
HAL Id: hal-03806305
https://hal.science/hal-03806305

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lipschitz regularization for softening material models:
the Lip-field approach

Nicolas Moes, Nicolas Chevaugeon

To cite this version:
Nicolas Moes, Nicolas Chevaugeon. Lipschitz regularization for softening material models: the Lip-
field approach. Comptes Rendus. Mécanique, 2021, 349 (2), pp.415-434. �10.5802/crmeca.91�. �hal-
03806305�

https://hal.science/hal-03806305
https://hal.archives-ouvertes.fr


Comptes Rendus

Mécanique

Nicolas Moës and Nicolas Chevaugeon

Lipschitz regularization for softening material models: the Lip-field
approach

Volume 349, issue 2 (2021), p. 415-434

<https://doi.org/10.5802/crmeca.91>

© Académie des sciences, Paris and the authors, 2021.
Some rights reserved.

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mécanique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

https://doi.org/10.5802/crmeca.91
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mécanique
2021, 349, n 2, p. 415-434
https://doi.org/10.5802/crmeca.91

Short paper / Note

Lipschitz regularization for softening material

models: the Lip-field approach

Régularisation de Lipschitz pour les modèles de

matériaux adoucissants : l’approche Lip-field

Nicolas Moës ∗, a, b and Nicolas Chevaugeon a

a Ecole Centrale de Nantes, GeM Institute, UMR CNRS 6183, 1 rue de la Noë,
44321 Nantes, France

b Institut Universitaire de France (IUF), France

E-mails: nicolas.moes@ec-nantes.fr (N. Moës), nicolas.chevaugeon@ec-nantes.fr
(N. Chevaugeon)

Abstract. Softening material models are known to trigger spurious localizations. This may be shown theoret-
ically by the existence of solutions with zero dissipation when localization occurs and numerically with spu-
rious mesh dependency and localization in a single layer of elements. We introduce in this paper a new way
to avoid spurious localization. The idea is to enforce a Lipschitz regularity on the internal variables respon-
sible for the material softening. The regularity constraint introduces the needed length scale in the material
formulation. Moreover, we prove bounds on the domain affected by this constraint. A first one-dimensional
finite element implementation is proposed for softening elasticity and softening plasticity.

Résumé. Les modèles de matériaux adoucissants sont connus pour déclencher des localisations parasites.
Cela peut être démontré théoriquement par l’existence de solutions avec une dissipation nulle lors de la
localisation et numériquement avec une dépendance de maillage et une localisation dans une seule couche
d’éléments. Nous introduisons dans cet article une nouvelle façon d’éviter les localisations parasites. L’idée
est d’imposer une régularité de Lipschitz sur les variables internes responsables de l’adoucissement. La
contrainte de régularité introduit l’échelle de longueur nécessaire dans la formulation du matériau. De plus,
nous prouvons des bornes sur le domaine affecté par cette contrainte. Une première mise en œuvre par
éléments finis unidimensionnels est proposée pour l’adoucissement élastique ou plastique.
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1. Introduction

With softening, the stress that a material can sustain is diminishing as the strain increases. This
phenomenon exists both for elasticity and plasticity. For elasticity, the stiffness is decreasing as
the strain increases, whereas for plasticity, the yield stress is diminishing as the plastic strain
accumulates. Dealing with these types of models in finite element analysis is a challenge. From
the mathematical point of view, these models loose the nice convex properties of classical elastic
models or hardening plasticity models. Limit points may exist: the solution does not exist beyond
some loads. Bifurcation points are also possible: at some stage in time, several solutions start
to exist (stable or not). Among the many solutions that may exist, some are called spurious
localizations. In the one-dimensional (1D) setting, these localizations are characterized by a
softening occurring in a single point. For higher dimensions, the localization occurs on zero-
measure domains. As a consequence, the dissipation involved in these zones is zero. In other
words, the external energy or load needed to diminish the bearing capacity of the structure
is highly underestimated. The mathematical difficulties of softening material models have a
direct impact on their numerical treatment. Spurious mesh dependency is observed with finite
elements: the mesh orientation has a strong impact on the results and, as the mesh is refined,
only a single element, or a layer of elements, depending on the problem dimension, is affected
by localization.

This paper introduces a new way to eliminate these spurious localizations from the model.
It does not mean that the solution is now unique but, at least these unwanted solutions are
removed. The design of approaches to remove spurious localizations has been going on for about
forty years now.

Regarding quasi-static analysis of time-independent models, several remedies have been
studied in the literature. They all share in common the fact that a regularizing length scale is
injected in the model. For the so-called non-local integral damage model, the damage evolution
at a given point is governed by a driving force which is the average of the local driving force
over some distance around that point [1–4]. Refinements of the non-local integral model with
an evolving internal length may be found in [5, 6].

