
HAL Id: hal-03806616
https://hal.science/hal-03806616v2

Preprint submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phase retrieval and phaseless inverse scattering with
background information

Thorsten Hohage, Roman Novikov, Vladimir Sivkin

To cite this version:
Thorsten Hohage, Roman Novikov, Vladimir Sivkin. Phase retrieval and phaseless inverse scattering
with background information. 2022. �hal-03806616v2�

https://hal.science/hal-03806616v2
https://hal.archives-ouvertes.fr


Phase retrieval and phaseless inverse scattering with background in-
formation

by Thorsten Hohage, Roman G. Novikov & Vladimir N. Sivkin

November 17, 2022

Abstract. We consider the problem of finding a compactly supported potential in the multi-
dimensional Schrödinger equation from its differential scattering cross section (squared modulus
of the scattering amplitude) at fixed energy. In the Born approximation this problem simplifies to
the phase retrieval problem of reconstructing the potential from the absolute value of its Fourier
transform on a ball. To compensate for the missing phase information we use the method of a
priori known background scatterers. In particular, we propose an iterative scheme for finding the
potential from measurements of a single differential scattering cross section corresponding to the
sum of the unknown potential and a known background potential, which is sufficiently disjoint.
If this condition is relaxed, then we give similar results for finding the potential from additional
monochromatic measurements of the differential scattering cross section of the unknown potential
without the background potential. The performance of the proposed algorithms is demonstrated
in numerical examples.

Keywords: Schrödinger equation, Helmholtz equation, monochromatic scattering, phaseless
inverse scattering, phase retrieval problem, numerical reconstructions

AMS subject classification: 35J10, 35P25, 35R30, 65N21, 78A46, 81U40

1 Introduction
In this work we contribute to the study of phase retrieval problems and phaseless inverse scattering
problems. These problems naturally arise in quantum mechanics, optics, and related areas such
as electron tomography and X-ray imaging; see, for example, [20] and references therein. In
particular, according to Born’s rule in quantum mechanics complex (phased) values of a particle
wave function have no direct physical interpretation, whereas their (phaseless) squared modulus
admits a probabilistic interpretation and can be measured; see [9]. Similarly, in optics modern
technical devices such as CCD cameras measure the intensity, i.e. the squared modulus, but it
is very hard or impossible to measure the phase of time-harmonic electromagnetic waves in the
frequency range of visible light or even X-rays.

In general, phase retrieval problems consist in finding a function v : Rd → C from the magni-
tude |v̂| of its Fourier transform

v̂(p) = Fv(p) = 1

(2π)d

∫
Rd

eip·xv(x) dx, (1.1)

often given only for p in some bounded subset of Rd, e.g., Br := {x ∈ Rd : |x|2 ≤ r}. To
compensate for the missing phase information v̂/|v̂|, one either assumes a-priori information on v
or additional data. Such inversions of the Fourier transform from phaseless data are much more
complicated than the inversion of the Fourier transform from phased data. Examples of a-priori
informations include (approximate) knowledge of supp v, constraints like |v| = 1 or v ≥ 0, and
knowledge of v on part of the domain. In this paper we will focus on the first and the last of
these options. Such problems arise directly in phaseless linearized inverse scattering problems in
quantum mechanics, optics and related areas such as electron tomography and X-ray imaging.
We refer to the monographs [21, 7], the review papers [32, 39, 47], the article [12], and references
therein.

We now give the precise formulation of the phase retrieval problems studied in this paper:
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Problem 1. (A) Reconstruct a function v from |v̂+ŵ|2 on BR for some known function w under
the a-priori assumption that supp v and suppw are compact and sufficiently separated.

(B) Reconstruct v from |v̂|2 and |v̂ + ŵj|2, j = 1, . . . , n, on BR for some appropriate known
functions w1, ..., wn separated from v.

Problem 1(B) was considered, in particular, in [36, 37, 1, 2]. In addition, related considerations
go back, at least, to [43]. Problem 1(A) was studied in [41]. Other investigations related to this
problem can be found in [44, 33]. In the present work we give, in particular, new mathematical
and numerical results on Problem 1(A) and on Problem 1(B) for n = 1.

Inverse scattering problems consist in finding functions describing a scattering object from data
on scattered waves, usually at large distances from the scatterer. These problems are similar in
many respects to reconstructing a function from its Fourier transform and, moreover, are reduced
to such a Fourier inversion by the Born approximation, i.e. linearization around a zero background.
Of course, also in situations where linearizations are not valid, only amplitudes can be measured
for the same reasons as described above. This motivates the study of phaseless inverse scattering
problems.

We consider the stationary Schrödinger equation of quantum mechanics:

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.2)

where
v ∈ L∞(Rd), supp v ⊂ D, D ⊂ Rd is open and bounded. (1.3)

Equation (1.2), under assumptions (1.3), arises in modelling interaction of a non-relativistic
quantum mechanical particle at fixed energy E with a macroscopic object contained in D, where
v is the potential of this interaction. Here, we assume that ℏ2/(2m) = 1, where ℏ is the reduced
Planck’s constant, and m is the mass of the particle. For more details on such a model in the
framework of electron tomography, see, for example, [15].

We also consider the time harmonic Helmholtz equation of electrodynamics and acoustics:

∆ψ + κ2n2(x)ψ = 0, κ = ω/c0, (1.4)

where ω is the frequency, c0 is a reference speed of wave propagation, n(x) is a scalar index of
refraction, n(x) ≡ 1 for x ∈ Rd \ D, and D is as in (1.3). We recall that in the simplest case
n(x) = c0/c(x), where c(x) is a speed of wave propagation. For more details on such a model in
the framework of X-ray imaging, see, for example, [49]. We recall that the Helmholtz equation
(1.4) at fixed ω can be written in the form of the Schrödinger equation (1.2), (1.3), where

v(x) = (1− n2(x))E, E =

(
ω

c0

)2

. (1.5)

For equation (1.2), under condition (1.3), we consider the scattering solutions ψ+ = ψ+(x, k),
k ∈ Rd, k2 = E, specified by the conditions

ψ+(x, k) = eikx + ψsc(x, k); (1.6)

|x|(d−1)/2

(
∂

∂|x|
− i|k|

)
ψsc(x, k) → 0 as |x| → +∞, (1.7)

uniformly in x/|x|. The Sommerfeld radiation condition (1.7) implies that

ψsc(x, k) =
ei|k||x|

|x|(d−1)/2
A

(
k, |k| x

|x|

)
+O

(
1

|x|(d+1)/2

)
as |x| → +∞, (1.8)

where A = A[v] is the scattering amplitude for equation (1.2). For more information on the
definitions of ψ+ and A, see, for example, [8], [39] and references therein.
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In turn, σ[v](k, l) = |A[v](k, l)|2 is known as the differential scattering cross section for equation
(1.2). We will suppress v in σ[v] and A[v] if there is no ambiguity. As for particle wave functions,
A admits no direct physical interpretation whereas |A|2 is the expected value of quantities that can
be measured in experiments; see, for example, [9], [16]. In particular, the differential scattering
cross section σ(k, l) describes the probability density of scattering of a particle with initial impulse
k into direction l/|l| ̸= k/|k|. Similarly, in the electromagnetism of optics and X-rays only |ψ+|2
and σ = |A|2 can be measured directly by modern technical devices.

Note that the aforementioned functions A and σ = |A|2 are defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
. (1.9)

We consider the following monochromatic phaseless inverse scattering problems which reduce
to Problem 1 in the Born approximation:

Problem 2. (A) Reconstruct a compactly supported potential v in (1.2) from the differential
scattering cross section σ[v+w] on some appropriate M′ ⊆ ME for some known compactly
supported background potential w sufficiently separated from v.

(B) Reconstruct v from σ[v] and σ[v + wj], j = 1, . . . , n on some appropriate M′ ⊆ ME (see
(1.9)) for some appropriate known background potentials w1, ..., wn separated from v.

Phaseless inverse scattering problems are much more difficult than usual inverse scattering
problems with phase information, and until recently very little results have been known for such
problems (see, e.g., [1, 11, 39, 41] and references therein). In particular, it is well known that
σ = |A|2 on MR+ =

⋃
E∈R+

ME does not determine v uniquely, in general; see, for example, [39].
In addition to Problem 2 there are also other possible formulations of phaseless inverse scatter-

ing problems for equation (1.2) and for other equations of wave propagation. In connection with
such formulations and related results, see, for example, [5], [11], [17], [20], [22], [23], [27], [29]–[31],
[36], [38]–[40], [42], [45], [46], [52], [53] and references therein.

Following previous works of the authors, our general approach for “solving” Problems 1 and
2 is to provide explicit reconstruction formulas only for the stable part of the solution defined
roughly in terms of the classical diffraction limit. These reconstruction formulas only provide a
smoothed version of the unknown function v. They do not converge to the true solution v as
the noise level tends to zero, but only as the energy (or wave number) tends to infinity. On the
other hand, in contrast to regularization methods, they are Lipschitz stable with respect to data
noise, they do not require a sufficiently good initial guess, and they are cheaper to compute. For
small noise levels, our reconstructions can be improved by using them as initial guess for iterative
regularization methods. Probably, our reconstructions can be also improved using the approach
of [26], but this issue requires additional studies.

