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Abstract

The full acceptance of Deep Learning (DL) models in the clinical field
is rather low with respect to the quantity of high-performing solutions
reported in the literature. Particularly, end users are reluctant to rely on
the rough predictions of DL models. Uncertainty quantification methods
have been proposed in the literature as a potential response to reduce
the rough decision provided by the DL black box and thus increase the
interpretability and the acceptability of the result by the final user. In
this review, we propose an overview of the existing methods to quantify
uncertainty associated to DL predictions. We focus on applications to
medical image analysis, which present specific challenges due to the high
dimensionality of images and their quality variability, as well as constraints
associated to real-life clinical routine. We then discuss the evaluation
protocols to validate the relevance of uncertainty estimates. Finally, we
highlight the open challenges of uncertainty quantification in the medical
field.

1 Introduction
These past years, many Deep Learning (DL) medical applications were proposed
for the automatic analysis of various imaging modalities, including Magnetic
Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound (US) or
histopathological images (see Puttagunta and Ravi (2021) for a review). To
be accepted and routinely used by clinicians, however, these algorithms must
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provide robust and trustable predictions. This is of particular importance in
the context of clinical applications, where the automated prediction may have a
direct impact on patient care. Yet, DL models are often considered and used as
black-boxes, due to the absence of clear decision rules, as well as to the lack of
reliable confidence estimates associated with their predictions (Guo et al., 2017).
Additionally, DL models proved to be overconfident about their predictions on
outliers data (Nguyen et al., 2015), and very sensitive to adversarial attacks
(Ma et al., 2021), which suggests a global lack of robustness of this type of
models. Due to these limitations, detecting failures or inconsistencies produced
by DL models is complex, raising concerns regarding the reliability and safety
of using these algorithms in clinical practice (Ford et al., 2016). To tackle this
essential aspect, several research directions have emerged in order to mitigate
the "black-box issue", including Explainable Artificial Intelligence (XAI) and
Uncertainty Quantification (UQ). XAI methods (Arrieta et al., 2020) propose
to explain the prediction of the DL model in a way that is understandable to hu-
mans. In the context of medical image analysis, an example of XAI approach is
the computing of saliency maps showing the image’s relevant features identified
by the DL model, or example-based explanations consisting in the presentation
of cases similar to the one considered, e.g. medical images of patients with the
same condition, (van der Velden et al., 2022). However, concerns have been
raised concerning the fidelity and intelligibility of the explanations provided by
XAI methods, which may give the misleading impression of a better under-
standing of the black-box Adebayo et al. (2018); Rudin (2019). On the other
side, UQ methods (Abdar et al., 2021a) were developed to quantify the pre-
dictive uncertainty of a given DL model. Enhancing an automated prediction
with an estimation of its confidence has numerous benefits. First, it allows the
identification of uncertain samples that need human reviewing. In a medical
setting, this is particularly crucial to prevent silent errors, that may lead to
inaccurate diagnosis or treatment. Second, it enables the identification of the
model’s pitfalls. For example, unconfident predictions can indicate an incom-
plete training dataset. It gives insights regarding the knowledge captured by
the model, and can be used to extend the training set with supplementary data,
if needed. High uncertainty can also reveal anomalies within the input data,
which is critical for Quality Control (QC). Overall, UQ increases trust in the
algorithm, and facilitates the interaction between the algorithm and the user.
Moreover, UQ benefits from strong theoretical foundations and has emerged,
from the clinical point of view, as one of the expected property of a deployed AI
algorithm (Tonekaboni et al., 2019). As a result, the medical-imaging commu-
nity is becoming increasingly interested in incorporating UQ to image processing
pipelines in order to highlight model failures or weaknesses. In this work, we
propose a comprehensive overview of such an UQ integration in medical image
processing pipelines.
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1.1 Research Outline
Several review articles focusing on uncertainty in DL can be found in the liter-
ature. In Abdar et al. (2021a), authors propose a complete review of UQ meth-
ods, as well as their various concrete applications. Hüllermeier and Waegeman
(2021) focus their article on the definition of the two main categories of uncer-
tainty, namely aleatoric and epistemic uncertainties, in the context of machine
learning applications. In Gawlikowski et al. (2021), insights about the various
sources of uncertainty are presented. Reviews focusing on Bayesian DL (Jospin
et al., 2022; Wang and Yeung, 2020) and prediction intervals Kabir et al. (2018)
have been also published. More recently, Zhou et al. (2022) present a review of
the latest advances considering epistemic uncertainty quantification in DL from
the perspective of generalization error. While these various works propose a
complete overview of UQ methods in DL from a general point of view, we have
noticed the lack of reviews focusing on medical image processing applications,
where being able to correctly identify the confidence of the model is crucial.
Kurz et al. (2022) presented a first work in this direction, using a corpus of 22
papers. Their study, however, is restricted to medical image classification. With
the present review, we propose to extend the latter by presenting a complete
review of 130 peer-reviewed papers implementing UQ applications in supervised
DL-based pipelines, for both medical image classification and segmentation. We
also aim at providing an in-depth discussion of UQ methods’ evaluation proce-
dures, as well as pointing out the challenges of the field and potential future
directions. Our review differentiates from other previously published ones by
the following contributions:

• A review of UQ methods dedicated to DL medical image processing clas-
sification and segmentation.

• A focus on the proposed metrics for uncertainty estimates evaluation.

• Discussion on the current challenges and limitations of UQ for medical
image analysis, and suggestion of future work directions.

1.2 Organization of this Review
This report is divided into four sections. Section 2 introduces the key concepts
addressed in this study, namely the application of DL models to medical image
classification and segmentation (subsection 2.2), as well as the main notions of
UQ (subsection 2.3). Section 3 presents the most popular UQ methods applied
in the context of medical image analysis. Section 4 then focuses on the evalua-
tion procedures that can be implemented to assess the usefulness of uncertainty
estimates. Finally, Section 5 proposes a discussion of the current challenges and
gaps in the literature in the field of UQ for DL medical image processing.
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2 Framework

2.1 Problem setting
In this work, we focus on supervised learning approaches. With this classical
setting, the goal of the DL algorithm is to learn a task T based on a training
dataset composed of pairs of input images x, and their associated ground truth
y. This target represents a class in the context of classification (e.g., healthy,
pathological), whereas it consists in a mask for segmentation tasks (e.g., the
manual delineation of tumors). By observing multiple examples of pairs of im-
ages and their corresponding labels during training, the learning agent estimates
the mapping function p(y|x) from the data.

2.2 Deep Learning for medical image analysis
The common approach for supervised DL medical image processing is the train-
ing of a Convolutional Neural Network (CNN) using an annotated dataset (i.e.
the ground truth). The building block of CNNs is the convolutional layer, which
convolves the input data with learnable weighted kernels. This enables the ex-
traction of features within the image, while being insensitive to the position,
scale and shape.

