there exist C, κ , β 0 > 0 such that for all β ≤ β 0 , we have

for all µ ≥ τ0 /β and u ∈ W compactly supported.

Remark 5.2. In the statement of Theorem 5.1 uniqueness is propagated quantitatively from Ω + to Ω -. However, we have the same result in the other direction as well. Indeed, this comes from the fact that since there is no assumption on the jump of the coefficient c, the geometric situation as presented in Section 1.1 is completely symmetrical with respect to Ω + and Ω -up to changing the sign of c + -c -. This will be important in the proof of the semi-global estimate (proof of Theorem 5.14) where the local quantitative estimate will be applied successively in chosen points of the interface.

By the Leibniz rule we can write

We split then the commutators in (5.11) in a sum of differential operators of order one as follows:

where:

1. B 1 contains the terms with α 1 = 0 and α 2 = α 4 = 0;

2. B 2 contains some terms with α 2 = 0;

3. B 3 contains the terms with α 3 = 0 and α 1 = α 2 = α 4 = 0;

4. B 4 contains some terms with α 4 = 0. Now we provide estimates for each of the terms above. Before that we further decompose B 1 in two terms by observing

, and we have used the properties of supp χ . 1. This allows to decompose B 1 as a sum of generic terms of the form

where |β|, |γ| ≤ 1, f ∈ L ∞ (R n+1 ), compactly supported and analytic in t. Notice that in the absence of the regularization parameter λ the terms of B + would be supported in

2. B 2 consists of terms where there is at least one derivative on σ 2R and contains terms of the form b∂

where k, |β|, |γ| ≤ 1 with b bounded and supported in B(0, 4R)\B(0, 2R).

3. B 3 consists of terms where there is at least one derivative on σ R,λ and none on χ δ,λ (ψ), χδ (ψ) and σ R . These are terms of the form

where f is bounded and independent of t, |β| = 1 and |γ| ≤ 1. Notice that in the absence of the regularization parameter λ these terms would be supported in

4. B 4 consists of terms where there is at least one derivative on χδ (ψ) and contains terms of the form

where k, |β|, |γ| ≤ 1 and the function b is bounded and supported in B(0, 4R) ∩ {3δ/2 ≤ ψ ≤ 2δ}.

• For the term Q ψ ,τ P w 2 L 2 (Ωt,-∪ Ωt,+) we simply combine estimate (5.8) with Lemma 5.7. • For the term T θ,Θ we use the estimate (5.7).

• It remains to deal with e -dτ e τ ψ w H 1 τ . Recall that χ δ is supported in (-8δ, δ). This implies, using Lemma B.7:

where for the last inequality we used the fact δ ≤ d 8 , thanks to Proposition 5.3. This finishes the proof of Lemma 5.8.

The complex analysis argument

The final step of the proof of Theorem 5.1 consists in transferring the estimate provided by Lemma 5.8 from

The presence of the microlocal weight Q ψ ,τ makes this part highly non-trivial and one has to work by duality. In [START_REF] Hörmander | On the uniqueness of the Cauchy problem under partial analyticity assumptions[END_REF][START_REF] Tataru | Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem[END_REF] the authors prove a qualitative unique continuation result. They use the following strategy:

For any test function f define the distribution h

That measures f u along the level sets of ψ.

Consider the Fourier transform of h f and use

• the Carleman estimate to bound the quantity h f (iτ ) for τ large

• an a priori estimate on h f (ζ) for ζ ∈ C which gives sub-exponential growth Thanks to a Phragmén-Lindelöf theorem transfer the estimate provided by the Carleman estimate from the upper imaginary axis to the whole upper plane.

3. Use a Paley-Wiener theorem to deduce from the bound obtained for the Fourier transform of h f an information about its support.

Now in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] both the Phragmén-Lindelöf and the Paley-Wiener theorem are replaced by some precise estimates for h f . In our case the proof works in exactly the same way. The only difference is that here ψ and u are no longer smooth but they are Lipschitz continuous. However this does not affect the proof.

Lemma 5.9. Under the above assumptions, there exists τ0 such that for any κ, c 1 > 0, there exist β 0 , C, c > 0, such that for any 0 < β < β 0 , for all µ ≥ τ0 β and u ∈ W compactly supported, one has:

Propagation of information and applications

In this section we make use L(M, E). This is the "largest distance" of a subset E ⊂ M to a point of M and has been defined in (1.5).

