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ABSTRACT
We study unsupervised Retinex decomposition for low light
image enhancement. Being an underdetermined problem with
infinite solutions, well-suited priors are required to reduce the
solution space. In this paper, we analyze the characteristics of
low-light images and their illumination component and iden-
tify a trivial solution not taken into consideration by the pre-
vious unsupervised state-of-the-art methods. The challenge
comes from the fact that the trivial solution cannot be com-
pletely eliminated from the feasible set as it corresponds to
the true solution when the low-light image contains a light
source or an overexposed area. To address this issue, we pro-
pose a new regularization term which only remove absurd so-
lutions and keep plausible ones in the set. To demonstrate the
efficiency of the proposed prior, we conduct our experiments
using deep image priors in a framework similar to the recent
work RetinexDIP and an in-depth ablation study. Finally, we
observe no more halo artefacts in the restored image. For all-
but-one metrics, our unsupervised approach gives results as
good as the supervised state-of-the-art indicating the poten-
tial of this framework for low-light image enhancement.

Index Terms— Low light enhancement, Image decom-
position, Image restoration, Inverse problems, Retinex model,
Neural Networks

1. INTRODUCTION

Many image processing algorithms (e.g., for object detection,
classification, segmentation, recognition, scene understand-
ing and 3D reconstruction) have been designed for normal
lighting conditions, and do not perform well in low light envi-
ronment. Indeed, in this environment, image processing tasks
fail because the camera sensor captures a limited number of
photons. This leads to very low signal-to-noise ratio, but also
to lightness and color deviations.

The Retinex model [1, 2] has been shown to be an effec-
tive a priori to perform low-light image restoration. Accord-
ing to this theory, it is assumed that any image is a product
of two components: reflectance and illumination. The re-
flectance is a color image and defines the natural color of an
object irrespective of the illumination condition. Whereas, the
illumination models the lighting condition as a one-channel
image. Once the image is decomposed, one can apply compo-
nent specific processing: color deviation correction for the re-

flectance, and lighting enhancement for the illumination. This
leads to a very effective normal-light image reconstruction;
and shows the effectiveness of the Retinex decomposition.

The state-of-the-art methods for Retinex decomposition
are based on deep neural networks trained on datasets in
an end-to-end manner [3]. While they can efficiently de-
compose an image with powerful supervised priors know-
ing the ground-truth, relying on a dataset remains a prob-
lem. Indeed, it is extremely difficult to obtain ideal pairs
of low-light/normal-light images to isolate the degradation.
Thus, when these networks are applied on natural out-of-
distribution images, the restored images may contain arti-
facts or color deviations. Different implementations of the
core Retinex prior (i.e. structure-aware smooth illumination
component) have been proposed in the signal-prior based
approach [4] and in the supervised frameworks of Wei et al.
[5] and Zhang et al. [3]. Recent works depart from super-
vised learning and focus on unsupervised learning instead to
address the difficulty of collecting ground-truth data. For the
sake of fairness, we will also compare the performance of
our approach against EnlightenGAN [6] and Zero-DCE [7].
These solutions require a careful selection of the training data
such as a dataset containing multi-exposure unpaired images
or a manual inspection to remove images of medium bright-
ness. Still, few methods try to decompose an image following
the Retinex model in an unsupervised fashion.

A recent work by Zhao et al. [8] combined the Retinex
decomposition with deep image priors [9] to generate the two
intrinsic components of the image. Then, they enhance the
low-light image by restoring the illumination with a gamma
correction. The authors designed an illumination consistency
prior to constrain the generated illumination to be close to
an approximation of the illumination, a first plausible guess.
This is a hard constraint on the set of reachable solutions and
therefore the deep image priors can’t explore as much solu-
tions as they should.

