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New venues in electron density analysis

Bruno Landeros-Rivera,∗a Miguel Gallegos,b Julen Munárriz,b Rubén Laplaza,a and Julia
Contreras-García∗a

We provide a comprehensive overview of the chemical information within the electron density: how
to extract information, but also how to obtain and how to assess the quality of the electron density
itself. After introducing several indexes derived from the electron density which allow to reveal
bonding, we focus on the various potential sources of the electron density, and also explain on the
error trends they show so that a judicious choice of methods and limitations are clearly laid on the
table. Computational, experimental-computational combinations, as well as machine learning efforts,
are covered in this spirit.

1 Introduction
Chemical sciences stem from an elegant interpolation scheme
rooted in the periodic table. Properties and reactivity of mat-
ter can often be rationalized and even predicted from chemical
composition and structure. For instance, it is reasonable to guess,
solely based on the orbital energies of the H and C atoms, that hy-
drocarbons will in general not be very polar and require a large
energy input to react. To improve upon this first, crude guess,
chemists require information about the chemical structure, linked
to composition through our understanding of chemical bonding
and valence: once we know how the atoms in such hypothetical
hydrocarbon are arranged, one can assign bond orders and bond
types, identifying relevant motifs (e.g. aromatic rings, π- interac-
tions, etc..) that lead to an even better predictive power.

From the point of view of quantum mechanics, this is only nat-
ural given that composition plus structure govern the external po-
tential of the system, ν(r). As the coordinates and nuclear charges
fully determine – in the non-relativistic Born-Oppenheimer frame-
work – the ground state many-body wave function of the sys-
tem, a significant part of chemistry can be conceived as the phe-
nomenological study of the changes of the external potential. The
remaining information needed to fully characterize a chemical
system is the number of electrons, N, with which the exact Hamil-
tonian and the exact ground state energy E can be obtained. Both
changes in ν(r) and N are usually merged into chemical modifi-
cations. It is at this level that most empirical phenomena are un-
derstood, ranging from acid–base behavior to solubility, to name
a few. For instance, the effect of substituting H by F in an or-
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ganic molecule often causes predictable changes in its properties,
which can be explained in terms of relative (atomic) electroneg-
ativities and the resulting bond ionicity. Ultimately, these can be
traced back to the delicate balance between the changes in nu-
clear charge and electrons, which are coarsely captured by the
trends of the periodic table.

As the energy is the key property of a chemical system, lead-
ing both to time evolution and to correspondence to macroscopic
behavior, let us re-frame the aforementioned analysis mathemat-
ically starting from the derivative of the ground state energy E,
which can be written as

dE =

(
∂E
∂N

)
ν(r)

dN +
∫ (

δE
δν(r)

)
N

δν(r)dr (1)

Whereas the first term of right hand side of Equation 1 repre-
sents the chemical potential µ, the second one provides the elec-
tron density ρ(r):

ρ(r) =
(

∂E
∂ν(r)

)
N

(2)

Hence, understanding how these two quantities change, is crucial
for the study of chemical structure and reactivity. Notwithstand-
ing the complexity of the chemical potential, the 3D nature of
the electron density leads to convoluted relationships, difficult to
analyze and summarize.

In what follows, we will discuss the information content of the
electron density and its relation with other density-derived quan-
tities that can be obtained both experimentally and computation-
ally. We will then introduce different approaches for obtaining
electron densities, trying to go beyond the mere computational
approach. The relevance of the electron density clashes with
the little attention its accuracy has received in the computational
world until very recently. Thus, a section will be devoted to re-
covering the different types of electron densities that can be used
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in the analysis and their intrinsic errors. We will end with a little
summary of the perspectives within electron density analysis that
these different studies open.

2 Chemical information from the electron
density

In a first approximation, the electron density of a system can be
seen as a sum of exponentially decaying functions centred at the
nuclei, one exponential per shell for each of the composing atoms.
This approximation, known as promolecular, is also used as a first
approximation to fit structure factors in crystallographic studies
and as an initial guess in ab initio electronic structure computa-
tions alike.