In higher order, kinematically based gradient models, the length scale is introduced through
the inclusion of higher order deformation gradient in the energy expression [7–9] or through
additional rotational degrees of freedom [10]. For higher order, damage-based gradient models,
the energy depends on the gradient of the damage thus involving again a length scale [11–14].

Regarding the energy minimizing approaches, they mainly stem from the seminal paper by
Mumford and Shah [15]. The Italian school of calculus of variations has given most of the math-
ematical background for models of brittle fracture based on the Mumford–Shah function [16, 17]
and the variational approximations [18]. In a very early paper, which uses minimizing move-
ments [19] and variational approximations is [20], and in [21], the Ambrosio Tortorelli approx-
imation is used for a damage energy minimizing model, which turned out to be related mathe-
matically with viscosity-based approaches to introduce a length scale into damage. The Ambro-
sio Tortorelli approximation was also used by Bourdin et al. [22] to implement the revisit of brittle
fracture introduced in [23], leading to the so-called variational approach to fracture [24, 25].

At about the same time, the phase-field approach was emanating from the physics commu-
nity [26, 27] and then developed for mechanics applications [28–32].

Yet another way to introduce a length scale is the thick level set approach to fracture. The
approach was introduced for brittle damage in [33,34]. The damage evolution is tied to a distance
field. The damage front on which the damage starts is the level set zero and it grows to a value
of 1 (fully damage state) at some distance lc in the wake of the front. That amounts to imposing
the norm of the damage gradient on zones with strictly positive damage (equality constraint).
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The possibility of an inequality constraint on the damage gradient was also considered in [35,36]
allowing to combine diffuse and localizing damage fields. The advantage of this inequality was
further stressed in [37], where it was shown that the inequality constraint is convex on the
contrary to the equality constraint. This paper also demonstrates that a level set field is not
mandatory: a variational approach with Lagrange multipliers enforcing the inequality constraint
may be used. Following the ideas of [37], an implementation is provided in [38].

The Lipschitz regularization introduced in this paper enforces a regularity on the damage field.
The obtained field is called a Lip-field. The Lipschitz regularity does not require the existence
of the damage gradient. Yet, the Lip-field is differentiable almost everywhere. To present the
Lip-field concept, the appealing framework of incremental energetic variational potential is
considered. The interest of this framework was first demonstrated for visco-plasticity [39,40] and
was later reused as a building block for the variational approach to fracture [25]. When softening
may occur, the incremental potential is not convex but only separately convex with respect to
the displacement (and non-softening internal variable) on one side and softening variable on
the other side. It is thus natural to proceed with an alternate minimization of successive convex
problems [41]. The Lip-field convex constraint is added as an extra constraint in the alternate
minimization. We demonstrate in this paper upper and lower bounds for the minimization over
the damage field. These bounds reduce drastically the zone over which the Lipschitz condition
needs to be activated. The proof holds in any spatial dimension.

A 1D finite element implementation is provided for the Lip-field approach. The potential
needs to be minimized for the nodal values of the displacement and for the internal variables
located at the integration point in each finite element, including the damage state variable. In
other words, with the Lip-field approach, the damage variable may be kept at the integration
points with the other internal variables and does not need to be stored at the nodes, thus
following the common practice for nonlinear finite element analysis.

Finally, note that there is also current interest in Lipschitz regularization to improve the
robustness to adversarial perturbations for learning framework [42].

The paper is organized as follows. The next section describes the classical mechanical formu-
lation for non-softening material models. In Section 3, a softening variable is introduced, and the
Lipschitz constraint is imposed. Elastic and plastic softening models are presented in Section 4
for the 1D setting. Finite element analyses are carried out in Section 5. Discussion and future
works are provided in Section 6.

2. Generalized standard materials

We consider the deformation of a body initially occupying a domain Ω through a displacement
field u. For simplicity, we assume small, quasi-static deformations. The Cauchy stress is denoted
by σ and the strain by ε

ε(u) = 1
2 (∇u+ (∇u)T), (1)

where ∇ indicates the gradient operator. Regarding the boundary conditions, the displacement
is controlled on a part of the boundary denoted by Γu assumed fixed in time. On the rest of
boundary, zero traction force is assumed (again for simplicity). To be kinematically admissible
at some instant t , the displacement field must belong to U (t ):

U (t ) = {u ∈ H 1(Ω) : u = ud (t ) on Γu}. (2)

The equilibrium condition reads∫
Ω
σ : ε(u∗) dΩ= 0, ∀u∗ ∈U∗, (3)
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where
U∗ = {u ∈ H 1(Ω) : u = 0 on Γu}. (4)

Kinematics and equilibrium equations (2)–(3) must be complemented with the constitutive
model. We consider the formalism of generalized standard material introduced in [43, 44]. The
set of internal variables is denoted by α. It is a generic notation that describes a set of scalar,
vectorial, or tensorial variables. The model is characterized by a free energy potential ϕ(ε,α) and
a dissipation potential ψ(α̇,α). We then introduce an implicit time discretization and use the
energetic variational approach. Consider the displacement and internal variables (un ,αn) known
at some instant tn . Finding the pair (un+1,αn+1) at the next instant tn+1 = tn +∆t amounts to a
minimization problem

(un+1,αn+1) = arg min
u′∈Un
α′∈An

F (u′,α′;un ,αn ,∆t ), (5)

where Un is a short-hand notation for U (tn+1) and An indicates the restriction on αn+1. The
incremental potential F involves the energy and dissipation potentials ϕ and ψ. Examples of
incremental potentials will be given in Section 4.

