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ABSTRACT

In this study, we focus on mixed data which are either observations of univariate random variables
which can be continuous or discrete, or observations of multivariate random variables such that each
variable can include both continuous and discrete components. We first propose a novel method,
called CMIh, to estimate conditional mutual information taking advantages of the previously proposed
approaches for discrete and continuous data. We then introduce a new local permutation test, called
LAT for local adaptive test, which is well adapted to mixed data. Our experiments illustrate the good
behaviour of CMIh and LAT, and show their respective abilities to accurately estimate conditional
mutual information and to detect conditional (in)dependence for mixed data.

Keywords Mixed data · conditional mutual information · conditional independence testing · permutation tests

1 Introduction

Measuring the (in)dependence between random variables from data when the underlying joint distribution is unknown
plays a key role in several settings, as in causal discovery [1], graphical model inference [2] or feature selection
[3]. Many dependence measures have been introduced in the literature to quantify the dependence between random
variables, as Mutual Information (MI) [4], distance correlation [5], kernel-based measures such as the Hilbert–Schmidt
Independence Criterion (HSIC) [6], COnstrained COvariance (COCO) [7] or copula-based approaches [8]. We focus
in this work on (conditional) mutual information, which has been successfully used in various contexts and has shown
good practical performance in terms of the statistical power of the associated independence tests [9], and consider both
quantitative and qualitative variables. A quantitative variable is a variable which has infinite support and values on
which one can use more complex distances than the mere (0−D) distance (which is 0 for two identical points and D for
points with different values). All variables which do not satisfy these two conditions are deemed qualitative. Note that
one can use the (0−D) distance on any type of variables, and that this distance is the standard distance for nominal
variables; one can of course use, if they exist, other distances than the (0−D) on qualitative variables. Continuous
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variables as well as ordinal variables with infinite support are here quantitative, whereas nominal variables and ordinal
variables with finite support are considered qualitative.

The conditional mutual information [10] between two quantitative random variables X and Y conditionally to a
quantitative random variable Z is given by1:

I(X;Y |Z) =
∫∫∫

PXY Z(x, y, z) log

(
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

)
dxdydz, (1)

where PXY Z is the joint density of (X,Y, Z) and PXY |Z (respectively PX|Z and PY |Z) is the density of (X,Y )
(respectively X and Y ) given Z. The conditional mutual information can also be expressed in terms of entropies as:

I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z),

where H(·) is the Shannon entropy [11] defined as follows for a quantitative random variable X with density PX :

H(X) = −
∫
PX(x) log(PX(x)) dx.

Conditional mutual information characterizes conditional independence in the sense that I(X;Y |Z) = 0 if and only if
X and Y are independent conditionally to Z.

Estimating conditional mutual information for purely qualitative or purely quantitative random variables is a well-
studied problem [12, 13]. The case of mixed datasets comprising both quantitative and qualitative variables is however
less studied even though mixed data are present in many applications, for example as soon as one needs to threshold
some quantitative values as in monitoring systems. The aim of this paper is to present a new statistical method to
detect conditional (in)dependence for mixed data. To do so, we introduce both a new estimator of conditional mutual
information as well as a new test to conclude on the conditional (in)dependence.

The remainder of the paper is organized as follows. Section 2 describes related work. We introduce in Section 3 our
estimator, as well as some numerical comparisons with existing conditional mutual information estimators. We present
in Section 4 the associated independence tests as well as numerical studies conducted on simulated and real datasets.
Finally, Section 5 concludes the paper.

2 Related work

We review here related work on (conditional) mutual information estimators as well as on conditional independence
testing.

2.1 Conditional mutual information

A standard approach to estimate (conditional) mutual information from mixed data is to discretize the data and to
approximate the distribution of the random variables by a histogram model defined on a set of intervals called bins
[14]. Each bin corresponds to a single point for qualitative variables and to consecutive non-overlapping intervals for
quantitative variables. Even if the approximation becomes better when dealing with smaller bins, finite sample size
requires to carefully choose the number of bins. To efficiently generate adaptive histograms model from quantitative
variables, [15] and [16] transform the problem into a model selection problem, using a criterion based on the minimum
description length (MDL) principle. An iterative greedy algorithm is proposed to obtain the histogram model that
minimizes the MDL score, from which one can derive joint and marginal distributions. The difference between the two
methods rely on the estimation, which is done for each entropy term in [15] and globally in [16]. These approaches
are very precise to estimate the value of the (conditional) mutual information even in multi-dimensional cases, but are
computational costly when the dimensions increase.

To estimate entropy, two main families of approaches have been proposed. The first one is based on kernel-density
estimates [17] and applies to quantitative data, whereas the second one is based on k-nearest neighbours and applies to
both qualitative and quantitative data. The second one is preferred as it naturally adapts to the data density and does
not require extensive tuning of kernel bandwidths. Using nearest neighbours of observations to estimate the entropy
dates back to [18], which was then generalized to a k-nearest neighbour (kNN) approach by [19]. In this method, the
distance to the kth nearest neighbour is measured for each data point, the probability density around each data point
being substituted into the entropy expression. When k is fixed and the number of points is finite, each entropy term is
noisy and the estimator is biased. However, this bias is distribution independent and can be subtracted out [20]. Along

1Equation (1) also applies to qualitative variables by replacing integrals by sums and densities by mass functions.
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this line, [21] proposed an estimator for mutual information that goes beyond the sum of entropy estimators. This latter
work was then extended to conditional mutual information in [12]. The resulting model, called FP, however only deals
with quantitative data.

More recently, [22] and [23] introduced two approaches to estimate mutual information for mixed data, however without
any conditioning set. Following these studies, [24] proposed a measure of incompatibility between the joint probability
PXY Z(x, y, z) and its factorization PX|Z(x|z)PY |Z(y|z)PZ(z) called graph divergence measure and extended the
estimator proposed in [23] to conditional mutual information, leading to a method called RAVK. As ties can occur with
a non zero probability in mixed data, the number of neighbours has to be carefully chosen. Even more recently, [25]
extended FP [12] to the mixed data case by introducing a qualitative distance metric for non-quantitative variables,
leading to a method called MS. The choice of the qualitative and quantitative distances is a crucial point in MS [26]. FP,
RAVK and MS all lead to an estimator of the form:

Î(X;Y |Z) = 1

n

n∑
i=1

ψ(kGe,i)− f(nGe,XZ,i)− f(nGe,Y Z,i) + f(nGe,Z,i).

Ge stands for either FP, RAVK or MS, n represents the number of the observations and ψ(.) is the digamma function.
For FP, kFP,i is a constant hyper-parameter, f(nFP,W,i) = ψ(nFP,W,i + 1) with W being either (X,Z), (Y,Z) or
(Z). Denoting, as usual, the ℓ∞ distance between i and its k-nearest-neighbour in global space by ρk,i/2, nFP,W,i

represents the number of points in the joint space W that have an ℓ∞ distance strictly smaller than ρk,i/2:

nFP,W,i = |{j : ||ωi − ωj ||∞ < ρk,i/2, j ̸= i}| , (2)

where ωj and ωi represent the coordinates of the points in the space corresponding to W . For RAVK, to adapt it to
mixed data, [25] proposed to use f(nRAVK,W,i) = log(nRAVK,W,i + 1) where nRAVK,W,i includes boundary points:

nRAVK,W,i = |{j : ||ωi − ωj ||∞ ≤ ρk,i/2, j ̸= i}| . (3)

Furthermore, kRAVK,i = nRAVK,(X,Y,Z),i. Lastly, for MS, one has f(nMS,W,i) = ψ(nMS,W,i), nMS,W,i and kMS,i

being defined as for RAVK.

We also want to mention the proposal made by [27] of a two-stage estimator based on generative models and classifiers
as well as the refinement introduced in [28] and based on a neural network that integrates the two stages into a single
training process. It is however not clear how to adapt to mixed data these methods primarily developed for quantitative
data.