For medical image classification, popular convolutional architectures com-
prises Residual and Dense CNNs (Huang et al., 2017) or EfficientNets (Tan and
Le, 2019). These architectures consist of a succession of convolutional layers
that extract features from the image at different scales while reducing its size,
thus its spatial resolution. For medical image segmentation, popular choices in-
clude U-Net (Ronneberger et al., 2015) and its variants, such as Residual U-Net
(Kerfoot et al., 2018), V-Net (Milletari et al., 2016), Attention U-Net (Oktay
et al., 2018) or Dynamic U-Net (Isensee et al., 2021). These segmentation mod-
els are composed of two branches, an encoder and a decoder, forming the U
shape. The encoder compresses the dimension of the input image, while the
decoder decompresses the signal until it recovers its original size. Between the
two modules, skip connections are usually added so that the features learned
in the encoder part can be used to generate the segmentation in the decoder
part. Similarly to medical images that can be either 2-dimensional (e.g. 2D
CT, Optical coherence tomography (OCT), microscopy or colonoscopy) or 3D
(e.g MRI, 3D CT, PET...), the CNNs can be implemented in 2D or 3D.

During the supervised training stage, the CNN uses images from the training
set to produces predictions, which are compared to the ground truth targets in
order to estimate the error of the model. To do so, a loss function is introduced
to estimate the discrepancy between predicted and true labels. Standard choices
for both image classification and segmentation include the cross-entropy loss or
focal loss (Lin et al., 2020). For segmentation tasks, specific loss functions can
also be used such as the popular Dice loss (Milletari et al., 2016) and variants
(Generalized Dice loss (Fidon et al., 2017) or Tversky loss (Salehi et al., 2017)).

In the context of medical image classification, CNNs provide a categorical
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probability distribution over the different observable classes, by applying a soft-
max function on the model’s output. The final assigned class corresponds to
the one having the highest probability. The same process is applied for medical
image segmentation, except that the CNN predicts one class per pixel or voxel.
UQ aims at completing these predictions with uncertainty estimates, allowing
a better interpretation of the results with respect to the model’s confidence. In
the following section, the main concepts of uncertainty are introduced.

2.3 The specific language of uncertainty
Predictive uncertainty, meaning the uncertainty associated with the prediction
of a DL model, is typically divided in two parts: model (or epistemic) and data
(or aleatoric) uncertainty.

Epistemic uncertainty describes uncertainty arising from the lack of knowl-
edge about the perfect predictor, considering the current input (Hüllermeier and
Waegeman, 2021). In complex scenarios, there is often not a single model, but
rather a multitude of models that can explain the observed data (Gal et al.,
2016). Thus, uncertainty arises regarding the choice of the model parameters.
Epistemic uncertainty is considered to be reducible, meaning that it can be re-
duced by using additional data. In practice, epistemic uncertainty is expected
to be high for images far from the training data distribution (referred to as out-
of-distribution (OOD) samples). Such discrepancy between test and training
datasets is frequent in medical image analysis, where there may be significant
variations between images acquired at different hospitals or using different ma-
chines. Additionally, unexpected patterns can be encountered in test images,
such as diseases not encountered during training, or artifacts. Popular ap-
proaches to improve the generalizability of models to unseen domains include
data augmentation (Chen et al., 2020; Ouyang et al., 2021; Zhang et al., 2020)
or transfer learning (Ghafoorian et al., 2017).

Aleatoric uncertainty describes intrinsic noise and random effects within the
data (Hüllermeier and Waegeman, 2021). It is not intrinsic to the model, but
rather a property of the underlying generative distribution of the data. In the
context of classification or segmentation, aleatoric uncertainty increases when
the number of classes is high and when these classes are fine-grained (Malinin,
2019). Aleatoric uncertainty is considered to be irreducible, meaning that it
cannot be reduced with more data. Actually, the only way to diminish aleatoric
uncertainty would be to increase the measurement system precision to reduce
noise that corrupts the dataset (Gal et al., 2016). Finally, aleatoric uncertainty
can be further split into two categories: homoscedastic uncertainty, which is
identical for each sample of the dataset, and heteroscedastic uncertainty, which
depends on the query input.

Lastly, closely linked to this notion of data uncertainty, the notion of la-
bel uncertainty was introduced for segmentation tasks. It has been observed
that inter-rater variability in the context of manual delineations of medical im-
ages was important (Becker et al., 2019; Joskowicz et al., 2019). This has a
direct impact on the model’s overall uncertainty as the same object of interest
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(e.g. a brain tumor) may have significantly different ground truth delineations
depending on the rater.

In the next section, we propose an overview of the most employed UQ meth-
ods for medical image classification and segmentation, in light of the selected
corpus of papers.

3 Review of Uncertainty-Quantification methods
for medical image analysis using Deep Learning

We performed a systematic search on June 2022 using Google Scholar and
PubMed to identify DL studies implementing UQ methods for medical image
classification and segmentation published from 2015 (included) to June 2022.
The following combination of keywords was used for the search: "Deep Learn-
ing", "Uncertainty", "MRI", "CT", "PET", "X-RAY", "Medical image". Stud-
ies were included if they 1) implemented supervised DL models for medical
image classification or segmentation; and 2) proposed a quantification of the
uncertainty of their algorithms. The following exclusion criteria were applied
1) non-peer-reviewed studies (exception were made for papers with more than
30 citations); 2) non-English papers; 3) review articles and 4) animal studies.
130 papers were finally selected for analysis. It resulted a total of 199 UQ mod-
els, implemented either as principal contributions or as comparison methods
(the exhaustive list of methods can be found in A). We first clustered them
according to the method used for uncertainty estimation. We further proposed
a categorization of these methods according to the type of uncertainty that is
modeled, namely epistemic or aleatoric. Moreover, for real-world deployment of
a DL model in a clinical setting, speed is crucial for integration into the routine.
This means that the implementation of a UQ protocol should not come with
prohibitive inference time or computational cost. Thus, we further distinguish
between sampling methods, which require multiple inferences per input image
(and thus tend to be slow and/or computationally costly), and single-step meth-
ods, which produce uncertainty estimate at the cost of a single inference step
(and thus tend to be faster). The resulting taxonomy is presented in Figure 1.
In the following of the section, we briefly present each UQ framework.