When atoms bond together, the exponentially decaying tails of
their corresponding atomic electron density cusps intersect. Ac-
cording to Coulomb’s law, an accumulation of electron density
in the internuclear region should ease the repulsion between the
two nuclei and be strongly stabilizing;1–4 at the same time, the
exact many-body electron density is correlated in terms of spin
and electron-electron interactions.5

In general, it can be said that the deviation from the initial
promolecular density is directly related with interactions between
atoms.6 As such, it has become customary to study the electron
density via the analysis of its critical points, as popularized in
the Quantum Theory of Atoms in Molecules (QTAIM) introduced
and developed by Bader and coworkers.7–10 For practical reasons,
we shall assume that the analysis is performed on a continuous
and differentiable field homeomorphic to ρ(r) where the nuclear
cusps are replaced by sharp maxima. In the QTAIM framework, all
critical points where ∇ρ(r) = ∂ρ/∂x+∂ρ/∂y+∂ρ/∂ z = 0 are first
located and then characterized by computing the corresponding
second derivatives at the coordinates of the critical point r, as in

H(ρ,r) =

 ∂ 2ρ/∂x2 ∂ 2ρ/∂x∂y ∂ 2ρ/∂x∂ z
∂ 2ρ/∂y∂x ∂ 2ρ/∂y2 ∂ 2ρ/∂y∂ z
∂ 2ρ/∂ z∂x ∂ 2ρ/∂ z∂y ∂ 2ρ/∂ z2

 (3)

where H(ρ,r) is the Hessian matrix of ρ at r. Diagonalizing
H(ρ,r) yields three eigenvalues λ1,λ2 and λ3. In QTAIM parlance,
the standard notation for critical points is (r,g), where the rank
r is the number of non-zero eigenvalues λi, and the index g is
defined as ∑λi/|λi| (i.e., the number of negative eigenvalues).
Chemical bonds are associated in the literature to (3,-1) points;
but there are other relevant points, such as (3,+1) - ring crit-
ical points- and (3,+3) - cage critical points. (3,-1) points are
saddle points, which are a maximum in two directions of space,
and minimum along the other orthogonal (bonding) direction.
It is worth mentioning at this point that maxima ((3,-3) critical
points) that do not correspond to nuclear cusps can be found in
some situations, such as stretched out of equilibrium bonds.11,12

Such non-nuclear maxima of ρ(r) have been subjected to signifi-
cant controversy, and can sometimes be associated with solvated
electrons13 or arising as mere computational artifacts.14–16

As ρ(r) is continuous and differentiable (with the aforemen-
tioned exception of nuclear cusps), there will be maximal value
paths connecting critical points. This way, the so-called bond

Fig. 1 Critical points of ρ(r) and bond paths that connect them for (a)
water, (b) pyridine, (c) aspirin, (d) cubane. CPs are shown as spheres.
Bond critical points are colored in green, ring critical points are coloured
in purple and cage critical points are colored in blue. Electronic structure
calculations were performed at the PBE/def2-SVP level of theory,20 and
topological analysis was carried out by means of the AIMALL package.21

paths connect nuclear and bond critical points. The full set of
bond paths leads to a graph structure which conveniently re-
trieves a Lewis-like picture (e.g., valence rules are satisfied for
organic molecules). Similar critical points analysis can be per-
formed for all kinds of systems where determining bonding pat-
terns may not be trivial, including periodic lattices.17 Exemplary
representations can be found in Figure 1. Note that the paths do
not strictly coincide with the shortest internuclear lines, i.e. the
lengths of such paths differ slightly from the internal coordinates,
possibly reflecting the influence of strain (see cubane in Figure
1d).18,19

Going back to Eq. 1, we can hypothesize that the bundle of crit-
ical points and their corresponding electron density values should
be a good fingerprint of the exact Hamiltonian of a molecular sys-
tem. This has been the main focus of QTAIM for a long time: the
position and electron density values at the (3,-1) critical points
have been typically used to localize and characterize the bond
strength of families of bonds.

Going beyond the analysis of critical points, it is also possible to
retrieve global descriptors from the analysis of the electron den-
sity. The gradient field of ρ(r), ∇ρ(r), provides the rate of change
of the electron density. Surfaces where this gradient becomes null
naturally delimit atoms within a molecule. This is a substantial
insight of QTAIM8 that agrees with the previous reasoning. In
space, the exponential decay of atomic cusps continue until some
interaction is established with some other density distribution;
the intersecting surfaces constitute a natural boundary between
atoms. Such partitioning also has a number of convenient math-
ematical properties that we shall not treat here,22 and is a cor-
nerstone among the many atomic partitioning schemes that have
been developed over time.23

We may also calculate how fast the density decreases (or in-
creases) w.r.t. a reference density, which is normally taken to be
the well-known homogeneous electron gas (HEG) to avoid mis-
match due to different local potentials. This allows to define the
dimensionless reduced density gradient (RDG, s(r)):

s(r) =
1

Cs

|∇ρ(r)|
ρ(r)4/3

, (4)