2.2 Conditional independence tests

To decide whether the estimated conditional mutual information value is small enough to conclude on the (in)dependence
of two variables X and Y conditionally to a third variable Z in a finite sample regime, one usually relies on statistical
independence tests. The null and the alternative hypotheses are respectively defined by

H0 : X ⊥⊥ Y |Z and H1 : X ⊥̸⊥ Y |Z,

where ⊥⊥ means independent of and⊥̸⊥ means not independent of. In the independence testing literature, two main
families exist, asymptotic and non-asymptotic ones (see e.g. [29, chapter 3]). The former is used when the sample
size is big enough and relies on the asymptotic distribution of the estimator under the null hypothesis, while the latter
applies to any sample size without any prior knowledge of the asymptotic null distribution of the estimator. Note that
conditional independence testing is a more difficult problem than its non-conditional counterpart [30]. In particular, the
asymptotic behaviour of the conditional mutual information estimator under the null hypothesis is usually unknown.

Kernel-based tests are known for their capability to deal with nonlinearity and high dimensions. The Hilbert–Schmidt
independence criterion (HSIC) has been first proposed for testing unconditional independence. [31] extended HSIC
to the conditional independence setting using the Hilbert-Schmidt norm of the conditional cross-covariance operator.
Another representative of this test category is the kernel conditional independence test (KCIT) proposed by [32].
It works by testing for vanishing correlation between residual functions in reproducing kernel Hilbert spaces. To
reduce the computational complexity of KCIT, [33] used random Fourier features to approximate KCIT and thereby
proposed two tests, namely the randomised conditional independence test that explores the partial cross-covariance
matrix between (X,Z) and Y , and the randomized conditional correlation test (RCoT) that tests X and Y after some
transformations to remove the effect of Z. RCoT can be related to two-step conditional independence testing [34],
computing first conditional expectations of feature maps and then testing the residuals. [35] also proposed a kernel
conditional independence permutation test. They used a specific permutation of the samples to generate data from
PX|Z(x|z)PY |Z(y|z)PZ(z) which unfortunately requires solving a time-consuming linear program, then performed a
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kernel-based two-sample test [36]. However, kernel-based tests need to carefully adjust bandwidth parameters that
characterise the length scales in the different subspaces of X,Y, Z and can only be implemented on purely quantitative
data.

More recently, [30] proposed the generalised covariance measure (GCM) test. For univariateX and Y , instead of testing
for independence between the residuals from regressing X and Y on Z, the GCM tests for vanishing correlations. How
to extend this approach to mixed data is however not clear. [37] employed likelihood-ratio tests based on regression
models to devise conditional independence tests for mixed data; however, in their approach one needs to postulate a
regression model.

Permutation tests [38] are popular when one wants to avoid assumptions on the data distribution. For testing the
independence of X and Y conditionally to Z, permutation tests randomly permute all values in X . If this destroys the
potential dependence between X and Y , as desired, this also destroys the one between X and Z, which is not desirable.
In order to preserve the dependence between X and Z, [39] proposed a local permutation test in which permutations
within X are done within similar values of Z. We extend in this paper this test, designed for quantitative data, to the
mixed data case.

3 Hybrid conditional mutual information estimation for mixed data

The two most popular approaches to estimate conditional mutual information are based on the k-nearest neighbour
method [21, 12], which has been mostly used on quantitative variables, or on histograms [15, 16], particularly adapted
to qualitative variables. We show in this section how these two approaches can be combined to derive an estimator for
mixed data.

Let us consider three mixed random vectors X , Y and Z, where any of their components can be either qualitative or
quantitative. Let us denote by Xt (respectively Y t, Zt) the sub-vector of X (respectively Y , Z) composed by the
quantitative components. Similarly, we denote by Xℓ (respectively Y ℓ, Zℓ)the sub-vector of qualitative components of
X (respectively Y , Z). Then, from the permutation invariance property of Shannon entropy, the conditional mutual
information can be written as:

I(X;Y |Z) =H(X,Z ) +H(Y , Z )−H(X,Y , Z )−H(Z )

=H(Xt, Xℓ, Zt, Zℓ) +H(Y t, Y ℓ, Zt, Zℓ)−H(Xt, Xℓ, Y t, Y ℓ, Zt, Zℓ)−H(Zt, Zℓ).

Now, from the property H(U, V ) = H(U) +H(V |U), which is valid for any couple of random variables (U, V ), one
gets:

I(X;Y |Z) =H(Xt, Zt|Xℓ, Zℓ) +H(Y t, Zt|Y ℓ, Zℓ)−H(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ)

−H(Zt|Zℓ) +H(Xℓ, Zℓ) +H(Y ℓ, Zℓ)−H(Xℓ, Y ℓ, Zℓ)−H(Zℓ). (4)

Note that here the conditioning is only expressed with respect to qualitative components, which leads to a simpler
estimation than the one obtained by conditioning with quantitative variables. We now detail how the different terms in
the above expression are estimated.

3.1 Proposed hybrid estimator

Let us now consider an independently and identically distributed sample of size n denoted (Xi, Yi, Zi)i=1,...,n. We
estimate the qualitative entropy terms of Equation (4), namely H(Xℓ, Zℓ), H(Y ℓ, Zℓ), H(Xℓ, Y ℓ, Zℓ) and H(Zℓ),
using histograms in which bins are defined by the Cartesian product of qualitative values. We provide here the estimation
of H(Xℓ, Zℓ), the other terms are estimated in the same way. The theoretical entropy is expressed as:

H(Xℓ, Zℓ) = −E
[
logPXℓ,Zℓ(Xℓ, Zℓ)

]
= −

∑
xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

PXℓ,Zℓ(xℓ, zℓ) log
(
PXℓ,Zℓ(xℓ, zℓ)

)
,

where Ω(·) corresponds to the probability space of a given random variable and PXℓ,Zℓ is the probability distribution of
(Xℓ, Zℓ). The probability distribution of qualitative variables can be directly estimated via their empirical versions:

P̂Xℓ,Zℓ(xℓ, zℓ) =
1

n

n∑
i=1

1{(Xℓ
i ,Z

ℓ
i )=(xℓ,zℓ)}, (5)
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with 1{·} is the indicator function. The resulting plug-in estimator is then given by

Ĥ(Xℓ, Zℓ) = −
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

P̂Xℓ,Zℓ(xℓ, zℓ) log
(
P̂Xℓ,Zℓ(xℓ, zℓ)

)
. (6)

Let us now turn to the conditional entropies of Equation (4) for quantitative variables conditioned on qualitative variables
and let us consider the term H(Xt, Zt|Xℓ, Zℓ). By marginalizing on (Xℓ, Zℓ) one obtains:

H(Xt, Zt|Xℓ, Zℓ) =
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

H(Xt, Zt|Xℓ = xℓ, Zℓ = zℓ)PXℓ,Zℓ(xℓ, zℓ). (7)

As before, the probabilities involved in Equation (7) are estimated by their empirical versions. The estimation of the
conditional entropies H(Xt, Zt|Xℓ = xℓ, Zℓ = zℓ) is performed using the classical nearest neighbour estimator [19]
with the constraint that (Xℓ, Zℓ) = (xℓ, zℓ): the estimation set consists of the sample points such that (Xℓ, Zℓ) =
(xℓ, zℓ). The resulting estimator is given by:

Ĥ(Xt, Zt|Xℓ = xℓ, Zℓ = zℓ) = ψ(nxz)− ψ(kxz) + log (vdxz ) +
dxz
nxz

nxz∑
i=1

log ξxz(i), (8)

where ψ is the digamma function, nxz is the size of the subsample space for which (Xℓ
i , Z

ℓ
i ) = (xℓ, zℓ), ξxz(i)

is twice the distance of the ith subsample point to its kxz nearest neighbour, and kxz is the number of nearest
neighbours retained. In the sequel, we set kxz to max(⌊nxz/10⌋, 1), with ⌊·⌋ the floor function, following [39] which
showed that this value behaves well in practice. As originally proposed in [21] and adopted in subsequent studies,
we rely on the ℓ∞-distance which is associated with the maximum norm: for a vector w = (w1, . . . , wm) in Rm,
∥w∥∞ = max(|w1|, . . . , |wm|). Finally, dxz is the dimension of the vector (Xt, Zt) and vdxz

is the volume of the unit
ball for the distance metric associated with the maximum norm in the joint space associated with Xt and Zt. The other
entropy terms are estimated in the same way, the associated estimators being denoted by Ĥ(Zt|Zℓ), Ĥ(Y t, Zt|Y ℓ, Zℓ)

and Ĥ(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ).