Our main results can be summarized as follows:
We propose an iterative reconstruction algorithm for Problem 2(A) in dimension d ≥ 2 under

the condition that supp v and suppw are sufficiently disjoint. If this condition is relaxed, then we
give similar results just for Problem 2(B) with d ≥ 2 and n = 1. This iterative monochromatic
reconstruction is analogous to the algorithm suggested in [35] for inverse scattering problems with
phase information at fixed sufficiently large energy E. This reconstruction is considerably simpler
than the algorithm developed in [1] for Problem 2(B) with d ≥ 2 and n = 2. This reconstruction
proceeds from results of [41], which provide, in particular, the first approximation. In addition,
for our iterates ujE, j = 1, 2, ..., we have that

∥v − ujE∥L∞ = O(E−αj) as E → +∞, (1.10)

with αj tending to +∞ as j → ∞, for infinitely smooth v. See Section 3.2.
We implement numerically the aforementioned iterative monochromatic reconstruction, at

least, for d = 2; see Sections 4 and 5.
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In connection with the aforementioned monochromatic reconstruction vE in the Born approx-
imation our study also includes new results on Problem 1(A) and Problem 1(B) for n = 1. In
particular, in this case proceeding from [41] we show that

∥v − vE∥L∞ = O(E−α) as E → +∞, α =
1

2
(m− d), (1.11)

where v is m-times smooth in L1(Rd); see Section 3.1. Note that estimate (1.11) is an analog for
the phaseless case of estimate (2.16) for the phased case. In addition, in numerical reconstruction
of vE from the data on discrete Ewald grid in B2

√
E, we modified the related conjugate gradient

approach of [1]; see Section 4.3.
The further structure of the present article is as follows. In Section 2 we recall some known

results on direct and inverse scattering for equation (1.2) under assumptions (1.3), including results
on Problems 1 and 2. Our main new theoretical results on Problems 1 and 2 are given in Section
3. Our numerical results on these problems are presented in Sections 4, 5. In conclusion, we
discuss the results of the present work, previous results, and natural further research directions;
see Section 6. Some proofs are also given in Sections A and B of Appendix.

2 Preliminaries

2.1 Direct scattering

For equation (1.2), under condition (1.3), we consider the scattered field ψ+, its scattering am-
plitude A, and its scattering cross section σ = |A|2 mentioned in the Introduction; see formulas
(1.6), (1.7), and (1.8). For finding these functions from v one can use the Lippmann-Schwinger
integral equation

ψ+(x, k) = eikx +

∫
Rd

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) = −(2π)−d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|, d),
(2.1)

for ψ+ with x, k ∈ Rd, k2 = E and the following formulas for A:

A(k, l) := c(d, |k|)f(k, l), (k, l) ∈ ME,

c(d, |k|) := −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4,

(2.2a)

f(k, l) := (2π)−d

∫
Rd

e−ilyv(y)ψ+(y, k)dy, (2.2b)

We will use the term ‘scattering amplitude’ also for f arising in (2.2).
Note that one can also use equation (2.1) and formula (2.2b) for the case when

v ∈ L∞
s (Rd), for some s > d, (2.3)

where

L∞
s (Rd) = {u ∈ L∞(Rd) : ∥u∥s <∞}, (2.4)

∥u∥s = ess supRd(1 + |x|2)s/2|u(x)|, s ≥ 0; (2.5)

see, for example, [8], [39] and references therein.
Let

Br = {x ∈ Rd : |x| ≤ r}. (2.6)

In addition to A, σ, and f on ME, we also consider their restrictions to lower-dimensional
subsets ΓE ⊂ ME for which the function

Φ̃ : ΓE → B2
√
E, Φ̃(k, l) := k − l (2.7)
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is surjective, where Br is defined by (2.6), d ≥ 2; see [1]. In particular, Φ̃ is bijective if ΓE is
defined as in [35]:

ΓE =
{
k = kE(p), l = lE(p) : p ∈ B2

√
E

}
,

kE(p) = p/2 + (E − p2/4)1/2γ(p), lE(p) = −p/2 + (E − p2/4)1/2γ(p),
(2.8)

where γ is a piecewise continuous vector–function on Rd, d ≥ 2, such that

|γ(p)| = 1, γ(p)p = 0, p ∈ Rd. (2.9)

In general we assume that for each p ∈ B2
√
E the set Φ̃−1(p) is a piecewise smooth manifold of

size |Φ̃−1(p)| and define the averaging operator

(Φf)(p) :=
1

|Φ̃−1(p)|

∫
Φ̃−1(p)

f(k, l)d(k, l), p ∈ B2
√
E. (2.10)

Note that if ΓE is defined by (2.8), then

(Φf)(p) = f(kE(p), lE(p)), p ∈ B2
√
E. (2.11)

To deal with equation (2.1) at large E, it is convenient to use the following Agmon estimate

∥⟨x⟩−sG+
0 (E)⟨x⟩−s∥L2(Rd)→L2(Rd) ≤ a0(d, s)E

−1/2, E ≥ 1, s > 1/2, (2.12)

where ⟨x⟩ denotes the multiplication operator by the function (1+ |x|2)1/2, and G+
0 (E) : L

2(Rd) →
L2(Rd) denotes the integral operator

G+
0 (E)u(x) :=

∫
Rd

G+
0 (|x− y|,

√
E, d)u(y)dy, (2.13)

with kernel G+
0 (|x|,

√
E, d) defined in (2.1); see, for example, [13], [35].

2.2 Some known results on inverse scattering problems with phase in-
formation

We recall that in the Born approximation for small v, for d ≥ 2, the scattering amplitude f on
ΓE (and on ME) reduces to the Fourier transform v̂ on B2

√
E via the formula

f(k, l) ≈ v̂(p), (k, l) ∈ ME, p = k − l, (2.14)

where f is defined by (2.2), v̂ is defined by (1.1).
Moreover, for uE defined by

uE(x) :=

∫
B2

√
E

e−ipxv̂(p)dp, (2.15)

we have that
∥v − uE∥L∞(Rd) = O(E−α) as E → +∞ with α :=

1

2
(m− d), (2.16)

where v is m-times smooth in L1(Rd). For more details on the linearised monochromatic recon-
struction uE, see, for example, [39].

Besides, in general (i.e., without assumption that v is small), for finding v̂ from f on ΓE at
large E, for d ≥ 2, one can use the following formulas:

v̂(p) = f(k, l) +O(E−1/2) as E → +∞, (k, l) ∈ ME, k − l = p ∈ Rd, (2.17)

|f(k, l)− v̂(k − l)| ≤ (2π)−da0(d, s/2)(c1(d, s)∥v∥s)2E−1/2,

E1/2 ≥ ρ1(d, s, ∥v∥s), (k, l) ∈ ME, s > d.
(2.18)
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Here a0(d, s/2) is defined in (2.12) and

c1(d, s) :=

(∫
Rd

dx

(1 + |x|2)s/2

)1/2

, (2.19)

ρ1(d, s,N) := max (2a0(d, s/2)N, 1) . (2.20)

Formula (2.17) goes back to [14] and can be considered as Born approximation for f at higher
energies. In connection with estimate (2.18), see, for example, [35].

In turn, estimate (2.18) can be considered as particular case of the following important lemma.
Lemma 2.1. ([35]). Let v satisfy (2.3), D be bounded domain in Rd, f be the scattering amplitude
for v, and vappr(·, E) be an approximation to v such that:

|vappr(x,E)− v(x)| ≤ bE−α, x ∈ D,
√
E ≥ ρ1(d, s,N), (2.21)

vappr(x,E) = v(x), x ∈ Rd \D, (2.22)

for some α, b > 0, and some N such that

∥v∥s ≤ N, ∥vappr(·, E)∥s ≤ N,
√
E ≥ ρ1(d, s,N). (2.23)

Then the following estimate holds:

|f(k, l)− fappr(k, l) + v̂appr(k − l, E)− v̂(k − l)| ≤ Nb

(2π)d
a0(d,

s
2
)c1(d, s)c2(D, s)E

−α− 1
2 ,

(k, l) ∈ ME, E
1/2 ≥ ρ1(d, s,N),

(2.24)

where fappr is the scattering amplitude for vappr(·, E), v̂ is the Fourier transform of v, v̂appr(·, E)
is the Fourier transform of vappr(·, E),

c2(D, s) = 2∥Λs/2∥L2(D) + 4∥Λ−s/2∥L2(Rd)∥Λs∥L∞(D), (2.25)

Λ = (1 + |x|2)1/2. (2.26)

Suppose that

v − v0 ∈ Wm,1(Rd), supp(v − v0) ⊂ D, v0 satisfies (2.3), (2.27)

with the Sobolev space

Wm,1(Rd) := {u : ∂Ju ∈ L1(Rd), |J | ≤ m},
∥u∥m,1 := max

|J |≤m
∥∂Ju∥L1(Rd), m ∈ N ∪ 0.

(2.28)

Using estimate (2.18) and Lemma 2.1, under conditions (2.27), work [35] constructs the iterates
ujE from f on ΓE such that

∥v − ujE∥L∞(D) = O(E−αj) as E → +∞ with (2.29)

α1 :=
m− d

2m
, αj :=

(
1−

(
m− d

m

)j
)
m− d

2d
, j ≥ 1. (2.30)

More precisely, this construction of ujE is based on formula (2.18), if j = 1, and uses iteratively
Lemma 2.1, if j > 1. In addition, one can see that

αj → α∞ :=
m− d

2d
as j → +∞,

αj →
j

2
as m→ +∞,

α∞ → +∞ as m→ +∞.

(2.31)

Therefore, the convergence in (2.29), as E → +∞, is drastically better for j > 1 than for j = 1,
at least, for large m and j.

The iterative monochromatic reconstruction of [35] is implemented numerically in [6], [48] for
d = 2. For other monochromatic phased inverse scattering reconstructions for equations (1.2) and
(1.4), see, for example, [4], [10], [18], [39].
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2.3 Some known results on Problems 1 and 2

In addition to v satisfying (1.3), we consider a priori known background scatterers w1, ..., wn such
that

wj ∈ L∞(Rd), wj ̸= 0 in L∞(Rd), suppwj ⊂ Ωj,

Ωj is an open bounded domain in Rd, Ωj ∩D = ∅,
wj1 ̸= wj2 for j1 ̸= j2 in L∞(Rd),

j, j1, j2 ∈ {1, . . . , n}.

(2.32)

Under assumptions (1.3), (2.32), d ≥ 2, we have that

|v̂j(p)|2 = |fj(k, l)|2 +O(E−1/2) as E → +∞, (k, l) ∈ ME, k − l = p ∈ Rd, j = 0, 1, ..., (2.33)

where v0 = v, vj = v + wj, j ≥ 1, fj is related to Aj according to (2.2a) and is the scattering
amplitude for vj.