We introduce now the tools of [LL19, Section 4] in order to explain how one can propagate information by applying successively the local quantitative estimate.

x and two finite collections (V j ) j∈J and (U i ) i∈I of bounded open sets in R n+1 . We say that (V j ) j∈J is under the dependence of (U i ) i∈I , denoted

) and for all κ, α > 0, there exist C, κ , β, µ 0 such that for all µ ≥ µ 0 and u ∈ W compactly supported, one has:

where P is as defined in Section 2.2.

The motivation behind this definition becomes apparent when one looks at the local quantitative estimate of Theorem 5.1. If one forgets about the localization and regularization indexes then the definition says simply that V depends on U if information on U controls information on V , and this comes with a precise estimate.

The Carleman estimate we have obtained (Theorem 2.2) as well as Carleman estimates in general provide already some sort of quantitative estimate which propagates information. However, what is of fundamental importance here is that the relation of dependence as defined above (in fact in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]) can be propagated (in an optimal way). Indeed, the crucial property that one needs in order to iterate such a dependence relation is transitivity. That is if a set A depends on a set B in the sense of the definition above, and B depends on a set C then one would like to say that A depends on C. That is why the slightly stronger notion of strong dependence is introduced:

x and two finite collections (V j ) j∈J and (U i ) i∈I of bounded open sets in R n+1 . We say that (V j ) j∈J is under the strong dependence of (U i ) i∈I , denoted by

To facilitate the lecture we re-write here the basic properties of the relation summarised in Proposition 4.5 of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. We shall use these properties for the proof of Theorem 5.14 in order to iterate in an abstract way the local estimate of Theorem 5.1. Proposition 5.10 (Proposition 4.5 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). One has:

6. The relation is transitive, that is:

Remark 5.11. Notice that the relation depends on the operator P , therefore technically speaking Proposition 5.10 is not exactly the same as Proposition 4.5 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] since in our case the coefficients of P present a jump discontinuity. However this does not have any impact in the proof.

We can now formulate the result of Theorem 5.1 in terms of relations of dependence. Indeed, one has:

Corollary 5.12. In the geometric situation of Theorem 5.1 let (t 0 , x 0 ) ∈ Σ given locally by Σ = {φ = 0}. Then there exists R 0 such that for any R ∈ (0, R), there exist r, ρ > 0 such that B((t 0 , x 0 ), r) {φ > ρ} ∩ B((t 0 , x 0 ), 4R).

Remark 5.13. In fact the constants R, ρ, r depend only on x 0 and not on t 0 . This comes from the fact that the coefficients of P and the interface Σ are independent of t.

Proof. The proof is as in Corollary 4.6 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF].

With the local quantitative estimate of Theorem 5.1 at our disposal we are now ready to propagate these estimates to obtain a global one. We will start by propagating the low frequency estimates only (such as the estimate provided by Theorem 5.1). This will be done by using some abstract iteration properties of the relation as defined in 4. We will then follow a path from a point x 0 ∈ M to another one x 1 ∈ M. As long as the path stays either in Ω + or in Ω -the propagation is guaranteed by the result of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. If the path crosses the interface S then we use Theorem 5.1 which allows to propagate uniqueness from one side of S to the other losing only an of time. Then we continue the propagation using again [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. We state the main theorem: Theorem 5.14. Let (M, g) be a smooth compact connected n-dimensional Riemannian manifold with (or without) boundary and S a (n -1)-dimensional smooth submanifold of M. We suppose that M\S = Ω -∪Ω + with Ω -∩Ω + = ∅. Consider P as defined in (1.2). For any nonempty open subset ω of M\S and any T > L(M, ω), there exist η, C, κ, µ 0 such that for any u ∈ H 1 ((-T, T )×M) and f ∈ L 2 ((-T, T )×M)

(5.13) one has, for any µ ≥ µ 0 ,

The following lemma will be used for the proof of Theorem 5.14 in order to transport the information locally from one side of the interface to the other. Lemma 5.15. Consider a point x ∈ S = {φ = 0}. Let R 0 , R, r, ρ be the associated constants given by Corollary 5.12. Then for any T > 0 , for any > 0 and any subset U ⊂ R n+1 such that

there exists r > 0 with

Proof. Let us consider a finite covering of

Now recall that from Corollary 5.12 and definitions of the above quantities we have as well:

(5.14)

We also have that

and consequently thanks to the assumption made on U we obtain that

We apply then item 3 of Proposition 5.10 which gives

By transitivity of by (5.14) we get

(5.15)

We now use the following geometric fact, which is a consequence of the triangle inequality: For a given > 0 there exists r such that we have

Consequently, item 3 of Proposition 5.10 gives:

(5.16)

The compact inclusion B (t i , x), r 2 B((t i , x), r) implies according to item 4 of Proposition 5.10:

(5.17)

Finally, we combine (5.15), (5.16), (5.17) using as well the transitivity (property 6 in Proposition 5.10)) to find

which finishes the proof of the Lemma.