The conditional mutual information estimator for mixed data, which we will refer to as CMIh, finally amounts to:

Î(X;Y |Z) = Ĥ(Xt, Zt|Xℓ, Zℓ) + Ĥ(Y t, Zt|Y ℓ, Zℓ)− Ĥ(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ)

− Ĥ(Zt|Zℓ) + Ĥ(Xℓ, Zℓ) + Ĥ(Y ℓ, Zℓ)− Ĥ(Xℓ, Y ℓ, Zℓ)− Ĥ(Zℓ), (9)

where the different terms are obtained through Equations (5), (6), (7) and (8). Notice that all the volume-type terms, as
for the log(vdxz ) term in Equation (8), are canceled out in Equation (9). Indeed, it is well known that the volume of the
unit ball in Rp with respect to to the maximum norm is 2p and this leads to the following plain equation:

log(vdxyz )− log(vdxz )− log(vdyz ) + log(vdz ) = log

(
2dxyz2dz

2dxz2dyz

)
= log

(
2dx+dy+dz2dz

2dx+dy2dy+dz

)
= 0.

The main steps to derive the hybrid estimator CMIh are summarized in Algorithm 1.

Remarks. It is worth mentioning that our estimation of the entropy of the quantitative part is slightly different from
the one usually used. In our estimation, the choice of the number of nearest neighbours is done independently for
each entropy term and only with respect to the corresponding subsample size. This methodological choice yields
more accurate estimators. Another important point is that the nearest neighbours are always computed on quantitative
components as the qualitative components serve only as conditioning in Eq. 9 or are involved in entropy terms estimated
through Eq. 6. Because of that, we can dispense with defining a distance on qualitative components, which is tricky as
illustrated in Section 3.2.

Consistency. Interestingly, the above hybrid estimator is asymptotically unbiased and consistent, as shown below.

Theorem 3.1. Let (X,Y, Z) be a qualitative-quantitative mixed random vector. The estimator Î(X;Y |Z) defined in
Equation (9) is consistent. Meaning that, for all ε > 0

lim
n→∞

P (|Î(X;Y |Z)− I(X;Y |Z)| > ε) = 0.

In addition, Î(X;Y |Z) is asymptotically unbiased, that is

lim
n→∞

E[Î(X;Y |Z)− I(X;Y |Z)] = 0.

5
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Algorithm 1 hybrid estimator CMIh
Input (Xi, Yi, Zi)i=1,...,n the data, isCat indexes of qualitative components;
Separate qualitative and quantitative components (Xt

i , X
ℓ
i , Y

t
i , Y

ℓ
i , Z

t
i , Z

ℓ
i )i=1,...,n using isCat;

pointsInBin = {}: indexes of points in each bin;
densityOfBin = {}: frequency of each bin;
qualitativeEntropy = 0: entropy of qualitative components;
quantitativeEntropy = 0: entropy of quantitative components;
if (Xℓ, Y ℓ, Zℓ) = ∅ then

qualitativeEntropy+ = 0;
if (Xt, Y t, Zt) = ∅ then

quantitativeEntropy+ = 0;
else

Compute Ĥ(Xt, Y t, Zt) using the analogous of Eq. (8);
quantitativeEntropy+ = Ĥ(Xt, Y t, Zt);

end if
else

for (xℓ, yℓ, zℓ) ∈ Ω((Xℓ, Y ℓ, Zℓ)) do
pointsInBin[(xℓ, yℓ, zℓ)] = {i ∈ {1, . . . , n} : (Xℓ

i = xℓ, Y ℓ
i = yℓ, Zℓ

i = zℓ)};
densityOfBin[(xℓ, yℓ, zℓ)] = length(pointsInBin[(xℓ, yℓ, zℓ)])/n;

end for
Ĥ(Xℓ, Y ℓ, Zℓ) = 0;
for k ∈ keys(densityOfBin) do

p = densityOfBin[k];
Ĥ(Xℓ, Y ℓ, Zℓ)+ = −p log(p);

end for
qualitativeEntropy+ = Ĥ(Xℓ, Y ℓ, Zℓ);
if (Xt, Y t, Zt) = ∅ then

quantitativeEntropy+ = 0;
else

for k ∈ keys(densityOfBin) do
p = densityOfBin[k];
Compute Ĥ(Xt, Y t, Zt|(Xℓ, Y ℓ, Zℓ) = k) using the analogous of Eq. (8) on observations

pointsInBin[k];
Ĥ(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ)+ = pĤ(Xt, Y t, Zt|(Xℓ, Y ℓ, Zℓ) = k);

end for
quantitativeEntropy+ = Ĥ(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ);

end if
end if
Compute other terms in Eq. (9) using marginalization of the joint density;
Î(X;Y |Z) = quantitativeEntropy + qualitativeEntropy;
Output Î(X;Y |Z).

Proof. It is well known that all linear combination of consistent estimators is consistent. This directly stems from
Slutsky’s theorem [40]. It remains to show the consistency of each term in the right-hand side of Equation (9).
Histogram-based estimators Ĥ(Xℓ, Zℓ), Ĥ(Y ℓ, Zℓ), Ĥ(Xℓ, Y ℓ, Zℓ) and Ĥ(Zℓ) are consistent according to [41]. By
analogy, we only show the consistency of the estimator Ĥ(Xt, Zt|Xℓ, Zℓ), the same results apply to the remaining
estimators. Let ε > 0, we write

P (|Ĥ(Xt, Zt|Xℓ, Zℓ)−H(Xt, Zt|Xℓ, Zℓ)| > ε)

=
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

P (|Ĥ(Xt, Zt|Xℓ, Zℓ)−H(Xt, Zt|Xℓ, Zℓ)| > ε|Xℓ = xℓ, Zℓ = zℓ)

×P (Xℓ = xℓ, Zℓ = zℓ).

6
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Now, conditionally to given values ofXℓ and Zℓ, the estimator Ĥ(Xt, Zt|Xℓ, Zℓ) is the traditional k-nearest neighbors
built using the maximum-norm distance. This estimator is shown to be consistent, the reader can refer to [42] for more
details. In other words,

lim
n→∞

P (|Ĥ(Xt, Zt|Xℓ, Zℓ)−H(Xt, Zt|Xℓ, Zℓ)| > ε|Xℓ = xℓ, Zℓ = zℓ) = 0.

This concludes the proof of consistency. Moreover, knowing that the histogram and k-nearest neighbors estimators are
asymptotically unbiased, it is plain that our estimator also has this property.

3.2 Experimental illustration

We compare in this section our estimator, CMIh, with several estimators described in Section 2, namely FP [12], MS
[25], RAVK [24], and LH [16]. FP, MS and RAVK are methods based on the k-nearest neighbour approach. As for
CMIh, the hyper-parameter k for these methods is set to the maximum value of ⌊n/10⌋ and 1, where n is the number of
sampling points. To be consistent, we use for all three methods the widely used (0−Dℓ) distance for the qualitative
components: this distance is 0 for two equal qualitative values and Dℓ otherwise. In our experiments, Dℓ is set to 1,
following [25]. Laslty, for FP, which was designed for quantitative data, we set the minimum value of nFP,W,i to 1
to avoid nFP,W,i = 0 in Equation (2). Moreover, LH is a histogram method based on MDL [16]. We use the default
values for the hyper-parameters of this method: the maximum number of iterations, imax, is set to 5, the threshold to
detect qualitative points is also set to 5, the number of initial bins in quantitative component, Kinit, is set to 20 log(n)
and the maximum number of bins, Kmax, is set to 5 log(n) (all entropies are computed in natural logarithm).