3.1 Softmax methods
An immediate and simple approach to obtain uncertainty estimates from clas-
sification or segmentation by neural network (NN) techniques is to consider the
output predicted probabilities p(y|x). Naively, the higher this probability, the
more certain is the prediction. Works have been proposed to improve the cal-
ibration of the probabilities predicted by a DL model, and ensure that these
scores match the true performance of the model (Guo et al., 2017; Kumar et al.,
2019; Nixon et al., 2019). More formally, a model is calibrated if, for each
prediction with the associated probability p, the model is correct 100 x p of
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Figure 1: Implemented UQ methods in the 130 selected papers. The percentage
(and the number) of the selected papers for each class of methods is indicated in
the outer ring and the corresponding percentage below the class name. Orange
identifies sampling-based methods, and red single-step methods. The inner
ring classifies methods according to the type of uncertainty modeled: aleatoric,
epistemic or both.

the time. However, UQ based on softmax probabilities only consider the dis-
tribution over the model’s outputs, and not on the model’s weights. Thus, this
type of deterministic uncertainty estimates only consider aleatoric uncertainty
Hüllermeier and Waegeman (2021); Kendall and Gal (2017).

3.2 Bayesian Neural Network methods
In Bayesian Deep Learning (BDL), each weight of the NN is replaced by a dis-
tribution, rather than having a single fixed value (Blundell et al., 2015). To
achieve this, a prior distribution p(w) (usually Gaussian) is first initialized over
the NN weights. It follows that each weight is represented by a mean and a
variance (thus doubling the number of parameters of the model). Then, during
training, the model learns the posterior distribution p(w|D) given the train-
ing dataset D and the prior distribution, which account for the less and more
likely parameters given the observed data. The trained Bayesian Neural Net-
work (BNN) is akin to a virtually infinite ensemble of NNs, where each instance
has its weights drawn from the learned posterior distribution. During inference,
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the distribution is marginalized by repeatedly sampling weights from the shared
distribution and averaging the predictions. Uncertainty estimates such as the
entropy of the predictive distribution, its variance or its mutual information can
be computed. BNN places a distribution on the model’s outputs as well as on
the model’s weights, hence is able to model both aleatoric and epistemic un-
certainties. While being theoretically founded, BNN requires extensive changes
to both the model architecture and training paradigm, and also significantly
increases the computational cost of training and inference.

3.3 Monte Carlo dropout methods
In Gal and Ghahramani (2016), authors demonstrated that a NN trained with
dropout is able to efficiently approximate Bayesian inference without the asso-
ciated prohibitive computational cost. Based on this principle, the Monte Carlo
Dropout (MC dropout) technique proposes to train a model with dropout and
keeps it activated during inference. For a given query input, multiple forward
passes are then performed. Each time, a different dropout mask is randomly
sampled, producing different predictions. Following this process, a predictive
distribution is obtained, similarly to BNN. MC dropout allowing to approximate
a BNN in any network trained with dropout, it thus rapidly gained popularity.
As a counterpart, finding the optimal dropout strategy (rate and position within
the NN) is not straight-forward (Jungo et al., 2020).

3.4 Ensemble methods
Deep Ensemble (DE) (Lakshminarayanan et al., 2017) proposes to sequentially
train a series of NN. As the weights of the neural network are initialized ran-
domly, the models reach different optimums during training. As a result, they
produce diverse predictions for the same query input. As for BDL and MC
dropout, uncertainty estimates can then be extracted from the ensemble’s pre-
dictive distribution. A DE does not require any changes to model architecture or
training paradigm. Yet, it requires to repeat the training several times, and the
aggregation of each individual prediction at inference, which increases the com-
putational cost of this approach. Finally, it is worth noticing that some works
propose to associate ensemble and MC dropout in order to get the best of both
methods. This allows the combination of individual models uncertainty (though
Monte Carlo dropout) as well as the overall ensemble uncertainty (though Deep
Ensemble).

3.5 Heteroscedastic model-based methods
As its denomination indicates, an heteroscedastic model aims at evaluating the
heteroscedastic part of aleatoric uncertainty. Within this framework, uncer-
tainty is directly learned during training from the data itself, without the need
for ground truth labels for uncertainty. Heteroscedastic models can be catego-
rized into two subtypes: sampling methods, which extend MC dropout models,
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and deterministic approaches, which are a recent improvement and produce the
prediction together with its related uncertainty in a single-step.

3.5.1 Sampling Heteroscedastic models

In Kendall and Gal (2017), authors hypothesize that the network output logits
are corrupted by Gaussian noise with mean equal to 0 and variance z. The
higher the variance, the higher is the aleatoric uncertainty. A model can then
be trained to predict the mean logits ρ, as well as the noise variance z. To
do so, authors duplicate the outputs of a MC dropout network: one for the
logits, and one for the variance. At each training step, the loss of the model is
evaluated by integrating over multiple samples of noise. Paired with the MC
dropout framework, this sampling formulation of heteroscedastic models enables
the modeling of both epistemic and aleatoric uncertainties.

3.5.2 Deterministic Heteroscedastic models

Recently, deterministic variants of the heteroscedastic model have been pro-
posed. In this approach, uncertainty is still learned during training from the
data itself, but do not require the integration of the loss over multiple samples of
noise. As in the sampling approach, the NN is modified by adding a dedicated
output for uncertainty. Then, an uncertainty-augmented loss function is used
to learn the predictive task (classification or segmentation), while also learning
to predict high uncertainty scores for samples that are likely to be incorrect. In
this context, aleatoric uncertainty is learned without any additional cost, as it
simply exploits the ground truth label (class or segmentation).

3.6 Label-distribution model-based methods
A branch of the UQ literature focuses on modeling label uncertainty in the
context of image segmentation. These approaches focus on datasets for which
multiple expert manual segmentations are provided for each image, interpret-
ing the inter-rater variability as a form of ground truth uncertainty. In this
setting, it becomes possible to approximate the expert label distribution us-
ing generative segmentation neural networks (Kohl et al., 2018). At inference,
sampling from the learned distribution produces diverse segmentation masks,
which reproduce the inter-rater variability. We refer to this family of methods
as label-distribution models. Despite being intuitive, it is not clear whether or
not inter-rater variability can be used as ground truth for uncertainty. In the
context of medical image segmentation, there are many cases where a unique
segmentation cannot be obtained, for instance due to partial volume effect ob-
served in MRI at the boundaries between healthy tissue and lesions. In that
context, experts segmentations exhibit somewhat random variations around the
boundaries of the target object. Moreover, experts can over-segment or alter-
natively under-segment the same object of interest, based on their annotation
style. This inter-rater variability is thus rather linked to contextual biases (e.g,
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radiologist experience or annotation habits) rather that on the true uncertainty
of the label (Mehta et al., 2022).

3.7 Test-Time Augmentation
Test-Time Augmentation (TTA) (Ayhan and Berens, 2018) was proposed as an
UQ method to evaluate aleatoric uncertainty. At test time, multiple variants of
the input image are generated using Data Augmentation. This can include spa-
tial transformations (e.g. flipping, rotation) as well as intensity augmentations
(e.g. contrast modification, noise injection, or artifacts). This process aims at
exploring the impact of input-image transformations on the prediction. Using
TTA, the model generates a set of predictions for the same initial input image.
From this distribution of predictions, uncertainty metrics can be extracted such
as the mediane or the variance.