In addition, for small v and wj, we have that

|v̂j(p)|2 ≈ |fj(k, l)|2, p = k − l, k − l ∈ ME. (2.34)

Formulas (2.33), (2.34) are phaseless versions of (2.17), (2.14); for phaseless version of (2.18), see,
for example, [37]. These formulas reduce Problems 2 to Problem 1.

For open bounded domains D, Ω1, U ⊂ Rd and ε > 0 we introduce the following notation:

D − Ω1 := {x− y : x ∈ D, y ∈ Ω1}, (2.35a)
dist(D, Ω1) := inf

x∈D, y∈Ω1

|x− y|, diamD := sup
x, y∈D

|x− y|, (2.35b)

χU ,ε ∈ C∞(Rd), 0 ≤ χU ,ε ≤ 1, (2.35c)

χU ,ε(x) :=

{
1, x ∈ U ,
0, dist(x,U) > ε

(2.35d)

The recent work [41] defines an approximate reconstruction vE of the unknown potential v for
Problems 2(A) and 2(B, n = 1) with d ≥ 2, convex D and Ω1, and M′ = ΓE. In case of Problem
2(A) with scattering data σ1 = σ[v + w1] on ΓE, it is assumed that dist(D, Ω1) > diamD,
whereas for Problem 2(B, n = 1) with scattering data {σ, σ1} = {σ[v], σ[v + w1]} on ΓE only
dist(D, Ω1) > 0 is required. The reconstruction vE is defined by Algorithm 1 with ν = 1 in [41]
and QE given by

QE(p) :=
1

|c(d,
√
E)|2 (Φσ1)(p), p ∈ B2

√
E, for Problem 2(A), (2.36a)

QE(p) :=
1

|c(d,
√
E)|2 ((Φσ1)(p)− (Φσ)(p)), p ∈ B2

√
E, for Problem 2(B, n = 1), (2.36b)

where c(d,
√
E) is given by (2.2a).
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Algorithm 1: function vE = reco(QE, w, E,D, ν, τ)
// basic reconstruction procedure proposed in [41]; see also Alg. 3 for a discrete version

Input:
QE: is computed from data by (2.39) for Problem 1 and by (2.36) for Problem 2
w ∈ L∞(Rd): background potential
E > 0: energy
convex D ⊂ Rd contains supp v for unknown function v
ν, τ ∈ (0, 1]: cut-off parameters

Output:
vE: approximation of unknown function v

1 hE(p) :=

{
QE(p), p ∈ B2ν

√
E

|Fw1(p)|2, p ∈ Rd \B2ν
√
E

2 Set Ω ⊂ Rd as convex hull of suppw
3 W (x) := (2π)−d

∫
Ω
w(x+ y)w(y) dy

4 qE(x) := χD−Ω,ε(x)((F−1hE)(x)−W (x))
// cut-off function χD−Ω,ε defined in (2.35c), Fourier transform F in (1.1)

5 v̂E(p) :=

{
(Fw(p))−1(FqE)(p), p ∈ B2τ

√
E

0, p ∈ Rd \B2τ
√
E

6 vE(x) :=

{
(F−1v̂E)(x), x ∈ D

0, x ∈ Rd \D

Results of [41] include estimates on v̂ − v̂E and v − vE. In particular, suppose also that in
Algorithm 1, where QE is given by (2.36) and ν = 1, the potentials v, w = w1 and the parameter
τ are such that

v ∈ Wm,1(Rd), m > d, (2.37a)
max(∥v∥L∞(D), ∥w1∥L∞(Ω1)) ≤ η, (2.37b)
∥v + w1∥s ≤ N, s > d, (2.37c)
|(Fw1)(p)| ≥ c3(1 + |p|)−β, ∀ p ∈ Rd, β > d, c3 > 0, (2.37d)

τ1 = τ1(E) = τEγ−1/2, 0 < τ < 1, γ =
1

2

1

m+ β
; (2.37e)

see [41] (and also [2] in connection with condition (2.37d)). Then we have that ([41]):

|v(x)− vE(x)| ≤
(
C1(m, d, τ)∥v∥m,1 + C2(β, τ, d,D,Ω1)

η2

c3
+ C3(β, d, τ,D,Ω1, ε)

η3

c3

)
E−α1 ,

x ∈ D,
√
E ≥ ρ1(d, s,N), α1 =

1

2

m− d

m+ β
. (2.38)

Explicit expressions for C1, C2, C3 are given in [41] (with misprint c3 in place of correct c−1
3 ).

For small v and w1, the function vE given by (2.36) and lines 1–6 of Alg. 1 reduces to an
approximate reconstruction for the case of Problems 1(A) and 1(B, n = 1) with d ≥ 2, convex D
and Ω1, B = B2

√
E.

In addition, for Problem 1, we use Algorithm 1, where

QE(p) := |F(v + w1)(p)|2, p ∈ B2
√
E, for Problem 2(A), (2.39a)

QE(p) := |F(v + w1)(p)|2 − |F(v)(p)|2, p ∈ B2
√
E, for Problem 2(B, n = 1), (2.39b)

dist(D, Ω1) > diamD for the case (A), and dist(D, Ω1) > 0 for the case (B, n = 1).
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In addition,

vE → v on D as E → +∞. (2.40)

For example, under the additional assumptions (2.37a), (2.37d), (2.37e), we have that:

∥v − vE∥L∞(D) = O(E−α1) as E → +∞ with α1 :=
1

2

m− d

m+ β
. (2.41)

3 Main new theoretical results

3.1 The case of Problem 1

For Problems 1(A) and 1(B, n = 1) with d ≥ 2, convex D and Ω1, and B = B2
√
E, we consider

the approximate reconstruction vE defined by Algorithm 1 with QE given by (2.39).
We will use that

|FχD−Ω1,ε(p)| ≤
C4(t)

(1 + |p|)t
, p ∈ Rd, t ≥ 0, (3.1)

where χD−Ω1, ε is the function in line 4 of Alg. 1, C4(t) = C4(t, χD−Ω1, ε) is a positive constant.
Let

C5(t) :=

∫
Rd

dp

(1 + |p|)t
, t > d. (3.2)

Let µ(U) denote the Lebesgue measure of a bounded domain U ⊂ Rd.
We give the following new estimate on v̂E = FvE on B2

√
E.

Proposition 3.1. Let v, w1 satisfy (1.3), (2.32), (2.37b), where D, Ω1 are convex, and dist(D, Ω1) >
diamD. Let v̂E be defined via (2.39a)) and lines 1–5 of Alg. 1, where ν = 1. Then:

|v̂(p)− v̂E(p)| ≤
C6η

2

|Fw1(p)|(1 + 2(1− τ)E1/2)t−d−α
, p ∈ B2τ

√
E, E

1/2 ≥ ρ1(d, s, ∥v + w1∥s),

(3.3)
C6 := (2π)−2d(µ(D)2 + 2µ(D)µ(Ω1))C4(t)C5(d+ δ), δ > 0, t− d− δ > 0, (3.4)

where ρ1 is defined by (2.20), C4, C5 are the constants of (3.1), (3.2), τ ∈ (0, 1) is the parameter
in line 5 of Alg. 1 and is fixed.

The proof of Proposition 3.1 repeats the proof of Theorem 5.1 (for Problem 2(A)) in [41]. The
main difference is that now formulas (114), (122) in [41] reduce to

∆h(p, E) = 0 for p ∈ B2
√
E, (3.5)

I1(p, E) = 0. (3.6)

Actually, this completes the proof of Proposition 3.1.
Recall that if v ∈ Wm,1(Rd), m ≥ 0, then the following estimate holds:

|v̂(p)| ≤ C7(m)

(1 + |p|)m
, p ∈ Rd, (3.7)

where C7(m) = C7(m, d, ∥v∥m,1) is positive constant.
Let |Sd−1| denote the (d− 1)–dimensional Lebesgue measure of the unit sphere.
Proposition 3.1 and estimate (3.7) yield the following new estimate on vE on D.
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Theorem 3.2. Let v, w1 satisfy the assumptions of Proposition 3.1, and also satisfy (2.37a) and
(2.37d). Let vE be defined by Algorithm 1 with QE given by (2.39a) and ν = 1. Let δ > 0,
t− β − δ > 2d. Then:

|v(x)− vE(x)| ≤ A1E
−α1 + A2E

−α2 , x ∈ D, (3.8a)

α1 :=
1

2
(m− d), α2 :=

t− β − δ

2
− d, (3.8b)

A1 :=
|Sd−1|C7(m)

(2τ)m−d(m− d)
, (3.8c)

A2 :=
(1 + 2τ)β(2τ)β

(2− 2τ)t−d−δ
µ(B1)c

−1
3 C6(t)η

2, (3.8d)

where C6, C7 are given by (3.4), (3.7), and τ ∈ (0, 1), the parameter in line 5 of Alg. 1 is fixed.

The proof of Theorem 3.2 repeats the proof of Theorem 6.1 (for Problem 2(A)) in [41]. The
main modifications consist in the following:

• In formula (136) of [41]: γ = 1/2, i.e., τ1 = τ is independent of E;

• In formula (139) of [41]: I1 = 0.

Remark 3.3. For Problem 1(B, n = 1), where dist(D,Ω1) > 0, Proposition 3.1 and Theorem 3.2
are valid with QE given by (2.39b) and C6 given by

C6 = 2(2π)−2dµ(D)µ(Ω1)C4(t)C5(d+ δ).

Remark 3.4. Estimate (3.8a) (with t such that α2 = α1) implies estimate (1.11) mentioned in
Introduction. The point is that estimate (1.11) is completely similar to estimate (2.16) for the
phased case and is principally better than estimate (2.41) for the phaseless case. Note that vE in
(2.41) is constructed with different τ than vE in (3.8a), (1.11).

Remark 3.5. If the assumption that v ∈ Wm,1(Rd), m > d, is not fulfilled, then the result of
Theorem 3.1 can be modified for apodized (smoothed) v in a similar way with considerations of
Section 6.1 of [24] and Theorem 3.2, Remark 3.3 of [25].

