
HAL Id: hal-03806399
https://hal.science/hal-03806399v2

Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The (1 + (λ, λ)) global SEMO algorithm
Benjamin Doerr, Omar El Hadri, Adrien Pinard

To cite this version:
Benjamin Doerr, Omar El Hadri, Adrien Pinard. The (1 + (λ, λ)) global SEMO algorithm. GECCO
’22: Genetic and Evolutionary Computation Conference, Jul 2022, Boston Massachusetts, United
States. pp.520-528, �10.1145/3512290.3528868�. �hal-03806399v2�

https://hal.science/hal-03806399v2
https://hal.archives-ouvertes.fr

The (1 + (𝜆, 𝜆)) Global SEMO Algorithm
Benjamin Doerr

Laboratoire d’Informatique (LIX),
CNRS, École Polytechnique,

Institut Polytechnique de Paris
Palaiseau, France

Omar El Hadri
École Polytechnique,

Institut Polytechnique de Paris
Palaiseau, France

Adrien Pinard
École Polytechnique,

Institut Polytechnique de Paris
Palaiseau, France

ABSTRACT

The (1 + (𝜆, 𝜆)) genetic algorithm is a recently proposed single-
objective evolutionary algorithmwith several interesting properties.
We show that its main working principle, mutation with a high
rate and crossover as repair mechanism, can be transported also
to multi-objective evolutionary computation. We define the (1 +
(𝜆, 𝜆)) global SEMO algorithm, a variant of the classic global SEMO
algorithm, and prove that it optimizes the OneMinMax benchmark
asymptotically faster than the global SEMO. Following the single-
objective example, we design a one-fifth rule inspired dynamic
parameter setting (to the best of our knowledge for the first time
in discrete multi-objective optimization) and prove that it further
improves the runtime to𝑂 (𝑛2), whereas the best runtime guarantee
for the global SEMO is only 𝑂 (𝑛2 log𝑛).

CCS CONCEPTS

• Theory of computation→ Theory of randomized search

heuristics.

KEYWORDS

Runtime analysis, multi-objective optimization, mutation operator,
one-fifth success rule, dynamic parameter setting.
ACM Reference Format:

Benjamin Doerr, Omar El Hadri, and Adrien Pinard. 2022. The (1 + (𝜆, 𝜆))
Global SEMO Algorithm. In Genetic and Evolutionary Computation Confer-

ence (GECCO ’22), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3512290.3528868

1 INTRODUCTION

The theory of evolutionary algorithms (EAs) for a long time has
accompanied our attempts to understand the working principles of
evolutionary computation [9, 21, 33, 43]. In the recent years, this
field has not only explained existing approaches, but also proposed
new operators and algorithms.

The theory of multi-objective EAs, due to the higher complex-
ity of these algorithms, is still lagging behind its single-objective
counterpart. There are several runtime analyses for various multi-
objective EAs which explain their working principles. Also, some
new ideas specific to multi-objective evolutionary algorithms
(MOEAs) have been developed recently. However, many recent de-
velopments in single-objective EA theory have not been exploited

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3512290.3528868

in multi-objective evolutionary computation (see Section 2 for more
details).

In this work, we try to profit in multi-objective evolutionary
computation from the ideas underlying the (1 + (𝜆, 𝜆)) GA. The
(1 + (𝜆, 𝜆)) GA, proposed first in [18], tries to combine a larger ra-
dius of exploration with traditional greedy-style exploitation of al-
ready detected profitable solutions. To this end, the (1 + (𝜆, 𝜆)) GA
uses mutation with a higher-than-usual mutation rate together with
a biased crossover with the parent, which can repair the unwanted
effects of the aggressive mutation operations.

We defer the detailed discussion of this algorithm to Sec-
tion 4 and note here only that several results indicate that this
basic idea was successful. In the early works on the OneMax
benchmark, the (1 + (𝜆, 𝜆)) GA was shown to have a better
runtime than the (1 + 1) EA for a decent range of parame-
ters. With the optimal parameter setting, this runtime becomes
Θ

(
𝑛
(log(𝑛) log log log(𝑛)

log log(𝑛)
)1/2) . While this is not a radical improve-

ment over theΘ(𝑛 log𝑛) runtime of many classic EAs, it is still note-
worthy in particular when recalling that no black-box algorithm
can optimize this benchmark faster than in time Θ(𝑛/log𝑛) [25].
With a suitable fitness-dependent parameter setting or a self-
adjusting parameter choice following a 1/5-rule, the runtime of the
(1 + (𝜆, 𝜆)) GA can further be lowered to𝑂 (𝑛) [16]. Similar results
have been obtained for random satisfiability instances in a planted
solution model [13]. Together with a heavy-tailed choice of the
parameters, the (1 + (𝜆, 𝜆)) GA can also obtain a linear runtime [1].
Stronger runtime improvements over many classic algorithms have
been obtained on the Jump benchmark, see [3] and the references
therein. Since here the right choice of the parameters is less under-
stood and since a multi-objective analogue of the Jump-benchmark
has been proposed [23] only very recently, in this first work on
multi-objective versions of the (1 + (𝜆, 𝜆)) GA we shall concen-
trated on the more established OneMinMax problem, which is a
multi-objective analogue of the classic OneMax benchmark.

Our results: We develop a multi-objective version of the
(1 + (𝜆, 𝜆)) GA by interpreting the main loop of the (1 + (𝜆, 𝜆)) GA
as a complex mutation operator and then equipping the clas-
sic global simple evolutionary multi-objective optimizer (GSEMO)

with this mutation operator. For this algorithm, which we call
(1 + (𝜆, 𝜆)) GSEMO, we conduct a mathematical runtime analysis
on the OneMinMax benchmark. We show that a reasonable
range of static parameter settings give a better runtime than the
𝑂 (𝑛2 log𝑛) guarantee known for the classic GSEMO. With an opti-
mal parameter choice we obtain a runtime of 𝑂 (𝑛2

√︁
log𝑛). With

a suitable state-dependent parameter choice comparable to the
one of [18], the runtime drops further to 𝑂 (𝑛2). Since such a state-
dependent parameter choice requires a deep understanding of the al-
gorithm and the problem, we then design a self-adjusting parameter

https://doi.org/10.1145/3512290.3528868
https://doi.org/10.1145/3512290.3528868

GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version. Benjamin Doerr, Omar El Hadri, and Adrien Pinard

setting inspired by the classic one-fifth success rule. Some adjust-
ments are necessary to work in this multi-objective setting, but then
we obtain a simple dynamic parameter setting that gives the same
𝑂 (𝑛2) runtime as with the complicated state-dependent parameter
choice. To the best of our knowledge, this is the first time that such
a dynamic parameter choice is developed for a MOEA for a discrete
search space. From a broader perspective, this work shows that
the main idea of the (1 + (𝜆, 𝜆)) GA, so far only used with (1 + 1)-
type algorithms, can also be used in more complex algorithmic
frameworks.

This work is organized as follows. In the following section,
we describe the previous works most relevant to ours. In Sec-
tion 3, we briefly recall the basic notations of MOEAs and state
the OneMinMax problem. We develop the (1 + (𝜆, 𝜆)) GSEMO in
Section 4 and conduct our mathematical runtime analysis for static
parameters in Section 5. In Section 6, we propose state-dependent
parameters and prove the 𝑂 (𝑛2) runtime guarantee for these. We
develop and analyze the self-adjusting parameter choice inspired
by the one-fifth rule in Section 7. A short experimental evaluation
in Section 8 shows that already the (1 + (𝜆, 𝜆)) GSEMO with static
parameters easily outperforms the classic GSEMO and this already
for small problem sizes. We summarize our findings and discuss
future research ideas in Section 9.

2 PREVIOUS WORK

Soon after the first runtime analyses of single-objective EAs have
appeared, see, e.g., [24, 27, 49] for three early and influential works,
also multi-objective EAs were studied under this theory perspective.
These works, e.g., [28, 37, 38], followed the example of the theo-
retical works on single-objective EAs and proved estimates on the
runtime of simple MOEAs such as the SEMO and GSEMO on bench-
mark problems that were defined as multi-objective analogues of
classic benchmarks like OneMax or LeadingOnes.