For simplicity, we shall consider time-independent material models. In this case, the F expres-
sion does not depend explicitly on un ,αn , and∆t . The extension to time-dependent models does
not introduce difficulties. Also, to lighten notation, we drop the n +1 indices. The minimization
problem is then

(u,α) = arg min
u′∈Un
α′∈An

F (u′,α′). (6)

We assume that the domains Un and An are convex and that F is strictly convex with respect to
the pair (u,α) over Un×An . This defines a non-softening model. The minimization is traditionally
solved by a repeated sequence of two steps: the computation of the internal variables (and stress)
for a given displacement field, followed by the correction of the displacement field. At iteration
m, the two steps are given below

αm+1 = arg min
α∈An

F (um ,α) (7)

{um+1} = {um}+ (K m)−1Rm , um+1 ∈Un . (8)

The first step, Equation (7), is purely local and may be carried out independently at each material
point. The second step, Equation (8), involves a linear solve which updates the degrees of freedom
{u} associated to the field u. The matrix K depends on the current internal variablesαm+1, and the
residual vector R depends on the current stress σm+1. The matrix can be the algorithmic tangent
operator [45] or some approximation of it. The linear solver may possibly be followed by a line
search to further improve the solution. Expressions of K and R are given in the Appendix B for
the models at stake in this paper.

3. Softening variable and Lipschitz regularization

We now consider that the model has an extra scalar variable d responsible for softening. The
optimization problem becomes

(u,α,d) = arg min
(u′,α′)∈Un×An

d ′∈Dn

F (u′,α′,d ′). (9)

It is no longer convex, we can expect several local minima and also non-uniqueness to the global
minimum (i.e., several solutions leading to the same global minimum). Even though F is not
convex with respect to the triple (u,α,d), we ask the optimization to be convex with respect to
the couple (u,α) for all d ∈ Dn and to be convex with respect to d for all (u,α) ∈Un × An .

C. R. Mécanique — 2021, 349, n 2, 415-434
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Given a d field over the domain Ω, the Lipschitz constant associated to this field is the
minimum M value such that the following holds

|d(x)−d(y)| ≤ M dist(x,y), ∀x,y ∈Ω, (10)

where dist(x,y) is the minimal length of the path inside Ω joining x and y (the distance is
considered infinite if the two points cannot be connected insideΩ). The dist function is a metric
since it satisfies for all x,y,z ∈Ω:

dist(x,y) = 0 ⇔ x = y (11)

dist(x,y) = dist(y,x) (12)

dist(x,y) ≤ dist(x,z)+dist(z,y). (13)

The value M defined above is denoted by lip(d). We define the regularization space for the
damage field

L = {d ∈ L∞(Ω) : lip(d) ≤ 1/l }, (14)

where l is the regularizing length. The set L is convex. We seek the solution as “one” of the global
minima

(u,α,d) = arg min
(u′,α′)∈Un×An

d ′∈Dn∩L

F (u′,α′,d ′). (15)

We proceed by alternate minimization

(uk+1,αk+1) = arg min
(u,α)∈Un×An

F (u,α,d k ) (16)

d k+1 = arg min
d∈Dn∩L

F (uk+1,αk+1,d). (17)

For the first minimization, the damage variable is frozen and the problem is thus identical to
problem (6). It is a classical non-softening step. The second minimization, Equation (17), is less
common. The objective function is convex (and separable) as well as the constraint Dn . The Lip
constraint is non-local as it ties the damage variables between points. The optimization to find
d is thus potentially time-consuming when turning to a numerical implementation. The good
news is that the quest for d may be decomposed into three steps reducing dramatically the cost
of the optimization. The first step is to create a trial d field denoted d by ignoring the Lipschitz
constraint and performing a decoupled minimization at each point

d = arg min
d∈Dn

F (uk+1,αk+1,d). (18)

If the trial damage d satisfies the Lipschitz constraint, it is the solution we are looking for as
indicated in Figure 1 (left). If not, the optimal damage field will be different from d .