where Cs = 2(3π2)1/3. By definition, s(r) ≥ 0. Low values of s(r)
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are associated with critical points of ρ(r) but also with very weak
intramolecular interactions which do not show an electron den-
sity critical point due to structural constrains. Thus, the analysis
of s(r) is specially advantageous for studying weak interactions.By
inspecting sign(λ2)*ρ(r), the relative strength and attractive or
repulsive nature of interactions can be determined. Note that
sign(λ2) is the sign of the second eigenvalue of the Hessian ma-
trix, and it reflects charge accumulation or depletion in the plane
perpendicular to an interaction region. In cases where λ2 > 0, the
electron density is depleted, which is associated with steric repul-
sion. On the other hand, λ2 < 0 implies that electron density is ac-
cumulated, as expected for strong non-covalent interactions such
as hydrogen bonds. Finally, regions where ρ(r)≈ 0 are typical of
weak dispersive interactions. Isosurfaces of s(r) reveal the pres-
ence of non-covalent interactions in 3D space. While strong lo-
calized interactions manifest as thick disks between atomic pairs,
weak interactions are observed as extended flat surfaces where
more than two atoms are involved. In particular, the latter are
not properly described by QTAIM because bond critical points are
always pairwise. Thus, QTAIM and NCI analysis can complement
each other.24,25

The Laplacian of the electron density, ∇2ρ(r), is the sum of the
diagonal elements of H(ρ,r) (3), λ1 − λ3 and can also be used
to reveal chemical bonding information.26 The shell structure of
atoms and molecules is manifested in ∇2ρ(r) as alternating re-
gions of electron charge concentration (∇2ρ(r) < 0) and deple-
tion (∇2ρ(r) > 0), being the outer shell with ∇2ρ(r) < 0 named
the valence-shell charge concentration (VSCC). When the VSCC
of two atoms overlap, it is said that shared interactions exist
between them (covalent bonding). The other case corresponds
to closed-shell interactions, as in ionic, van der Waals, metallic
or hydrogen bond interactions. Figure 2 highlights closed-shell
interactions in LiF, where the VSCCs (red isocontours) of both
atoms do not overlap, but a region of charge depletion (blue iso-
contour) is found in the interatomic space. In contrast, shared
interactions can be observed in pyridine, where the VSCCs of all
covalently bonded atoms overlap. Both types of interactions can
be noticed in aspirin, which is stabilized by covalent and non-
covalent bonding. The (3,+3) critical points of ∇2ρ(r)> 0 found
in the VSCC are associated with bonded and non-bonded electron
pairs, providing in most of the cases a good correspondence with
the VSEPR model.27

It should be noted that other density-based indexes have been
proposed to describe a wider range of other types of interac-
tions. The Strong Covalent Interaction index (SCI)28 is able to
distinguish between double, triple, quadruple and quintuple co-
valent bonds by the visual analysis of its isosurface in the cen-
ter of a bond, which show shapes resembling dumbbells, donuts,
four beads, and two corn beans, respectively. Furthermore, the
Bonding and Non-covalent Interaction index (BNI) is capable of
describing covalent, as well as ionic, metallic and other specific
localized interactions such as chalcogen and halogen bonds,29

by performing a similar visual inspection. Both SCI and BNI are
founded in the Pauli energy. Likewise, the Ultra Strong Interac-
tion index (USI), which has a similar expression to NCI (equation
2), with the difference that the norm of the gradient of ρ(r) is re-

Fig. 2 Isocontours of ∇2ρ(r) on planes containing selected bonds for:
(a) LiF (ionic system), (b) pyridine (covalent system), and (c) aspirin
(covalent system with non-covalent interactions). Negative Laplacian
values are depicted in red, while positive ones are shown in blue. Elec-
tronic structure calculations were performed at the PBE/def2-SVP level
of theory,20 and topological analysis was made by means of AIMALL
package21

placed by its Laplacian, provides a proper description of systems
with bond orders higher than four.29

Finally, we note that quantitative chemical information can also
be obtained from ρ(r) in the context of conceptual Density Func-
tional Theory.30,31 In this discipline, some important chemical
concepts associated with reactivity are linked to functions that
measure the response of a system to changes in the number of
electrons or external potential. For instance, electronegativity is
directly related to minus the chemical potential (as defined in
Equation 1), while the second derivative of this function with
respect to N corresponds to Pearson’s hardness.32 Another im-
portant function developed in the framework of Conceptual DFT
is the Fukui function,33 which is useful for detecting the elec-
trophilic and nucleophilic sites of a molecule. We direct readers
to Refs.31,34 for an extended discussion regarding the definition
of Chemical Concepts in the framework of conceptual DFT.

3 Other approaches for obtaining the elec-
tron density

An adequate representation of the subtle interplay of contribu-
tions that dominate chemical interactions often requires accurate
molecular densities and expensive computational tools. Regard-
ing the former, the demanding scaling law attributed to the esti-
mation of the electron density has limited the application of quan-
tum and computational chemistry to systems of small to medium
size. This is particularly problematic, as many of the very deli-
cate, but crucial, aspects of chemical interactions, such as Non-
Covalent Interactions (NCI), can only be properly understood un-
der the magnifying glass of a solid and robust analysis of ρ(r) and
its related quantities. Such an inconvenience can be overcome by
resorting to other sources of information, such as experiment or
machine learning derived electron densities.