In the recent past, the theory of MOEA has more concen-
trated on research topics which are specific to multi-objective
optimization, e.g., parent selection schemes that speed up the ex-
ploration of the Pareto front [45], approximations of the Pareto
front [11, 19], or specific MOEAs such as the MOEA/D or the NSGA-
II [10, 22, 30, 31, 40, 54, 55]. While it is natural that the theory of
MOEAs has regarded these questions, at the same time this carries
the risk that trends and insights from the general EA theory are
not exploited in multi-objective evolutionary computation. In fact,
this effect is already very visible. Topics such as precise runtime
analyses (see, e.g., [4] and the references therein), fixed-budget
analysis [35], and optimal parameter settings (see, e.g., [53] for an
early such result in single-objective EA theory) have not been con-
sidered yet in multi-objective EA theory. More critically, also the
recently developed new algorithmic building blocks, for example, a
large number of successful ways to dynamically set parameters [17],
memetic algorithms with proven performance guarantees (see [44]
and the references therein), and hyperheuristic approaches with
proven guarantees (see [41] and the references therein) have all
not been considered for MOEAs. In fact, to the best our our knowl-
edge, the only example of a work transporting recent algorithmic
ideas developed in single-objective EA theory to the multi-objective

world is [23], where the fast mutation of [20] and the stagnation
detection of [46] are used in a MOEA.

For this reason, we shall study in this work how another algo-
rithmic idea recently proposed in EA theory can be used in multi-
objective evolutionary computation, namely the (1 + (𝜆, 𝜆)) GA.
We defer an account of the previous work on this algorithm to
Section 4, where this algorithm will be detailed.

3 PRELIMINARIES

In this section, we give a brief introduction to multi-objective opti-
mization and to the notation we use.

For 𝑎, 𝑏 ∈ R, we write [𝑎..𝑏] = {𝑧 ∈ Z | 𝑎 ≤ 𝑧 ≤ 𝑏} for the
integers in the interval [𝑎, 𝑏]. We denote the binomial distribution
with parameters 𝑛 and 𝑝 by Bin(𝑛, 𝑝) and we write 𝑋 ∼ Bin(𝑛, 𝑝)
to denote that 𝑋 is a sample from this distribution, that is, that
Pr[𝑋 = 𝑖] =

(𝑛
𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖 for all 𝑖 ∈ [0..𝑛].

For the ease of presentation, in the remainder we shall concen-
trate ourselves on two objectives which have to be maximized. A
bi-objective function on the search space Ω is a pair 𝑓 = (𝑓1, 𝑓2),
where each 𝑓𝑖 : Ω → R. We write 𝑓 (𝑥) = (𝑓1 (𝑥), 𝑓2 (𝑥)) for all
𝑥 ∈ Ω. We shall always assume that we have a bit-string repre-
sentation, that is, Ω = {0, 1}𝑛 for some 𝑛 ∈ N. The challenge in
multi-objective optimization is that often there is no solution 𝑥 that
maximizes both 𝑓1 and 𝑓2.

We say 𝑥 weakly dominates 𝑦, denoted by 𝑥 ⪰ 𝑦, if and only
if 𝑓1 (𝑥) ≥ 𝑓1 (𝑦) and 𝑓2 (𝑥) ≥ 𝑓2 (𝑦). We say 𝑥 strictly dominates 𝑦,
denoted by 𝑥 ≻ 𝑦, if and only if 𝑓1 (𝑥) ≥ 𝑓1 (𝑦) and 𝑓2 (𝑥) ≥ 𝑓2 (𝑦)
and at least one of the inequalities is strict. We say that a solution is
Pareto-optimal if it is not strictly dominated by any other solution.
The set of objective values of all Pareto optima is called the Pareto
front of 𝑓 . In this work, as in many previous works on the (G)SEMO
family of algorithms, our aim is to compute the full Pareto front,
that is, to compute a set 𝑃 of Pareto optima such that 𝑓 (𝑃) = {𝑓 (𝑥) |
𝑥 ∈ 𝑃} is the Pareto front.

In this work, we will mainly be interested in the OneMinMax
benchmark function, which is a bi-objective analogue of the classic
OneMax benchmark. It is defined by

OneMinMax : {0, 1}𝑛 → R2;

𝑥 ↦→
(
𝑛∑︁
𝑖=1

𝑥𝑖 ,

𝑛∑︁
𝑖=1
(1 − 𝑥𝑖)

)
,

that is, the first objective counts the number of ones in 𝑥 and the
second objective counts the number of zeros. We immediately see
that any 𝑥 ∈ {0, 1}𝑛 is Pareto optimal. Hence the Pareto front of
this problem is {(𝑖, 𝑛 − 𝑖) | 𝑖 ∈ [0..𝑛]}.

4 FROM THE (1 + (𝜆, 𝜆)) GA TO THE

(1 + (𝜆, 𝜆)) GSEMO

In this section, we design a MOEA building on the main ideas
of the (1 + (𝜆, 𝜆)) GA. We start with a brief description of the
(1 + (𝜆, 𝜆)) GA and the known results on this algorithm, then move
on to the GSEMO, and finally discuss how to merge the two.

4.1 The (1 + (𝜆, 𝜆)) GA
The (1 + (𝜆, 𝜆)) GA is a still simple genetic algorithm for the
maximization of pseudo-Boolean functions, that is, functions 𝑓 :

The (1 + (𝜆, 𝜆)) Global SEMO Algorithm GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version.

{0, 1}𝑛 → R defined on the set of bit-strings of length 𝑛. The
(1 + (𝜆, 𝜆)) GA works with a parent population of size one. Its pa-
rameters are the offspring population size 𝜆 ∈ N, the mutation
rate 𝑝 ∈ [0, 1], usually parameterized as 𝑝 = 𝑘/𝑛 for some number
𝑘 ∈ [0, 𝑛], and the crossover bias 𝑐 ∈ [0, 1]. In a first mutation stage,
from the parent individual 𝜆 offspring are created. Each offspring is
distributed as if obtained from bit-wise mutation with mutation rate
𝑝 , however, to remedy the risk that offspring are better or worse just
because they have a different distance from the parent, all offspring
are created in the same distance. Consequently, first a number ℓ is
sampled according to a binomial distribution with parameters 𝑛 and
𝑝 and then 𝜆 offspring are generated each by flipping a random set
of exactly ℓ bits in the parent. In the intermediate selection stage, an
offspring with maximal fitness is selected (breaking ties randomly).

Due to the usually high mutation rate used in the (1 + (𝜆, 𝜆)) GA,
this mutation winner will typically be much worse than the parent.
Being the best among the offspring, we can still hope that besides
all destruction through the aggressive mutation, it has also gained
some advantages. The crossover stage now aims at preserving
these advantages and repairing the unwanted destruction. To this
aim, in the crossover phase 𝜆 offspring are created from a biased
crossover betweenmutationwinner and original parent. This biased
crossover takes bits from the mutation winner with probability 𝑐 ,
otherwise from the parent. In the final selection stage, the best
crossover offspring is taken as new parent, except if it is worse than
the original parent, in which case the original parent is kept. The
pseudocode of this algorithm is given as Algorithm 1.

Algorithm 1: The (1 + (𝜆, 𝜆)) GA with offspring popula-
tion size 𝜆, mutation rate 𝑝 = 𝑘/𝑛, and crossover bias 𝑐 for
the maximization of a function 𝑓 : {0, 1}𝑛 → R.
1 Sample 𝑥 ∈ {0, 1}𝑛 uniformly at random;
2 for 𝑡 = 1, 2, 3, ... do
3 Sample ℓ from a binomial distribution B(𝑛, 𝑘𝑛);
4 Generate 𝑥1, 𝑥2, ..., 𝑥𝜆 ∈ {0, 1}𝑛 each by flipping ℓ

random bits of 𝑥 ;
5 Select 𝑥+ ∈ {𝑥1, 𝑥2, ..., 𝑥𝜆} such that 𝑥+ maximizes 𝑓 ;
6 Generate 𝑥+1 , 𝑥

+
2 , ..., 𝑥

+
𝜆
∈ {0, 1}𝑛 via cross𝑐 (𝑥, 𝑥+);

7 Select 𝑦 ∈ {𝑥+1 , 𝑥
+
2 , ..., 𝑥

+
𝜆
} such that 𝑦 maximizes 𝑓 ;

8 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then
9 𝑥 ← 𝑦;

It is not completely understood how to optimally set the parame-
ters for this algorithm, but the original work [18] proposed to take
as mutation rate 𝑝 = 𝜆/𝑛 and as crossover bias 𝑐 = 1/𝜆. This setting
is natural in the sense that an individual created by mutation and
subsequent crossover with the parent has the same distribution as
if generate with bit-wise mutation with mutation rate 1/𝑛, which
is the common way of performing mutation. We shall call this the
standard parameter setting for the (1 + (𝜆, 𝜆)) GA.