3.8 Feature-based methods
From a practical point-of-view, epistemic uncertainty is expected to be high
for Out-of-distribution (OOD) images, e.g. images that are far from the train-
ing image distribution. Based on this concrete application, efficient epistemic-
uncertainty techniques were recently proposed to detect OOD from the feature
map signature of a trained NN (Postels et al., 2021). This builds on the hy-
pothesis that feature maps contain information regarding the correctness of a
prediction. Despite being efficient for OOD detection, it has been observed
that feature-based uncertainty estimates are generally poorly calibrated (Pos-
tels et al., 2021). These methods are computationally efficient, however their
application to medical images remains rare.

3.9 Evidential Deep Learning
The Dempster–Shafer Theory of Evidence (DST) is a framework for dealing with
epistemic uncertainty (Dempster, 1968). In a K-class classification (respectively,
segmentation) problem, DST proposes to assign belief masses to each possible
class, as well as an overall uncertainty mass. When there is no evidence col-
lected guiding to any of the K classes, the beliefs reach their minimal values 0,
while the overall uncertainty reaches its maximal value 1. In practice, DST can
be applied to Deep Learning models by fitting a Dirichlet distribution on the
model’s outputs, in place of the standard categorical distribution. Additionally,
the Bayes-Risk loss function (Sensoy et al., 2018) is used to train the model in
replacement of the standard cross-entropy loss.

3.10 Other UQ methods
Finally, we found a few methods not conforming to any of the frameworks
previously introduced. We list these applications in B, with a short description
of each UQ approach proposed.
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4 How to evaluate uncertainty quantification ap-
proaches

In the previous section, we have presented the main UQ approaches that are
applied to DL-based medical image classification and segmentation. In this sec-
tion, we now propose to introduce the different protocols that are implemented
in these papers to evaluate the relevance of the UQ approaches. Evaluating UQ
approaches is not straight forward, as we typically do not dispose of ground-
truth uncertainty values. Proxy metrics are thus developed to estimate the
performances of uncertainty quantification methods. We have identified 7 types
of evaluation protocols (see Figure 2). In the following, we present each proto-
col and identify their use cases. Table C lists use cases of each metrics in the
reviewed corpus of papers.

Figure 2: Implemented UQ evaluation protocols in the reviewed papers. The
percentage (and the number) of the reviewed papers per class is mentioned in
the Pie chart.

4.1 Qualitative assessment protocol
As computing quantitative metrics for uncertainty is not direct, several works
focused on a qualitative assessment of the computed uncertainty estimates. In
this context, a visual inspection of the cases considered as certain/uncertain
is usually performed to verify whether they correspond to cases that a human
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would consider as uncertain. Alternatively, the pertinence of the incorporation
of UQ in a medical image processing pipeline can be assessed via the monitoring
of its beneficial impact on a downstream task (e.g. training-image selection in
a semi-supervised learning, or improvement of the predictive performance).

4.2 Calibration protocol
As presented in Section 3.1, the output softmax probabilities of a NN can di-
rectly be used as a marker of (un)certainty. A popular way of estimating the
accuracy of such uncertainty estimates is the use of calibration metrics, that ver-
ify the correspondence between predicted probabilities and error rates. Usual
choices consist of the Expected Calibration Error (ECE) (Guo et al., 2017), the
Brier Score, or the Negative Log-Likelihood (NLL) score.

4.3 Misclassification detection protocol
A direct downstream application of uncertainty in an automated pipeline is the
detection of samples for which the prediction is likely to be incorrect. This
is crucial to prevent silent errors that could have dramatic impact, especially
in real-world medical image applications. In that sense, the uncertainty esti-
mates can be turned into a binary classifier that aims at distinguishing between
correct and incorrect predictions (i.e., sample for which the predicted label y
and the ground truth label z differ). As in the binary classification setting,
an uncertainty threshold is applied to distinguish between positive (i.e. cer-
tain) and negative (i.e. uncertain) samples. The result of this classification is
then compared to the true label of each sample, namely correct or incorrect.
In that context, a confusion matrix from the uncertainty point of view can be
constructed, by distinguishing 4 possibles cases, as shown in Figure 3. Usual
classification metrics can then be computed based on the counts of True Positive
(TP): the classification is uncertain and the expected label and the prediction
differ, False Negative (FP): the classification is certain but the expected label
and the prediction differ, True Negative (TN): the classification is certain and
the expected label and the prediction are identical, and False Negative (FN): the
classification is uncertain but the prediction and the expected label are identical.

4.4 Rejection protocol
Another way of exploiting uncertainty estimates in an automated pipeline is
the rejection mechanism. In this context, predictions of the model are ordered
from the most certain to the most uncertain. A fraction of the most uncertain
predictions are then rejected, and the performance of the model is computed
on the remaining predictions. If uncertainty estimates efficiently identify uncer-
tain cases that are more likely to be incorrect, then the performance and the
remaining prediction should improve. Multiple fractions can be used, producing
a curve showing the performance of the model with respect to the fraction of
rejected data. The area under the resulting curve is used as a qualitative score.
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Figure 3: Confusion matrix for uncertainty-based misclassification detection.
Desired cases are represented in white, while undesired cases are presented in
gray.

This rejection-based evaluation protocol essentially highlights the same trends
as the previous misclassification detection setting.

4.5 OOD detection protocol
A desired property of uncertainty is to be high for abnormal images that are
different from the images seen during training. Similarly to the misclassification
detection setting, the uncertainty estimates can be translated into a binary clas-
sifier that aim at distinguishing between in-distribution (ID) and OOD images.
Standard classification metrics can further be computed from the confusion ma-
trix, as presented above in Section 4.3.

4.6 Quality-control protocol
For segmentation tasks, uncertainty estimates are obtained for every pixel (or
voxel) in the medical image. These scores can then be aggregated into image-
wise uncertainty, for instance by taking their mean. The correlation between
this image-wise uncertainty, and image-wise metrics quantifying the quality of
the segmentation, such as the Dice score, can be computed. In an automated
medical image segmentation pipeline, this process can be used to detect images
for which the produced segmentation does not meet quality standards. We
refer to this mode of evaluation, specific to segmentation tasks, as QC-based
evaluation protocols.

4.7 Label-distribution protocol
Finally, label-distribution protocol consists in comparing the predicted distri-
bution of labels Pout with the ground truth distribution of the experts Pgt. A
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popular choice of metric is the Generalized Energy Distance (Kohl et al., 2018)
between both distributions.

5 Discussion
We reviewed the most popular UQ methods for DL-based medical image analysis
and the associated evaluation protocols. In this section, we list the keys insights
of this review, and identify potential future research directions.

First, the large number of studies incorporating UQ in their medical analysis
pipeline proves that the need for UQ is well taken into account by the DL
community. This shows that efforts are being made to develop AI tools that
are not only powerful, but also useful in a real clinical setting. In this context,
the predictive performance of the model only is not enough to reach a good
acceptance. UQ is key to facilitate the human-machine collaboration and break
the black-box effect.