3.2 The case of Problem 2

For Problems 2(A) and 2(B, n = 1) with d ≥ 2, convex D and Ω1, and M′ = ΓE, the approximate
reconstruction vE given by Algorithm 1 can be essentially improved iteratively, where u1E = vE is
the first approximation.

The iterative step is based on the following lemma.

Lemma 3.6. Under the assumptions of Lemma 2.1, the following estimate holds:∣∣|f(k, l)|2 − |fappr(k, l)|2 + |v̂appr(k − l, E)|2 − |v̂(k − l)|2
∣∣ ≤ C(s,D)

(
N + b

Eα

(
1 + N

E1/2

)) Nb

Eα+1/2
,

(k, l) ∈ ME, E1/2 ≥ ρ1(d, s,N),

(3.9)

for some C = C(s,D) > 0.

The proof of Lemma 3.6 is given in Section A.
Our iterative reconstruction is summarized in Algorithms 2(A) and 2(B).

10



Algorithm 2(A): function uJE = reco2A(σ1, w, E, {ν1..νJ}, {τ1..τJ}, D)
// iterative reconstruction algorithm for Problem 2(A)

Input:
σ1 ≈ σ[v + w]: measured scattering cross section for v + w on M′

w ∈ L∞(Rd): background potential
E > 0: energy
0 < ν1 ≤ · · · ≤ νJ ≤ 1: cut-off parameters
0 < τ1 ≤ · · · ≤ τJ ≤ 1: cut-off parameters
convex D ⊂ Rd contains supp v

Output:
uJE: approximate reconstruction of v

1 Q1
E(p) :=

1
|c(d,

√
E)|2 (Φσ1)(p), p ∈ B2

√
E

// c(d,
√
E) def. in (2.2a), Fourier transform F in (1.1) and Φ : M′ → B2

√
E in (2.10)

2 u1E := reco(Q1
E, w, E,D, ν1, τ1)

for j = 1..J-1 do
3 Compute scattering amplitude f j

1,E for potential ujE + w

4 Qj+1
E (p) := 1

|c(d,
√
E|2 (Φσ1)(p) + |(F(ujE + w))(p)|2 − (Φ|f j

1,E|2)(p), p ∈ B2
√
E

5 uj+1
E = reco(Qj+1

E , w, E,D, νj+1, τj+1)

end

Algorithm 2(B): function uJE = reco2B(σ, σ1, w, E, {ν1..νJ}, {τ1..τJ}, D)
// iterative reconstruction algorithm for Problem 2(B) with n = 1

Input:
σ ≈ σ[v]: measured scattering cross section for v on M′

σ1 ≈ σ[v + w]: measured scattering cross section for v + w on M′

w,E, νj, τj, and D as in Algorithm 2(A)
Output:
uJE: approximate reconstruction of v

1 Q1
E(p) :=

1
|c(d,

√
E)|2 ((Φσ1)(p)− (Φσ)(p)), p ∈ B2ν1

√
E

// c(d,
√
E) def. in (2.2a), Fourier transform F in (1.1) and Φ : M′ → B2

√
E in (2.10)

2 u1E := reco(Q1
E, w, E,D, ν1, τ1)

for j = 1..J-1 do
3 Compute scattering amplitudes f j

E and f j
1,E for potentials ujE and ujE + w

4 Σj := 1
|c(d,

√
E|2Φσ + |FujE|2 − Φ|f j

E|2

5 Σj
1 :=

1
|c(d,

√
E|2Φσ1 + |F(ujE + w)|2 − Φ|f j

1,E|2

6 Qj+1
E (p) := Σj

1(p)− Σj(p), p ∈ B2
√
E

7 uj+1
E = reco(Qj+1

E , w, E,D, νj+1, τj+1)

end

In the iterative step in Algorithm 2(A) we use Lemma 3.6 with v + w1 in place of v, and in
Algorithm 2(B) twice with v itself and with v + w1 in place of v.

We set

τj = τEγj−1/2 with (3.10a)

αj :=
1

2

m− d

β + d

(
1−

(
m− d

m+ β

)j
)
, γ1 :=

1

2

1

m+ β
, γj+1 :=

αj + 1/2

m+ β
, (3.10b)

where m, j ∈ N, m > d, β ∈ R, β > d. Here, m and β are the numbers in (2.37a) and (2.37d).

Theorem 3.7. Let v, w1 satisfy assumptions (1.3), (2.32), (2.37b), where D, Ω1 are convex,
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and also satisfy assumptions (2.37a) and (2.37d). Let ujE be defined either by Algorithm 2(A)
with exact data σ1 = σ[v + w1] and dist(Ω1, D) > diam(D) or by Algorithm 2(B) for exact data
σ = σ[v], σ1 = σ[v + w1] and dist(Ω1, D) > 0, where νj ≡ 1 for all j, and τj are as in (3.10a).
Then

∥v − ujE∥L∞(D) = O(E−αj) as E → +∞, (3.11)

where αj are defined in (3.10b), j ∈ N.

Theorem 3.7 is proved in Section B of Appendix.
For αj and γj in Theorem 3.7, we have that

αj → α∞ :=
1

2

m− d

β + d
as j → +∞,

αj →
j

2
as m→ +∞,

α∞ → +∞ as m→ +∞,

(3.12)

γj < γj+1, γj → γ∞ :=
1

2

1

β + d
as j → ∞. (3.13)

Therefore, the convergence in (3.11), as E → +∞, is drastically better than in (2.38), at least,
for large m and j. Besides, the convergence in (3.11), as E → +∞, is similar to the somewhat
more rapid convergence in (2.29) for the phased case.

Note that the iterates ujE of Theorem 3.7 are simpler and more rapidly convergent theoretically
than the iterates constructed in [1] for finding v from {σ[v], σ[v +w1], σ[v+w2]} and w1, w2 (i.e.,
for Problem 2(B), d ≥ 2, n = 2). However, the most essential point is that the iterates ujE,
j ≥ 1, of Theorem 3.7 use only the differential scattering cross section σ[v + w1] on ΓE and the
background scatterer w1, when dist(D, Ω1) > diamD.

Remark 3.8. Apparently, it is not difficult to show that iterates ujE in Theorem 3.7 depend in a
Lipschitz way on errors in the phaseless data. Related analysis will be developped elsewhere. This
issue is also related with approximate Lipschitz stability considered in [34] for the phased case.

4 Numerical implementation
In the following we present numerical tests for our new theoretical results presented in Section
3.2 as well as results of [41]. We proceed from the numerical implementation developed in [1] for
the case of Problem 2(B) with d ≥ 2. For simplicity, we carry out these numerical studies for the
two-dimensional case d = 2.

4.1 Discrete grids

We assume that v and w1 are supported in the unit disk B1. Let

ZN :=

{
−N

2
,−N

2
+ 1, ...,

N

2
− 1

}
, N ∈ 2N. (4.1)

We represent v and w1 by v, w1 defined on the space-variable grids

XN := {x =
4

N
(n1, n2) : n1, n2 ∈ ZN}, (4.2)

where N ∈ 2N, N ≥ 2
√
E/π.

We consider |f(k, l)|2, |f1(k, l)|2 on the grid

ME,M1,M2 := {(k(s), l(s, t)) : s ∈ ZM1 , t ∈ ZM2}, M1, M2 ∈ 2N, (4.3)
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where
k(s) :=

√
E
[
cos
(
2π s

M1

)
, sin

(
2π s

M1

)]⊤
,

l(s, t) =
√
E
[
cos
(

2πs
M1

+ 2πt
M2

)
, sin

(
2πs
M1

+ 2πt
M2

)]⊤
.

(4.4)

In view of formulas (2.17), (2.33), (2.34), (3.9) for v̂, ŵ1, this leads to the following grid in
Fourier space:

PE,M1,M2 = {p = k − l : (k, l) ∈ ME,M1,M2}, M1, M2 ∈ 2N. (4.5)

Note that the points of PE,M1,M2 are located on circles (Ewald circles) of raduis
√
E, that intersect

at the origin; see Fig. 1.
In the Fourier domain we also consider the uniform grid:

PN = {p = π

2
(n1, n2) : n1, n2 ∈ ZN}. (4.6)

In addition to PE,M1,M2 and PN , we also consider

PE,M1,M2,N = PE,M1,M2 ∪ P ext
N , (4.7)

Pext
N = {p ∈ PN : p2 > 4E}. (4.8)

The number N in (4.2) and (4.6)–(4.8) is the same.
In our numerical examples we use PE,M1,M2 , PN for M1 = 32, M2 = 256, N = 572, E = 1002.

For this choice, we have that |PN ∩ B2
√
E| = 50949, |PE,M1,M2| = 8192 (where | · | denotes the

number of elements in a set), i.e. Fourier space in B2
√
E is severely undersampled, in particular

in the neighborhood of the circle with radius
√
E. The resulting numerical problems and their

solution will be discussed in Subsection 4.3.

Figure 1: The grid PE,M1,M2,N in Fourier space for M1 = 16, M2 = 64, N = 72, and E = (100/8)2.
In our numerical computations we use M1 = 32, M2 = 256, N = 572, E = 1002, i.e. the same
proportions. But for the later numerical parameters we have too many points to visualize.

4.2 Discrete Fourier transforms

We consider the discrete Fourier transforms F and T :

û = Fu, F = [4(Nπ)−2 exp(ix · p)], x ∈ XN , p ∈ PN , (4.9)
û = Tu, T = [4(Nπ)−2 exp(ix · p)], x ∈ XN , p ∈ PE,M1,M2,N , (4.10)
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where u is a test function on XN considered as a vector, and F and T are considered as matrices.
Matrix-vector products with F , its adjoint F ∗ as well as its inverse F−1 = (π

2
)4N2F ∗ can be

computed efficiently by the Fast Fourier Transform (FFT).
Matrix-vector products with T and T ∗ can also be computed efficiently by non-uniform FFT

methods. We use the code NFFT 3 (see [28]) for this purpose. Computations of a left inverse of
T is more difficult. One can use the conjugate gradient method applied to the normal system

T ∗Λ1/2Tu = T ∗Λ1/2û (4.11)

for this purpose, where Λ is a diagonal weight matrix such that ∥Λ1/2u∥22 ≈
∫
|u(p)|2dp; see [1,

§4.1.3].