In a first runtime analysis of the (1 + (𝜆, 𝜆)) GA, it was shown
that the (1 + (𝜆, 𝜆)) GA with parameters 𝜆 ≥ 2 as well as 𝑝 = 𝑘/𝑛
and 𝑐 = 1/𝑘 for some 𝑘 ≥ 2 optimizes the OneMax benchmark in
time𝑂 ((1

𝑘
+ 1
𝜆
)𝑛 log𝑛+(𝑘+𝜆)𝑛). This bound is minimized for 𝜆 = 𝑘 ,

that is, the standard parameter setting, and further for 𝜆 = 𝑘 =

Θ(
√︁
log𝑛). In this case, the runtime guarantee becomes𝑂 (𝑛

√︁
log𝑛),

which is asymptotically faster than the Θ(𝑛 log𝑛) runtime of many
evolutionary algorithms [5, 8, 24, 34, 39, 42, 48, 51, 52]. The truly
optimal parameters, determined in [16], minimally deviate from
these, but they also belong to the standard setting and they only
improve the runtime by a Θ

((log log log𝑛
log log𝑛

)1/2) factor, so we skip the
details.

In [18], also a fitness-dependent parameter choice was proposed.
If, in the standard setting, 𝜆 is chosen as

√︃
𝑛

𝑛−𝑓 (𝑥) , where 𝑓 (𝑥)
is the fitness of the current solution, then the runtime reduces to
𝑂 (𝑛).

Since both the best static and this fitness-dependent parameter
setting are non-trivial to find, in [16] a self-adjusting parameter
choice was proposed. If, again in the standard setting, 𝜆 is controlled
via a variant of the 1/5 success rule, then the actual value of 𝜆
follows closely the fitness-dependent choice from [18], resulting
also in an 𝑂 (𝑛) runtime. These first results (apart from the very
precise optimal static parameter setting of [16]) are the basis of our
work.

For this reason, we now describe in less detail the remaining
previous works on the (1 + (𝜆, 𝜆)) GA. Results similar to the ones
just described were shown in [13] for the optimization of certain
random SAT instances. On OneMax again, a heavy-tailed choice
of 𝜆 also gives a linear runtime [1]. On the LeadingOnes bench-
mark, the (1 + (𝜆, 𝜆)) GA does not have a runtime advantage over
classic EAs, however, with all parameter choices in the standard
setting it also obtains the 𝑂 (𝑛2) runtime of these algorithms [6].
On the multimodal jump benchmark, a perfect understanding of
the (1 + (𝜆, 𝜆)) GA has not yet been obtained, but the existing re-
sults [2, 3, 7, 26] show that with parameters outside the standard
regime or a heavy-tailed parameter choice, runtimes of roughly
𝑛𝑚/2 can be obtained on jump functions with jump size𝑚, which is
significantly faster than the Θ(𝑛𝑚) time of, e.g., the (1 + 1) EA [24].

4.2 The GSEMO

The global simple evolutionary multi-objective optimizer

(GSEMO) [28], different from the SEMO algorithm [37] only
in that is uses global mutations, is an algorithm that computes
the full Pareto front of a multi-objective optimization problem.
It uses a population of variable size which always consists of
solutions that are incomparable, that is, no solution dominates
another one. The algorithm starts with a population consisting of a
single random individual. In its main loop, from a parent randomly
chosen from the population an offspring is created via bit-wise
mutation with mutation rate 1/𝑛. Any individual dominated by
the offspring is removed from the population, then the offspring
is added to the population if it is not dominated by a member of
the population. The number of iterations this algorithm takes to
find the full Pareto front of a multi-objective problem is called the
runtime of the GSEMO.

The runtime of the GSEMO on the OneMinMax benchmark, the
natural bi-objective version of the OneMax problem, is𝑂 (𝑛2 log𝑛).
This bound was shown for the SEMO only [29], but it is easy to see
that the proof extends to the GSEMO. A lower bound of Ω(𝑛2 log𝑛)

GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version. Benjamin Doerr, Omar El Hadri, and Adrien Pinard

also exists only for the SEMO; this proof, however, does not imme-
diately extend to the GSEMO.

4.3 Designing the (1 + (𝜆, 𝜆)) GSEMO

A closer look at the (1 + (𝜆, 𝜆)) GA reveals that we can interpret
this algorithm as a variant of the (1 + 1) EA that uses a complex
mutation operator. This mutation operator creates 𝜆 offspring from
a given parent, selects a best of these (“mutation winner”), creates
𝜆 offspring via a biased crossover between parent and mutation
winner, and returns a best of these.

With this view, the natural way to merge the GSEMO and the
(1 + (𝜆, 𝜆)) GA is to use the GSEMO with this complex mutation
operator instead of bit-wise mutation. Since our complex mutation
operator relies on a fitness function, there is one more design choice
to take, namely what to use as fitness in a multi-objective setting.
Again, there is a natural choice, and this is to use all objectives
the multi-objective problem is composed of. Hence in the mutation
phase, we once generate 𝜆 offspring, then for each objective we
select a mutation winner, and then, separately for each of them, we
conduct a crossover phase. For a 𝑑-objective problem, this yields
𝑑𝜆 crossover offspring. For all of these, we check if it is profitable
to add them to the population, more precisely, sequentially for
each of them we remove the individuals it dominates and add it
to the population if it is not dominated by a current member of
the population. The pseudocode for this algorithm, which we call
(1 + (𝜆, 𝜆)) GSEMO, is given in Algorithm 2.

We note that in all algorithms, we did not specify a termination
criterion. This is justified by the fact that in this scientific work we
are only interested in the first point in time when we have reached
a certain target. In a practical application, of course, one needs to
specify a termination criterion.

Algorithm 2: The (1 + (𝜆, 𝜆)) GSEMO.
1 Generate 𝑥 ∈ {0, 1}𝑛 uniformly at random and 𝑃 ← {𝑥};
2 while not stop condition do

3 Uniformly at random select one individual 𝑥 from 𝑃 ;
4 Sample ℓ from a binomial distribution B(𝑛, 𝑘𝑛);
5 Generate 𝑥1, 𝑥2, ..., 𝑥𝜆 ∈ {0, 1}𝑛 each by flipping ℓ

random bits of 𝑥 ;
6 Select 𝑥+, 𝑥− ∈ {𝑥1, 𝑥2, ..., 𝑥𝜆} such that 𝑥+ maximizes 𝑓1

and 𝑥− maximizes 𝑓2;
7 Generate 𝑥+1 , 𝑥

+
2 , ..., 𝑥

+
𝜆
∈ {0, 1}𝑛 via cross𝑐 (𝑥, 𝑥+);

8 Generate 𝑥−1 , 𝑥
−
2 , ..., 𝑥

−
𝜆
∈ {0, 1}𝑛 via cross𝑐 (𝑥, 𝑥−);

9 for 𝑦 ∈ {𝑥+1 , 𝑥
+
2 , ..., 𝑥

+
𝜆
, 𝑥−1 , 𝑥

−
2 , ..., 𝑥

−
𝜆
} do

10 if there is no 𝑧 ∈ 𝑃 such that 𝑦 ⪯ 𝑧 then

11 𝑃 = {𝑧 ∈ 𝑃 |𝑧 ⪯̸ 𝑦} ∪ {𝑦};

12 return 𝑃

4.4 Our Results

We analyse the (1 + (𝜆, 𝜆)) GSEMO algorithm by theoretical means
and through experiments. Similar to the first works on the
single-objective (1 + (𝜆, 𝜆)) GA, which all regarded the OneMax

benchmark, we restrict ourselves in this first analysis of the
(1 + (𝜆, 𝜆)) GSEMO to the OneMinMax problem, which is a bi-
objective version of the OneMax problem.

