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Entanglement is an indispensable quantum re-
source for quantum information technology. In
continuous-variable quantum optics, photon sub-
traction can increase the entanglement between
Gaussian states of light, but for mixed states the
extent of this entanglement increase is poorly un-
derstood. In this work, we use an entanglement
measure based the Rényi-2 entropy to prove that
single-photon subtraction increases bipartite en-
tanglement by no more than log 2. This value
coincides with the maximal amount of bipartite
entanglement that can be achieved with one pho-
ton. The upper bound is valid for all Gaussian
input states, regardless of the number of modes
and the purity.

1 Introduction
Quantum entanglement [1] is commonly seen as an
important resource for quantum metrology [2], quan-
tum communication [3] and quantum computation
[4]. The increase of entanglement is an important
task, since it can be used to strengthen the precision
of quantum metrology [5], the fidelity of quantum
information processing [6, 7] and the efficiency of
quantum computing [8, 9]. Here, we will focus on
light as a particularly interesting platform for quan-
tum information tasks due to its intrinsic resilience
against environment-induced decoherence.

Continuous-variable (CV) quantum optics [10] al-
lows for the deterministic generation of Gaussian en-
tanglement between modes of light. In particular,
Jietai Jing: jtjing@phy.ecnu.edu.cn
Mattia Walschaers: mattia.walschaers@lkb.upmc.fr

it was used to produce large-scale entangled states
[13, 12, 11, 14, 15, 16, 17, 18]. However, because
the entangled modes are Gaussian, they do not offer a
genuine quantum advantage. To implement protocols
that cannot be efficiently simulated by classical com-
puters non-Gaussian states are required [19, 20, 21].

A common method to produce non-Gaussian
modes of light is adding [22] or subtracting [23, 24,
25, 26] a photon. Here, we focus on this opera-
tion’s capability of increasing the entanglement be-
tween optical modes. Historically, this increase of en-
tanglement was first seen through the study of quan-
tum teleportation [27, 28]. Later, more detailed stud-
ies showed that adding/subtracting a photon to/from a
two-mode squeezed vacuum state increases the states
entanglement [29]. The entanglement of two-mode
squeezed vacuum state was then shown to be progres-
sively enhanced with the number of photons added
(subtracted) when acting on one mode only [30].
Similar results are obtained for single-photon addi-
tion and subtraction for pure multimode Gaussian
systems [31, 32, 33]. This provides a way to over-
come the no-go theorem which forbids entanglement
distillation of Gaussian states with Gaussian mea-
surement [34, 35, 36]. Experimentally, this led to a
demonstration of entanglement distillation on Gaus-
sian input states [37]. Nevertheless, we may argue
that non-Gaussian operations do not merely increase
the entanglement, but also change its nature. After
photon addition or subtraction, the entanglement will
partially be contained in the non-Gaussian part of the
state.

Non-Gaussian entanglement is notoriously chal-
lenging to study for mixed states. To deal with such
states in finite-dimensional systems, negativity is per-
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haps the most practical measure of entanglement
[38]. However, this measure cannot be generalised
to non-Gaussian states in the infinite-dimensional
Hilbert space of continuous variable systems with-
out truncating the state to a finite number of Fock
states. Entanglement of formation is another com-
mon measure of entanglement, but is also faces prob-
lems as it requires a convex roof construction and the
evaluation of the von Neumann entropy [39, 40, 41].
In particular the latter is highly problematic for non-
Gaussian states as there is no clear way to evaluate
the von Neumann entropy based on phase space rep-
resentations. Here, we focus on the entanglement
measure based on Rényi-2 entropy as a viable alter-
native, following [42]. Because the Rényi-2 entropy
is related to the marginal purity of the state, it can be
obtained directly from the Wigner function.

Rényi-2 entropy is a less popular tool than the von
Neumann entropy, because, notably, it cannot be used
to define mutual information for general CV states,
even though Gaussian states have shown to be an
exception [43]. For Gaussian states, the entangle-
ment measure based on Rényi-2 entropy give rise to
monogamy relations [44] and operationally it appears
as a natural upper bound on the secret key distilla-
tion rate when Alice and Bob are restricted to Gaus-
sian measurements [45]. Many of these attractive
features of Rényi-2 entropy cannot be generalised to
non-Gaussian states. Yet, the entanglement measure
of [42] remains well-defined for all CV states, and
we will focus on it throughout the remainder of this
manuscript.

2 Continuous-variable systems

We study CV systems, which can be though of as en-
sembles of quantum harmonic oscillators [46]. When
the system has m modes, we can define a mode ba-
sis withm associated creation and annihilation opera-
tors labeled â†1, . . . , â

†
m and â1, . . . , âm, respectively.

These operators satisfy the canonical commutation
relations

[âj , â†k] = δj,k, [âj , âk] = [â†j , â
†
k] = 0. (1)

Furthermore, superpositions of modes define new
modes, which implies that for any set of coefficients
cj ∈ C with

∑m
j=1 |cj |

2 = 1,

â′ =
m∑
j=1

cj âj (2)

is a well-defined annihilation operator and [â′, â′†] =
1.