3.1 Experiment
One of the main advantages of the electron density is that it is
a quantum observable that, unlike the wavefunction, can be ob-
tained experimentally from X-ray diffraction. This is very attrac-
tive, since it allows for comparison of experimental and theoret-
ical models. In crystalline systems, the scattering of X-rays is
caused mainly by electrons, and it is described by the so-called
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structure factors, Fhkl . The Fhkl are related to the electron den-
sity by a Fourier transform, and the |Fhkl |2 are proportional to
the X-ray scattered intensities, which are the experimentally mea-
sured quantities. Unfortunately, since Fhkl are in general complex
functions, the experiment can only provide direct information
about their modulus but not about their phases. Thus, the elec-
tron density cannot be determined by simply applying the Fourier
transform to the square root of the scattered intensities. As a
consequence, the solution of crystallographic structures (which
depends on methods that retrieve the lost information) provides
only approximate atomic positions that need to be improved by
a subsequent process, the so-called crystallographic refinement.
The latter consists in generating modeled Fhkl that will be refined
against the experimental one, normally by using the least-squares
method. The number of fitting parameters (refinement parame-
ters) will depend on the chosen model.

Usually, the sum of spherical atomic densities constitutes the
first approach in the electron density reconstruction from X-Ray
data. This model, equivalent to the aforementioned promolecu-
lar density, is known in crystallography as the Independent Atom
Model (IAM). IAM has been used in most refinements,35 sur-
prisingly providing accurate structures in many cases despite its
simplicity. Naturally, for a deeper analysis of the properties of
a crystal that goes beyond the elementary structural determina-
tion, more complicated models based in aspherical electron den-
sities need to be employed. One of the most successful methods
for non-spherical refinements is the Hansen-Coppens multipole
model (MM).36 In MM, the electron density is modeled by defor-
mation functions which are products of radial functions and spher-
ical harmonics that can be expanded up to fourth order. Besides
the atomic coordinates and thermal parameters, the population
of these functions, called multipoles, are employed as extra re-
finement parameters. Further, the valence shell can be expanded
or contracted, potentially leading to electron fluctuations that fa-
cilitate charge transfer between the atoms. In its more advanced
version, the core density can also be expanded/contracted and
change its population.37 As it could be anticipated, MM is supe-
rior to IAM in various ways. One of special interest here is that
electron densities derivatives are available, so that QTAIM critical
points and atomic basins, can be determined within MM.38

From a physical point of view, a major pitfall is the non-
uniqueness of the models, since different refinements could be
performed (with some changes in the multipoles) that will be sta-
tistically valid.39 This could lead to uncertainties in the topologi-
cal descriptors, in particular in those that are susceptible to subtle
changes, such as the Laplacian. It should also be noted that even
though MM provides a more faithful representation of the crys-
talline ρ(r), in the cases where anharmonic motion is substantial
the refinement could lead to non-physical multipoles and unre-
alistic negative electron densities.40 Moreover, like IAM, MM is
not able to provide accurate anisotropic displacement parameters
(which describe thermal motion) of H atoms without resorting to
additional methods.41 Also, for these atoms the multipole expan-
sion is normally limited to the first order (dipoles).42 For these
cases, hybrid experimental-theoretical approaches, which will be
discussed later, have shown to be advantageous.

3.2 Machine learning
Along the last decades, the use of Machine Learning (ML) in dif-
ferent scientific disciplines has increased dramatically owing to
the ability of ML algorithms to perform complex and intricate
tasks at a fraction of the standard computational cost. Within this
context, the development of Neural Networks (NN), able to ap-
proximate any function with arbitrary accuracy43,44, is reshaping
the course of quantum and computational chemistry. Indeed, the
blatant success of Deep Learning (DL), and related strategies in
the chemistry realm has lead to faster, yet reliable, tools for many
different purposes such as property prediction36,45–49, atomistic
simulations50,51, quantum-chemically accurate force fields52–54

and potentials55,56 or novel techniques for chemical discovery
and sampling57–59, to name just a few.