We show that the expected runtime (that is, the expected number
of fitness evaluations until an optimal solution is found) of our
algorithm is 𝑂

((1
𝑘
+ 1

𝜆

)
𝑛2 log𝑛 + (𝑘 + 𝜆)𝑛2

)
when the crossover

bias is taken as 𝑐 = 1
𝑘
, which is what the intuition given in Section

4.1 suggest. Consequently, quite a broad selection of choices of 𝑘
and 𝜆 leads to expected optimization times better than the classic
Θ(𝑛2 log𝑛). This runtime bound suggests to take 𝑘 = Θ(

√︁
log𝑛)

and 𝜆 = Θ(
√︁
log𝑛), we obtain an expected optimization time of

𝑂 (𝑛2
√︁
log𝑛). Note that all other choices of 𝜆 ∈ [𝜔 (1), 𝑜 (log𝑛)]

give an asymptotically better runtime as well, so there is some
indication that this approach is useful also for problems for which
analyzing the optimal parameter choices is not possible.

The insight into the working principles of the
(1 + (𝜆, 𝜆)) GSEMO gained in the theoretical analysis can
be used to design a state-dependent choice of 𝜆 giving an even
better expected runtime. If in each iteration we chose 𝜆 to be of
order

√︁
𝑛/𝑑 , where 𝑑 is the minimum of the fitness-distance to the

optimum of the two objective functions, the resulting algorithm
has a quadratic expected optimization time only.

Since the state-dependent parameter choice was very successful
(giving provably a quadratic expected runtime), but possibly hard
to find without theoretical analyses, we also investigate a simple
self-adjusting choice of 𝜆. To this aim, we imitate the one-fifth
success rule from evolution strategies, which was independently
discovered in [14, 47, 50]. For a suitable constant 𝐹 > 1, we multiply
𝜆 by 𝐹 1/(5𝑛−1) after each unsuccessful iteration and we divide it by
F after each iteration that found a superior solution. As we shall
show, this also leads to a quadratic runtime.

5 RUNTIME ANALYSIS FOR STATIC

PARAMETERS

In this section, we conduct a rigorous runtime analysis of the
(1 + (𝜆, 𝜆)) GSEMO with static parameters on the OneMinMax
benchmark. For all runtime analysis results, we recall that the stan-
dard performance measure is the optimization time (also “runtime”)
defined as follows.

Definition: The optimization time of a MOEA 𝐴 on a function
𝑓 is the random variable 𝑇 = 𝑇 (𝐴, 𝑓) that denotes the number of
fitness evaluations performed until the first time the whole Pareto
front 𝑃∗ is covered by the population of 𝐴.

Observe that one iteration of the (1 + (𝜆, 𝜆)) GSEMO requires
3𝜆 function evaluations. Assume that we are working with a
static value for 𝜆. If 𝑡∗ is the first iteration after which the
(1 + (𝜆, 𝜆)) GSEMO has the whole Pareto front covered by the pop-
ulation, then the optimization time 𝑇 of this run is 3𝑡∗𝜆 + 1; recall
that also the initial search point has to be evaluated. Hence the
optimization time and the first iteration 𝑡∗ to cover the Pareto front
deviate basically by a factor of 3𝜆. We shall thus argue with either
of the two notions, but state the main results in terms of the opti-
mization time. This will be different in Sections 6 and 7, where a
varying 𝜆 forbids this simplification.

The (1 + (𝜆, 𝜆)) Global SEMO Algorithm GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version.

The main result of this section is the following runtime bound,
which in particular shows that our (1 + (𝜆, 𝜆)) GSEMO for all 𝑘, 𝜆 ∈
[𝜔 (1), 𝑜 (log𝑛)] is faster than the GSEMO on OneMinMax.

Theorem 1. Let 𝑘, 𝜆 ≥ 2, possibly depending on 𝑛. The expected

optimization time of the (1 + (𝜆, 𝜆)) GSEMO with mutation rate 𝑝 =
𝑘
𝑛 and crossover bias 𝑐 = 1

𝑘
on the OneMinMax function is

𝑂

((
1
𝑘
+ 1
𝜆

)
𝑛2 log𝑛 + (𝑘 + 𝜆)𝑛2

)
.

In particular, for both 𝑘 and 𝜆 inΘ(
√︁
log𝑛), the expected optimization

time is of order at most 𝑛2
√︁
log𝑛.

To prove this result, we first estimate the time it takes to generate
a neighbor of an existing point in the population. More precisely, in
the following three lemmas, we regard the situation that 𝑃 contains
an element 𝑥 with 𝑓 (𝑥) = (𝑛 − 𝑑, 𝑑), but no element 𝑦 with 𝑓 (𝑦) =
(𝑛 − 𝑑 + 1, 𝑑 − 1); we shall then try to bound the time it takes until
a 𝑦 with 𝑓 (𝑦) = (𝑛 − 𝑑 + 1, 𝑑 − 1) is contained in the population.

In the following two lemmas, analyzing separately the mutation
and crossover phase, let us condition on a fixed outcome ℓ of the
number of bits flipped in the mutation phase. We say that the
mutation phase is successful if 𝑥 was chosen as parent individual
and at least one of the 𝜆 offspring of 𝑥 has an 𝑓1-value greater than
𝑛 − 𝑑 − ℓ . Note that then also the mutation winner 𝑥+ has such an
𝑓1-value.

Lemma 2. Then the success probability of the mutation phase is at

least
1
𝑛 (1 − (1 −

𝑑
𝑛)

𝜆ℓ)).

Proof. We have a probability of at least 1
𝑛 of picking 𝑥 as a par-

ent. Conditional on this, consider a fixed offspring. The probability
that it has an 𝑓1-value of 𝑛 − 𝑑 − ℓ is(

𝑛 − 𝑑
ℓ

)
/
(
𝑛

ℓ

)
≤

(
𝑛 − 𝑑
𝑛

)ℓ
.

Since the 𝜆 offspring are sampled independently, the probability
that at least one of them has an 𝑓1-value of more than 𝑛−𝑑 − ℓ , that
is, that the mutation phase is successful, is at least 1− (1− 𝑑

𝑛)
ℓ𝜆 . □

We now turn to the analysis of the crossover phase. Assuming
the mutation phase to be successful, we call the crossover phase
successful if it leads to the creation of a solution 𝑦 with 𝑓1 (𝑦) =
𝑛 − 𝑑 + 1.

Lemma 3. If the mutation phase was successful, the crossover phase

is successful with probability at least 1 −
(
1 − 𝑐 (1 − 𝑐)ℓ−1

)𝜆
.

Proof. Since the mutation phase was successful, the mutation
winner 𝑥+ has an 𝑓1-value of more than 𝑛 − 𝑑 − ℓ . Consequently,
there is at least one bit position out of the ℓ positions 𝑥 and 𝑥+

differ in such that a crossover offspring inheriting this bit from 𝑥+

and the ℓ − 1 others from 𝑥 has an 𝑓1-value of exactly 𝑛 − 𝑑 + 1.
The probability that a fixed crossover offspring 𝑥+

𝑖
is of this kind

is 𝑐 (1 − 𝑐)ℓ−1. Hence the probability that at least one crossover
offspring is of this kind is

Pr[∃𝑖 ∈ [𝜆] : 𝑓1 (𝑥+𝑖)) = 𝑛 − 𝑑 + 1] ≥ 1 −
(
1 − 𝑐 (1 − 𝑐)ℓ−1

)𝜆
. □

With the two lemmas above, we can now show a lower bound
for the probability of finding a desired element on the Pareto front.

Lemma 4. Assume that at a time 𝑡 , we have 𝑥 ∈ 𝑃 with 𝑓 (𝑥) =
(𝑛 − 𝑑,𝑑), but there is no 𝑦 ∈ 𝑃 with 𝑓 (𝑦) = (𝑛 − 𝑑 + 1, 𝑑 − 1). Then
there is a constant 𝐶 > 0 such that the probability that at time 𝑡 + 1
we have such a 𝑦 in 𝑃 is at least

𝑝+
𝑛−𝑑 := 𝐶

𝑛

(
1 −

(
𝑑

𝑛

)𝜆𝑘/2) (
1 − 𝑒−𝜆/(8𝑘)

)
.

The expected time it takes to have such a 𝑦 in the population (counted

from iteration 𝑡 on), is at most 𝑡+
𝑛−𝑑 := 1/𝑝+

𝑛−𝑑 iterations.