4.3 Phase retrieval with background information

In this subsection we describe our numerical implementation of Algorithm 1 for finding v from QE

approximately given by formulas (2.39) in terms of phaseless Fourier transforms on B2
√
E, i.e. for

solving Problem 1(A) and Problem 1(B, n = 1). In addition, by line 1 of Alg. 1 we also define hE
which extends QE from B2

√
E to Rd, d = 2. The basic point of our implementation of Algorithm

1 consists in inversion of the discrete Fourier transforms F and T . In addition, inversion of F is
standard, whereas proper inversion of T includes an essential new result. Proper implementation
of (Fw1(p))

−1FqE(p) in line 5 of Algorithm 1 is also essential in view of possible zeros of Fw1(p)
(if Assumption (2.37d) is violated). Note that, for Problem 1(A) and Problem 1(B, n = 1) we use
Algorithm 1 for cut-off parameters ν = τ = 1.

The case of data on PN ∩B2
√
E. If in formulas (2.39) the data QE(p) are given on PN ∩B2

√
E,

then in lines 4, 6 of Algorithm 1 we implement F−1 as F−1 via FFT as mentioned in Subsection
4.2.

The case of data on PE,M1,M2 . This case is especially important for Problem 2. If in formulas
(2.39) the data QE(p) are given on PE,M1,M2 , then line 4 of Alg. 1 we implement a left inverse of
the discrete Fourier transform T using the conjugate gradient method mentioned in Subsection
4.2. However, because of the geometric constraints of our setting, in particular the condition
dist(Ω1, D) > diam(D), the system (4.11) is much more ill-conditioned than in [1] due to the
severe undersampling of Fourier space discussed at the end of Subsection 4.1; see also Fig. 1.
Therefore, the conjugate gradient method for system (4.11) does not converge properly to an
approximation of F−1hE in line 4 of Alg. 1. To cope with this difficulty, we use a very specific
property of hE described by the formulas

F−1h(x)−W1(x) = 0, x ∈ U c := Rd \ U , (4.12)
h(p) := lim

E→+∞
hE(p), p ∈ Rd, (4.13)

U :=

{
(D − Ω1) ∪ (Ω1 −D) ∪BdiamD, if QE(p) is defined as in (2.39a),
(D − Ω1) ∪ (Ω1 −D), if QE(p) is defined as in (2.39b),

(4.14)

see formulas (47), (49), (51), (53) of [41].
It is convenient to rewrite (4.12) as

F−1h̃(x) = 0, x ∈ U c with (4.15)

h̃(p) := lim
E→+∞

h̃E(p), h̃E(p) := hE(p)− (FW1)(p), p ∈ Rd. (4.16)

The property (4.12), (4.15) means that F−1h̃ is identically zero on U c, and F−1h̃E is approxi-
mately zero on U c. Moreover, we have that:

F−1h̃E(x) =

∫
|p|≥2

√
E

e−ipx(|ŵ1(p)|2 − |v̂(p) + ŵ1(p)|2)dp, x ∈ U c, (4.17a)

F−1h̃E(x) =

∫
|p|≥2

√
E

e−ipx(|ŵ1(p)|2 + |v̂(p)|2 − |v̂(p) + ŵ1(p)|2)dp, x ∈ U c, (4.17b)
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for the cases (A) and (B), respectively. That is, in particular, F−1h̃E on U c depends only on
a higher frequency parts of v and w1. Formulas (4.17) follow from (4.12)–(4.16), and from the
formulas

hE = h− (1− χB2
√

E
)|F(v + w1)|2 + (1− χB2

√
E
)|Fw1|2, (4.18a)

hE = h− (1− χB2
√
E
)(|F(v + w1)|2 −Fv|2) + (1− χB2

√
E
)|Fw1|2, (4.18b)

for the cases (A) and (B), respectively, where χB2
√
E

is the characteristic function of B2
√
E.

Therefore, for finding F−1h̃E arising in (2.39) and line 1 of Alg. 1 in place of system (4.11) we
use the conjugate gradient method for the following system for u on XN ,

ΠT ∗Λ1/2TΠu = ΠT ∗Λ1/2h̃E, (4.19)

where Π is the projector defined by the characteristic function U in (4.14), i.e.

Πu := χU · u. (4.20)

Note that if diamΩ1 ≤ diamD, then suppW1 ⊆ Bdiam D, and, therefore, (4.12), (4.15) also
hold without W1, and for finding F−1hE one can use (4.19) with hE in place of h̃E.

Note also that if in Algorithm 1 the cut-off parameter ν ∈ (0, 1), then hE also depends on ν,
and in formulas (4.17), (4.18) the radius 2

√
E should be replaced by 2ν

√
E. The point is that

such cut-off parameters ν arise in Section 4.4.
The use of initial system (4.11) without a priori information (4.12)–(4.16) results in consider-

able reconstruction errors of vE in Algorithm 1 with QE given by (2.39), see Figs. 4, 5.
In the present work, we use 40 conjugate gradient steps for system (4.19). In contrast, even

100 conjugate gradient steps for solving system (4.11) does not lead to a proper result.
Moreover, because of accumulation of such errors, our numerical iterative reconstruction pre-

sented in Sections 3.2, 4.4 does not converge properly.

Finally, in the present work, we implement line 5 of Alg. 1 (i.e. v̂E ≡ (Fw1)
−1FqE) as

a

b
≈ (1 + ε)

ab∗

bb∗ + εmaxp |b|2
with a = FqE(p), b = Fw1(p), (4.21)

where ε is an appropriately small positive number. In our numerical examples we choose ε = 5 ·
10−3. Formula (4.21) is essentially Tikhonov regularization for solving the linear equation b v̂E = a
for v̂E ∈ L2(Br) where ε ·maxp |b|2 is the regularisation parameter. In addition, we included the
factor (1 + ε) in the right-hand side of (4.21) in order to have the identity v̂E,ε(p) = v̂E(p) for
p ∈ argmaxp |b(p)|2.

Note that, for example, |Fw1|2 has many zeros (in violation of assumption 2.37d of our theo-
retical analysis!) if w1 is a multiple of the characteristic function of a box as in Fig. 2. For such
cases, formulas (4.21) are very essential.

For the phase retrieval problem our numerical realisation of Algorithm 1 is summarized as
Algorithm 3.
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Algorithm 3: function v = reco_discr(N,M1,M2, Q, w,E, ν, τ,D,Ω)

Input:
N ∈ 2N: The spatial grid XN ⊂ [−2, 2]2 and the Fourier grid PN ⊂ [−πN

4
, πN

4
]2

have size N ×N ; see (4.2), (4.6)
M1,M2 ∈ N: number of incident fields and measurement points.

This defines the Fourier grids PE,M1,M2 , PE,M1,M2,N ; see (4.5), (4.7) and Fig. 1
Q : PE,M1,M2 → R: phaseless data given by (2.39) or (2.36) for Problems 1 and 2, rsp.
w : XN → C background potential
convex D,Ω ⊂ XN contains support of v and w, rsp.

Output:
v : XN → C approximation of unknown potential such that supp v ⊆ D

1 Compute vector λ : PE,M1,M2,N → R of areas of Voronoi cells of these points and set
Λ := diag(λ) // see, e.g. Fig 2 in [1]

2 χD(x) :=

{
1, x ∈ XN ∩D
0, x ∈ XN \D

and χD−Ω(x) :=

{
1, x ∈ XN ∩ (D − Ω)

0, x ∈ XN \ (D − Ω)

3 χU(x) :=

{
1, x ∈ XN ∩ ((D − Ω) ∪ (Ω−D) ∪Bdiam D)

0, x ∈ XN \ ((D − Ω) ∪ (Ω−D) ∪Bdiam D)

4 χB2τ
√
E
(p) :=

{
1, p ∈ PN ∩B2τ

√
E

0, p ∈ PN \B2τ
√
E

and χB2ν
√
E
(p) :=

{
1, p ∈ PE,M1,M2 ∩B2ν

√
E

0, p ∈ PE,M1,M2 \B2ν
√
E

5 F := [4(Nπ)−2 exp(ix · p)]x,p with x ∈ XN , p ∈ PN

// matrix-vector products with F , F ∗, and F−1 implemented by FFT
6 T := [4(Nπ)−2 exp(ix · p)]x,p with x ∈ XN , p ∈ PE,M1,M2

// matrix-vector products with T and T ∗ implemented by non-uniform FFT
7 ŵ := Fw // defined on PN

8 h = χB2ν
√
E
Q

if (diamΩ < diamD < dist(D,Ω)) then
9 rhs := χU · (T ∗Λ1/2h)

else
10 W := F−1(|ŵ|2)
11 rhs := χU · T ∗Λ1/2(h− TW )

end
12 Solve χU · T ∗Λ1/2T (χU · qin) = rhs for qin : XN → C by CG method
13 q := χD−Ω · (qin + F−1((1− χB2ν

√
E
) · |ŵ|2))

14 v̂ := (1 + ε)χB2τ
√
E

Fq·ŵ
ŵ ·ŵ+εmax |ŵ|2 with ε := 0.005

15 v := χD · F−1(v̂)

4.4 Phaseless inverse scattering with background information

Our numerical reconstructions are based on Algorithms 1, 2(A) and 2(B), more precisely, on
discrete versions of these algorithms. Recall that in the case of Problem 2, Algorithm 1 is used
to provide the first approximation and its iterative improvements in Algorithms 2(A) and 2(B).
A discrete version of Algorithm 1 is given as Algorithm 3. Algorithms 2(A) and 2(B) have
straightforward analogues in the discrete setting, replacing Algorithm 1 by its discrete analog,
Algorithm 3.

In addition, there are the following essential points:

(i) In the numerical implementations of the present work, we fix in advance the total number
J of the iterates ujE, j = 1, ..., J , where J = 1, J = 6, J = 10 in our examples. In addition,
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our choice of the cut-off parameters νj, τj in Algorithms 2(A), 2(B) is as follows:

νj = 0.5 + 0.5
j − 1

J
, τj = 1, j = 1, ..., J. (4.22)

Note that this choice of cut-off parameters ν, τ differs from the choice of these cut-off
parameters in Theorem 3.7. The reason is that the cut-off parameters given by (4.22) yield
better numerical results.