Significant efforts have been devoted in recent years in
the computation of accurate densities from molecular geome-
tries60,61 using ML approaches. Indeed, the fact that ML can be
used to map the electron density to the nuclear potential comes
to no surprise, as the Kohn-Sham equations ensure the existence
of such mapping. However, constructing such models should ar-
guably be more difficult than learning the functional itself, which
to a degree explains why more efforts have been devoted to the
latter task.62 There are mainly two reasons for this: firstly, the
electron density has a tighter convergence requirement than the
energy, meaning that a satisfactory accuracy on the density ought
to be more challenging. Secondly, its 3D nature demands an ap-
propriate basis for its expansion over space, for which no univer-
sal solution may be available. As a final note, ML efforts targeting
the electron density have to specifically tackle the choice of a loss-
function,63 which is difficult owing to the non-trivial comparison
of 3D scalar fields. Any ML approach requires a way of quantify-
ing how good or bad the current model is at the task at hand. In
the case of ρ(r), this means quantitatively determining how far
a predicted density is from the reference density, which is fun-
damentally undefined because, as it will be discussed later, what
makes a good density good is highly debatable (recall that it is
a 3D quantity!). This problem is accentuated further due to the
approximate nature of the training set, as large databases of exact
electron densities are currently unfeasible.

In any case, increasingly accurate ML models of the electron
density open the door to a wealth of applications regarding X-ray
refinement, DFT, and molecular interpretation.

4 On the spotlight: electron density errors
The electron density is often considered to be robust because
it is strongly dominated by nuclear exponential cusps, which in
turn guarantee that its general appearance remains constant in-
dependently of its origin (quantum chemical computation with
different methods, experiment, etc.). However, as one takes
derivatives of ρ(r) differences eventually become apparent even
between closely related approaches (e.g. upon change of den-
sity functional). This is particularly striking given the inter-
pretation of ∇ρ(r) and ∇2ρ(r) explained before, in which such
small changes can lead to qualitatively different chemical inter-
pretations. Some authors have pointed out that parametrization
strategies in the development of new approximations to the ex-
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act exchange-correlation function, by virtue of focusing only in
reproducing exact energies, may incur in unphysical errors in
ρ(r).64–68 After all, it is easy to envision a surrogate function that
is able to reproduce the behavior of the exact energy in some
subspace (notably, integer values of N and Z) while failing to re-
produce its derivatives (Eq. 2), hence giving the "right answer"
(energy) for the "wrong reason" (density).69,70 More sophisti-
cated fitting procedures (vide infra) may be able to incorporate
a plethora of norms and targets to alleviate these deficiencies.
Nevertheless, this brings into question the assumed robustness of
ρ(r), which hampers interpretative efforts stemming from it,71 as
well as quantitative uses in DFT, where derivatives of the density
play a major role.72–75

Indeed, it has been suggested that using "better" densities in
order to evaluate the energy non-selfconsistently in the context
of DFT offers a way to avoid some known caveats of density func-
tional approximations.76–78 These approaches are often termed
density-corrected density functional theory (DC-DFT), and usu-
ally rely on the Hartree-Fock single particle density as their "un-
biased" reference. While this strategy has seen some success in
challenging systems where standard DFT may fail,79,80 it imme-
diately leads to questions regarding the overall required quality
of the density, in a context in which either experimentally derived
or Full Configuration Interaction densities (numerical discretiza-
tion non-withstanding)81 provide arguably rigorous yet imprac-
tical ground truths. In Layman terms, the question to answer
is: how good do we need the electron density to be? And, subse-
quently: what is the most pragmatic way to obtain such densities?
These questions remain open for now.

4.1 How to measure the error

Before analyzing common trends in density errors, it is of undeni-
able importance to understand how to measure these errors, for
instance for the construction of loss functions in ML frameworks
(vide supra). Although it is common to use simple scalar metrics,
such as the RMSD for the analysis of energy errors, the electron
density presents a more difficult situation. Being a 3D field, met-
rics such as the RMSD (and other statistical aggregates) can hide
error compensation.69 More specifically, the electron density be-
ing much higher in the cores, it usually takes the leading term
and hides the errors in the valence density, which might be more
chemically relevant,66 and much higher if relative errors are com-
puted (e.g. in the N2 molecule the intra-method density error
near the nuclei is less than 2%, while the error in the valence re-
gion is >10%68). Without any further consideration, this means
that depending on the error metric, a density with a minuscule
relative error in the electron cusp of a heavy atom may appear
much worse than a density from which all non-covalent interac-
tions (low-density regions) are completely erased, which would
in turn poorly describe the interactions in the system. Addition-
ally, many statistical error metrics for ρ(r) can not be compared
across different external potentials (i.e. with different methods at
their optimized geometries), which introduces an unfair choice of
a reference geometry that may mask relevant features.82 Conse-
quently, by naively using inappropriate error metrics, apparently

Fig. 3 Dissociation curves of the H2 molecule computed with three
different methods, HF, PBE and LDA, and the def2-SVP basis set.

better performing methods can be inaccurate for predicting prop-
erties that depend on the electron density distribution, such as the
dipole moment. By resorting to chemically interpretable proper-
ties, such as bond charge given by the ELF83,84 or electron density
values at BCPs, it is possible to compare results across different
methods at their optimized geometries and focus exclusively in
the valence errors.