Proof. Let 𝐸 denote the event that at time 𝑡 + 1, we have a 𝑦 ∈ 𝑃
with 𝑓1 (𝑦) = (𝑛 − 𝑑 + 1). Let 𝐿 be the random variable describing
the value of ℓ sampled in line 4 of Algorithm 2. By the law of total
probability, we have

Pr[𝐸] ≥
⌊3𝑘/2⌋∑︁
ℓ= ⌈𝑘/2⌉

Pr[𝐸 | 𝐿 = ℓ] Pr[𝐿 = ℓ] .

Let us denote by 𝐸1 the event that themutation phasewas successful
and by 𝐸2 the event that the crossover phase was successful. We
note that 𝐸 ⊇ 𝐸1 ∧ 𝐸2. Using Lemma 2 and 3, we estimate, for a
given ℓ ∈ [𝑘/2..3𝑘/2],

Pr[𝐸 | 𝐿 = ℓ] ≥ Pr[𝐸1 | 𝐿 = ℓ] Pr[𝐸2 | 𝐸1 ∧ 𝐿 = ℓ]

≥ 1
𝑛

(
1 −

(
𝑑

𝑛

)𝜆ℓ) (
1 −

(
1 − 𝑐 (1 − 𝑐)ℓ−1

)𝜆)
.

Using the facts that 𝑘 ≥ 2, 𝑐 = 1/𝑘 , and that we are only interested
in values ℓ ∈ [𝑘/2..3𝑘/2], we compute(

1 − 𝑐 (1 − 𝑐)ℓ−1
)𝜆
≤

(
1 − 1

𝑘

(
1 − 1

𝑘

)3𝑘/2)𝜆
≤ (1 − 1/(8𝑘))𝜆 ≤ 𝑒−𝜆/(8𝑘) ,

where we use in the second step the fact that for all𝑚 ≥ 2 we have
(1 − 1/𝑚)𝑚 ≥ 1/4 and in the third step that for all𝑚 ≥ 2 we have
1/𝑒 ≥ (1 − 1/𝑚)𝑚 ≥ 1/(2𝑒); in the following, we shall use these
inequalities without explicit mention. Since we are interested only

in ℓ ≥ 𝑘/2, we may estimate
(
𝑑
𝑛

)𝜆ℓ
≤

(
𝑑
𝑛

)𝜆𝑘/2
. Thus, in total we

obtain

Pr[𝐸 | 𝐿 = ℓ] ≥
(
1 −

(
𝑑

𝑛

)𝜆𝑘/2) (
1 − 𝑒−

𝜆
8𝑘

)
,

which is independent of ℓ ∈ [𝑘/2..3𝑘/2].
Finally, it is not hard to see that

∑ ⌊3𝑘/2⌋
ℓ= ⌈𝑘/2⌉ Pr[𝐿 = ℓ] is constant.

For 𝑘 = 𝜔 (1) this follows easily from Chernoff’s bound. For con-
stant 𝑘 we trivially have Pr[𝐿 = 𝑘] = Θ(1). This proves the claim
on 𝑝+

𝑛−𝑑 .
The estimate for 𝑡+

𝑛−𝑑 simply follows from the fact that the critical
assumption that 𝑃 contains an 𝑥 with 𝑓 (𝑥) = (𝑛 −𝑑, 𝑑) is true in all
future iterations as well. Hence by the above, the time to find the
desired 𝑦 is stochastically dominated [15] by a geometric random
variable with success rate 𝑝+

𝑛−𝑑 , hence its expectation is at most
1/𝑝+

𝑛−𝑑 . □

GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version. Benjamin Doerr, Omar El Hadri, and Adrien Pinard

From Lemma 4, we now easily prove Theorem 1.

Proof of Theorem 1. By definition of the (1 + (𝜆, 𝜆)) GSEMO,
which is a variant of the the GSEMO, once a point of the Pareto
front is covered by the population, it remains so forever. We can use
this observations together with Lemma 4, which gives an estimate
on the time it takes for a neighbor of a covered point to be covered
as well, to estimate the runtime by the sum of the estimates (from
Lemma 4) for the waiting times to cover an additional point.

Let us suppose that the random initial individual is 𝑥 with 𝑓 (𝑥) =
(𝑛 − 𝑑,𝑑) for some 𝑑 > 0. We estimate the time until for all 𝑗 ∈
[𝑛 − 𝑑 + 1..𝑛] we have an individual 𝑦 with 𝑓 (𝑦) = (𝑗, 𝑛 − 𝑗) in the
population by

𝑛∑︁
𝑗=𝑛−𝑑+1

𝑡+𝑗−1 ≤
𝑛

𝐶

𝑛∑︁
𝑖=1

(
1 −

(
1 − 𝑖

𝑛

)𝜆𝑘/2)−1 (
1 − 𝑒−𝜆/(8𝑘)

)−1
. (1)

For 𝜆𝑘𝑖 > 2𝑛, we have that
(
1 − 𝑖

𝑛

)𝜆𝑘/2
≤ 𝑒−

𝑖𝜆𝑘
2𝑛 ≤ 𝑒−1. On the

other hand, by Bernoulli’s inequality it holds that (1 − 𝑥)𝑚 ≤
(1 +𝑚𝑥)−1 for𝑚 ∈ Z>0 and 𝑥 ∈ [0, 1]. Hence for 𝜆𝑘𝑖 ≤ 2𝑛 we get

that
(
1 − 𝑖

𝑛

)𝜆𝑘/2
≤

(
1 + 𝜆𝑘𝑖

2𝑛

)−1
= 1 − 𝜆𝑘𝑖

2𝑛+𝜆𝑘𝑖 ≤ 1 − 𝜆𝑘𝑖
4𝑛 . Thus we

have that

𝑛∑︁
𝑖=1

(
1 −

(
1 − 𝑖

𝑛

)𝜆𝑘/2)−1
≤

𝑛∑︁
𝑖=1

(
1 −max

{
1 − 𝜆𝑘𝑖

4𝑛 , 𝑒−1
})−1

≤
𝑛∑︁
𝑖=1

max
{
4𝑛
𝜆𝑘𝑖

, (1 − 𝑒−1)−1
}

≤ 𝑂

(
𝑛 log(𝑛)

𝜆𝑘
+ 𝑛

)
.

(2)

Finally, we estimate the factor
(
1 − 𝑒−

𝜆
8𝑘

)−1
in (1). Clearly, if 𝜆

8𝑘 ≥ 1,

then
(
1 − 𝑒−

𝜆
8𝑘

)−1
≥ 1 − 𝑒−1 = 𝑂 (1). For 𝜆

8𝑘 < 1, we use the fact

that for all 𝑥 > 0 we have exp(−𝑥) < 1 − 𝑥 + 𝑥2
2 and bound

𝑒−
𝜆
8𝑘 < 1 − 𝜆

8𝑘 +
1
2

(
𝜆

8𝑘

)2
≤ 1 − 𝜆

8𝑘 +
1
2
𝜆

8𝑘 = 1 − 𝜆

16𝑘 .

This shows that for 𝜆
8𝑘 < 1 we have(

1 − 𝑒−
𝜆
8𝑘

)−1
<

(
𝜆

16𝑘

)−1
= 𝑂 (𝑘/𝜆) .

Consequently, in both cases, we have(
1 − 𝑒−

𝜆
8𝑘

)−1
= 𝑂

(
max

{
1, 𝜆
𝑘

})
. (3)

Replacing the terms in (1) by (2) and (3) it is thus easy to see that
the overall number of iterations needed is

𝑂

(
max

{
1, 𝑘
𝜆

} (
𝑛 log𝑛
𝜆𝑘

+ 𝑛
))
.