Bayesian methodology, although providing a strong theoretical background
for uncertainty, is scarcely implemented for medical image analysis. This can
be explained by the complex implementation that requires (i) the modification
of the NN (weights are replaced by distributions, thus doubling the number
of parameters to estimate) and (ii) the modification of the training paradigm.
Additionally, convergence tends to be slow for complex scenarios (Osawa et al.,
2019) and gradient descent more noisy and unstable using a Bayesian NN than
with a standard non-deterministic NN (Jospin et al., 2022). Finally, it has also
been observed that Bayesian NNs tend to underfit (Dusenberry et al., 2020)
and that their predictive performances are lower than standard NNs (Wenzel
et al., 2020). Approximations of the Bayesian framework, such as dropout-based
methods, are thus generally preferred.

Overall, MC dropout method seems to be the most popular approach for UQ
in medical image analysis, representing nearly half of the implemented meth-
ods (44.73%, considering both the standard MC dropout methods (41.71%) as
well as sampling Heteroscedastic models (3.02%), which are an MC-dropout
extension). This popularity can be explained by its easy implementation in
any NN trained with dropout, indeed a large majority of NNs. Additionally,
dropout helps preventing over-fitting during training, which is a common prob-
lem in medical domain, where training-dataset size is limited. However, the
performance of MC dropout is highly dependent on the applied dropout rate
(Osawa et al., 2019), which can makes it impractical to tune. Moreover, it re-
quires multiple inferences for the same input image, considerably extending the
inference time, which may not be compatible with AI applications in clinical
environments.

Ensembling approaches are also commonly employed for UQ, although less
common than MC dropout models. Aggregating the predictions of multiple
models is a popular trick to improve the predictive performance, while also
providing quality uncertainty estimates. The drawback is an increased com-
putational cost and time as it requires multiple training and their predictions
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aggregation at testing.
In the literature, a large variety of evaluation protocols are reported, aiming

at assessing the quality of uncertainty estimates. In the context of medical
image segmentation, if multiple manual expert delineations are available for
a given input image, the inter-rater variability can be used as ground truth
uncertainty, to be compared with the predicted one. However, most of the time,
the corresponding uncertainty values are not provided. Thus, evaluation of UQ
usually relies on proxy tasks, such as the detection of misclassification, Out-
of-distribution, or Quality Control. These methods are inspired from concrete
applications of uncertainty in a real-world scenario. Yet, although commonly
used, UQ evaluation based on misclassification detection should not directly be
used for ranking methods. Indeed, the set of correct and incorrect predictions is
specific to each model that produces its own binary misclassification. It is then
inappropriate to compare them directly (Ashukha et al., 2020).

In this review, we have distinguished between sampling and single-step UQ
methods. The latter approaches offer to compute uncertainty in a quick and
efficient manner, which is generally required for medical applications. Although
they currently represent a niche, their easy practical considerations may promote
their rapid adoption. These methods, however, only partially model uncertainty,
by computing either aleatoric or epistemic uncertainties, but not both.

Finally, it must be acknowledged that the effort of the community is pro-
moted by challenges, such as the 2020 edition of the BraTS challenge (Mehta
et al., 2022; Menze et al., 2014) that included an UQ task, the MICCAI QUBIQ
challenge1 that focused on label uncertainty, and the SHIFT 2022 challenge2

that will contain a task of uncertainty quantification for Multiple Sclerosis le-
sions segmentation (Malinin et al., 2022).

5.1 Future directions
Based on the gaps identified above, we suggest several future research directions
for UQ in DL-based medical image analysis.

As shown, the vast majority (81.15%) of the implemented UQ methods are
based on a sampling protocol, aiming at generating multiple predictions for the
same query input. Yet, this significantly increases the computational burden
of UQ, which may prevent its adoption in an automated pipeline in medical
domain. Deterministic UQ methods requiring a single-step to compute uncer-
tainty, are very promising and should be more intensively explored.

Overall, the detection of Out-of-distribution (OOD) predictions using un-
certainty concerns few studies, despite of being crucial in a real-world medical
scenarios. In an automated medical image pipeline, input samples can exhibit
various anomalies that may disturb the functioning of the NN, thus resulting in
very poor predictions. Real clinical cases may include artifacts, present a pathol-
ogy unseen during training, or an unusual contrast setting due to a particular

1https://qubiq21.grand-challenge.org/
2https://shifts.grand-challenge.org/
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acquisition protocol. In such situations, uncertainty associated to the computed
predictions are expected to be high and should represent a warning for the user
(e.g., the medical practitioner). In practice, this is usually not the case with
standard approaches such as softmax uncertainty, MC dropout or Deep Ensem-
ble, which have limited performance in terms of OOD detection (Snoek et al.,
2019; Ulmer and Cinà, 2021). This motivates the development of feature-based
methods, specially tailored for OOD detection. Note that OOD detection is a
very active research topic not specific to the UQ field (Bulusu et al., 2020), but
currently rarely exploited for medical image analysis. We hypothesize that the
lack of OOD-based evaluation protocol may be due to the difficulty of gather-
ing relevant data. A simple solution may be to use two distinct datasets, one
for training the neural network and its evaluation on in-distribution data, and
one during testing for OOD detection (Karimi and Gholipour, 2020). Another
approach would be to use data augmentation to corrupt images with synthetic
artifacts, helping to achieve a more realistic setting (Shaw et al., 2021).

Finally, while the need for UQ in medical applications is unquestionable, we
argue that being able to understand the prediction process of the DL model
is also crucial to promote a trustable usage of AI in medicine. Then, the link
between explainability and uncertainty should be studied, which would allow
to understand both how the prediction is made, and whether or not it should
be trusted. An interesting research direction would be to complement uncer-
tainty estimates with explanations, helping the user to understand the sources
of uncertainty in an intelligible way and possibly contribute to its improvement.

6 Conclusion
In this review, we have proposed an overview of the most popular UQ methods
implemented in DL-based medical image applications, a specific domain with
inherent uncertainty. Numerous phenomenons can cause predictive uncertainty,
such as noisy images, imperfect ground truth labels, lack or incomplete data,
and inter-site image variability. The literature proposes various methods to
quantify this uncertainty which are applied to a very large range of medical
image applications. As demonstrated in this review, developing trustable AI
solutions integrating uncertainty quantification of the computed predictions is
an active research topics.
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A Classification of the reviewed papers with re-
spect to the UQ methods implemented.