To assess the behaviour of the above methods, we first consider the mutual information with no conditioning (I(X;Y )),
then with a conditioning variable which is independent of the process so that I(X;Y |Z) = I(X;Y ), and finally with a
conditioning variable which makes the two others independent, such that I(X;Y |Z) = 0. We illustrate these three
cases by either considering that X and Y are both quantitative or mixed, in which case they can have either balanced or
unbalanced qualitative classes. Lastly, following [16, 25], the conditioning variable Z is always qualitative.

Each (conditional) mutual information is computable theoretically so that one can measure the mean squared error
(MSE) between the estimated value and the ground truth, which will be our evaluation measure. For each of the above
experiments, we sample data with sample size n varying from 500 to 2000 and generate 100 data sets per sample size
to compute statistics. More precisely, we use the following experimental settings, the first three ones being taken from
[16, 23, 25]. The last four ones shed additional light on the different methods. Note that, as we reuse here the settings
defined in [16, 23, 25], qualitative variables are generated either from a uniform distribution on a discrete set, a binomial
distribution or a Poisson distribution, this latter case being an exception to our definition of what is a qualitative variable.
We do not want to argue here on whether the Poisson variable should be considered quantitative or qualitative and
simply reproduce here a setting used in previous studies for comparison purposes.

• MI quantitative.
(
X
Y

)
∼ N

((
0
0

)
,

(
1 0.6
0.6 1

))
with I(X;Y ) = − log(1− 0.62)/2.

• MI mixed. X ∼ U({0, . . . , 4}) and Y |X = x ∼ U([x, x+ 2]), we get I(X;Y ) = log(5)− 4 log(2)/5;

• MI mixed imbalanced. X ∼ Exp(1) and Y |X = x ∼ 0.15δ0 + 0.85Pois(x). The ground truth is
I(X;Y ) = 0.85(2 log 2− γ −

∑∞
k=1 log k2

−k) ≈ 0.256, where γ is the Euler-Mascheroni constant.

• CMI quantitative, CMI mixed and CMI mixed imbalanced. We use the previous setting and add and independent
qualitative random variable Z ∼ Bi(3, 0.5).

• CMI quantitative ⊥⊥. Z ∼ Bi(9, 0.5), X|Z = z ∼ N (z, 1) and Y |Z = z ∼ N (z, 1), the ground truth is then
I(X;Y |Z) = 0.

• CMI mixed ⊥⊥. Z ∼ U({0, . . . , 4}), X|Z = z ∼ U([z, z + 2]) and Y |Z = z ∼ Bi(z, 0.5), the ground truth
is then I(X;Y |Z) = 0.

• CMI mixed imbalanced ⊥⊥. X ∼ Exp(10), Z|X = x ∼ Pois(x) and Y |Z = z ∼ Bi(z+5, 0.5), the ground
truth is I(X;Y |Z) = 0.

Figure 1 displays the mean squared error (MSE) of the different methods in the different settings on a log-scale. As one
can note, FP performs well in the purely quantitative case with no conditioning but is however not competitive in the
mixed data case. MS and RAVK are close to each other and, not surprisingly, they have similar performance in most
cases. MS however has a main drawback as it gives the value 0, or close to 0, to the estimator in some particular cases.
Indeed, as noted by [25], if, for all points i, the k-nearest neighbour is always determined by Z, then, regardless of the
relationship between X , Y and Z, kMS,i = nMS,XZ,i = nMS,Y Z,i = nMS,Z,i and the estimator equals to 0.
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Figure 1: Synthetic data with known ground truth. MSE (on a log-scale) of each method with respect to the sample size
(in abscissa) over the nine settings retained.

In addition, if the k-nearest-neighbour distance of a point i, ρk,i/2, is such that ρk,i/2 ≥ Dℓ where Dℓ ∈ N is the
distance between different values of qualitative variables, then one has:

nMS,Y Z,i = nMS,Z,i = n and kMS,XY Z,i = nMS,XZ,i.

The first equality directly derives from the fact that one needs to consider points outside the qualitative class of point i
(as ρk,i/2 ≥ Dℓ) and that all points outside this class are at the same distance (Dℓ). By definition, nMS,Y Z,i ≤ nMS,Z,i;
furthermore, nMS,Z,i ≤ nMS,Y Z,i as a neighbour of i in XZ with distance ≥ Dℓ is a neighbour of i in XY Z as Y
cannot lead to a higher distance, which explains the second equality.

If a majority of points satisfy the above condition (ρk,i/2 ≥ Dℓ), then MS will yield an estimator close to 0, regardless
of the relation between the different variables. This is exactly what is happening in the mixed and mixed imbalance cases
as the number of nearest points considered, at least 50, can be larger than the number of points in a given qualitative
class. In such cases, MS will tend to provide estimators close to 0, which is the desired behaviour in the bottom-middle
and bottom-right plots of Figure 1, but not in the top-middle, top-right, middle-middle and middle-right plots (in these
latter cases, the ground truth is not 0 which explains the relatively large MSE value of MS and RAVK). Our proposed
estimator does not suffer from this drawback as we do not directly compare two different types of distances, one for
quantitative and one for qualitative data.

Comparing LH and CMIh, one can see that, overall, these two methods are more robust than the other ones. The first
and second lines of Figure 1 show that the additional independent qualitative variables Z does not have a large impact
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Figure 2: Sensitivity to dimensionality Left: MSE (on a log-scale) of each method for the multidimensional conditional
mutual information (M-CMI) when increasing the dimension (x-axis) of the conditional variable from 0 to 4; the
sample size is fixed to 2,000. Middle: MSE (on a log-scale) of each method but LH for the multidimensional mutual
information (M-MI) when increasing the number of observations. Right: MSE (on a log-scale) of each method but
LH for the multidimensional independent conditional mutual information (M-ICMI) when increasing the number of
observations.

on the accuracy of the two estimators. The comparison of the second and third lines of Figure 1 furthermore suggests
that, if the relationship between variables changes, the two estimators still have a stable performance.

Sensitivity to dimensionality We conclude this comparison by testing how sensitive the different methods are to
dimensionality. To do so, we first increase the dimensionality of the conditioning variable Z from 1 to 4 in a setting
whereX and Y are dependent and independent of Z (we refer to this setting as M-CMI for multidimensional conditional
mutual information):

X ∼ U({0, . . . , 4}), Y |X = x ∼ U([x, x+ 2]), Zr ∼ Bi(3, 0.5), r ∈ {0, ..., 4}.
The ground truth in this case is I(X;Y |Z1, . . . , Z4) = I(X;Y ) = log(5)− 4 log(2)/5.

The results of this first experiment, based on 100 samples of size 2, 000 for the different components of Z (from 0 to
4), are displayed in Figure 2 (left). As one can observe, our method achieves an MSE close to 0.001 even though the
dimension increases to 4. LH has a comparable accuracy for small dimensions but deviates from the true value for
higher dimensions. For MS and RAVK, as mentioned in [25], when X and Y have fixed-dimension, the higher the
dimension of Z, the greater the probability that the estimator will give a zero value. This can explain why for dimensions
above 1, the MSE remains almost constant for these two methods. Lastly, FP performs poorly when increasing the
dimension of the conditioning set.

It is also interesting to look at the computation time of each method on the above data, given in Table 1. One can note
that our method is faster than the other ones and remains stable when the dimension of Z increases.