We can find an upper bound of the domain over which d k+1 will differ from d . We define two
projections onto L, a lower projection πl and an upper projection πu:

πld(x) = min
y∈Ω

(
d(y)+ 1

l
dist(x,y)

)
(19)

πud(x) = max
y∈Ω

(
d(y)− 1

l
dist(x,y)

)
. (20)

We prove in the Appendix A that these projections satisfy the following inequality

dn ≤πld ≤ d ≤πud ≤ 1 (21)

and provide bounds for the optimal damage

πld ≤ d k+1 ≤πud . (22)

C. R. Mécanique — 2021, 349, n 2, 415-434
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Figure 1. A sketch of the local update d from the previous known damage field dn . If the
update satisfies the Lip constraint (left), we have directly the solution d k+1. Otherwise
(right), the local update needs to be projected back to the Lip constraint while minimizing
the objective function F . The upper and lower projections give bounds to the solution.

Figure 2. A sketch of the bracketing capability of the upper and lower projections. Outside
the interval [a,b], the projections are equal and thus d k+1 = d . Inside the interval [a,b], the
projections bracket d and d k+1.

As an important consequence, the trial and optimal solutions coincide wherever the bounds are
equal

πld(x) =πud(x) ⇒ d k+1(x) = d(x). (23)

A sketch of the projections is given in Figure 1 (right), and they are also illustrated on the 1D
example, Figure 2.

4. Elastic and plastic softening models

Consider the 1D model of a bar of length L and unit section attached at its left side and pulled
with an imposed displacement ud (t ) at its right end. The displacement at time t must belong to

C. R. Mécanique — 2021, 349, n 2, 415-434
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the set

U (t ) = {u ∈C ([0,L]) : u(0) = 0, u(L) = ud (t )},

whereas the set of admissible displacement variations is given by

U∗ = {u ∈C ([0,L]) : u(0) = 0, u(L) = 0}.

We now detail several incremental potentials to be used in the simulation.

4.1. Softening elasticity

The elastic potential reads

Fe(u) =
∫ L

0
fe (ε(u)) dx, fe (ε(u)) = 1

2
Eε(u)2, (24)

where ε(u) = du/dx and E is the Young modulus. The elastic softening model, affects E and adds
a dissipation term. For simplicity, we do not consider tension–compression dissymmetry in the
model (the bar will always be in tension in the simulation). The softening elasticity potential is

Fse(u,d) =
∫ L

0
fse(ε(u),d) dx, fse(ε(u),d) = (1−d)2 fe (ε(u))+Yc h(d) (25)

where Yc is the critical energy release rate and the convex function h(d) defines the softening
behavior. Damage can only grow and cannot go beyond 1. The convex constraint set Dn for
damage is

Dn = {d ∈ L∞([0,L]) : dn ≤ d ≤ 1}. (26)

The power 2 over the factor (1−d) ensures convexity and a finite opening as d → 1 [46]. Note that
the proper choice of the power is also an issue with gradient damage models for which a value of
2 also ensures a finite opening [47]. We consider two choices for h(d)

h1(d) = 2d +3d 2 (27)

h2(d) = 2d −d 2

(1−d +λd 2)2 . (28)

Both functions are convex (provided λ≤ 1/2). The condition h′(0) = 2 ensures that when damage
starts Eε2/2 = Yc . The second choice allows to mimic a linear cohesive-zone model [48], where λ
is defined by

λ= 2
Yc l

Gc
(29)

with Gc denoting the toughness (energy per section area needed to break the bar). We shall see
that the choice of h2(d) allows to choose independently Yc , Gc , and l .

To get a better insight on the potential, we write the Karush–Kuhn–Tucker (KKT) conditions
associated to the optimization. We define the dual quantities to the strain and damage by taking
the derivative of fse. We get the stress σ and a variable associated to damage denoted µ (damage
criterion)

σ = (1−d)2Eε (30)

µ = −(1−d)Eε2 +Yc h′(d), (31)

where h′(d) denotes the derivative of h with respect to d . The KKT conditions read

µ−λ1 +λ2 = 0 (32)

λ1 ≥ 0, d −dn ≥ 0, λ1(d −dn) = 0 (33)

λ2 ≥ 0, 1−d ≥ 0, λ2(1−d) = 0, (34)

C. R. Mécanique — 2021, 349, n 2, 415-434



422 Nicolas Moës and Nicolas Chevaugeon

Figure 3. Stress–strain relations for the softening elastic model (σc = p
2EYc ,εc = σc /E).

The strain loading/unloading follows the peak values sequence ε/εc = (0,2,0,4).

where λ1 and λ2 are Lagrange multipliers associated to the constraints. We note that µ= 0 when
damage is growing (and stays below 1), and µ ≥ 0 when damage does not grow (and is different
from 1). Figure 3 shows the stress–strain relation for a strain loading–unloading history.