Since one iteration of Algorithm 2 requires 3𝜆 fitness evaluations,
the expected time (in terms of fitness evaluations) is

𝑂

(
𝑛𝜆

(
𝑛 log𝑛
𝜆𝑘

+ 𝑛
)
+ 𝑘𝑛

(
𝑛 log𝑛
𝜆𝑘

+ 𝑛
))

= 𝑂

((
1
𝑘
+ 1
𝜆

)
𝑛2 log𝑛 + (𝑘 + 𝜆)𝑛2

)
. (4)

We recall that this estimates the time to find a solution 𝑦 with
𝑓 (𝑦) = (𝑗, 𝑛 − 𝑗) for all 𝑗 ∈ [𝑛 − 𝑑 + 1..𝑛] from an initial solution
𝑥 with 𝑓 (𝑥) = (𝑛 − 𝑑, 𝑑), and more generally, from an arbitrary
initial state containing such an 𝑥 . By symmetry, and since the above
estimate does not depend on 𝑑 , the same estimate holds for the time
to find a 𝑦 with 𝑓 (𝑦) = (𝑗, 𝑛 − 𝑗) for all 𝑗 ∈ [0..𝑛 − 𝑑 − 1]. Hence
the entire expected runtime is the sum of these two (identical)
expressions, and this finished the proof. □

6 STATE-DEPENDENT PARAMETERS

In this section we prove that a suitable state-dependent choice
of 𝜆, ensuring larger 𝜆 values towards the more difficult end of
the optimization process, together with the standard parameter
setting for 𝑘 and 𝑐 , provably yields an asymptotic speed-up, namely
an expected optimization time of 𝑂 (𝑛2). We are not aware of any
previous results showing more than a constant-factor gain through
a dynamic parameter choice for a MOEA for discrete search spaces.

To describe the quality of a state, we need the following defini-
tion.

Definition: Let 𝑃 be a population. For 𝑏 ∈ {1, 2}, let 𝑜𝑏 (𝑃) :=
min{ 𝑗 ∈ [0..𝑛−1] | (∃𝑥 ∈ 𝑃 : 𝑓𝑏 (𝑥) = 𝑗 ∧ (∀𝑦 ∈ 𝑃 : 𝑓𝑏 (𝑦) ≠ 𝑗 +1)}.

The idea behind this definition is to grasp the missing solution
that is easiest to find. If 𝑜1 (𝑃) = 𝑛 − 𝑑 for some 𝑑 , then we are in
the situation of Lemma 4, that is, we have a solution 𝑥 ∈ 𝑃 with
𝑓 (𝑥) = (𝑛 − 𝑑, 𝑑), but we do not have a solution 𝑦 with 𝑓 (𝑦) =
(𝑛 − 𝑑 + 1, 𝑑 − 1), and among all such pairs this pair (𝑥,𝑦) is the
one that most easily allows to generate 𝑦 from 𝑥 . We then choose
𝜆 in such a way that an expected constant number of iterations is
sufficient to find 𝑦.

Theorem 5. Consider the (1 + (𝜆, 𝜆)) GSEMO with standard pa-

rameters 𝑝 = 𝜆
𝑛 and 𝑐 = 1

𝜆
together with a state-dependent

choice of 𝜆 such that in the beginning of each iteration 𝜆 is set to

𝜆∗ =
√︃

𝑛
𝑛−min(𝑜1 (𝑃),𝑜2 (𝑃)) . Then the expected optimization time on

OneMinMax is 𝑂 (𝑛2).

Proof. Consider one iteration of this (1 + (𝜆, 𝜆)) GSEMO. By
symmetry, assume that min(𝑜1 (𝑃), 𝑜2 (𝑃)) = 𝑜1 (𝑃). Applying
Lemma 4 with 𝑛 − 𝑑 = 𝑜1 (𝑃) and 𝜆 = 𝑘 = 𝜆∗, we see that
we have a probability of Ω(1/𝑛) to find a search point 𝑦 with
𝑓 (𝑦) = (𝑛 − 𝑑 + 1, 𝑑 − 1) in one iteration. Consequently, we use
each different value of 𝜆∗ only for an expected number of 𝑂 (𝑛)
iterations.

This bounds the entire expected optimization time by

𝑂

(
𝑛

𝑛−1∑︁
𝑑=0

√︁
𝑛/(𝑛 − 𝑑)

)
= 𝑂

(
𝑛
√
𝑛

∫ 𝑛

1

√︁
1/𝑖 d𝑖

)
= 𝑂 (𝑛2) .

□

The (1 + (𝜆, 𝜆)) Global SEMO Algorithm GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version.

7 SELF-ADJUSTING PARAMETER CHOICES

The previous section showed that a non-trivial state-dependent
parameter choice gave better results than the best static parameter
setting we found. The question is how an algorithm user would find
this state-dependent parameter setting. Fortunately, as in the single-
objective case [16], there is a way to let the algorithm discover a
good dynamic parameter setting itself, namely via a self-adjusting
choice of 𝜆 inspired by the classic one-fifth rule (and then following
the standard setting 𝑘 = 𝜆/𝑛 and 𝑐 = 1/𝜆).

We first design such a self-adjusting mechanisms for the
(1 + (𝜆, 𝜆)) GSEMO and then analyze the resulting runtime. We
note that while dynamic parameter choise have been designed for
MOEAs, e.g., [12, 32, 36], we are not aware of any such works in
discrete search spaces.

To design our self-adjusting parameter setting, we first recall
that the idea of the one-fifth rule is to adjust the parameters via
multiplicative changes in such a way that roughly each fifth itera-
tion is successful. Here success usually means that a strictly better
solution was found. This definition makes not too much sense for
multi-objective optimization, but for a GSEMO variant, it is natural
to speak of success if the population at the end of the iteration
covers more points of the Pareto front.

We then observe that asking for a success roughly each five
iterations might be too much to ask for in a GSEMO variant. Since
in each iterations an offspring is generated from a random parent
(chosen from a population of, here, up to 𝑛 + 1 elements), it might
just take very long until a parent is chosen which has a reasonable
chance to create an interesting offspring. For that reason, we rather
aim at a success every roughly 5𝑛 iterations. With a multiplicative
parameter update, this means that for a constant update strength
parameter 𝐹 > 1, we replace 𝜆 by 𝜆/𝐹 in case of a success, and we
replace 𝜆 by 𝜆𝐹 1/(5𝑛−1) otherwise. We set the mutation strength 𝑘
and the crossover bias 𝑐 depending on 𝜆 following the standard
setting, that is, 𝑘 = 𝜆/𝑛 and 𝑐 = 1/𝜆. We allow that 𝜆 takes non-
integral values and assume that values rounded to the nearest
integer are used whenever integers are required. We initialize 𝜆
cautiously with 𝜆 = 1 and we ensure that 𝜆 never leaves the interval
[1, 𝜆]. See Algorithm 3 for the pseudo-code of this self-adjusting
(1 + (𝜆, 𝜆)) GSEMO.

We now conduct a runtime analysis for the self-adjusting ver-
sion for our (1 + (𝜆, 𝜆)) GSEMO and show that it can optimize the
OneMinMax problem in quadratic time.

Theorem 6. The expected optimization time of the self-adjusting

(1 + (𝜆, 𝜆)) GSEMO on OneMinMax is 𝑂 (𝑛2) when the hyper-

parameter 𝐹 > 1 is chosen sufficiently small.

We omit the formal proof of this result for reasons of space. A
main ingredient of the proof is that the population size 𝜆 evolved
by the one-fifth success rule is usually not very far from the state-
dependent choice 𝜆∗ analyzed in the previous section.

More precisely, we note that a 𝜆 value smaller than 𝜆∗ is not crit-
ical. Due the multiplicative update and the fact that 𝐹 is a constant
larger than one, it takes only 𝑂 (𝑛𝜆∗) fitness evaluations to bring
𝜆 up to 𝜆∗. This ignores the possibly finding of new points of the
Pareto front; since the missing point in the definition of 𝑜𝑏 (𝑃) is the
point easiest to find, this event is actually a positive one (we found
a search point with a smaller value (that is, cost of one iteration)

Algorithm 3: The self-adjusting (1 + (𝜆, 𝜆)) GSEMO. We
always have𝑘 = 𝜆 and 𝑐 = 1/𝜆. We assume that 𝜆 is rounded
to the nearest integer where an integer is required. Success
means that the iteration has increased the population.
1 𝜆 ← 1;
2 Generate 𝑥 ∈ {0, 1}𝑛 uniformly at random and 𝑃 ← {𝑥};
3 while not stop condition do

4 Uniformly at random select one individual 𝑥 from 𝑃 ;
5 Sample ℓ from a binomial distribution B(𝑛, 𝑘𝑛);
6 Generate 𝑥1, 𝑥2, ..., 𝑥𝜆 ∈ {0, 1}𝑛 via randomly flipping ℓ

bits of 𝑥 ;
7 Select 𝑥+, 𝑥− ∈ {𝑥1, 𝑥2, ..., 𝑥𝜆} such that 𝑥+ maximizes 𝑓1

and 𝑥− maximizes 𝑓2;
8 Generate 𝑥+1 , 𝑥

+
2 , ..., 𝑥

+
𝜆
∈ {0, 1}𝑛 via cross𝑐 (𝑥, 𝑥+) ;