Let B denote the cardinal of the Cartesian product Xℓ×Y ℓ×Zℓ (B = 1 when all variables are quantitative and B = 4
in the setting retained here). The complexity of computing the four entropy terms in CMIh (Eq. 9) containing only
qualitative variables is O(Bn) according to Eq. 6. For the other entropy terms, one needs to apply at most B times
the computation in Eq. 8, which has an average complexity of O(( n

B )2kmt) (and O(( n
B ) log( n

B )(k +mt)) for the
approximation using KD-trees [43]), where n

B represents the average number of sample points considered in Eq. 8,
k = max(⌊n/10⌋, 1), and mt is the number of quantitative components over all variables (mt = 2 in the setting
considered here). Thus, the overall complexity of CMIh is O(Bn+ kmtn

2

B ) (and O(Bn+ (k +mt)n log(
n
B )) with

KD-trees). In contrast, the complexity of MS, RAVK and FP is O(kmn2) (and O((k +m)n log(n)) using KD-trees),
where m is the number of dimensions over all variables (m = 6 in the setting considered here). This explains the
differences observed in Table 1. Lastly, note that the complexity of LH is O(Km

maxK
2
initimaxmt) [16], which limits its

application to very small datasets.

We then focus on the multivariate version of (unconditional) mutual information for mixed data based using the
following generative process (this setting is referred to as M-MI for multidimensional mutual information):(

X1

Y1

)
∼ N

((
0
0

)
,

(
1 0.6
0.6 1

))
, X2 ∼ U({0, . . . , 4}), Y2|X2 = x2 ∼ U([x2, x2 + 2]),

X3 ∼ Exp(1) and Y3|X3 = x3 ∼ 0.15δ0 + 0.85Pois(x3).

9



CMI Estimator for Mixed Data and Associated Test

The ground truth in this case is I(X1, X2, X3;Y1, Y2, Y3) ≈ 1.534.

Figure 2 (middle) displays the results obtained by the different methods but LH, computationally too complex to be
used on datasets of a reasonable size, when the number of observations increases from 500 to 2, 000. As one can note,
CMIh is the only method yielding an accurate estimate of the mutual information on this dataset. Both RAVK and MS
suffer again from the fact that they yield estimates close to 0, which is problematic on this data. We give below another
setting in which this behaviour is interesting; it remains nevertheless artificial.

Lastly, we consider the case where the two variables of interest are conditionally independent (we refer to this case as
M-ICMI for multidimensional independent conditional mutual information). The generative process we used is:

Z1 ∼ U({0, . . . , 4}), Z2 ∼ Bi(3, 0.5), Z3 ∼ Exp(1), Z4 ∼ Exp(10),

X1, X2|(Z3 = z3, Z4 = z4) ∼ N
((

z3
z4

)
,

(
1 0
0 1

))
, X3|(Z1 = z1, Z2 = z2) ∼ Bi(z1 + z2, 0.5),

Y |(Z1 = z1, Z2 = z2) ∼ Bi(z1 + z2, 0.5).

The ground truth in this case is I(X1, . . . , X3;Y |Z1, . . . , Z4) = 0.

Figure 2 (right) displays the results obtained on all methods but LH. As for the univariate case, both RAVK and
MS obtain very good results here but this is due to their pathological behaviour discussed above. CMIh yields a
reasonable estimate (with an MSE below 0.1) when the number of observations exceeds 1, 250. FP fails here to provide
a reasonable estimate.

Table 1: We report, for each method, the mean computation time in seconds (its variance is given in parentheses), while
varying the size of the conditional set from 0 to 4 with sample size fixed to 2 000.

Dim of Z 0 1 2 3 4
CMIh 8.30(0.14) 5.30(0.05) 4.37(0.04) 4.16(0.04) 4.39(0.08)

FP 16.19(0.40) 22.09(0.27) 24.28(0.21) 25.91(0.08) 27.41(0.07)
LH 0.54(0.07) 1.09(0.02) 6.52(0.12) 58.58(13.74) 691.68(123.90)
MS 16.28(0.40) 22.08(0.07) 24.26(0.10) 26.07(0.06) 27.73(0.06)

RAVK 16.14(0.11) 22.07(0.07) 24.28(0.08) 25.89(0.09) 27.44(0.14)

Overall, CMIh, which can be seen as a trade-off between k-nearest neighbour and histogram methods, performs well,
both in terms of the accuracy of the estimator and in terms of the time needed to compute this estimator. Among the
pure k-nearest neighbour methods, MS, despite its limitations, remains the best one overall in our experiments in terms
of accuracy. Its time complexity is similar to the ones of the other methods of the same class. The pure histogram
method LH performs well in terms of accuracy of the estimator, but its computation time is prohibitive. Two methods
thus stand out from our analysis, namely CMIh and MS.

4 Testing conditional independence

Once an estimator for mutual information has been computed, it is important to assess to which extent the obtained
value is sufficiently different from or sufficiently close to 0 so as to conclude on the dependence or independence of the
involved variables. To do so, one usually relies on statistical tests, among which permutation tests are widely adopted as
they do not require any modelling assumption [38]. We also focus on such tests here which emulate the behaviour of the
estimator under the null hypothesis (corresponding to independence) by permuting values of variables. Recently, [39]
showed that, for conditional tests and purely quantitative data, local permutations that break any possible dependence
between X and Y while preserving the dependence between X and Z and between Y and Z are to be preferred over
global permutations. Our contribution here is to extend this method to mixed data.

4.1 Local-adaptive permutation test for mixed data

Let us consider a sample of independent realisations, denoted (Xi, Yi, Zi)i=1,...,n, generated according to the distribution
PXY Z where X , Y and Z are multidimensional variables with quantitative and/or qualitative components. From this
sample, one can compute an estimator, denoted Î(X;Y |Z), of the conditional mutual information using the hybrid
method CMIh introduced in Section 3. In order to perform a permutation test, one needs to generate samples, under
the null hypothesis, from the distribution PX|Z(x|z)PY |Z(y|z)PZ(z). When the conditioning variable Z is qualitative,
this boils down to randomly permuting the marginal sample of X while preserving the one of Y , conditionally to
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Algorithm 2 Local-Adaptive permutation test
Input (Xi, Yi, Zi)1≤i≤n the data, B the number of permutations, isCat indexes of qualitative component, k the
hyper-parameter;
Compute Î(X,Y |Z) from the original data;
Separate qualitative and quantitative components of Z as (Zt

i , Z
ℓ
i )1≤i≤n using isCat;

for i ∈ {1, . . . , n} do
if Zℓ ̸= ∅ then

nℓi = length({m ∈ {1, . . . , n} : Zℓ
m = Zℓ

i });
ki = min(k, nℓ

i);
end if
Compute dki

i , the distance from Zi to its ki-nearest-neighbour in Z by applying two different distances metrics
respectively to two different types of components;
Ni = {j ∈ {1, . . . , n} : ||Zj − Zi|| ≤ dki

i };
end for
for b ∈ {1, . . . , B} do

Generate a sample (Xπb(i), Yi, Zi)1≤i≤n locally permuted with respect to (Ni)1≤i≤n;
Compute the associated estimator Î(Xπb

, Y |Z);
end for
Estimate the p-value as

p̂ =
1

B

B∑
b=1

1Î(Xπb
,Y |Z)≥Î(X,Y |Z); (10)

Output The p-value p̂.

each possible value of Z [35]. In the quantitative case, one proceeds in a similar way and permutes the X values of
the neighbours of each point i [39, 35]. In our case, as the variable Z possibly contains quantitative and qualitative
components, we propose to use an adaptive distance dist which corresponds to the absolute value if the component is
quantitative and to the (0−∞) distance (which is 0 for identical values and∞ for different values) if the component is
qualitative. For Zi = (Z1

i , . . . , Z
m
i )T and Zj = (Z1

j , . . . , Z
m
j )T two realizations of the random vector Z, where m is

the dimension of the data, the distance between these two points is then defined as:

D(Zi, Zj) = max
r∈{1,...,m}

dist(Zr
i , Z

r
j ).