The minimization of Fse under the constraint (u,d) ∈ Un ×Dn is not a convex problem. But,
the minimization of Fse with respect to u ∈ Un , for d ∈ Dn fixed is a convex problem. The
minimization of Fse with respect to d ∈ Dn for u ∈ Un fixed is also a convex problem. Finally,
note that in the presentation above, we did not care in presenting separately the free energy and
dissipation potentials. This is not essential since we are not studying the temperature evolution.
Moreover, for a given stress–strain relation this choice is in general non-unique.

4.2. Softening elasticity with hardening plasticity

The introduction of softening in elasto-plastic models is a complex topic. The goal here is not to
find the appropriate model for a given situation but rather to discuss how the Lip-field approach
is behaving in the presence of plastic internal variables. We consider a basic von Mises plasticity
model with elastic softening and, in the next section, a softening plasticity model with preserved
elasticity. The incremental potential for a von Mises isotropic hardening plasticity model is

Fp (u,εp , p) =
∫ L

0
fp (ε(u),εp , p) dx, fp (ε(u),εp , p) = 1

2
E(ε(u)−εp )2 +σy

(
p + k

2
p2

)
, (35)

where σy is the yield stress and k the isotropic hardening parameter. Regarding the constraints,
plasticity internal variables must belong to the following convex set

An = {(εp , p) ∈ (L∞([0,L]))2 : p −pn ≥ |εp −εpn |}. (36)

The minimization of Fsp with respect to (u, (εp , p)) ∈Un × An is a convex problem. We introduce
damage with a multiplicative approach, also called effective stress approach

Fsep(u,εp , p,d) =
∫ L

0
fsep(ε(u),εp , p,d) dx, (37)

fsep(ε(u),εp , p,d) = (1−d)2 fp (ε(u),εp , p)+Yc h(d). (38)

The damage must belong to the set Dn defined in (26).

C. R. Mécanique — 2021, 349, n 2, 415-434
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Figure 4. Stress–strain relations for the softening elasticity model with hardening plasticity
with the choice εc /εy = 2, where εy = σy /E . The strain loading/unloading follows the peak
value sequence ε/εy = (0,2,e1,4,e2,5,e3), where e1, e2, e3 indicate the strain needed to reach
full unloading (σ= 0).

Taking the derivative of fsep with respect to the plastic strain, cumulative plasticity, and
damage gives the stress, current yield stress, and the damage criterion, respectively.

σ = (1−d)2E(ε−εp ) (39)

R = σy (1−d)2(1+kp) (40)

µ = −(1−d)E(ε(u)−εp )2 −2(1−d)σy (p +kp2/2)+Yc h′(d). (41)

They are involved in the KKT conditions

σ+λp s(εp −εpn) = 0 (42)

R −λp = 0 (43)

λp ≥ 0, p −pn −|εp −εpn | ≥ 0, λp (p −pn −|εp −εpn |) = 0 (44)

where s is the multi-valued signed function (s(x) =−1 if x < 0, s(x) =+1 if x > 0 and s(0) ∈ [−1,1]).
We observe that the effective stress σ/(1−d)2 and variables εp and p may be computed from
the strain independently of the damage variable. Stress–strain relations for a strain loading–
unloading history are shown in Figure 4. The effect of damage may be observed in the unloading
phase.

4.3. Softening plasticity

Finally, we consider an elasto-plastic model in which the softening affects only the yield stress
leaving elasticity unchanged

Fsp(u,εp , p,d) =
∫ L

0
fsp(ε(u),εp , p,d) dx,

fsp(ε(u),εp , p,d) = 1
2 E(ε(u)−εp )2 + (1−d)2σy (p +kp2/2)+σy g (d),

where g (d) describes softening and is chosen as g (d) = d 2.

C. R. Mécanique — 2021, 349, n 2, 415-434



424 Nicolas Moës and Nicolas Chevaugeon

Figure 5. Stress–strain relations for the softening plastic model (εy = σy /E). The strain
loading/unloading follows the peak value sequence ε/εy = (0,1.5,e,5), where e indicates
the value needed to reach σ= 0.

Taking the derivative of fsp, we get

σ = E(ε−εp ) (45)

R = σy (1−d)2(1+kp) (46)

µ = −2σy (1−d)(p +kp2/2)+σy g ′(d), (47)

and the associated KKT conditions

σ+λp s(εp −εpn) = 0 (48)

R −λp = 0 (49)

λp ≥ 0, p −pn −|εp −εpn | ≥ 0, λp (p −pn −|εp −εpn |) = 0. (50)

We have omitted above the equations associated to d . They are identical to the ones presented
in (32)–(34). The growth of d is now linked to cumulative plastic strain and no longer to the elastic
strain (as indicated by the difference between (41) and (47)). Stress–strain relations for a strain
loading–unloading history are shown in Figure 5. The elasticity is not affected as can be observed
from the unloading phase.