Study Year Modality Applications

Softmax

Wang et al. (2018) 2018 fetal MRI
brain MRI

organ segmentation
tumor segmentation

Jungo et al. (2020) 2020 brain MRI tumor segmentation
Mojabi et al. (2020) 2020 breast US tissue segmentation
DeVries and Taylor (2018) 2018 dermatoscopy segmentation
Filos et al. (2019) 2019 retinal images classification

Rousseau et al. (2021) 2020 brain MRI
brain CT

tumor segmentation
stroke segmentation

Mehta et al. (2020) 2020 brain MRI tumor segmentation
Diao et al. (2022) 2022 brain MRI tumor segmentation
Hoebel et al. (2020) 2020 lung CT nodule segmentation

Lourenço-Silva and Oliveira (2022) 2021 MRI / CT segmentation
tasks

Carneiro et al. (2020) 2021 colonoscopy polyps classification
Calderon-Ramirez et al. (2021b) 2021 chest X-Ray COVID detection
Calderon-Ramirez et al. (2021a) 2021 X-Ray mammogram classification
Berger et al. (2021) 2021 chest X-Ray disease classification
Liang et al. (2020) 2020 CT / histology classification tasks
Ayhan et al. (2020) 2020 retinal images disease classification
Belharbi et al. (2021) 2020 histology cancer cell segmentation
Lin et al. (2021) 2021 CT multi-organ segmentation

Judge et al. (2022) 2022 US
lung X-Ray

cardiac segmentation
lung segmentation

Bayesian Neural Network

Dhakal and Joshi (2021) 2021 knee MRI classification
Filos et al. (2019) 2019 retinal images classification

Li et al. (2021) 2021 lung CT
nasal endoscopy lesion segmentation

Monte Carlo dropout

Jungo et al. (2018a) 2018 brain MRI cavity segmentation

Zhang et al. (2022) 2022 lung CT
abdominal CT

nodule segmentation
tumor segmentation

Ghosal et al. (2021) 2021 biopsy tumor segmentation
Ghoshal and Tucker (2020) 2020 lung CT COVID detection
Yu et al. (2019) 2019 cardiac MRI cardiac segmentation
Wickstrøm et al. (2020) 2018 colonoscopy polyps segmentation
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Ghoshal et al. (2021) 2021 microscopy
brain MRI

nuclei segmentation
tumor classification

Ozdemir et al. (2019) 2019 lung CT nodule segmentation
Sander et al. (2019) 2018 cardiac MRI segmentation
Eaton-Rosen et al. (2018) 2018 brain MRI tumor segmentation
Abdar et al. (2021c) 2021 dermatoscopy classification
Tousignant et al. (2019) 2019 brain MRI classification
Jungo et al. (2020) 2020 brain MRI tumor segmentation
Balagopal et al. (2021) 2021 prostate CT target segmentation
Hu et al. (2020) 2020 brain CT/PET tumor segmentation
Xia et al. (2020) 2020 CT segmentation
Sedai et al. (2019) 2019 retinal image layer segmentation

Wang et al. (2019a) 2019 brain MRI brain segmentation
tumor segmentation

Mehrtash et al. (2020) 2020 MRI segmentation
Roy et al. (2019) 2018 brain MRI brain segmentation
DeVries and Taylor (2018) 2018 dermatoscopy segmentation
Liu et al. (2020) 2020 prostate MRI segmentation
Dhakal and Joshi (2021) 2021 knee MRI classification
Jungo et al. (2017) 2017 brain MRI tumor segmentation
Rączkowski et al. (2019) 2019 microscopy classification
Filos et al. (2019) 2019 retinal image classification
Abideen et al. (2020) 2020 chest CT tuberculosis detection
Thagaard et al. (2020) 2020 histology metastasis detection
Jungo et al. (2018b) 2018 brain MRI cavity segmentation
Hiasa et al. (2019) 2019 muscle CT muscle segmentation
Orlando et al. (2019) 2019 retinal images layer segmentation
Leibig et al. (2017) 2017 retinal images classification

Kwon et al. (2020) 2020 retinal images
brain MRI

vessel segmentation
stroke segmentation

Rousseau et al. (2021) 2020 brain MRI
brain CT

tumor segmentation
stroke segmentation

Mehta et al. (2020) 2020 brain MRI tumor segmentation
Asgharnezhad et al. (2022) 2022 lung CT COVID detection
Yang et al. (2021) 2020 lung CT nodule detection
Ozdemir et al. (2017) 2017 lung CT nodule detection
Soberanis-Mukul et al. (2020) 2019 CT segmentation
Pan et al. (2019) 2019 prostate MRI segmentation
Lee et al. (2022) 2022 brain MRI tumor segmentation
Bhat et al. (2021) 2021 liver MRI metastase segmentation
Huang et al. (2020) 2020 cardiac OCT tissue segmentation
Iwamoto et al. (2021) 2021 microscopy segmentation
McClure et al. (2019) 2019 brain MRI atlas segmentation
Natekar et al. (2020) 2019 brain MRI tumor segmentation
Herzog et al. (2020) 2020 brain MRI stroke classification

Mehta et al. (2019) 2019 brain MRI MS lesion segmentation
tumor segmentation

Molle et al. (2019) 2019 dermatoscopy classification
Zou et al. (2022) 2022 brain MRI tumor segmentation
Diao et al. (2022) 2022 brain MRI tumor segmentation
Hoebel et al. (2020) 2020 lung CT nodule segmentation
Karimi and Gholipour (2020) 2020 MRI / CT segmentation

Redekop and Chernyavskiy (2021) 2020 CT
dermatoscopy segmentation
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Bhat and Kuijf (2022) 2021 MRI/CT segmentation tasks
Song et al. (2021) 2021 tongue images oral cancer classification

Gou and He (2021) 2021 head CT detection of
subarachnoid hemorrhages

Carneiro et al. (2020) 2021 colonoscopy polyps classification

Mahapatra et al. (2021) 2021 chest X-Ray
histology

disease classification
gland segmentation

Hasan and Linte (2021) 2022 cardiac MRI segmentation

Mojiri Forooshani et al. (2022) 2022 brain MRI White Matter
Hyperintensities segmentation

Laves et al. (2019) 2019 retina images disease classification
Mobiny et al. (2019) 2019 skin images disease classification
Calderon-Ramirez et al. (2021b) 2021 chest X-Ray COVID detection
Calderon-Ramirez et al. (2021a) 2021 X-Ray mammogram classification

Linmans et al. (2020) 2020 microscopy segmentation of breast
cancer metastasis

Berger et al. (2021) 2021 chest X-Ray disease classification
Ayhan et al. (2020) 2020 retina images disease classification
Ju et al. (2022) 2021 dermatoscopy disease classification
Hasan and Linte (2022) 2022 cardiac MRI segmentation
Jiménez-Sánchez et al. (2022) 2020 femur X-Ray fracture classification
Cao et al. (2021) 2019 breast ultrasound breast mass segmentation
Pocevičiūtė et al. (2022) 2022 microscopy cancer classification

Rajaraman et al. (2022) 2022 chest X-Ray tuberculosis consistent
region segmentation