The neighbourhood of Zi consists in the set of k points closest to Zi according to D. Using the same k for all
observations may however be problematic since it is possible that the kth closest point is at a distance∞ of a given
point Zi when k is large. In such a case, all points are in the neighbourhood of Zi. To avoid this, we adapt k to each
observation using one parameter ki for each observation Zi: if Z is purely quantitative, then ki = k, where k is a global
hyper-parameter, otherwise ki = min(k, nℓ

i), where nℓi is the number of sample points which have the same qualitative
values as Zi.

Then, to generate a permuted sample, for each point i one permutes Xi with the X value of a randomly chosen point
in the neighbourhood of i while preserving Yi and Zi: a permuted sample thus takes the form (Xπ(i), Yi, Zi)i=1,...,n,
where π(i) is a random permutation over the neighbourhood of i. By construction, a permuted sample is drawn under the
null hypothesis since the possible conditional dependence is broken by the permutation. Many permuted samples finally
are created, from which one can compute CMIh estimators under the null hypothesis. Comparing theses estimators to
the one of the original sample allows one to determine whether the null hypothesis can be rejected or not [38]. Note
that, in practice, the permutations are drawn with replacement [44]. The main steps of our local-adaptive permutation
test are summarised in Algorithm 2.

4.2 Experimental illustration

We first propose an extensive analysis on simulated data and then perform an analysis on a real world data set. We
compare our test, denoted by LocAT, with two permutation tests: the first one is the local permutation test, denoted by
LocT, designed initially for purely quantitative data proposed by [39] and directly extended to mixed data using the
(0−∞) distance for qualitative components; the second test is the global permutation test, denoted by GloT. For LocT
and LocAT, we set the hyper-parameter kperm to 5 as proposed by [39]. For all tests, we set the number of permutation,
B, to 1000. We study the behaviour of each test with respect to the two best estimators highlighted in Section 3, CMIh
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Table 2: 0.01 and 0.05 threshold acceptance rates computed for the statistical test H0 = X ⊥⊥ Y |Z versus H1 = X ⊥̸⊥
Y |Z using the three tests LocT, LocAT and GloT on two estimators, CMIh and MS, on synthetic data. The number of
sampling points is 500. Each acceptance rate is computed over 10 repetitions.

CMIh-LocT CMIh-LocAT CMIh-GloT MS-LocT MS-LocAT MS-GloT
0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

C
ha

in

tℓt 1 1 1 1 0 0 1 1 1 1 1 1
ttt 1 1 1 1 0 0 1 0.9 1 0.9 0 0
ℓℓt 1 0.9 1 0.9 1 0.8 1 1 1 1 1 1
tℓℓ 1 1 1 1 1 1 1 1 1 1 1 1
ttℓ 0 0 0.8 0.4 0 0 0 0 0.5 0.3 0 0
ℓℓℓ 1 0.9 1 0.9 1 1 1 1 1 1 1 1

Fo
rk

tℓt 0.9 0.9 0.9 0.9 0 0 1 1 1 1 1 1
ttt 1 1 1 1 0 0 1 1 1 1 0 0
ℓℓt 1 1 1 1 1 1 1 1 1 1 1 1
tℓℓ 1 1 1 0.9 1 1 1 1 1 1 1 1
ttℓ 0 0 0.9 0.8 0 0 0 0 0.8 0.5 0 0
ℓℓℓ 1 1 1 1 1 1 1 0.9 1 1 1 1

C
ol

lid
er

tℓt 1 1 1 1 1 1 0 0 0 0 0 0
ttt 1 1 1 1 0.8 0.9 1 1 1 1 1 1
ℓℓt 1 1 1 1 1 1 0 0 0 0 0 0
tℓℓ 0 0 0.4 0.7 0 0 0 0 0 0 0 0
ttℓ 0.6 1 1 1 0.2 0.4 0 0 0 0 0 0
ℓℓℓ 1 1 1 1 1 1 1 1 1 1 0.4 0.9

and MS. It is important to note here that, in order to be consistent with the parameters of the original method, for MS we
use the (0−1) distance in the qualitative component to compute the estimator rather than the (0−∞) distance as in the
permutation method. We use rank transformation in each quantitative component which has the advantage of preserving
the order and putting all quantitative components on the same scale (the “first” method is used to break potential ties).

4.2.1 Simulated data

We consider here that X , Y and Z are uni-dimensional but all estimators and independence tests can be used when
the variables are multi-dimensional, as illustrated in the experiments conducted on the real dataset. We furthermore
focus on three classical structures of causal networks: the chain (X → Z → Y ), the fork (X ← Z → Y ), and the
collider (X → Z ← Y ). For the chain and the fork, X and Y are dependent and independent conditionally to Z;
for the collider, X and Y are independent and dependent conditionally to Z. In the sequel, the qualitative variables
or components with infinite possible values are treated as quantitative ones. For each structure, one can potentially
distinguishes eight configurations, depending on the type, quantitative (’t’) or qualitative (’ℓ’), of each of the three
variables X , Y and Z. The configuration ’tℓt’ corresponds for example to the situation where X and Z are quantitative
and Y qualitative. Note that as X and Y play a similar role, we only consider six cases. Details of the data generating
process are provided in Appendix A. All samples contain 500 points.

The results obtained for each method, each structure and each configuration are reported in Table 2. For the chain
and the fork, which are conditional independence structures, the acceptance rate corresponds to the percentage of the
p-values that are above the thresholds 0.01 and 0.05 for 10 repetitions of each method in each configuration. For the
collider, the acceptance rate corresponds to the percentage of the p-value that is under the thresholds 0.01 and 0.05 for
10 repetitions of each method in each configuration. In all cases, the closer the acceptance rate is to 1, the better.

As one can note, the global test does not perform well in the configurations ’ttt’ and ’ttℓ’ of the chain and fork structures,
for both CMIh-GloT and MS-GloT. In addition, it does not perform well on the ’tℓt’ configuration of the chain and
fork structures for CMIh. It nevertheless performs well for CMIh on the collider structure over all configurations, but
not for MS. Overall, its global performance is relatively poor compared to the two local tests LocT and LocAT. The
local test LocT performs relatively well on the chain and fork structures for all configurations but ’ttℓ’. It performs
well for CMIh and the collider structure on all configurations but ’tℓℓ’; it does not however perform well for MS on
this structure as only two configurations are correctly treated, ’ttt’ and ’ℓℓℓ’. Finally, the local adaptive test, LocAT,
performs well on all configurations of all structures for CMIh. For MS, it performs well on the chain and fork structures
but not on the collider structure where the results are identical to the ones obtained with the standard local test LocT.
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Note that the bad results obtained for all tests with MS on the collider structure are directly related to the limitations
pointed out in the previous section. Indeed, the estimator given by MS on all configurations but ’ttt’ and ’ℓℓℓ’ is close
to 0 as ρk,i/2 ≥ Dℓ if there is at least one quantitative variable (due to rank transformation).

Overall, the combination CMIh with the test LocAT allows one to correctly identify the true (in)dependence relation on
all configurations of all structures.

4.2.2 Real data

We consider here three real datasets to illustrate the behaviour of our proposed estimator and test. Given the performance
of the global permutation test on the simulated data, we do not use it here and compare four estimator-test combinations:
CMIh-LocT, CMIh-LocAT, MS-LocT and MS-LocAT.

Preprocessed DWD dataset This climate dataset was originally provided by the Deutscher Wetterdienst (DWD) and
preprocessed by [45]. It contains 6 variables (altitude, latitude, longitude, and annual mean values of sunshine duration
over the years 1961–1990, temperature and precipitation) collected from 349 weather stations in Germany. We focus
here on three variables, latitude, longitude and temperature, this latter variable being discretized into three balanced
classes (low, medium and high) in order to create a mixed dataset. The goal here is to identify one unconditional
independence (Case 1) and one conditional dependence (Case 2):

• Case 1: latitude is unconditionally independent of longitude as the 349 weather stations are distributed
irregularly on the map.