We are now ready to give the proof of Theorem 5.14.

Proof of Theorem 5.14. The proof is divided in two steps:

Step 1: Abstract propagation of low frequency information

For technical reasons related to the second step of the proof we consider an open set ω with ω ω. We want to propagate uniqueness from ω to a neighborhood of an arbitrary point of M, say y 0 ∈ M. From the definition of L(M, ω) we can find a point x 0 ∈ ω and an admissible path γ : [0, 1] → M of length l such that T > L(M, ω) > l, γ(0) = x 0 and γ(1) = y 0 .

Pick χ ∈ C ∞ 0 (U y0 ) such that χ = 1 on a neighborhood U χ of K and φ ∈ C ∞ 0 ((-T, T ) × ω) with φ = 1 on a neighborhood of ω. The definition of and (5.20) imply that for any κ > 0, there exist C, β, κ , µ 0 > 0 such that for µ ≥ µ 0 3 ,

(5.21)

We want to use the almost localization of φ µ in order to control the left hand side of the above quantity. To do so we use Lemma B.10 which gives us

We want to inject the estimate above in (5.21). We need to be sure that the term u H 1 will be multiplied by a negative exponential. We recall that κ > 0 can be chosen arbitrarily small and we impose κ < c/2. Since µ ≤ Ce κµ we obtain with a new constant c > 0:

We need to exploit the almost localization of χ µ to control from below the left hand side of (5.22). We take χ ∈ C ∞ 0 (U χ ) with χ = 1 in a neighborhood of K. We use Lemma B.1 to control:

(5.23)

We control the second term as follows:

(

In the region |ξ t | ≥ βµ 2 we simply have

In the region |ξ t | ≤ βµ 2 we use the support of m and Lemma B.1 to find

Combining estimates (5.23) and (5.22) yields:

Since χ = 1 on K we have:

This yields, thanks to the previous estimate and the explicit definition of K the final estimate:

where Ṽy0 is a (small) neighborhood of y 0 , y 0 is an arbitrary point of M and η y0 > 0 is an associated strictly positive time. One can cover the manifold M by such neighborhoods and by compactness we can extract a finite covering M ⊂ j∈J finite Ṽ (y j ), such that

for µ ≥ µ 0 . Let η := min η yj /2, C := max C j , c := min c j . We have:

The proof of Theorem 5.14 is now complete.

In the preceding theorem we chose to present a proof in the case where our observation domain ω is an open subset of M. The point is that the difficulty of our problem comes from the interface inside M where the metric may jump. The Theorem and its proof show how we can propagate the information when crossing the interface in a way that is compatible with the quantitative results of [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. Since in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] the boundary case has been treated too, we can as well formulate the analogous result in the case of boundary observation. More precisely one has: Theorem 5.16. Under the assumptions of Theorem 5.14 assume additionally that ∂M is non empty and consider Γ a non empty open subset of ∂Γ. Then for any T > L(M, Γ), there exist η, C, κ, µ 0 > 0 such that for any u ∈ H 1 ((-T, T ) × M) and f ∈ L 2 ((-T, T ) × M) solving 5.13, we have for any µ ≥ µ 0

One can now combine the two preceding theorems with classical energy estimates for solutions of the wave equation that allow to relate u H 1 and u L 2 with the energy of its initial data (u, ∂ t u) |t=0 to obtain the following slightly more general version of Theorem 1.1: Theorem 5.17. Let (M, g) be a smooth compact connected n-dimensional Riemannian manifold with (or without) boundary and S an (n -1)-dimensional smooth submanifold of M. We write M\S = Ω -∪ Ω + . Consider P as defined in (1.2). For any nonempty open subset ω of M\S and any T > L(M, ω), there exist C, κ, µ 0 such that for any

(5.24) one has, for any µ ≥ µ 0 ,

)), continuously and uniformly in τ ≥ 1. This yields that for a ∈ S m τ we have

) . Many times in the article we absorb error terms by taking τ sufficiently large. By that we invoke the following property: If m > m then

The main tool to transfer some positivity properties of the symbol to some estimate for the corresponding operator is Gårding's inequality. We shall use it in the context of operators involving a large parameter. For a proof we refer to [LRLR22, Chapter 2]. There the standard quantization is used, the same proof works however for the Weyl quantization.