Senousy et al. (2021) 2021 histology breast cancer classification
Ahsan et al. (2022) 2022 retina images disease classification
Javadi et al. (2022) 2022 prostate ultrasound cancer detection

Tardy et al. (2019) 2019 X-Ray mammogram
classification

Yang and Fevens (2021) 2021 CT / histology disease classification
Jensen et al. (2019) 2019 dermatoscopy disease classification
Lambert et al. (2022) 2022 brain MRI MS lesions segmentation

Judge et al. (2022) 2022 US
lung X-Ray

cardiac segmentation
lung segmentation

Zhao et al. (2022) 2022 MRI cardiac segmentation
Ensemble

Yang et al. (2017) 2017 histology
US

gland / lymph nodes
segmentation

Abdar et al. (2021c) 2021 dermatoscopy cancer classification
Jungo et al. (2020) 2020 brain MRI tumor segmentation
Shamsi et al. (2021) 2021 lung CT COVID detection
Mehrtash et al. (2020) 2020 MRI segmentation tasks
Filos et al. (2019) 2019 retinal images classification
Thagaard et al. (2020) 2020 histology metastasis detection
Mehta et al. (2020) 2020 brain MRI tumor segmentation
Asgharnezhad et al. (2022) 2022 lung CT COVID detection
Vu et al. (2020) 2020 brain MRI tumor segmentation
Zhou et al. (2022) 2022 brain MRI tumor segmentation
Yang et al. (2022) 2022 CT / MRI segmentation tasks
Hoebel et al. (2020) 2020 lung CT nodule segmentation
Mehrtash et al. (2021) 2021 prostate MRI cancer classification

Redekop and Chernyavskiy (2021) 2021 liver CT
dermatoscopy segmentation
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Cetindag et al. (2022) 2021 MRI/CT segmentation tasks
Pal (2022) 2021 MRI/CT segmentation tasks
Wang et al. (2020) 2020 retinal images disease classification

Linmans et al. (2020) 2020 microscopy segmentation of breast
cancer metastasis

Berger et al. (2021) 2021 chest X-Ray disease classification
Ghesu et al. (2019) 2019 Chest X-Ray classification

Ghesu et al. (2021) 2019
Chest X-Ray
brain MRI

abdominal US

disease classification
detection of metastases

view classification
Ayhan et al. (2020) 2020 retinal images disease classification
Guo et al. (2022) 2022 cardiac MRI segmentation
Rosas-Gonzalez et al. (2021) 2021 brain MRI tumor segmentation
Pocevičiūtė et al. (2022) 2022 microscopy cancer classification
Yang and Fevens (2021) 2021 CT / histology disease classification
Jensen et al. (2019) 2019 dermatoscopy disease classification

Xiang et al. (2022) 2022 CT
MRI

pancreas segmentation
cardiac segmentation

Kushibar et al. (2022) 2022 mammogram mass segmentation
Zhao et al. (2022) 2022 MRI cardiac segmentation

Monte Carlo dropout Ensemble

Ghoshal et al. (2021) 2021 microscopy
brain MRI

nuclei segmentation
tumor classification

Abdar et al. (2021c) 2021 dermatoscopy cancer classification
Filos et al. (2019) 2019 retinal images classification
Mehta et al. (2020) 2020 brain MRI tumor segmentation
Asgharnezhad et al. (2022) 2022 lung CT COVID detection
Abdar et al. (2021b) 2022 chest X-RAY / CT COVID detection
Yang and Fevens (2021) 2021 CT / histology disease classification

Heteroscedastic (Sampling)

Nair et al. (2020) 2020 brain MRI MS lesion segmentation
Eaton-Rosen et al. (2018) 2018 brain MRI tumor segmentation
Jungo et al. (2020) 2020 brain MRI tumor segmentation
Sedai et al. (2018) 2018 retinal images retinal layer segmentation
DeVries and Taylor (2018) 2018 dermatoscopy segmentation
Shaw et al. (2021) 2021 brain MRI brain segmentation

Heteroscedastic (Deterministic)

McKinley et al. (2020a) 2020 brain MRI tumor segmentation

McKinley et al. (2020b) 2020 brain MRI new MS
lesion segmentation

McKinley et al. (2018) 2018 brain MRI tumor segmentation
McKinley et al. (2019) 2019 brain MRI tumor segmentation
DeVries and Taylor (2018) 2018 dermatoscopy segmentation
Diao et al. (2022) 2022 brain MRI tumor segmentation

Judge et al. (2022) 2022 US
lung X-Ray

cardiac segmentation
lung segmentation

Label Distribution models

Kohl et al. (2018) 2018 lung CT nodule segmentation

Kohl et al. (2019) 2019 lung CT
microscopy

nodule segmentation
neocortex segmentation

Baumgartner et al. (2019) 2019 lung CT
prostate MRI

nodule segmentation
prostate segmentation
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Hu et al. (2019) 2019 lung CT
prostate MRI

nodule segmentation
prostate segmentation

Li and Luo (2020) 2020 prostate MRI prostate segmentation

Gantenbein et al. (2020) 2020 lung CT
prostate MRI

nodule segmentation
prostate segmentation

Monteiro et al. (2020) 2020 lung CT
brain MRI

nodule segmentation
tumor segmentation

Zou et al. (2022) 2022 brain MRI tumor segmentation
Diao et al. (2022) 2022 brain MRI tumor segmentation

Selvan et al. (2020) 2020 lung CT
retinal image

nodule segmentation
vessel segmentation

Cetindag et al. (2022) 2021 MRI/CT segmentation tasks
Ji et al. (2020) 2020 MRI/CT segmentation tasks
Bhat and Kuijf (2022) 2021 MRI/CT segmentation tasks

Test-Time Augmentation

Wang et al. (2019a) 2019 brain MRI fetal brain segmentation
tumor segmentation

Norouzi et al. (2019) 2019 cardiac MRI cardiac segmentation
Ayhan and Berens (2018) 2018 retinal images classification
Pan et al. (2019) 2019 prostate MRI prostate segmentation
Diao et al. (2022) 2022 brain MRI tumor segmentation

Redekop and Chernyavskiy (2021) 2021 liver CT
dermatoscopy segmentation

Combalia et al. (2020) 2020 dermatoscopy lesion classification
Ayhan et al. (2020) 2020 retinal images disease classification
Wang et al. (2019b) 2019 brain MRI tumor segmentation
Pocevičiūtė et al. (2022) 2022 microscopy cancer classification
Javadi et al. (2022) 2022 prostate US cancer detection
Jensen et al. (2019) 2019 dermatoscopy disease classification

Feature-based methods

Karimi and Gholipour (2020) 2020 CT, MRI segmentation tasks
Diao et al. (2022) 2022 brain MRI tumor segmentation
Calderon-Ramirez et al. (2021b) 2021 chest X-Ray COVID detection
Berger et al. (2021) 2021 chest X-Ray disease classification

Tardy et al. (2019) 2019 X-Ray mammogram
classification

Evidential Deep Learning

Ghesu et al. (2019) 2019 chest X-Ray classification

Ghesu et al. (2021) 2019
chest X-Ray
brain MRI

Abdominal US

disease classification
detection of metastases

view classification
Tardy et al. (2019) 2019 X-Ray mammogram classification
Huang et al. (2021) 2021 PET / CT lymphomas segmentation
Zou et al. (2022) 2020 brain MRI tumor segmentation

21



B Uncategorized approaches for UQ in medical
image processing applications.