• Case 2: latitude is dependent of longitude given temperature as both latitude and longitude act on temperature:
moving a thermometer towards the equator will generally result in an increased temperature, and climate in
West Germany is more oceanic and less continental than in East Germany.

The p-value for each method is shown in Table 3. For Case 1, the p-value should be high so that the null hypothesis is
not rejected, whereas it should be small for Case 2 as the correct hypothesis is H1. Note that as there is no conditional
variable in Case 1, the permutation tests LocT and LocAT give the same results.

Table 3: DWD: p-values for the different estimator-test combinations of the statistical test, which is H0 = X ⊥⊥ Y
versus H1 = X ⊥̸⊥ Y for Case 1, where X and Y correspond to latitude and longitude, and H0 = X ⊥⊥ Y |Z versus
H1 = X ⊥̸⊥ Y |Z for Case 2, where X , Y and Z correspond to latitude, longitude and temperature. The number of
sampling points is 349.

CMIh-LocT CMIh-LocAT MS-LocT MS-LocAT
Case 1 0.05 0.05 0.03 0.03
Case 2 0 0 0.09 0.08

As one can note from Table 3, under both thresholds 0.01 and 0.05, CMIh-LocT and CMIh-LocAT succeed in giving
the correct independent and dependent relations. In contrast, MS-LocT and MS-LocAT only identify the independent
relation at the threshold 0.01 and never correctly identify the conditional dependency.

ADHD-200 dataset This dataset contains phenotypic data on kids with ADHD (Attention Deficit Hyperactivity
Disorder) [46]. It contains 23 variables. We focus here on four variables: gender, attention deficit level, hyperactiv-
ity/impulsivity level and medication status, gender and medication status being binary categorical variables. The dataset
contains 426 records after removing missing data. Following previous studies, we consider two independence relations:

• Case 1: gender is independent of hyperactivity/impulsivity level given attention deficit level, which has been
confirmed by several studies [47, 48].

• Case 2: hyperactivity/impulsivity level is independent of medication status given attention deficit level, which
has been confirmed by [49].

The p-values obtained for the different estimator-test combinations are reported in Table 4. For this dataset, that the
p-values should be sufficiently high so that the null hypothesis is not rejected in both cases.

As one can note, regardless of whether the threshold is 0.01 or 0.05, all four methods reach the correct conclusion in
both cases. CMIh-LocT and CMIh-LocAT have the same performance as the conditional variable is quantitative. From
the previous simulated experiments we can reasonably infer that these two could perform better if more records were
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Table 4: ADHD-200: p-values for the different estimator-test combinations of the statistical test H0 = X ⊥⊥ Y |Z
versus H1 = X ⊥̸⊥ Y |Z where X , Y and Z correspond to gender, hyperactivity/impulsivity level and attention deficit
level for Case 1 and hyperactivity/impulsivity level, medication status and attention deficit level for Case 2. The number
of sampling points is 426.

CMIh-LocT CMIh-LocAT MS-LocT MS-LocAT
Case 1 0.36 0.36 1 1
Case 2 0.17 0.19 1 1

collected. MS-LocT and MS-LocAT give a p-value of 1 because the conditional mutual information in MS is 0; we
observe here the same degenerate behaviour for this estimator as the one discussed in Section 3.

EasyVista IT monitoring system This dataset consists of five time series collected from an IT monitoring system
with a one minute sampling rate provided by EasyVista2. We focus on five variables: message dispatcher (activity of
a process that orient messages to other process with respect to different types of messages), which is a quantitative
variable, metric insertion (activity of insertion of data in a database), which is also a quantitative variable, status
metric extraction (status of activity of extraction of metrics from messages), which is a qualitative variable with three
classes, namely normal (≈ 75% of the observations), warning (≈ 20% of the observations) and critical (≈ 5% of the
observations), group history insertion (activity of insertion of historical status in database), which is again a quantitative
variable, and collector monitoring information (activity of updates in a given database) another quantitative variable.
We know exact lags between variables, so we synchronise the data as a preprocessing step.

For this system we consider three cases:

• Case 1 represents a conditional independence between message dispatcher at time t and metric insertion at
time t given status metric extraction at time t and message dispatcher and metric insertion at time t− 1.

• Case 2 represents a conditional independence between group history insertion at time t, collector monitoring
information at time t given status metric extraction at time t and group history insertion and collector
monitoring information at time t− 1.

• Case 3 represents a conditional dependence between status metric extraction at time t and group history
insertion at time t given status metric extraction at time t− 1.

For each case, we consider 12 datasets with 1000 observations each. The results, reported in Table 5, are based on the
acceptance rates at thresholds 0.01 and 0.05 computed as in Section 4.2.1. Again, under each threshold, the closer the
result is to 1, the better. Finally note that we conditioned on the past of each time series to eliminate the effect of the
autocorrelation.

Table 5: EasyVista: 0.01 and 0.05 threshold acceptance rates for the different estimator-test combinations computed for
the statistical test H0 = X ⊥⊥ Y |Z versus H1 = X ⊥̸⊥ Y |Z, where X , Y and Z correspond to message dispatchert,
metric insertiont and the vector (status metric extractiont,message dispatchert−1,metric insertiont−1)
for Case 1, to group history insertiont, collector monitoring informationt and the vector
(status metric extractiont, group history insertiont−1, collector monitoring informationt−1) for Case 2 and
status metric extractiont, group history insertiont and status metric extractiont−1 for Case 3. The number of
sampling points is 1000. Each acceptance rate is computed over 12 datasets of the same structure.

CMIh-LocT CMIh-LocAT MS-LocT MS-LocAT
0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

Case 1 1 0.75 1 0.75 0.67 0.58 0.75 0.58
Case 2 1 0.67 1 0.67 0.92 0.75 1 0.83
Case 3 0.75 0.83 0.75 0.83 0 0 0 0

As one can see, CMIh-LocT and CMIh-LocAT yield exactly the same results on this dataset. Furthermore, the results
obtained by these combinations are systematically better than the ones obtained when using MS as the estimator
except for Case 2 with the threshold 0.05. However, on this case, all combinations correctly identify the conditional
independence. Lastly, as before, MS yields poor results on Case 3, which corresponds to a collider structure. The

2https://www.easyvista.com/fr/produits/servicenav
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explanation is the same as above for this structure and suggests that MS should not be used as an estimator to conditional
mutual information.

Overall, the experiments on simulated and real datasets indicate that the combination CMIh-LocAT is robust to different
structures and data types. This combination is well adapted to mixed data and provides the best results overall in our
experiments.

5 Conclusion

We have proposed in this paper a novel hybrid method for estimating conditional mutual information in mixed data
comprising both qualitative and quantitative variables. This method relies on two classical approaches to estimate
conditional mutual information: k-nearest neighbour and histograms methods. A comparison of this hybrid method to
previous ones illustrated its good behaviour, both in terms of accuracy of the estimator and in terms of the time required
to compute it. We have furthermore proposed a local adaptive permutation test which allows one to accept or reject
null hypotheses. This test is also particularly adapted to mixed data. Our experiments, conducted on both synthetic
and real data sets, show that the combination of the hybrid estimator and the local adaptive test we have introduced is
able, contrary to other combinations, to identify the correct conditional (in)dependence relations in a variety of cases
involving mixed data. To the best of our knowledge, this combination is the first one fully adapted to mixed data. We
believe that it will become a useful ingredient for researchers and practitioners for problems, including but not limited
to, 1) causal discovery where one aims to identify causal relations between variables of a given system by analyzing
statistical properties of purely observational data, 2) graphical model inference where one aims to establish a graphical
model which describes the statistical relationships between random variables and which can be used to compute the
marginal distribution of one or several variables, and 3) feature selection where one aims to reduce the number of input
variables by eliminating highly dependent ones.
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A Generative processes used for the different configurations on the three structures chain,
fork and collider.