9 Generate 𝑥−1 , 𝑥
−
2 , ..., 𝑥

−
𝜆
∈ {0, 1}𝑛 via cross𝑐 (𝑥, 𝑥−);

10 for 𝑦 ∈ {𝑥+1 , 𝑥
+
2 , ..., 𝑥

+
𝜆
, 𝑥−1 , 𝑥

−
2 , ..., 𝑥

−
𝜆
} do

11 if there is no 𝑧 ∈ 𝑃 such that 𝑦 ⪯ 𝑧 then

12 𝑃 = {𝑧 ∈ 𝑃 |𝑧 ⪯̸ 𝑦} ∪ {𝑦}

13 if Success then

14 𝜆 ← max{1, 𝜆/𝐹 }
15 else

16 𝜆 ← min{𝑛, 𝜆𝐹
1

5𝑛−1 }

17 return P

than estimated). Taking 𝑂 (𝑛𝜆) fitness evaluations to adjust 𝜆 to 𝜆∗
is uncritical, since even with the optimal value 𝜆 = 𝜆∗ we allow
for 𝑂 (𝑛) iterations, hence 𝑂 (𝑛𝜆∗) fitness evaluations, to find the
desired individual.

Once we have 𝜆 ≥ 𝜆∗, as computed in the proof of Theorem 5, we
have an Ω(1/𝑛) probability to find the desired individual. Hence the
probability to fail for 𝛾𝑛 iterations, is exp(−Ω(𝛾)). Such a sequence
of failures increases the 𝜆 value by a factor of (𝐹 1/(5𝑛−1))𝛾𝑛 . If 𝐹
is chosen sufficiently small (but larger than one), then the cost
incurred by this too high value of 𝜆 is outnumbered by the small
probability of exp(−Ω(𝛾)) of this negative event.

8 EXPERIMENTS

To see if the asymptotic runtime differences of the algorithms re-
garded in this work are visible already for realistic problem sizes,
we implemented the algorithms and ran them on the OneMinMax
problem of size 𝑛 = 10, 20, ..., 140.

For the (1 + (𝜆, 𝜆)) GSEMO we use the standard parameter set-
ting 𝑘 = 𝜆 = 1/𝑐 with 𝜆 = 7 log𝑛. Unfortunately, we could not
find parameters that led to an interesting performance of the self-
adjusting (1 + (𝜆, 𝜆)) GSEMO.

The average runtimes of the GSEMO and (1 + (𝜆, 𝜆)) GSEMO
are displayed in Figure 1. The superiority of the (1 + (𝜆, 𝜆)) GSEMO
is clearly visible, being more than a factor of 5 faster for the largest
problem sizes.

GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version. Benjamin Doerr, Omar El Hadri, and Adrien Pinard

Figure 1: The mean number of function evaluations with

standard deviation (in 10 independent runs) of the GSEMO

and the (1 + (𝜆, 𝜆)) GSEMO on OneMinMax.

9 CONCLUSION

In this work, we showed how to incorporate the main building block
of the single-objective (1 + (𝜆, 𝜆)) GA algorithm into a MOEA,
namely the GSEMO algorithm. Our mathematical runtime analysis
on the OneMinMax benchmark showed that it profits from the
same speed-ups that the (1 + (𝜆, 𝜆)) GA did on the OneMax bench-
mark, and this for fixed parameters, parameters depending on the
spread of the population, and a self-adjusting parameter choice
(where the latter two needed some modification compared to the
(1 + (𝜆, 𝜆)) GA).

Given these positive results, a natural continuation of this line
of research is to see which other advantages of the (1 + (𝜆, 𝜆)) GA
transfer to the multi-objective case. Given the good performance
of the (1 + (𝜆, 𝜆)) GA on multimodal problems, an interesting next
test problem could be the multimodal multi-objective benchmark
designed in [23]. Given that the (1 + (𝜆, 𝜆)) GA showed a good per-
formance with heavy-tailed parameter choices [1, 3], both on simple
and multimodal problems, seeing if these advantages continue into
the multi-objective world is an equally interesting direction for
future research.

From a broader perspective, this work also shows that the central
idea of the (1 + (𝜆, 𝜆)) GA can be encapsulated into new complex
mutation operator, which can easily be combined with existing
algorithms. We are optimistic that this idea, here only done for
the GSEMO, can be profitable also for other algorithms, let it be
multi-objective ones such as the NSGA-II or classic EAs.

Overall, this work shows that it can be interesting to try to
transfer the recent theory developments in the better understood
single-objective world into the theory of MOEAs.

ACKNOWLEDGMENTS

This work was supported by a public grant as part of the Investisse-
ments d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx
LMH.

REFERENCES

[1] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2020. Fast mutation in
crossover-based algorithms. In Genetic and Evolutionary Computation Conference,

GECCO 2020. ACM, 1268–1276.
[2] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2020. First steps towards a

runtime analysis when starting with a good solution. In Parallel Problem Solving

From Nature, PPSN 2020, Part II. Springer, 560–573.
[3] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2021. Lazy parameter

tuning and control: choosing all parameters randomly from a power-law distri-
bution. In Genetic and Evolutionary Computation Conference, GECCO 2021. ACM,
1115–1123.

[4] Denis Antipov and Benjamin Doerr. 2021. Precise runtime analysis for plateau
functions. ACM Transactions on Evolutionary Learning and Optimization 1 (2021),
13:1–13:28.

[5] Denis Antipov and Benjamin Doerr. 2021. A tight runtime analysis for the
(𝜇 + 𝜆) EA. Algorithmica 83 (2021), 1054–1095.

[6] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. 2019. A tight runtime
analysis for the (1 + (𝜆, 𝜆)) GA on LeadingOnes. In Foundations of Genetic

Algorithms, FOGA 2019. ACM, 169–182.
[7] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. 2020. The (1 + (𝜆, 𝜆)) GA

is even faster on multimodal problems. In Genetic and Evolutionary Computation

Conference, GECCO 2020. ACM, 1259–1267.
[8] Denis Antipov, Benjamin Doerr, and Quentin Yang. 2019. The efficiency threshold

for the offspring population size of the (𝜇, 𝜆) EA. In Genetic and Evolutionary

Computation Conference, GECCO 2019. ACM, 1461–1469.
[9] Anne Auger and Benjamin Doerr (Eds.). 2011. Theory of Randomized Search

Heuristics. World Scientific Publishing.
[10] Chao Bian and Chao Qian. 2022. Running Time Analysis of the Non-dominated

Sorting Genetic Algorithm II (NSGA-II) using Binary or Stochastic Tournament
Selection. CoRR abs/2203.11550 (2022).

[11] Dimo Brockhoff, Tobias Friedrich, and Frank Neumann. 2008. Analyzing hyper-
volume indicator based algorithms. In Parallel Problem Solving from Nature, PPSN

2008. Springer, 651–660.
[12] Dirk Büche, Sibylle D. Müller, and Petros Koumoutsakos. 2003. Self-adaptation

for multi-objective evolutionary algorithms. In Evolutionary Multi-Criterion Op-

timization, EMO 2003. Springer, 267–281.
[13] Maxim Buzdalov and Benjamin Doerr. 2017. Runtime Analysis of the (1 + (𝜆, 𝜆))

Genetic Algorithm on Random Satisfiable 3-CNF Formulas. In Genetic and Evolu-

tionary Computation Conference, GECCO 2017. ACM, 1343–1350.
[14] Luc Devroye. 1972. The compound random search. Ph.D. dissertation, Purdue

Univ., West Lafayette, IN.
[15] Benjamin Doerr. 2019. Analyzing randomized search heuristics via stochastic

domination. Theoretical Computer Science 773 (2019), 115–137.
[16] Benjamin Doerr and Carola Doerr. 2018. Optimal static and self-adjusting

parameter choices for the (1 + (𝜆, 𝜆)) genetic algorithm. Algorithmica 80 (2018),
1658–1709.

[17] Benjamin Doerr and Carola Doerr. 2020. Theory of parameter control for discrete
black-box optimization: provable performance gains through dynamic parameter
choices. In Theory of Evolutionary Computation: Recent Developments in Discrete

Optimization, Benjamin Doerr and Frank Neumann (Eds.). Springer, 271–321.
Also available at https://arxiv.org/abs/1804.05650.