5. Lipschitz regularization over a bar

The bar is discretized with N finite elements of equal size h = L/N . The displacement is linear
over each element between nodal values. The internal variables are stored at each element
centroid (element integration point) as indicated in Figure 6. The i index is used either for the
element numbering (di , i = 1, . . . , N denote the damage at the centroid of each element) or for
the node numbering (ui , i = 1, . . . , N + 1 are the nodal displacements). The Lipschitz constraint
implies the following inequalities defining the set L

di −di+1 −h/l ≤ 0, i = 1, . . . , N −1

di −di−1 −h/l ≤ 0, i = 2, . . . , N .

C. R. Mécanique — 2021, 349, n 2, 415-434
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Figure 6. A one-dimensional bar discretized with equal-sized finite elements. Displace-
ments are stored at the node, whereas internal variables are stored at the element inte-
gration point (depicted with a vertical bar).

The optimization problem reads for the softening elasticity problem

min
u∈Un

d∈Dn∩L

N∑
i=1

h fse

(ui+1 −ui

h
,di

)
, (51)

and

min
(u,(εp ,p))∈Un×An

d∈Dn∩L

N∑
i=1

h fx

(ui+1 −ui

h
,εpi , pi ,di

)
(52)

for the plasticity models (x stands for sep or sp). The set Un enforces that u0 = 0 and uN+1 =
ud (tn+1). The set An is related to (36) and the set Dn enforces the fact that di must be above its
previous time-step value and below 1. For all examples treated, the softening elasticity function
is chosen as h2.

The optimization problems above are solved by alternate minimization as explained in Sec-
tion 3. The minimization with respect to the damage variable is performed using the scipy python
library. More precisely, the scipy.optimize.minimize function is used. It is described in [49]. It of-
fers an interface to the sequential least square quadratic programming (SLSQP) routine created
by Dieter Kraft in [50].

Because of its homogeneity, the optimization problem at stake has no unique global minimizer
and many local minimizers. Aware of this situation, we trigger localization by introducing a
slightly higher damage on top of dn in the middle of the bar at each step. This is just an initial
guess for the alternate minimization. This strategy does not require to alter the stiffness or initial
damage on the bar.

For the elastic softening model, Figure 7 gives the bar response for the non-regularized and
Lip-field models. The regularizing effect of the latter is clear. Note that the case of two nodes
for the discretization (a single element) gives the homogeneous bar response. No snap-back
appears in this example because the regularization length is pretty large. A smaller length and
toughness are used for Figure 8, and a snap-back may be observed. To handle the snap-back
in the simulation, the displacement at the end of the bar is no longer imposed but controlled
by limiting the strain increment over the bar at each time step. More evolved control could be
used [51, 52]. Figure 8 shows the non-regularized case (left column), a convergence toward a
solution without any dissipation (zero areas under the converged curve). On the contrary, the
converged solution (right column) indicates a non-zero dissipation (whose dimensional value is
close to the toughness Gc ).

Still, for the elastic softening model, we show, Figure 9, that the stress–strain response does not
vary much with the regularization length (demonstrating the nice capability of the h2 softening
function). The response are obtained for a non-varying toughness, Gc , and strength Yc . Only the
regularization length is varied (and the mesh size is adjusted to always have the same number of
elements over l ). We observe a dimensional area under the curve close to Gc .

Regarding the softening elastic model with hardening plasticity, the response is given in
Figure 10 (left column). We observe that plasticity proceeds first in an homogeneous fashion,
without any damage. During this homogeneous phase, the stress–average strain curve is rising.
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Figure 7. Response for the bar with the elastic softening behavior and imposed displace-
ment: non-regularized model (left) and Lip-field model (right). The top row gives the stress–
strain average response, and the bottom one the damage profile at the color dots given in
the middle row. The mesh used for the middle row is the most refined of the top row. Pa-
rameters are: L = 1, l = 0.5, E = 1, Yc = 1, λ= 0.3, Gc = 10/3.

As this curve reaches its peak, localization of the damage and plasticity starts to occur. For the
softening plasticity model, the response is given in Figure 10 (right column). We observe that
plasticity and damage proceed first in an homogeneous manner due to the initial hardening
effect of plasticity, then concentrates. The departure from the homogeneous response also occurs
when the stress–average strain reaches its limit point.