4.2 Main error trends
It becomes thus of paramount importance to know in advance,
what errors we should expect in our working densities before
carrying out their interpretation. In general, covalent bonding
densities have shown to increase with the exact exchange con-
tent, and to lead to steeper wells in the potential energy surface
and shorter bonds, both criteria pointing to stronger in situ bond-
ing energies. This phenomena is displayed even in simple cases,
such as the bond in the H2 molecule (Figure 3), but prevails in
other covalently bound systems.68 Indeed, it is a general trend
that is directly related to delocalization error:85 functionals tend-
ing to over-delocalize the electron density due to artificial self-
interaction between electrons, thus favoring intermolecular space
at the detriment of intramolecular covalent bonds. The opposite
is observed for HF, which lacks electron correlation contributions.
Moreover, it has been observed that local density approximations,
plagued by delocalization error, and HF, may represent two ex-
tremes in terms of electron delocalization, which in turn may
propagate to the calculation of properties (this is the case of the
equilibrium bond length of H2 in Figure 3).86

Observing the electron density in bonding regions, the afore-
mentioned trends are once again reproduced: in Figure 4 it can
be seen how the density difference between the CCSD and the
HF methods in the internuclear region of the H2 molecule hints
at an excessive accumulation of density in the HF result. The
opposite trend is observed for LDA, in which the internuclear re-
gion is noticeably depleted. From the electrostatic point of view,
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Fig. 4 ∆ρ = ρCCSD - ρmethod plotted on the X,Y plane of the H2 for
a) method= HF and b) method=LDA. All calculations performed with
the def2-SVP basis set. ∆ρ has been truncated at ±8e−3 a.u. to better
highlight the valence density.

overly-localized covalent bonds given by inappropriate densities
must lead to distorted models of chemical reactivity due to the
increased shielding of the electrostatic repulsion between nuclei,
which makes such bonds harder to break (e.g. steeper poten-
tial curve in Figure 3). However, given the prevalence of DFT in
which the connection between energies and densities is approx-
imate, such effects may be masked by error compensation and
thus not be reflected in the computed relative energies.

5 New perspectives in electron density infor-
mation

Two main domains have exploded in the last years, enabling
the extraction of more and richer information from the electron
density: hybrid theory-experiment approaches that have pushed
the limits of crystallographic resolution and machine learning ap-
proaches which enable to connect electron density with complex
properties, beyond previous models.

5.1 Hybrid experiment-theory approaches

Experimental electron densities have recently seen a great im-
provement thanks to the introduction of simulations in the refine-
ment (and post-refinement) process. Specially noteworthy is the
Hirshfeld Atom Refinement (HAR)87, where the non-spherical
atom form factors are generated by a applying a Hirshfeld par-
tition to an ab initio computed electron density, which is obtained
by performing a single point calculation at the initial geometry.
Then, the atomic coordinates and the thermal parameters are re-
fined with the usual least-squares procedure, and the process is
repeated until convergence. One of the most relevant benefits of
HAR is its ability to refine anisotropically hydrogen atoms88,89

which, as mentioned before, is unfeasible with IAM and MM.
As an example, the bond critical point corresponding to the in-
tramolecular H· · ·H interaction in biphenyl, and the correspond-
ing ring critcal point (red and yellow spheres, respectively), are
compared in Figure 5 for the MM and HAR, as well as for the

0.30 Å 0.48 Å 0.47 Å

MM HAR Theory

Fig. 5 Bond critical point (red) corresponding to the H· · ·H interaction
in biphenyl. The distance to the ring critical point (yellow) is shown
in angstroms for MM, HAR and solid-state DFT geometry optimization
calculation. Data taken from reference90

solid-state DFT optimized geometry of this system (data taken
from reference90). As it can be seen, MM predicts the structure
to be closer to a catastrophe than HAR and the periodical DFT
calculation (performed with the same density functional), whose
results are essentially the same. As it could be anticipated, this
hybrid-theory method is providing outcomes closer to those ob-
tained from conventional quantum mechanical computations.