Study Year Modality Application

Jungo et al. (2020) 2020 brain MRI Training of an auxiliary net to predict the voxel-wise
errors of a brain tumor segmentation model.

Mishra et al. (2021) 2021 retina images Modeling task-dependent (homoscedastic) uncertainty
in a multi-tasking vessel segmentation setting.

Föllmer et al. (2022) 2021 heart CT Modeling task-dependent (homoscedastic) uncertainty
in a multi-tasking heart-segmentation setting.

Laves et al. (2019) 2019 retina images
Approximating the output posterior distribution of the
classification network by a normal distribution N (µ, σ2)

and learning both parameters using a variational network.

Toledo-Cortés et al. (2020) 2020 retina images Addition of a Gaussian Process at the end of a DL
model to quantify classification uncertainty.

Jensen et al. (2019) 2019 dermatoscopy
Use of Monte Carlo Batch Normalization (MCBN)

to quantify uncertainty by relying on the
stochasticity of Batch Normalization layers.

Judge et al. (2022) 2022 US
lung X-Ray

Use of Contrastive Learning to model the joint
distribution of valid segmentations and associated images.

Lu et al. (2022) 2022 MRI Use Conformal Predictions to provide a set of
plausible classes for a given image with coverage guarantees.

C Evaluation protocols proposed in the corpus of
papers and classified according to their frame-
work.
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Evaluation protocol Papers

Qualitative
Assessment Wang et al. (2018), Yu et al. (2019), Wickstrøm et al. (2020),

Eaton-Rosen et al. (2018), Mojabi et al. (2020), Shamsi et al.
(2021), Sedai et al. (2018), Norouzi et al. (2019), Hu et al.

(2020), Xia et al. (2020), Sedai et al. (2019), Li and Luo (2020),
Dhakal and Joshi (2021), Jungo et al. (2017), Kwon et al.

(2020), Mishra et al. (2021), Soberanis-Mukul et al. (2020), Lee
et al. (2022), Bhat et al. (2021), Huang et al. (2020), McKinley
et al. (2018), McKinley et al. (2019), McKinley et al. (2020b),

Natekar et al. (2020), Mehta et al. (2019), Li et al. (2021),
Mehrtash et al. (2021), Redekop and Chernyavskiy (2021),

Wang et al. (2020), Mahapatra et al. (2021), Hasan and Linte
(2021), Mojiri Forooshani et al. (2022), Laves et al. (2019),

Toledo-Cortés et al. (2020), Lin et al. (2021),Guo et al. (2022),
Ju et al. (2022), Belharbi et al. (2021),Hasan and Linte (2022),
Jiménez-Sánchez et al. (2022), Cao et al. (2021),Senousy et al.

(2021), Huang et al. (2021),Xiang et al. (2022)

Calibration Ghoshal et al. (2021), Ozdemir et al. (2019), Sander et al.
(2019), Jungo et al. (2020), Mehrtash et al. (2020), Thagaard

et al. (2020), Rousseau et al. (2021), Asgharnezhad et al.
(2022), Ozdemir et al. (2017),Karimi and Gholipour (2020),
Zou et al. (2022), Herzog et al. (2020),Gou and He (2021),

Carneiro et al. (2020), Berger et al. (2021),Liang et al.
(2020),Ayhan et al. (2020), Javadi et al. (2022), Jensen et al.
(2019),Judge et al. (2022),Kushibar et al. (2022),Zhao et al.

(2022)

Misclassification
detection Ghoshal and Tucker (2020), Yang et al. (2017), Ghoshal et al.

(2021), Abdar et al. (2021c), Jungo et al. (2020), Wang et al.
(2019a), Rączkowski et al. (2019), Thagaard et al. (2020),

Asgharnezhad et al. (2022), Iwamoto et al. (2021), McClure
et al. (2019),Molle et al. (2019),Zou et al. (2022), Mobiny et al.

(2019), Calderon-Ramirez et al. (2021b), Calderon-Ramirez
et al. (2021a), Pocevičiūtė et al. (2022), Ahsan et al.

(2022),Abdar et al. (2021b),Judge et al. (2022)

Rejection Nair et al. (2020), Zhang et al. (2022), Ghoshal et al. (2021),
Ozdemir et al. (2019), Sander et al. (2019),Abdar et al.

(2021c),Tousignant et al. (2019), Filos et al. (2019),Abideen
et al. (2020), Ayhan and Berens (2018),Leibig et al.

(2017),Mehta et al. (2020),McKinley et al. (2020a),Yang et al.
(2021),Vu et al. (2020), Herzog et al. (2020),Diao et al. (2022),
Song et al. (2021),Carneiro et al. (2020),Mobiny et al. (2019),
Ghesu et al. (2019),Ghesu et al. (2021), Combalia et al. (2020),
Ayhan et al. (2020),Rosas-Gonzalez et al. (2021), Rajaraman

et al. (2022), Tardy et al. (2019),Yang and Fevens
(2021),Lambert et al. (2022)
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OOD detection Karimi and Gholipour (2020),Diao et al. (2022),Thagaard
et al. (2020), Linmans et al. (2020), Berger et al. (2021),

Combalia et al. (2020), Tardy et al. (2019)

Quality Control Ghosal et al. (2021), Balagopal et al. (2021), Wang et al.
(2019a),Mehrtash et al. (2020), Roy et al. (2019), DeVries and
Taylor (2018), Jungo et al. (2018b), Jungo et al. (2020), Hiasa
et al. (2019),Orlando et al. (2019), Pan et al. (2019), McClure

et al. (2019), Hoebel et al. (2020), Shaw et al. (2021),
Rosas-Gonzalez et al. (2021), Wang et al. (2019b),Judge et al.

(2022),Kushibar et al. (2022)

Label distribution Jungo et al. (2018a), Baumgartner et al. (2019), Hu et al.
(2019), Li and Luo (2020), Kohl et al. (2018), Kohl et al.

(2018),Gantenbein et al. (2020), Monteiro et al. (2020), Selvan
et al. (2020), Yang et al. (2022),Cetindag et al. (2022), Bhat
and Kuijf (2022), Pal (2022), Lourenço-Silva and Oliveira

(2022)
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