We provide a last example with a non-uniform loading caused by a volumic force f (x/L) =
0.1∗sin(8∗π∗x/L). This loading is added to the imposed displacement. The results are depicted in
Figure 11. The model parameters are the same as for Figure 10 (right column) except that l = 0.25
and the number of nodes is 256. The damage develops in a complex pattern. The right column
gives the results for the non-regularized case (local approach l = 0). We observe the Lip-field
results (right column) are the same as the local approach as long as the stress–average strain curve
did not reach the peak point. This demonstrates the fact that the Lip-field approach preserves
the local solution when it is not localizing. This is quite different from the other regularizing
approaches (non-local, damage gradient, phase-field) that will modify the local solution even
prior to localization. It may also be seen from Figure 11 that the normal derivative of the damage
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Figure 8. Response for the bar with the elastic softening behavior and snap-back control:
non-regularized model (left) and Lip-field model (right), convergence of the stress–average
strain response (top) and damage evolution (bottom) corresponding the color dots in the
middle figures. The middle figures reproduce the curve of the top figures for the most
refined grid. Parameters are: L = 1, l = 0.1, E = 1, Yc = 1, λ= 0.3, Gc = 2/3.

is not zero at the boundary, as it would have been the case for damage gradient-based models.
The Lipschitz constraint does not enforce a given value for the normal derivative of the damage
on the boundary but just bounds the value.

6. Conclusion and future works

A new regularization approach has been introduced to alleviate spurious localization with soft-
ening material models. Both elastic and plastic softening models have been considered. The reg-
ularization enforces a Lipschitz condition on the field responsible for the softening. In doing so,
a length is introduced in the model.

Compared to the gradient damage or phase-field approaches, the Lip-field approach intro-
duces an extra constraint but does not affect the expression of the incremental potential (the ob-
jective function in the minimization is not modified). In other words, the energy does not depend
on the damage gradient but solely on the damage. Its expression is the one of the local model. As a
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Figure 9. Lip-field model response with the elastic softening behavior (choice h2) for
several regularization length values. Stress–average strain response (above) and damage
profile (below). Parameters are: L = 1., l = (0.4,0.2,0.1), E = 1., Yc = 1., λ = (0.4,0.2,0.1),
Gc = 2. The number of elements is 51, 101, and 201 so that we have h/l ∼ 20.

consequence, the Lip-field does not introduce an extra partial differential equation with its ques-
tionable boundary conditions. From a mathematical point of view, the Lipschitz constraint may
be interpreted as searching the damage field among subsolutions (in the viscosity sense) of the
eikonal equation [53, 54] or as viscosity solutions to an eikonal inequality.

Compared to the non-local integral approach, no widening of the fully damage zone is ob-
served and the implementation only requires an element to be related to its neighbors. Finally,
compared to the thick level set approach, the level set know-how is no longer needed.

Future works will be dedicated to the extension of the results to two- and three-dimensional
problems. For this extension, the bounds demonstrated in this paper (valid for any dimensions)
will allow one to predict a priori the zones over which damage is affected by the Lipschitz
constraint. This will reduce the cost of the damage optimization.

Finally, the paper did not discuss the possibility of allowing displacement jumps during
the simulation. This issue is important when dealing with fragmentation or crack under large
deformation and needs to be studied in the future for the Lip-field approach.

C. R. Mécanique — 2021, 349, n 2, 415-434



Nicolas Moës and Nicolas Chevaugeon 429

Figure 10. Lip-field model response for the softening elasticity model with plasticity hard-
ening (left column) and softening plasticity (right column): stress–strain average curves
(top row), damage field (middle row), and cumulative plasticity (bottom row). For both
models, L = 1, l = 0.5, and the mesh size is h = L/64. Model specific parameters are: E = 2,
σy = 1, Yc = 1, k = 1, λ = 1/3 for the hardening plasticity (corresponding to the model the
orange curve in Figure 4) and E = 1.,σy = 1/16, k = 4 for the softening plasticity model (cor-
responding to the model with the dashed green curve in Figure 5).
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Appendix A. Proof of the bounds

Consider a field d defined over Ω. To this field, we associate two other fields denoted πud and
πld , called upper and lower projections, respectively.

πu : L∞(Ω) 7→ L : d(x) 7→πud(x) = max
y∈Ω

(
d(y)− 1

l
dist(x,y)

)
, (53)

πl : L∞(Ω) 7→ L : d(x) 7→πld(x) = min
y∈Ω

(
d(y)+ 1

l
dist(x,y)

)
. (54)
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Figure 11. Response for a softening plasticity model with a volumic oscillatory force. No
regularization, l = 0 (left) and Lip regularization (right). Stress–average strain results (top),
damage (middle), and cumulative plasticity profile (bottom). Parameters are: L = 1, l = 0.25,
h = 1/255, E = 1, σy = 1/16, k = 4.

They satisfy the following properties:

(a) πld ∈ L, πud ∈ L
(b) d ∈ L ⇒πld =πud = d
(c) πld ≤ d ≤πud
(d) d1 ≤ d2 ⇒πld1 ≤πld2, πud1 ≤πud2 (monotonicity)

To prove that the mapping falls indeed in L (property (a)), we take the difference

πud(x1)−πud(x2) = max
y∈Ω

(
d(y)− 1

l
dist(x1,y)

)
−max

y∈Ω

(
d(y)− 1

l
dist(x2,y)

)
. (55)

Using the triangular inequality written as

dist(x1,y) ≤ dist(x1,x2)+dist(x2,y)

we get

πud(x1)−πud(x2) ≥−1

l
dist(x1,x2),
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and using the triangular inequality as

dist(x2,y) ≤ dist(x2,x1)+dist(x1,y)

we get

πud(x1)−πud(x2) ≤ 1

l
dist(x1,x2).