We denote here by Round(x) the function that rounds x to the nearest integer, and by Mod(number, divisor) the
function that returns the remainder of the integer division of ’number’ by ’divisor’. Note that, for generality purposes,
we use both quantitative distributions as well as qualitative distributions with infinite support to generate quantitative
variables. We give below the generative process used for each configuration of each structure (chain, fork and collider).

A.1 Processes for chain

For the configuration ’tℓt’:

X ∼ U([0, 100])
Y ∼ Bi(Abs(Round(Z)), 0.5)
Z = X + ξZ where ξZ ∼ N (0, 1).

For the configuration ’ttt’:

X ∼ U([0, 100])
Y ∼ Pois(Abs(Round(Z)))
Z = X + ξZ where ξZ ∼ N (0, 1).

For the configuration ’ℓℓt’:

X ∈ Ω(X) = {AX , BX , CX , DX , EX} with probability (0.6, 0.1, 0.1, 0.1, 0.1)

Y = r(Mod(Round(Z + ξY ), 4)) where ξY ∼ N (0, 1)

Z ∼ N (n(X), 2).

and where the function n and r are defined by

n(AX) = 1, r(0) = BY ,

n(BX) = 3, r(1) = AY ,

n(CX) = 0, r(2) = CY ,

n(DX) = 2, r(3) = DY ,

n(EX) = 4.

For the configuration ’tℓℓ’:

X ∼ U([0, 100])
Y ∼ Bi(Z, 0.5)
Z ∼ U({Round(X), . . . , Round(X) + 2}).

For the configuration ’ttℓ’:

X ∼ U([0, 100])
Y ∼ Pois(Z)
Z ∼ U({Round(X), . . . , Round(X) + 2}).

For the configuration ’ℓℓℓ’:

X ∈ Ω(X) = {AX , BX , CX , DX , EX} with probability (0.6, 0.1, 0.1, 0.1, 0.1)

Y ∈ Ω(Y ) = {AY , BY , CY , DY , EY }
Y |(Z = z) = t(z) with probability 0.9 and the other four realizations with probability 0.025

Z ∈ Ω(Z) = {AZ , BZ , CZ , DZ , EZ}
Z|(X = x) = s(x) with probability 0.9 and the other four realizations with probability 0.025
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and where the function s and t are defined by
s(AX) = BZ , t(AZ) = DY ,

s(BX) = EZ , t(BZ) = EY ,

s(CX) = AZ , t(CZ) = BY ,

s(DX) = CZ , t(DZ) = AY ,

s(EX) = DZ , t(EZ) = CY .

A.2 Processes for fork

For the configuration ’tℓt’:
X = Z + ξX where ξX ∼ N (0, 1)

Y ∼ Bi(Round(Z), 0.5)
Z ∼ U([0, 100]).

For the configuration ’ttt’:
X = Z + ξX where ξX ∼ N (0, 1)

Y ∼ Pois(Round(Z))
Z ∼ U([0, 100]).

For the configuration ’ℓℓt’:
X = f(Mod(Round(Z + ξX), 4)) where ξX ∼ N (0, 1)

Y = g(Mod(Round(Z + ξY ), 3)) where ξY ∼ N (0, 1)

Z ∼ Exp(0.1).
and where the function f and g are defined by

f(0) = CX , g(0) = BY ,

f(1) = AX , g(1) = AY ,

f(2) = DX , g(2) = CY ,

f(3) = BX .

For the configuration ’tℓℓ’:
X = Z + ξX where ξX ∼ N (0, 1)

Y ∼ Bi(Z, 0.5)
Z ∼ U({0, . . . , 100}).

For the configuration ’ttℓ’:
X = Z + ξX where ξX ∼ N (0, 1)

Y ∼ Pois(Z)
Z ∼ U({0, . . . , 100}).

For the configuration ’ℓℓℓ’:
X ∈ Ω(X) = {AX , BX , CX , DX , EX}
X|(Z = z) = p(z) with probability 0.9 and the other four realizations with probability 0.025

Y ∈ Ω(Y ) = {AY , BY , CY , DY , EY }
Y |(Z = z) = q(z) with probability 0.9 and the other four realizations with probability 0.025

Z ∈ Ω(Z) = {AZ , BZ , CZ , DZ , EZ} with probability (0.6, 0.1, 0.1, 0.1, 0.1).

and where the function p and q are defined by
p(AZ) = CX , q(AZ) = DY ,

p(BZ) = AX , q(BZ) = EY ,

p(CZ) = DX , q(CZ) = BY ,

p(DZ) = EX , q(DZ) = AY ,

p(EZ) = BX , q(EZ) = CY .
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A.3 Processes for collider

For the configuration ’tℓt’:

X ∼ N (50, 25)

Y ∼ Bi(100, 0.5)
Z = X + Y + ξZ where ξZ ∼ N (0, 1).

For the configuration ’ttt’:

X ∼ N (50, 25)

Y ∼ Pois(100)
Z = X + Y + ξZ where ξZ ∼ N (0, 1).

For the configuration ’ℓℓt’:

X ∈ Ω(X) = {AX , BX , CX , DX , EX} with probability (0.6, 0.1, 0.1, 0.1, 0.1)

Y ∈ Ω(Y ) = {AY , BY , CY , DY , EY } with probability (0.6, 0.1, 0.1, 0.1, 0.1)

Z ∼ N (h(X,Y ), 1).

and where the function h is defined by

h(AX , AY ) = 0, h(AX , BY ) = 1,

h(AX , CY ) = 2, h(AX , DY ) = 3,

h(AX , EY ) = 4, h(BX , AY ) = 5,

h(BX , BY ) = 6, h(BX , CY ) = 7,

h(BX , DY ) = 8, h(BX , EY ) = 9,

h(CX , AY ) = 10, h(CX , BY ) = 11,

h(CX , CY ) = 12, h(CX , DY ) = 13,

h(CX , EY ) = 14, h(DX , AY ) = 15,

h(DX , BY ) = 16, h(DX , CY ) = 17,

h(DX , DY ) = 18, h(DX , EY ) = 19,

h(EX , AY ) = 20, h(EX , BY ) = 21,

h(EX , CY ) = 22, h(EX , DY ) = 23,

h(EX , EY ) = 24.

For the configuration ’tℓℓ’:

X ∼ N (50, 50)

Y ∼ Bi(100, 0.5)
Z ∼ Bi(Abs(Round(X + Y + ξZ)), 0.5) where ξZ ∼ N (0, 1).

For the configuration ’ttℓ’:

X ∼ N (50, 50)

Y ∼ Pois(100)
Z ∼ Bi(Abs(Round(X + Y + ξZ)), 0.5) where ξZ ∼ N (0, 1).

For the configuration ’ℓℓℓ’:

X ∈ Ω(X) = {AX , BX , CX , DX , EX} with probability (0.6, 0.1, 0.1, 0.1, 0.1)

Y ∈ Ω(Y ) = {AY , BY , CY , DY , EY } with probability (0.6, 0.1, 0.1, 0.1, 0.1)

Z ∈ Ω(Z) = {AZ , BZ , CZ , DZ , EZ}
Z|(X = x, Y = y) = m(x, y) with probability 0.9 and the other four realizations with probability 0.025
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and where the function m is defined by

m(AX , AY ) = m(AX , BY ) = m(AX , CY ) = m(EX , DY ) = m(EX , EY ) = AZ ,

m(AX , DY ) = m(AX , EY ) = m(BX , AY ) = m(BX , BY ) = m(BX , CY ) = BZ ,

m(BX , DY ) = m(BX , EY ) = m(CX , AY ) = m(CX , BY ) = m(CX , CY ) = CZ ,

m(CX , DY ) = m(CX , EY ) = m(DX , AY ) = m(DX , BY ) = m(DX , CY ) = DZ ,

m(DX , DY ) = m(DX , EY ) = m(EX , AY ) = m(EX , BY ) = m(EX , CY ) = EZ .
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