(ii) For normalized measured data σ[v1]
meas(k, l), where k ∈ {k1, ..., kM1}, l ∈ {l1, ..., lM2}, we

use the Poisson noise model in a similar way as in [1]. In this framework the noise level
is characterized by the number Np of measured particles. As mentioned in introduction,
σ[v1](k, l) describes the probability density of scattering of particles with initial impulse k
into direction l/|l| ̸= k/|k|. We assume that for each incident impulse ki the exposure time
t(ki) is chosen such that the same expected number of particles Np/M1 is recorded in the
sum over all lj. Thus, our simulated normalized measured noisy data σ[v1]

meas(k, l) were
generated from exact data σ[v1](k, l) via the formulas

σ[v1]
meas(ki, lj) ∼

1

t(ki)
Pois(t(ki)σ[v1](ki, lj)), t(ki) =

Np

M1σ[v1](ki)
, σ[v1](ki) =

M2∑
j=1

σ[v1](ki, lj),

(4.23)

where i = 1, ...,M1, j = 1, ...,M2.

(iii) The approximation uJE mentioned above does not converge to v at fixed E even when J
increases; see, in particular, Theorem 3.7. Therefore, we improve uJE using the Newton-CG
method (see [19]) in a similar way with [1].
In the present work we use Newton-CG for minimizing the following quadratic approximation
of the negative Poisson log-likelihood (Kullback-Leibler divergence):

∆(σ[v1]
comp, σ[v1]

meas) =
∑

(k,l)∈ME,M1,M2

|σ[v1]comp(k, l)− σ[v1]
meas(k, l)|2

max(ε, σ[v1]meas(k, l))
, (4.24)

ε =
1

1000
max
(k,l)

σ[v1]
meas(k, l),

among all v ∈ H1 supported in D, where σ[v1]meas is our normalized measured monochro-
matic phaseless scattering data defined according to (4.23), σ[v1]comp denotes the monochro-
matic phaseless scattering data (differential scattering cross section) computed for v1 = v+w,
and D is chosen as small as possible using a priori information. As initial approximation for
v, one can use uJE mentioned above.

5 Numerical examples

5.1 Test potentials

Throughout this section we use the values of energy E and discretization parameters M1,M2, and
N given is Subsection 4.1; see also Fig. 1. The forward problems are solved using a periodized
version of the Lippmann-Schwinger equation (2.1) as proposed in [50]. Noisy Poisson distributed
synthetic data σ[v1]meas on ME,M1,M2 are generated with an expected total number of Np = 3 ·107
counts.

We consider reconstructions of two potentials v shown in Fig. 2, where v is smooth for case
(a), and v is non-smooth for case (b). For Problem 2(B) with n = 2 or n = 3, similar potentials v
with different scaling were used in [1]. Fig. 2 shows v1 = v +w on XN ∩ [−1, 1]2, where N = 572.
This w is a multiple of the characteristic function of a square and will be also denoted as wbox.
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We also define

vfiltE = F−1(χB2
√
E
· Fv), (5.1)

where v is our potential v on XN , F is the discrete Fourier transform defined in (4.9), χB2
√
E

is the
characteristic function of B2

√
E. For the potentials v shown in Fig. 2(a, b) their filtered versions

vfiltE are shown in Fig. 3(a, b). The point is that in the present work we do not try to reconstruct
v much better than vfiltE proceeding from the scattering data σ[v1]meas at fixed energy E.

(a) (b)

Figure 2: Test examples for the unknown potential v and the known background potential w.
(a) Smooth v. (b) Non-smooth v.

(a) (b)

Figure 3: Filtered versions vfiltE of the test potentials v in Fig. 2 corresponding to ideal reconstruc-
tions within the classical diffraction limit for the chosen energy E = 100 (see (5.1)). (a) Smooth
v : E(vfiltE , v) = 0.0077. (b) Non-smooth v : E(vfiltE , v) = 0.2808.

To measure the quality of numerical reconstructions, we use the relative error

E(u, u0) =
∥u− u0∥ℓ2(G)

∥u0∥ℓ2(G)

, (5.2)

where u, u0 are functions on some grid G.

5.2 Reconstruction results for Problem 1(A)

As approximate solutions of Problem 1(A) or Problem 2(A), we consider the result vE of Algorithm
1 with input data QE defined by formula (2.39a) or (2.36a), respectively. First, Fig. 4 (a, b)
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illustrate our reconstructions vE from |F(v+w)|2 given on the uniform grid PN∩B2
√
E as described

in Subsection 4.3. Then, Fig. 5 (a0, b0) illustrate our reconstructions vE of v from |F(v+w)|2 on
PE,M1,M2 , where we use system (4.11) (with 40 conjugate gradient steps) for inverting the discrete
Fourier transform T. Finally, Fig. 5 (a, b) illustrate our reconstructions vE of v from |F(v + w)|2
on PE,M1,M2 , where we use modified system (4.19) (with 40 conjugate gradient steps) in place of
(4.11). The point is that system (4.19) leads to much better result. More precisely, these figures
show our reconstructions vE of smooth and non-smooth v shown on Fig. 2(a, b) from discrete
phaseless Fourier data without Poisson noise.

One can see that reconstructions vE shown at Fig. 4 and Fig. 5(a, b) are rather good, especially
for the case of smooth v, when Fv is rather small on R2\B2

√
E, and also for the case of non-smooth

v, in comparison with vfiltE .

(a) (b)

Figure 4: Reconstructions vE from |F(v + w)|2 on PN ∩B2
√
E.

(a) Smooth v : E(vE, v) = 0.005, E(vE, v
filt
E ) = 0.001. (b) Non-smooth v : E(vE, v) = 0.2816,

E(vE, v
filt
E ) = 0.0292.

5.3 Basic reconstruction results for Problem 2(A)

In this subsection we present our reconstructions for Problem 2(A) with the test potentials v and
w described in Subsection 5.1 and shown in Fig. 2. In particular, Fig. 6 and Fig. 7 illustrate
our reconstructions of v from σ[v1]

meas on ME,M1,M2 with known background w. More precisely,
these figures show our reconstructions uJE, u

J+K
E of smooth and non-smooth potentials v shown

on Fig. 2(a, b). Here, uJE are as described in Section 4.4, and uJ+K
E denotes uJE improved by K

iterations of Newton-CG method. In addition: J = 1 for Fig. 6 (a, d), Fig. 7 (a, d), J = 6 for
Fig. 6 (b, e), J = 10 for Fig. 7 (b, e), J = 6, K = 5 for Fig. 6 (c, f), J = 10, K = 5 for Fig. 7
(c, f). In addition, Fig. 6 and Fig. 7 also show the relative reconstruction errors with respect to
both v and vfiltE .

One can see that already reconstruction u1E going back to [41] and illustrated in Fig. 6 (a,
d) with E(u1E, v) = 0.4112 and in Fig. 7 (a, d) with E(u1E, v) = 0.5140 is of interest in spite of
considerable errors in real and imaginary parts Reu1E and Imu1E of u1E. These considerable errors
in u1E arise as a consequence of large strength of v, yielding the Born approximation unsatisfactory.
Next, one can see that reconstruction uJE developed in the present work for J > 1 (for the case
beyond the Born approximation) and illustrated in Fig. 6 (b, e) and in Fig. 7 (b, e) is considerably
more precise than u1E for reasonably large E and J. Finally, similar to [1], one can see that uJ+K

E

improves uJE, under the condition that uJE is close to v.
The visual quality of our phaseless inverse scattering reconstructions uJE, u

J+K
E shown at Fig. 6

and Fig. 7 (for J > 1) turns out to be more or less comparable with our phaseless Fourier
reconstructions vE shown at Fig. 5(a, b) and even at Fig. 4. In addition, the errors E(vE, v) shown
at Fig. 7, for vE = u10E , u

10+5
E , are also comparable with the error E(vE, v) shown at Fig. 5(b).

Besides, the errors E(vE, v) shown at Fig. 6, for vE = u6E, u
6+5
E , reduce considerably for vE = u6+K

E
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(a0) (b0)

(a) (b)

Figure 5: Reconstructions vE from |F(v + w)|2 on PE,M1,M2 .
(a0, b0): inverting T via (4.11) (old method). (a, b): inverting T using (4.19) (new method).
(a0) Smooth v : E(vE, v) = 0.1417, E(vE, v

filt
E ) = 0.1416. (b0) Non-smooth v : E(vE, v) = 0.4017,

E(vE, v
filt
E ) = 0.3002. (a) Smooth v : E(vE, v) = 0.01434, E(vE, v

filt
E ) = 0.01376. (b) Non-smooth

v : E(vE, v) = 0.3223, E(vE, v
filt
E ) = 0.1632.

for large K, see Fig. 8(c). For proper comparisons, recall also that the phaseless scattering data
σ[v1]

meas used for the reconstructions of Fig. 6 and Fig. 7 are with Poisson noise, whereas there is
no Poisson noise in the phaseless Fourier transforms used for the reconstructions of Fig. 4 and 5.
In addition, the reconstructions of Fig. 4 do not have non-uniform grid difficulties.
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(a) Reu1E (b) Reu6E (c) Reu6+5
E

(d) Imu1E (e) Imu6E (f) Imu6+5
E

Figure 6: Reconstructions uJE, u
J+K
E of smooth v (see Fig. 2) in Problem 2(A). Top row: Real

parts. Bottom row: Imaginary parts. Relative errors on XN ∩D: E(u1E, v) = 0.4096, E(u1E, v
filt
E ) =

0.4096; E(u6E, v) = 0.1722, E(u6E, v
filt
E ) = 0.1722; E(u6+5

E , v) = 0.1257, E(u6+5
E , vfiltE ) = 0.1256.