Lemma A.1 (Gårding's inequality with a large parameter). Consider a ∈ S m τ with principal symbol a m . Suppose that there exist C > 0 and R > 0 such that

then there exist C and τ 0 such that

for u ∈ S (R n+1 ) and τ ≥ τ 0 .

Before stating the last lemma of this section let us recall a definition.

Definition 5. The essential support of a symbol S m τ , denoted by essupp(a) is the complement of the largest open set of R n+1 t,x × R n ξt,ξ × {τ ≥ 1} where the estimates for S -∞ τ hold. More precisely, a point (t 0 , x 0 , s 0 , ξ 0 ) ∈ R n+1 × (R n \{0}) does not lie in the essential support of a if there exists a neighborhood U of (t 0 , x 0 ) and a conic neighborhood V of (s 0 , ξ 0 ) such that for all m ∈ R and all (α, β) ∈ N n+1 × N n one has sup

Although the natural classes for us to work with are S m τ involving the large parameter τ , for technical reasons we also have to deal with symbols in S m . Since S m ⊂ S m τ one has to make sure that the chosen objects belong to the appropriate spaces. The following Lemma [LRL13, Lemma A.4] will be then very useful:

. Moreover one has the same asymptotic formula as (A.1) with the remainder in S m+m -N τ .

B Some lemmata used in the quantitative estimates

In this Section we collect some estimates coming essentially from [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] concerning the regularization and localization operators that we introduced for the quantitative estimates.

We define for a function f ∈ L ∞ (R n+1 ) and λ > 0: Lemma B.8 (Lemma 2.14 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]). There exist C, c such that, for any , τ, λ, µ > 0, for any k ∈ N, we have:

Lemma B.9. Let ψ be a locally Lipschitz continuous real valued function on R t ×R n x , which is a quadratic polynomial in t, let R σ > 0, and σ ∈ C ∞ 0 (B(0, R σ )). Let χ ∈ C ∞ 0 (R) with supp(χ) ⊂ (-∞, 1), and χ ∈ C ∞ 0 (R) such that χ = 1 on a neighborhood of (-∞, 3/2), supp χ ⊂ (-∞, 2), and set χ δ (s) := χ(s/δ), χδ (s) := χ(s/δ). Let f be bounded, compactly supported and real analytic in the variable t in a neighborhood of B Rt (0, R σ ) and define g := e τ ψ χ δ,λ (ψ) χδ (ψ)f σ λ .

Then one has the following estimate: for all c, δ > 0 there exist c 0 , C, N > 0 such that for any τ, µ ≥ 1 and µ c ≤ λ ≤ cµ, we have

λ e 2δτ e -c0µ .

Proof. This is essentially Lemma 2.17 in [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF]. Its proof is based upon Lemma 2.15 from [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF] and there the assumptions on ψ and f are more restrictive. However, since we only need to use a version of [LL19, Lemma 2.17] for the case k = 0 we see that the proof works as well in the less restrictive case of Lipschitz regularity for ψ (our function ψ remains a quadratic polynomial in t) and boundedness for f . Lemma B.9 is used Section 5.2 for the first estimates on the terms B * . In our case f will be equal to functions which will be either independent of t or simply a polynomial in t, therefore the real analyticity property is preserved as well.

The following lemma is taken from [START_REF] Laurent | Tunneling estimates and approximate controllability for hypoelliptic equations[END_REF] and allows to replace in the quantitative estimates the observation term u H 1 (ω) by the weaker u L 2 (ω) . It is used in the proof of the semi-global estimate of Theorem 5.14. Lemma B.10 (Lemma 5.2 in [START_REF] Laurent | Tunneling estimates and approximate controllability for hypoelliptic equations[END_REF]). Let Ω be a bounded set of R n+1 = R t × R n

x . Let P be a differential operator of order 2, defined in a neighborhood of Ω, with real principal symbol and coefficients independent of the variable t. Suppose as well that P is elliptic in {ξ t = 0}. Let ω Ω and θ ∈ C ∞ 0 (ω). Then there exists C > 0 such that for all u ∈ C ∞ 0 (R n+1 ) and µ ≥ 1, we have