Following a HAR refinement, it is even possible to obtain an
experimental wavefunction using the so called X-ray Constrained
Wave function (XCW)91,92. In XCW the geometry is fixed and the
wavefunction (or Kohn-Sham orbitals) is forced to reproduce the
experimental structure factors by minimizing the functional

L[Ψ] = E[Ψ]−λ (χ2[Ψ]−∆) (5)

where the first term in the right-hand side stands for the en-
ergy of the system, and the second accounts for the fitting of the
orbitals to the experimental data. The χ2 is a statistical function
that indicates the agreement between the modeled and experi-
mental structure factors, and ∆ is the desired level of agreement.
The parameter λ , originally considered a Lagrange multiplier, is
adjusted during the fitting and gives the strength of the constric-
tion. The application of HAR followed by XCW is know as X-
ray Wave function Refinement (XWR).93,94 By constraining the
wavefunction to reproduce the X-ray diffraction data some, defi-
ciencies of using molecular calculations such as the inappropriate
description of bulk or correlation effects can be (at least partially)
corrected.95–97 For example, in a recent study XCW was applied
to ammonia crystallographic data measured at 160 K, using HF
and DFT.97 It was shown that, while the crystal field tends to lo-
calize the electron density in bonding regions, the introduction
of correlation through the experimental data does the opposite:
it delocalizes the electron density in the inter-molecular regions.
Moreover, it was shown that as λ is increased, the HF and DFT
electron densities converge (Figure 6), providing further evidence
that XCW is able to improve both methods. Thus, these methods
offer an opportunity to highlight the errors in the density that
are caused by using approximated functionals,64 and at the same
time could offer an alternative approach to correct them. Addi-
tionally, consecutive cycles of HAR and XCW can be performed
to further improve the model (a process called total XWR),98 and
bring the best possible agreement with the experimental data.

Despite these advantages, more research is needed to under-
stand how to minimize the effect of introducing experimental un-
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λ

λ

Fig. 6 Plots of the difference in electron density between HF and DFT
methods for XCWλ=0.001 and d) XCWλ=0.030 for ammonia molecule (∆ρ =

ρ(r)HF– ρ(r)DFT ). Isosurfaces with negative values (-0.005 a.u.) in blue
and positive values (0.005 a.u.) in red. Figure modified from reference.97

certainties (σ(F2)) in the computed wave functions and the as-
sociated properties.99 Regarding the latter point, it was shown
that the problem of non-uniqueness discussed above for the mul-
tipole refinement can also be found in XWR, although for differ-
ent reasons. The χ2 function is sensitive to the manipulation of
the experimental data, such as the transformation of σ(F2) that
is carried out by different crystallographic software. Since the
constrained wave function depends directly on χ2 (equation 5),
then the associated physical state will be subjected to the arbi-
trariness of the method or program employed to process the crys-
tallographic data. For example, for the XWR applied to the crys-
tallographic data of SO2,99 it was shown that for a fixed λ value
the number and position of the critical points of ∇2ρ(r) changed
depending of the software used to handle anomalous dispersion,
or the method employed to compute σ(F) from σ(F2) (the latter
is carried out because the measured data and their uncertainties
are normally given as F2

hkl). In contrast, the coordinates and ther-
mal parameters obtained from HAR barely change when different
refinement strategies are used. Overall, this is currently an active
field of research that can bring together the computational and
experimental communities, providing the user with more accu-
rate electron densities.

5.2 Electron density descriptors in machine learning
Even though machine learning techniques have been proven to be
enormously useful (see Section 3.2), the straightforward appli-
cation of ML algorithms to chemistry suffers from an important
limitation: performing an accurate and representative “chemi-
cal featurization”. In other words, issues arise from the way in
which chemically meaningful information (such as atomic po-
sitions, charges, or any specific property) is transformed into a
machine-readable format encoding. This is generally done in the

form of atomic environment vectors (AEVs), which contain the
desired information in a computer-understandable manner. Thus,
a lot of effort has been made in recent years within the scientific
community to develop suitable featurization approaches100,101

such as the Bag of Bonds scheme36, Coulomb matrices46,102,
Atom Centered Symmetry Functions (ACSF)103,104, along with its
many different flavors105–107, or the more recent Gaussian Mo-
ments108, which would ultimately allow for the construction of
reliable ML approaches. Despite rigorous and useful, most strate-
gies still recover little to no information about the actual chem-
istry, and are usually focused on encoding the radial and angular
environments and the chemical composition of the system, just to
mimic the external potential without further chemical insight.

The prediction of chemically meaningful quantities may be con-
siderably improved if information of the delicate balance that
holds the atoms bounded within a molecule, the chemical bond, is
explicitly included. In this context, QTAIM-like descriptors could
lead to a more complete feature representation. Although the
implementation of the latter is not immediate, given the permu-
tational, translational and rotational symmetries to be fulfilled
by standard AEVs, the use of QTAIM properties as ML descrip-
tors could pave the way towards the more accurate prediction of
chemical properties. This would lead to potentially interpretable
models owing to the direct mapping of such features to the chem-
ical world (as discussed in the previous sections regarding molec-
ular graphs in particular). Indeed, it has been shown that density-
based descriptors can be used for the accurate prediction of rel-
ative and reaction energies47,109, proving how very suitable ML
chemical features can be distilled within the QTAIM framework.
For such purposes, a major caveat is the need for a fully con-
verged electron density, as resulting from experiment or DFT, to
construct QTAIM-inspired representations.