(a)Reu1E (b) Reu10E (c) Reu10+5
E

(d) Imu1E (e) Imu10E (f) Imu10+5
E

Figure 7: Reconstructions uJE, u
J+K
E of non-smooth v (see Fig. 2) in Problem 2(B) with n = 1.

Top row: Real parts. Bottom row: Imaginary parts. Relative errors on XN ∩ D: E(u1E, v) =
0.5140, E(u1E, v

filt
E ) = 0.4466; E(u10E , v) = 0.3396, E(u10E , v

filt
E ) = 0.1873; E(u10+5

E , v) = 0.3196,
E(u10+5

E , vfiltE ) = 0.1486.

Next, for our smooth and non-smooth v, Fig. 8 shows L2 discrepancies E(j) = E(σ[ujE +
w1]

comp, σ[v1]
meas) Poisson discrepancies ∆(j) = ∆(σ[ujE + w1]

comp, σ[v1]
meas) on ME,M1,M2 , and
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relative errors E(ujE, v) on XN ∩D for the iterates ujE, where

u0E ≡ 0, (5.3a)

ujE, j = 1, ..., J, are defined as described in item (i) of Subsection 4.4, (5.3b)
uJ+k
E denotes uJE improved by k iterations of Newton-CG method. (5.3c)

Note that J > 0 for the plots ’Our + NCG’, and J = 0 for the plots ’NCG method’.
These figures also show L2 discrepancy Enoise and Poisson discrepancy ∆noise defined by

Enoise = E(σ[v1], σ[v1]
meas), (5.4)

∆noise = ∆(σ[v1], σ[v1]
meas), (5.5)

or, in other words, the noise level in σ[v1]
meas in different senses. For the plots ’Our + NCG’,

one can see that E(J) and ∆(J) are much smaller than E(1) and ∆(1), respectively. However,
E(j) and ∆(j) are not monotonically decreasing in j = 1, ..., J. The reason is that the proposed
iterative algorithm does not minimize the aforementioned discrepancies directly; this algorithm
is based on a different principle. In addition, one can see that E(j) and ∆(j) are monotonically
decreasing for j ≥ J. The reason is that the additional Newton-CG method directly minimizes
∆(j).

One can see that:

• E(j) and ∆(j), for large j, are very close to the noise levels Enoise and ∆noise for smooth v;

• E(j) and ∆(j), for large j, are not yet very close to the noise levels Enoise and ∆noise for
non-smooth v.

The reason is that our monochromatic iterative algorithm (including additional NCG itera-
tions) reconstruct v̂(p) for |p| ≤ 2

√
E much better than for |p| ≥ 2

√
E.

For our examples we have that our reconstructions uJE give good results in configuration space
(i.e., on XN ∩ D) much faster than the Newton-CG iterates u0+k

E , which start from the zero ap-
proximation, and even than u1+k

E , which start from our reconstruction in the Born approximation,
i.e., from uJE, J = 1. In particular, in our examples much faster means that our reconstruction uJE,
J = 1, is similar to u0+18

E , in the configuration space for non-smooth v, and uJE, J = 1, is similar
to u0+8

E , in the configuration space for smooth v. For more comparisons, see also Fig. 8.

Figure 8: L2 discrepancy E(σ[ujE + w1]
comp, σ[v1]

meas), Poisson discrepancy ∆(σ[ujE +
w1]

comp, σ[v1]
meas) and relative errors E(ujE, v,D) as a function of j, in comparison with Enoise

and ∆noise (horizontal lines). Solid lines indicate our iterations for j = 1, ..., J , dashed line in-
dicate Newton-CG (NCG) iterations. Blue: smooth v. Red: non-smooth v. For the plots ’Our
+ NCG’, the NCG iterations start with j = J + 1 = 7 for smooth v and j = J + 1 = 11 for
non-smooth v. See notations (5.3).
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5.4 Further reconstruction results for Problem 2(A)

Reconstruction examples presented in this subsection are as follows: reconstruction of complex
v; reconstruction with background w satisfying the additional theoretical assumption (2.37d);
reconstruction of real v taking into account a priori knowledge of real-valuedness; examples of v
and w for which our method converges, whereas NCG method diverges. The expected number of
particles Np = 3 · 107 characterizing Poisson noise is as in Subsection 5.3.

Fig. 9 illustrates our reconstructions uJE, for J = 1, J = 6, and uJ+K
E , for J = 6, K = 5, of

complex-valued potential. Here, Re v is two times smaller than in v in Fig. 2(a), Im v ≤ 0, and
| Im v| is four times smaller than v in Fig. 2(b), and background w is the same as in Fig. 2.

It is remarkable that our method reconstructs two real-valued functions Re v and Im v on XN

from one real-valued function σ[v1]meas on ME,M1,M2 for known background w.

Figure 9: Reconstructions uJE and uJ+K
E of complex-valued v with smooth Re v and non-smooth

Im v ≤ 0. E(u1E, v,D) = 0.3927, E(u6E, v,D) = 0.2080, E(u6+5
E , v,D) = 0.1911.

Next, we study our numerical reconstructions uJE and uJ+K
E for the case when w satisfies the

additional theoretical assumption (2.37d). We consider w of the form

w = wΦ(x) = λ1Φ1(|x− x0|/λ2), λ1, λ2 > 0, x, x0 ∈ R2, (5.6a)
Φ1(r) = max(1− r, 0)4(4r + 1). (5.6b)

Here, Φ1 is one of Wendland’s radial functions. In particular, wΦ given by (5.6) satisfies (2.37d)
with β = 5, d = 2, and wΦ ∈ C2(Rd), see [1], [51]. We chose λ1, λ2, x0 in a such way that x0 is the
center of wbox, 2λ2 is the length of the side of supp(wbox), and λ1 is such that ∥wΦ∥L2 = ∥wbox∥L2 ,
where wbox is w shown in Fig. 2.

Our numerical reconstructions with background wΦ were implemented with ε = 0 in (4.21),
taking into account that ŵΦ(p) is not too small on B2

√
E. These reconstructions are more or less

similar in quality to our reconstructions with background wbox presented in Subsection 5.3; see
Table 1.

Table 1 shows relative L2 errors E(u, v) and E(u, vfiltE ) on XN ∩D for different reconstructions
u for smooth and non-smooth real v shown on Fig. 2, where w = wbox shown in Fig. 2, or w = wΦ
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mentioned above, and u = uJE or u = uJ+K
E . In addition, these reconstructions u are implemented

either without or with the a priori assumption that Im v ≡ 0. These reconstructions u for w = wbox

without a priori assumption that Im v ≡ 0 are also shown in Fig. 6, 7.

Smooth v wbox wΦ
wbox +
Im v = 0

wΦ +
Im v = 0

J = 1 0.4096 0.3787 0.2165 0.1851
J = 6 0.1722 0.2222 0.0299 0.0284
J = 6, K = 5 0.1257 0.1672 0.0153 0.0159

(a) v shown in Fig. 2(a).

Non-smooth v wbox wΦ
wbox +

Im v = 0
wΦ +

Im v = 0

J = 1 0.5140 0.4730 0.4249 0.3803
J = 10 0.3396 0.3214 0.3325 0.2849
J = 10, K = 5 0.3196 0.3009 0.3048 0.2788

(b1) v shown in Fig. 2(b).

Non-smooth v
vs vfiltE

wbox wΦ
wbox +

Im v = 0
wΦ +

Im v = 0

J = 1 0.4466 0.3964 0.3299 0.2667
J = 10 0.1873 0.1643 0.1825 0.0527
J = 10, K = 5 0.1486 0.1196 0.1329 0.0453

(b2) vfiltE shown in Fig. 3(b).

Table 1: Relative L2 errors E(u, v) and E(u, vfiltE ) on XN ∩ D for different reconstructions u for
smooth and non-smooth real v without and with the a priori assumption that Im v ≡ 0, where
w = wbox or w = wΦ, and u = uJE or u = uJ+K

E . (a) E(u, v); (b1) E(u, v); (b2) E(u, vfiltE ).

One can see that, in our examples, the use of the a priori assumption Im v ≡ 0 strongly reduces
E(u, v) for smooth v and E(u, vfiltE ) for non-smooth v with w = wΦ.

Next, it is important to note that in some cases the reconstruction based completely on the
NCG iterations with the zero initialization does not converges to the correct solution, whereas our
method does. In particular, we obtained such examples as follows:

(a) We take v which is 5 times smaller and w which is 100 times smaller than v, w shown in
Fig. 2(a);

(b) We take v which is 10 times smaller and w which is 50 times smaller than v, w shown in
Fig. 2(b).

Fig. 10 shows the L2 discrepancy E(σ[ujE + w1]
comp, σ[v1]

meas) on ME,M1,M2 and relative error
E(ujE, v) on XN ∩D as functions of j, where ujE are constructed via our method (solid lines) and
NCG method (dash lines). Note that Fig. 10(a) shows that the L2 discrepancy asymptotically
decreases even for the pure NCG method (i.e., with zero initialization), i.e., the pure NCG method
converges to some local minimum. In contrast, Fig. 10(b) shows that the pure NCG method fails
to converge to the global minimum, whereas our iterations do converge properly.

Note that in this example the background potential is very small in comparison to unknown
potential. Recall that for zero background Problem 1 does not have unique solution. Therefore,
for relatively small potentials one can expect instability of convergence of iterative NCG method.
In contrast, lines 3–6 of Alg. 3 are exact, and they are more stable for relatively small w.
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Figure 10: L2 discrepancy E(σ[ujE + w1]
comp, σ[v1]

meas) and relative error E(ujE, v) as functions
of j, in comparison with Enoise in (5.4) (horizontal lines). Solid lines indicate our iterations for
j = 1, ..., J, dashed line indicate Newton-CG iterations. Blue: smooth v. Red: non-smooth v.
For the plots ’Our + NCG’, the NCG iterations start with j = J + 1 = 7 for smooth v and
j = J + 1 = 11 for non-smooth v. See notations (5.3).

6 Conclusions
In the present work we present new results on phaseless monochromatic inverse scattering with
only one known background scatterer.