The contributions of this paper are manifold. First, we
rewrite the retinex decomposition as a scale mixture which is
a widespread and well-studied model in the image process-
ing literature especially in the wavelet domain with Gaussian
priors [10, 11, 12]. In the context of low light images, we
identify a trivial solution (i.e. when the scaling factor is equal
to one), and analyze its properties. Then, we propose a new
prior that address this problem while still letting the deep im-
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Fig. 1. Retinex decomposition scheme: The DIPs (Tθu , Tθv ),
initialized with random noises (zu, zv), produce two initial
estimate (Tθu(zu), Tθv (zv)). They are defined in Eq. (4)-
(6). These are further improved with the general loss (8) to
produce the final components û and v̂.

age priors explore as much plausible solutions as before. Fi-
nally, we propose to restore the image with two gamma cor-
rections, one for each component. The fact that component-
specific corrections are used, shows the necessity to decom-
pose the low-light image. We demonstrate the effectiveness
of our decomposition achieving good performance using sim-
ple gamma corrections. Finally, we observe no more halo
artefacts on the restored image. For all-but-one metrics, our
approach gives results as good as the supervised state-of-the-
art indicating the potential of a generative framework for low-
light image enhancement.

2. INITIAL PROBLEM STATEMENT AND
BACKGROUND

2.1. The Retinex Model and estimating its components
According to the Retinex theory [1, 2], an image y ∈ R3n is
a noisy observation of the product of two components

y = v. ∗ u+ η. (1)

where .∗ is the element-wise product, v ∈ Rn the illumination
map, u ∈ R3n the reflectance component of this image, and
η the additive Gaussian noise. This model can be seen as a
scale mixture since one pixel is the product of a scaling factor
(i.e the illumination) applied to all three RGB components
of the reflectance. The illumination component contains the
lightness information of the scene including shadows or light
sources. The reflectance consists of the intrinsic color of the
elements of the scene regardless of the exposure conditions.

Computing the elements of a scale mixture is an underde-
termined problem and inherently ill-posed. Indeed, we need
to estimate 4n variables from 3n observations in the context
of the Retinex decomposition. There is a need of suited pri-
ors to regularize the loss function and therefore to reduce the

solution space. Thus, we seek to estimate (v̂, û) such that

(v̂, û) = argmin
v,u

‖y − v. ∗ u‖22. (2)

2.2. Background on the common priors
In a ideal decomposition, the illumination map should not
contain any texture details but still keep the structure of the
scene. Thus, we first use the structure-aware illumination
smoothness prior in [5],

LIS =
∥∥∥ ∇v
max(∇y, ε)

∥∥∥
1
. (3)

If∇y has high values, the penalty will be small to smooth the
surface whereas low values will give a high penalty to force
the illumination component v to be close.

Using deep image priors to generate the components, we
get the following optimization problem,

(θ̂v, θ̂u) = argmin
θv∈Rp,θu∈Rp′

‖y − Tθv (zv). ∗ Tθu(zu)‖22. (4)

Tθu : zu ∼ U(0, 1)3n → Tθu(zu) ∈ R3n (5)
Tθv : zv ∼ U(0, 1)n → Tθv (zv) ∈ Rn (6)

where (zu, zv) are the input noises, and (Tθu(zu), Tθv (zv))
their respective outputs.

Because the illumination has to contain only low frequen-
cies, high frequencies of the image including noise end up in
the reflectance. A core property of the deep image prior is to
be robust to noise and to converge faster on naturally looking
images [9]. To further reduce the noise, we add a TV penalty
ρTV (u) to the problem following the work in [13].

3. THE PROPOSED PRIOR

3.1. The trivial solution problem and the exposure prior
vi = 1, and thus ui = yi, should only be admissible when
there is a light source or an overexposed area in y at pixel
i. Indeed, the illumination can be smoothed out by the prior,
the reconstruction of the low-light image still correct and yet
the problem could occur. In RetinexDIP [8], they use an
Illumination consistency prior which ties the component to
the maximum of the low-light image over the color channels.
This constrains the component to be close to a first plausible
guess. The authors then try to find the best decomposition in
the direct neighborhood of the approximation. This reduces
the possibility to improve the process further than the initial
guess. We propose a new regularization in order to only ac-
cept the trivial solution when it is feasible. We define the
exposure prior as follows,

LE =
∥∥∥g( max

c∈{R,G,B}
yc

)
− g
(
Tθv (zv)