The proof is similar for πld . Property (b) is obtained from the definition of d ∈ L:

d(y)− 1

l
dist(x,y) ≤ d(x) ≤ d(y)+ 1

l
dist(x,y). (56)

Computing the minimum and maximum over y for the upper and lower bounds, respectively,
yields the property. Property (c) is obtained directly from the definition of the projections by
testing y as x in the max and min. Similarly, property (d) stems from the definition of the
projections.

We now discuss the consequences of the properties. Properties (a) and (b) indicate that the
projections are idempotent (applied twice yield the same result as applied once). Property (c)
indicates that at any point where the projections are equal, they are equal to d . Combining
properties (c) and (d) and using the fact that dn ∈ L (as well as noting that any uniform function
is Lipschitz) yield the result (21).

We are now ready to prove the bounds result (22). Consider a damage field d∗ ∈ Dn ∩L lying
outside the bounds, we associate to this field another field by clipping it to the bounds

d∗∗(x) = max(πld(x),min(d∗(x),πud(x))). (57)

Since the minimum of Lipschitz functions (with the same constant) is also Lipschitz (and simi-
larly for maximum), the field d∗∗ belongs also to Dn ∩L. The field d∗∗ is a better solution than d∗

because it lowers the objective function

F (d∗∗) ≤ F (d∗). (58)

Indeed, the objective function F is an integral overΩ of a convex local function with respect to d
denoted by f , and we show that the inequality also holds at the local level

f (d∗∗) ≤ f (d∗). (59)

We have two possible orderings

d∗ < d∗∗ =πld ≤ d or d ≤πud = d∗∗ < d∗. (60)

So, there exist λ ∈ ]0,1[ such that
d∗∗ =λd + (1−λ)d∗ (61)

leading to, by strict convexity of f

f (d∗∗) <λ f (d)+ (1−λ) f (d∗) = f (d∗)+λ( f (d)− f (d∗)) < f (d∗), (62)

where the last inequality is obtained from the fact that d at x is the minimum of f at x. Thus, to
any field satisfying the constraints but lying outside the bounds, we can associate a better one
inside the bounds, it proves that the optimal solution is inside the bounds.

Appendix B. Nonlinear solver

The nonlinear solver used for (16) alternates between a local and global step. The m exponent is
used to denote these iterations. The local step computes at each integration point the stress σm

and internal variables εm
p , pm , as well as the tangent operator T m knowing um ,εn

p , pn , and d k . The
n exponent indicates the previous known time-step values, whereas the k exponent indicates the
latest computed value of damage from (17) in the alternate minimization.
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The global step involves a linear solve which finds um+1 ∈Un such that∫ L

0
T mε(um+1 −um)ε(u∗) dx =−

∫ L

0
σmε(u∗) dx, ∀u∗ ∈U0.

When the correction um+1 −um is below a threshold, we set uk+1,εk+1
p , pk+1 as the current m

values. The expressions of σm and T m are given below for each model.

B.1. Softening elasticity

We have

σm = (1−d k )2Eεm , εm = ε(um), T m = (1−d k )2E . (63)

Since the model is linear, a single “m” iteration is needed to converge. If dissymmetric tension–
compression behavior was considered for damage, more iterations would be needed to converge.

B.2. Softening elasticity with hardening plasticity

The trial stress is computed as

σt = E(1−d k )2(εm −εn
p )

followed by the plasticity criterion

f t = |σt |−σy (1−d k )2(1+kpn)

giving two cases

if f t <= 0 εm
p = εn

p , pm = pn , σm =σt ,T m = E(1−d k )2

if f t > 0 pm = |σt |−σy +E pn

E +σy k
, T m = Eσy k(1−d k )2

E +σy k

εm
p = εn

p + (pm −pn)
σt

|σt | , σm = E(1−d k )2(εm −εm
p ).

B.3. Softening plasticity

The trial stress is computed as

σt = E(εm −εn
p )

followed by the plasticity criterion

f t = |σt |−σy (1−d k )2(1+kpn)

and two cases

if f t <= 0 : εm
p = εn

p , pm = pn , σm =σt , T m = E

if f t > 0 : pm = |σt |−σy (1−d k )2 +E pn

E +σy k(1−d k )2
, T m = Eσy k(1−d k )2

E +σy k(1−d k )2

εm
p = εn

p + (pm −pn)
σt

|σt | , σm = E(εm −εm
p ).
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