In comparison with [1], we reduce the required amount of data by a factor three: Theoretically,
[1] deals with Problem 2(B) for d ≥ 2 and n = 2, that is approximately reconstructs v from the
three differential scattering cross sections {σ[v], σ[v + w1], σ[v + w2]} with known background
scatterers w1, w2, developing methods of [2], [35], [37]. In addition, numerically, [1] deals with
Problems 1(B) and 2(B) for d = 2 and n = 2 or n = 3. In turn, the present work deals with
Problems 1(B) and 2(B) for d = 2 and n = 1 or even Problems 1(A) and 2(A) developing
theoretical and numerical methods of [1], [35], [41]. In the latter case only one differential scattering
cross section σ[v + w1] is needed.

In comparison with [41], in particular, we take into account multiple scattering in the frame-
work of monochromatic iterative reconstruction algorithm and develop numerical implementations,
using approaches of [1], [35]. Theoretically, [41] deals only with the reconstructions given by Al-
gorithm 1 with QE given by (2.39) for phaseless Fourier inversion, and by formulas (2.36), (2.10)
for phaseless inverse Born scattering, without numerical implementation yet. The present work
strongly develops these theoretical results already by Theorem 3.2 for phaseless Fourier inver-
sion and mainly by Theorem 3.7 for phaseless inverse non-linearised scattering. In particular, we
establish rapid convergence of approximate monochromatic reconstructions vE and ujE to v, as
E → +∞. Moreover, in the present work we implement numerically theoretical results of [41] and
of our new theoretical results in Theorem 3.2 and Theorem 3.7.

In some respects the properties of the numerical implementations of the present work are
similar to those in [1]: inversion of the discrete non-uniform Fourier transform T mentioned in
Section 4.2 is realised using the conjugate gradient method; iterative reconstructions use the same
solver for direct scattering problems; mathematical justification of these iterations goes back to
[35]; at the end the reconstruction results are improved using the Newton-CG method; the same
Poisson model for noisy data is used.

The main differences are as follows: theoretical reconstruction formulas are essentially differ-
ent already in the Born approximation and then for iterations; required grid sizes are significantly
larger in view of conditions like dist(D,Ω1) > diamD required in [41] and the present work (see
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Section 2.3); the initial CG approach for inversion of T was not working properly for reconstruc-
tions of the present work and we modified it taking into account a priori information given by
theoretical formulas (4.12)–(4.14) recalled in Section 4.3; less measurements and a lower total num-
ber of ’Poisson count’s, and less direct problem solutions are needed by the numerical methods of
the present work.

Natural further research includes study of applicability limits of numerical implementations
with respect to different parameters of the algorithm, extension of the numerical implementations
to the three-dimensional case, and reconstructions from real data. The experimental scheme could
be similar to that in [43].
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Appendix A Proof of Lemma 3.6.
To prove Lemma 3.6 we use, in particular, Lemma 2.1 and the following additional lemma.

Lemma A.1. Under the assumptions of Lemma 2.1, the following estimates hold:

|f(k, l)| ≤ 3

2
(2π)−dNc21(d, s), (A.1)

|f(k, l)− fappr(k, l)| ≤ (2π)−dc4(s,D)bE−α, (A.2)
c4(s,D) =

(
3c21(d, s)c5(D, s) + µ(D)

)
where (k, l) ∈ ME, E

1/2 ≥ ρ1(d, s,N), c1 is given by (2.19), c5(D, s) = maxD(1 + |x|2)s/2.

Proof. We have that

|f(k, l)| ≤ |f(k, l)− v̂(k − l)|+ |v̂(k − l)|. (A.3)

Using (1.1), (2.5), (2.18)–(2.20), (A.3) we obtain that

|f(k, l)| ≤ 2−1(2π)−dc21(d, s)∥v∥s + (2π)−dc21(d, s)∥v∥s =
3

2
(2π)−dc21(d, s)∥v∥s,

(k, l) ∈ ME, E
1/2 ≥ ρ1(d, s,N).

(A.4)

Thus, estimate (A.1) is proved.
Next, we have that

|f(k, l)− fappr(k, l)| ≤ |δf(k, l)− δfappr(k, l)|+ |v̂(k − l)− v̂appr(k − l, E)|, (A.5)

where

f(k, l) = v̂(k − l) + δf(k, l), (A.6)
fappr(k, l) = v̂appr(k − l, E) + δfappr(k, l). (A.7)
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Due to formula (4.11) of [35], we have that

|δf(k, l)− δfappr(k, l)| ≤ 6(2π)−da0(d, s/2)c
2
1(d, s)c5(D, s)∥v∥sbE−α−1/2,

(k, l) ∈ ME, E
1/2 ≥ ρ1(d, s,N).

(A.8)

Using (1.1), (2.5), (2.19)–(2.22), (A.5), (A.8), we obtain that

|f(k, l)− fappr(k, l)| ≤ 3(2π)−dc21(d, s)c5(D, s)bE
−α + (2π)−dµ(D)bE−α

= (2π)−d
(
3c21(d, s)c5(D, s) + µ(D)

)
bE−α,

for (k, l) ∈ ME, E1/2 ≥ ρ1(d, s,N).

(A.9)

Thus, estimate (A.2) is proved.

We set:

∆1 = f − v̂ − fappr + v̂appr, (A.10)
∆2 = f − fappr. (A.11)

We have that:

|v̂|2 = (f − δf)(f − δf) = |f |2 − fδf − fδf + δfδf ; (A.12)

− fδf − fδf + δfδf = −f(fappr − v̂appr +∆1)− f(fappr − v̂appr +∆1)+

+ (fappr − v̂appr +∆1)(fappr − v̂appr +∆1) =

= −(fappr +∆2)(fappr − v̂appr +∆1)− (fappr +∆2)(fappr − v̂appr +∆1)+

+ (fappr − v̂appr +∆1)(fappr − v̂appr +∆1) = −|fappr|2 + |v̂appr|2 +∆3,

(A.13)

where δf is defined by (A.6), and

∆3 := −∆2(fappr − v̂appr +∆1)−∆2(fappr − v̂appr +∆1) + ∆1∆1 − fappr(−v̂appr +∆1)

− fappr(−v̂appr +∆1) + fappr(−v̂appr +∆1) + (−v̂appr +∆1)fappr − v̂appr∆1 −∆1v̂appr =

= −∆2(fappr − v̂appr +∆1)−∆2(fappr − v̂appr +∆1) + ∆1∆1 − v̂appr∆1 −∆1v̂appr.

(A.14)

From (A.14) it follows that:

|∆3| ≤ 2|∆2||fappr − v̂appr|+ 2|∆1||∆2|+ |∆1|2 + 2|v̂appr||∆1|. (A.15)

From (2.24), (A.2), (A.15) it follows that

|∆3| ≤ c6(s,D)
(
N + bE−α +NbE−α−1/2

)
bNE−α−1/2, E1/2 ≥ ρ1(d, s,N). (A.16)

Lemma 3.6 is proved.

Appendix B Proof of Theorem 3.7
Reconstruction in Born approximation. Due to the definition of u1E and estimate (2.38), we
have that

∥v − u1E∥L∞(D) = O(E−α1), as E → +∞, α1 =
1

2

m− d

m+ β
. (B.1)

Induction step. Let

∥v − ujE∥L∞(D) = O(E−αj), as E → +∞, j ∈ N. (B.2)
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We consider uj+1
E defined in either Algorithm 2(A) or 2(B) with νj = 1 and τj given by (3.10). To

estimate v−uj+1
E , we use Lemma 3.6 with v+w1, ujE +w1 in place of v, vappr in case of Algorithm

2(A) and also with v itself and with ujE in place of vappr in case of Algorithm 2(B). From this
lemma we obtain that

|v̂(p) + ŵ1(p)|2 = Σj
1(p, E) +O(E−αj−1/2) as E → +∞, p ∈ B2

√
E, (B.3)

|v̂(p)|2 = Σj(p, E) +O(E−αj−1/2) as E → +∞, p ∈ B2
√
E, (B.4)

where Σj
1, Σ

j are defined by formulas 4 and 5 of Algorithm 2(B).
We set:

∆hj+1(p, E) := |v̂(p) + ŵ1(p)|2 − Σj
1(p, E), p ∈ B2

√
E,

for Algorithm 2(A);
(B.5)

∆hj+1(p, E) := |v̂(p) + ŵ1(p)|2 − |v̂(p)|2 − Σj
1(p, E) + Σj(p, E), p ∈ B2

√
E,

for Algorithm 2(B).
(B.6)

In order to estimate v̂ − ûj+1
E we repeat the proofs of Theorems 5.1 and 5.2 of [41] up to the

following detail:

• We replace formulas (114), (127), (116), (129) for ∆h(p, E) in [41] by formulas (B.5), (B.6),
(B.3), (B.4) of the present work.

We obtain that

|v̂(p)− ûj+1
E (p)| = |(Fw1(p))

−1|O(E−αj−1/2), p ∈ B2τEγj+1 , γj+1 =
αj + 1/2

m+ β
. (B.7)

In order to estimate v − uj+1
E we proceed from (B.7), and repeat the proofs of Theorems 6.1

and 6.2 of [41] up to the following details:

• Formula (136) of [41] should be replaced by

(2− δ(E))
√
E = 2τEγj+1 , γj+1 =

αj + 1/2

m+ β
, (B.8)

• vappr should be replaced by uj+1
E ,

• formula (138) for v̂ − ûj+1
E in [41] should be replaced by (B.7).

This way provides us the following estimates:

|v(x)− uj+1
E (x)| = O(E−γj+1(m−d)) +O(E−αj−1/2+γj+1(d+β)), x ∈ D. (B.9)

In addition, taking into account the value of γj+1 we have that, for E → +∞ :

|v(x)− uj+1
E (x)| = O(E−αj+1), αj+1 =

(
αj +

1

2

)
m− d

m+ β
. (B.10)

Therefore, from the properties of arithmetico-geometric sequence for {αj} we obtain:

αj =
1

2

m− d

β + d

(
1−

(
m− d

m+ β

)j
)
, ∀ j ∈ N. (B.11)

This completes the proof of Theorem 3.7.
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