For straightforward interpretability, ML techniques have been
used within the framework of energetic partitioning schemes,
such as the Interacting Quantum Atoms (IQA) approach, leading
to the prediction of chemically insightful energetic terms109–111.
In this context, it is particularly relevant to highlight the work
of Popelier and co-workers, who have shown, within the FFLUX
project112, that ML techniques can be very efficiently applied to
the atomic partitioning that stems from the QTAIM framework.
In this regard, it has been proven109 that a very accurate (MP2-
like level) computation of the dynamic correlation energy is pos-
sible using kriging approaches. Analogously, a similar work113

has been shown capable of optimizing small molecules at a very
reasonable computational cost, paving the way towards the de-
velopment of general truly applicable topological force fields. We
envision that further interplay between the topology of ρ(r) and
its derived scalar fields and ML methods will see the light in the
forthcoming years.

In the more fundamental topic of DFT development research,
ML is in a privileged position114, allowing to help in the design
of more physically rigorous, yet practical, DFT functionals; as al-
ready stressed in the literature by some authors115. The actual
development of new functionals such as the DeepDFT116 and
DeepMind 21117 projects are major examples in which the non-
linearity of ML is exploited to construct approximate functionals
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with remarkable properties. It is thus clear that ML proposes a
crucial tool in the search for new DFT functionals which could,
perhaps, conciliate the never-ending dispute between rigor and
practicality among DFT developers. However, it is worth noticing
that given the interpolating nature of ML approaches, the com-
plex sampling of the chemical space and the black-box nature of
some ready-to-use algorithms, special care should be taken to pre-
vent the rise of poorly generalizable and non-interpretable ML-
driven functionals.

Finally, in passing it may also be worth mentioning that be-
yond energetic partitioning schemes, QTAIM in general, can also
benefit from the computational boost offered by ML techniques.
Indeed, some of us have worked45 in a NN model capable of pre-
dicting the local value of the electron density within a topological
atom, in the form of atomic charges. The success of these and sim-
ilar NN models suggest that the boundaries of QCT in chemistry
are likely to vanish in the very near future owing to the remark-
able performance of ML-driven quantum chemical tools.

5.3 Density in the Conceptual-DFT framework

Finally, as far as conceptual DFT is regarded, future perspec-
tives are nicely summarized in Ref.118. These include an ex-
tension of DFT functionals to account for such important effects
as temperature, solvent and mechanical forces, as well as time-
dependent and excited-state phenomena, or a broader application
to kinetic and thermodynamics, among others. Moreover, some
functionals derived from information theoretical approaches119

and whose analytical expression is known, such as the Shannon
or the Ghosh–Berkowitz–Parr entropies, have been shown to be
promising for the quantitative analysis of relevant properties like
regio- and stereo-selectivity, acidity and basicity, aromaticity and
conformational stability, to name just a few.

6 Conclusions
Electron density occupies a privileged position in the chemical
narrative, holding all the information inherent to any system120

and its underlying nature. Consequently, a lot of effort has been
devoted to its measurement, its computation and its analysis.
Nevertheless, these efforts had followed an off-center bias, where
the electron density was the mean to something else. On the one
hand, computations mainly focused on the electron density as a
mean to the energy. Only recently the quantum community has
become aware of the relevance of a having a good density, relocat-
ing the electron density in the central position it deserves. A sim-
ilar twist is now being observed in the crystallographic commu-
nity, which for long was mainly focused on determining correct
structures, while paying little attention to the electron density.
For many decades it was considered that the inability of refining
anisotropically H atoms with X-ray diffraction data was intrinsic
to the experiment. Only now that modern techniques like HAR
have shown that the problem was (at least in some cases) not
a deficit of the reflection data, but a shortcoming of IAM, the
importance of using and developing more robust models for the
electron density has become significant for the advance of crys-
tallographic methods.

The exploding machine learning approaches also feature this
fact, and strengthen it. Deep learning approaches have used the
electron density both as input and output. On the one hand, ma-
chine learning has allowed to obtain electron densities for big
and flexible systems with a very good scaling, which opens the
way for having electron density analyses on big systems. On the
other hand, machine learning models based on the electron den-
sity have been proven capable of providing a very effective con-
nection to energetics, which will be a boost in functional devel-
opment.

All in all, we can safely say, that the electron density is retriev-
ing the central position it deserves.
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Dominiak, S. Grabowsky, D. Jayatilaka, M. Gutmann and
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94 M. Woińska, D. Jayatilaka, B. Dittrich, R. Flaig,
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