[18] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box com-
plexity to designing new genetic algorithms. Theoretical Computer Science 567
(2015), 87–104.

[19] Benjamin Doerr, Wanru Gao, and Frank Neumann. 2016. Runtime analysis of
evolutionary diversity maximization for OneMinMax. InGenetic and Evolutionary
Computation Conference, GECCO 2016. ACM, 557–564.

[20] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.
Fast genetic algorithms. In Genetic and Evolutionary Computation Conference,

GECCO 2017. ACM, 777–784.
[21] Benjamin Doerr and Frank Neumann (Eds.). 2020. Theory of Evolutionary

Computation—Recent Developments in Discrete Optimization. Springer. Also avail-
able at https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.
pdf.

[22] Benjamin Doerr and Zhongdi Qu. 2022. A First Runtime Analysis of the NSGA-II
on a Multimodal Problem. CoRR abs/2204.07637 (2022). arXiv:2204.07637

[23] Benjamin Doerr and Weijie Zheng. 2021. Theoretical analyses of multi-objective
evolutionary algorithms on multi-modal objectives. In Conference on Artificial

Intelligence, AAAI 2021. AAAI Press, 12293–12301.
[24] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the

(1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51–81.
[25] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2006. Upper and lower bounds

for randomized search heuristics in black-box optimization. Theory of Computing

Systems 39 (2006), 525–544.
[26] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2020. On the choice of the

parameter control mechanism in the (1 + (𝜆, 𝜆)) genetic algorithm. In Genetic

and Evolutionary Computation Conference, GECCO 2020. ACM, 832–840.

https://arxiv.org/abs/1804.05650
https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf
https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf
https://arxiv.org/abs/2204.07637

The (1 + (𝜆, 𝜆)) Global SEMO Algorithm GECCO ’22, July 9–13, 2022, Boston, MA, USA. Author generated version.

[27] Josselin Garnier, Leila Kallel, and Marc Schoenauer. 1999. Rigorous hitting times
for binary mutations. Evolutionary Computation 7 (1999), 173–203.

[28] Oliver Giel. 2003. Expected runtimes of a simple multi-objective evolutionary
algorithm. In Congress on Evolutionary Computation, CEC 2003. IEEE, 1918–1925.

[29] Oliver Giel and Per Kristian Lehre. 2010. On the effect of populations in evo-
lutionary multi-objective optimisation. Evolutionary Computation 18 (2010),
335–356.

[30] Zhengxin Huang and Yuren Zhou. 2020. Runtime analysis of somatic contiguous
hypermutation operators in MOEA/D framework. In Conference on Artificial

Intelligence, AAAI 2020. AAAI Press, 2359–2366.
[31] Zhengxin Huang, Yuren Zhou, Zefeng Chen, and Xiaoyu He. 2019. Running

time analysis of MOEA/D with crossover on discrete optimization problem. In
Conference on Artificial Intelligence, AAAI 2019. AAAI Press, 2296–2303.

[32] Christian Igel, Nikolaus Hansen, and Stefan Roth. 2007. Covariance matrix
adaptation for multi-objective optimization. Evolutionary Computation 15 (2007),
1–28.

[33] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms – The Computer Science

Perspective. Springer.
[34] Thomas Jansen, Kenneth A. De Jong, and IngoWegener. 2005. On the choice of the

offspring population size in evolutionary algorithms. Evolutionary Computation

13 (2005), 413–440.
[35] Thomas Jansen and Christine Zarges. 2014. Performance analysis of randomised

search heuristics operating with a fixed budget. Theoretical Computer Science 545
(2014), 39–58.

[36] Marco Laumanns, Günter Rudolph, and Hans-Paul Schwefel. 2001. Mutation
control and convergence in evolutionary multi-objective optimization. In Pro-

ceedings of the 7th International Mendel Conference on Soft Computing, MENDEL

2001. 24–29.
[37] Marco Laumanns, Lothar Thiele, and Eckart Zitzler. 2004. Running time analysis

of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE
Transactions on Evolutionary Computation 8 (2004), 170–182.

[38] Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl, and Kalyanmoy Deb.
2002. Running time analysis of multi-objective evolutionary algorithms on a
simple discrete optimization problem. In Parallel Problem Solving from Nature,

PPSN 2002. Springer, 44–53.
[39] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Varia-

tion. Algorithmica 64 (2012), 623–642.
[40] Yuan-Long Li, Yu-Ren Zhou, Zhi-Hui Zhan, and Jun Zhang. 2016. A primary

theoretical study on decomposition-basedmultiobjective evolutionary algorithms.
IEEE Transactions on Evolutionary Computation 20 (2016), 563–576.

[41] Andrei Lissovoi, Pietro S. Oliveto, and JohnAlasdairWarwicker. 2019. On the time
complexity of algorithm selection hyper-heuristics for multimodal optimisation.
In Conference on Artificial Intelligence, AAAI 2019. AAAI Press, 2322–2329.

[42] Heinz Mühlenbein. 1992. How genetic algorithms really work: mutation and
hillclimbing. In Parallel Problem Solving from Nature, PPSN 1992. Elsevier, 15–26.

[43] Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combinato-

rial Optimization – Algorithms and Their Computational Complexity. Springer.
[44] Phan Trung Hai Nguyen and Dirk Sudholt. 2020. Memetic algorithms outperform

evolutionary algorithms in multimodal optimisation. Artificial Intelligence 287
(2020), 103345.

[45] Edgar Covantes Osuna, Wanru Gao, Frank Neumann, and Dirk Sudholt. 2020.
Design and analysis of diversity-based parent selection schemes for speeding
up evolutionary multi-objective optimisation. Theoretical Computer Science 832
(2020), 123–142.

[46] Amirhossein Rajabi and Carsten Witt. 2020. Self-adjusting evolutionary algo-
rithms for multimodal optimization. In Genetic and Evolutionary Computation

Conference, GECCO 2020. ACM, 1314–1322.
[47] Ingo Rechenberg. 1973. Evolutionsstrategie. Friedrich Fromman Verlag (Günther

Holzboog KG), Stuttgart.
[48] Jonathan E. Rowe and Dirk Sudholt. 2014. The choice of the offspring population

size in the (1, 𝜆) evolutionary algorithm. Theoretical Computer Science 545 (2014),
20–38.

[49] Günter Rudolph. 1997. Convergence Properties of Evolutionary Algorithms. Verlag
Dr. Kovǎc.

[50] Michael A. Schumer and Kenneth Steiglitz. 1968. Adaptive step size random
search. IEEE Trans. Automat. Control 13 (1968), 270–276.

[51] Dirk Sudholt and Carsten Witt. 2019. On the choice of the update strength in
estimation-of-distribution algorithms and ant colony optimization. Algorithmica

81 (2019), 1450–1489.
[52] Carsten Witt. 2006. Runtime analysis of the (𝜇 + 1) EA on simple pseudo-Boolean

functions. Evolutionary Computation 14 (2006), 65–86.
[53] Carsten Witt. 2013. Tight bounds on the optimization time of a randomized

search heuristic on linear functions. Combinatorics, Probability & Computing 22
(2013), 294–318.

[54] Weijie Zheng and Benjamin Doerr. 2022. Better approximation guarantees for
the NSGA-II by using the current crowding distance. In Genetic and Evolutionary

Computation Conference, GECCO 2022. ACM. Also available at https://arxiv.org/
abs/2203.02693.

[55] Weijie Zheng, Yufei Liu, and Benjamin Doerr. 2022. A first mathematical run-
time analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II).
In Conference on Artificial Intelligence, AAAI 2022. AAAI Press. Preprint at
https://arxiv.org/abs/2112.08581.

https://arxiv.org/abs/2203.02693
https://arxiv.org/abs/2203.02693
https://arxiv.org/abs/2112.08581

	Abstract
	1 Introduction
	2 Previous Work
	3 Preliminaries
	4 From the (1+(,)) GA to the (1+(,)) GSEMO
	4.1 The (1+(,)) GA
	4.2 The GSEMO
	4.3 Designing the (1+(,)) GSEMO
	4.4 Our Results

	5 Runtime Analysis for Static Parameters
	6 State-Dependent Parameters
	7 Self-Adjusting Parameter Choices
	8 Experiments
	9 Conclusion
	Acknowledgments
	References