)∥∥∥2
2

(7)

where g is a threshold function g(x) =

{
x, x > t

0, otherwise
. We

choose t = 0.9 here so that this constraint only affects the



Methods PSNR(↑) SSIM(↑) LPIPS(↓) Runtime (in s)

Supervised
KinD [3] 17.26 0.77 0.187 1.47

KinD [3] DecompNet→ γCorr 17.91 0.64 0.321 1.06

Unsupervised
LIME [4] 10.10 0.38 0.383 0.26

EnlightenGAN [6] 17.48 0.65 0.322 0.12
Zero-DCE [7] 14.86 0.56 0.335 0.0012
RetinexDIP [8] 11.69 0.48 0.351 20.89
Ours→ γCorr 18.11 0.68 0.306 2220

Table 1. Best and second-best results are highlighted in
bold, and blue respectively. KinD [3] relies on paired
degraded/ground-truth images to extract its priors. LIME [4]
is a signal-prior based approach. Zero-DCE [7] and Enlight-
enGAN [6] are unsupervised methods but still needs to be
trained on a dataset of unpaired multi-exposure images. On
the contrary, RetinexDIP [8] and ours are fully unsupervised.
The latter outperforms the unsupervised competitors while
being close to the supervised one. Since we build on the deep
image prior [9], it has the same drawback being the high com-
putation time. The difference between RetinexDIP [8] and
ours is due to the different number of epochs as discussed in
4.5.

high values of the component. Therefore, the solution set in-
cludes the ones with vi = 1 when yi = 1 but forbids the
illumination to be equal to one if there is no light source or
overexposed regions in the input low-light image.

3.2. New problem formulation
Instead of minimizing over the parameter space of a DIP, the
authors in [14] proposed to relax this constraint to improve the
performance expanding the solution space. We seek the best
compromise between the data fidelity term and the DIPs out-
puts reaching potentially better solutions. Therefore, we de-
fine the additional terms ‖Tθv (zv)− v‖22 and ‖Tθu(zu)− u‖22
to keep the estimated components close to the outputs of the
DIPs. Each generated component is able to drift from its re-
spective DIP solution. Consequently, in the SUB-DIP formu-
lation [14], the structure of the CNN is really considered as a
prior and not as a hard constraint unlike DIP [9], DoubleDIP
[15] or RetinexDIP [8]. This is an additional difference be-
tween our work and RetinexDIP [8]. We now seek to estimate
the best parameters of the DIPs (θ̂v, θ̂u) as well. Hence, the
optimization problem becomes

(v̂, û, θ̂v, θ̂u) = argmin
v,u,θv,θu

‖y − v. ∗ u‖22 + λISLIS

+ λDIPu‖Tθu(zu)− u‖22 + λDIPv‖Tθv (zv)− v‖22
+ λTV ρTV (u) + λELE . (8)

We initialize the components u and v as proposed in LIME
[4], i.e., as v = max

c∈{R,G,B}
yc, u = y./v. The complete de-

composition process is illustrated in Figure 1.

(a) Input Low-light image (b) KinD [3] Reflectance

(c) RetinexDIP [8] (d) Ours

Fig. 2. Our fully unsupervised approach achieves on par in-
trinsic components with the KinD [3] network trained in an
end-to-end fashion on the same dataset. Even with 12000 it-
erations, RetinexDIP [8] reflectance is cartoon-like.

4. EXPERIMENTS

4.1. Restoration of the components
To restore the components, we take a random subset of 30
paired images from the training set, decompose them with
our method and estimate the gamma values. We found that
we get better results using a different value for each compo-
nent. Thus, we use two unique values for all images. This
demonstrates the necessity of the Retinex decomposition.

4.2. Implementation details
We use the ADAM optimizer [16] with a fixed learning rate
of 1e−4 and 12000 optimization steps, Pytorch [17] as frame-
work and the Kornia library [18]. We empirically find the co-
efficients λIS = 1e−4, λE = 1e2, λTV = 1e−10, λDIPu =
1e−2, λDIPv = 1e−1, γu = 0.4, γv = 0.2.

4.3. Quantitative comparison
We evaluate our method on the test set of the LOL dataset
[5] composed of 500 low/normal-light image pairs taken from
real scenes by changing exposure time and ISO.

Methods PSNR(↑) SSIM(↑) LPIPS(↓) NIQMC(↑) CPCQI(↑) NIQE(↓)
RetinexDIP 300 iter [8] 11.69 0.48 0.351 3.718755 1.209930 8.035102

RetinexDIP 12000 iter [8] 11.95 0.49 0.354 3.648840 1.216181 8.132518
RetinexDIP 12000 iter [8]→ γCorr 17.46 0.69 0.380 3.951571 0.461452 4.536125

Ours 300 iter→ γCorr 16.14 0.59 0.397 3.332199 0.624579 7.168487
Ours 12000 iter→ γCorr 18.11 0.68 0.306 4.207515 0.915857 5.882059

Ours 12000 iter→ γvCorr only 14.89 0.55 0.331 4.331838 1.147143 5.890018

Table 2. Even with the same restoration process and number
of iterations, our approach gives the best scores for most of
the metrics.
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Fig. 3. Without any prior, the components can contain artefacts (yellow square). Although RetinexDIP prior solves this issue,
the textural details are still in the illumination after the decomposition (red square). Our prior gets the best of both worlds.

We adopt the following metrics to evaluate the perfor-
mance of our approach: PSNR, SSIM [19], LPIPS [20], NIQE
[21], CPCQI [22] and NIQMC [23]. Therefore, we hope to
measure the whole phenomenon of the low light degradation
thanks to pixel-wise, classic and learned perceptual metrics.

The chosen state-of-the-art competitors are KinD [3],
LIME [4], EnlightenGAN [6], Zero-DCE [7] and RetinexDIP
[8]. The first one is a well-known completely supervised net-
work trained on the LOL dataset. The followings methods are
unsupervised, either traditional or trained with unpaired data
and the latter uses deep image priors in a similar framework.
Table 1 summarizes the results. Our method outperforms the
unsupervised approaches on most of the metrics while being
close to KinD [3].

Since the only available dataset of ground-truth re-
flectance and illumination [24] is only composed of 16
images, we compare our components against those of the
Decomposition Net of KinD [3] and RetinexDIP [8] in Table
1 and in Figure 2.

4.4. Qualitative results
We visually compare the different components generated by
the solutions in Figure 2. We obtain visually pleasing com-

Methods PSNR(↑) SSIM(↑) LPIPS(↓) NIQMC(↑) CPCQI(↑) NIQE(↓)
Without prior 17.36 0.68 0.311 3.781431 0.798175 5.931700

RetinexDIP prior 17.72 0.67 0.325 3.932083 0.793341 6.173116
Our prior 17.44 0.68 0.306 3.824624 0.813172 5.836579

Table 3. Our prior achieves the best scores for most of the
metrics.

ponents with our approach close to the supervised competi-
tor, KinD [3]. On the contrary, although we use 12000 it-
erations to get better components out of RetinexDIP [8], the
reflectance is still cartoon-like and contains artefacts.

4.5. Ablation and hyperparameter study
To compare the efficiency of the priors, we implement the il-
lumination consistency prior of RetinexDIP [8] in our frame-
work for a fairer ablation study. We reduce the weight of the
illumination smoothness as it can alleviate the problem with-
out solving it. Consequently, the visual quality of the compo-
nents are subpar. The results are shown in Figure 3 and Table
3. With our prior, our approach achieves better scores and
leads to a better decomposition without artefacts.

Since RetinexDIP [8] uses only 300 iterations as default
compared to the 12000 iterations of our method, we analyze
both methods in Table 2 by changing this parameter. We also
include the results when applying gamma corrections on the
components of RetinexDIP [8]. As shown in Table 2, our
approach achieves good performance even if we reduce the
number of iterations to 300.

5. CONCLUSION

In this work, we identified a trivial solution problem and pro-
posed a new regularization term to fix it. We have demon-
strated its efficiency in an in-depth ablation study. Our frame-
work achieves visually pleasing intrinsic components on par
with state-of-the-art supervised methods and outperforms the
unsupervised competitors.
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