When studying the CV aspects of such systems, it
is common to use quadrature operators instead. In
our convention, these are defined as

x̂j = â†j + âj , (3)

p̂j = i(â†j − âj). (4)

The canonical commutation relations then translates
to [x̂j , p̂k] = 2iδj,k. The advantage of using quadra-
ture operators is that they are observables that can can
be measured. In multimode quantum optics, for ex-
ample one uses homodyne detection to measure these
observables. The possible measurement outcomes of
these quadratures are real and form a continuum –
hence CV– and can be grouped together in a 2m di-
mensional optical phase space.

this phase space provides possibilities to represent
any quantum state ρ̂ in terms of a quasi-probability
distribution [47]. In this work, we rely the Wigner
function, which is given by

W (~β) = 1
(2π)2m

∫
R2m

tr[ρ̂ei~γ>~̂r]e−i~γ>~β, (5)

where ~̂r is a vector of operators, given by ~̂r =
(x̂1, . . . , x̂m, p̂1, . . . , p̂m)>, and ~β is a vector in phase
space that can be explicitly represented as ~β =
(x1, . . . , xm, p1, . . . , pm)>. The Wigner function is
particularly useful since its marginals correspond to
measurement statistics of the quadrature observables
and furthermore it also allows for a direct calculation
of purity, which we exploit in the following sections.

3 Rényi-2 entanglement
Throughout the work, we will restrict ourselves to bi-
partite entanglement. As shown in Fig. 1(a), for an
arbitrary global pure state ρ̂ = |ψ〉〈ψ|, the entangle-
ment between two subsystems A and B can be mea-
sured through the Rényi-2 entropy as

ER(|ψ〉) = −logµ(ρ̂A), (6)

where ρ̂A = trBρ̂ is the reduced density operator for
subsystem A. The measure is based on the marginal
purity of one of the two subsystems µA = tr(ρ̂2

A),
which can directly be calculated from the Wigner
function (5) by

µA = (4π)mA
∫
R2mA

|WA(~β)|2d2mA ~β, (7)
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where mA is the total number of modes in subsystem
A. Importantly, this method works both for Gaus-
sian and non-Gaussian states. Its extension to mixed
states can be obtained by the following convex con-
struction:

ER(ρ̂) = inf
{p(λ),|ψλ〉}

∫
dλ p(λ)ER(|ψλ〉), (8)

where we minimize over all decompositions
ρ̂ =

∫
dλ p(λ) |ψλ〉 〈ψλ|. Because the the Rényi-2

entropy is a lower bound on the von Neumann en-
tropy, it naturally follows that ER(ρ̂) is a lower bound
on the entanglement of formation. Nevertheless, it is
also a meaningful entanglement measure in its own
right, which we will use to derive an intuitive upper
limit of the entanglement increase: we will show that
for any Gaussian state –mixed or pure– the maximal
increase of bipartite “Rényi-2 entanglement” through
single-photon addition/subtraction is log 2.

4 Photon subtraction
We now focus on entanglement increase via photon
subtraction. This operation is theoretically described
by the action of an annihilation operator on the (in
our case Gaussian) state. We assume that this oper-
ation is implemented on subsystem A, as shown in
Fig. 1. To study the increase of entanglement, we
start by analysing the marginal purity of the photon
subtracted state in subsystem A:

ρ̂−A =
âgρ̂Aâ

†
g

tr(â†gâgρ̂A)
. (9)

The label g indicates the mode in which the photon is
subtracted. Using (2) we can take âg to be an annihi-
lation operator acting on an arbitrary superposition of
modes. Our main tool to evaluate the marginal purity
of the state (9) are Gaussian transformations [48]. As
shown in Fig. 1(b), we can write a thermal decompo-
sition form for an arbitrary subsystem A as follows

ρ̂A = D̂Û
mA
⊗
i=1

ρ̂iÛ
†D̂†, (10)

where Û is a Bogoliubov transformation and D̂ =
mA∏
i=1

D̂(αi) is a displacement operator. The unitary

displacement operators D̂(αi) change the mean field
of the state in mode i and are given by D̂(αi) B
exp

[
i(αiâ†i + α∗i âi)

]
such that its action on the an-

nihilation operators is given by D̂†(αi)âiD̂(αi) =

âi + αi. It is now convenient to define ~̂a† =
(â†1, · · · , â†mA)> and ~̂a = (â1, · · · , âmA)>. As such,
we find

D̂†~̂aD̂ = ~̂a+ ~α. (11)

In a similar spirit, a Bogoliubov transformation is
generated by a Hamiltonian that is quadratic in the
creation and annihilation operators. However, the
simplest way to define it is through its action on cre-
ation and annihilation operators

Û †~̂aÛ = K~̂a† + L~̂a, (12)

with L†L − K†K = 1 and K†L = −L†K. The
specific details of the Bogoliubov transformation Û
depend on the state ρ̂A and are dictated by the
Williamson decomposition [48].

Furthermore, single-mode thermal states ρ̂i can be
fully characterised by the amount of thermal noise in
units of shot noise ni. Since the Gaussian unitary D̂Û
does not affect the marginal purity of subsystem ρ̂A
can be directly expressed as [48]

µA = 1
mA∏
i=1

ni

. (13)

If the global state is pure, this marginal purity can
directly be connected to the amount of entanglement
in the initial Gaussian state through (6).

As shown by the green circles in Fig. 1(b) and
Fig. 1(c), if we subtract a photon from the mode g
of subsystemA, we can use Bogoliubov transform to
convert the photon-subtraction operation at mode g
into a combined operator b̂, which adds and subtracts
a photon on each thermal mode

ρ̂−A =
D̂Û b̂

mA
⊗
i=1

ρ̂ib̂
†Û †D̂†

tr(b̂†b̂
mA
⊗
i=1

ρ̂i)
,

with b̂ = Û †D̂†âgD̂Û .

(14)

We can combine (11) and (12) to explicitly write that
b̂ = ~k · ~̂a† + ~l · ~̂a + αg, where ~k = (k1, · · · , kmA)
and ~l = (l1, · · · , lmA) are mA-dimensional complex
vectors, and αg is a complex number, all depending
on the specific choice of mode g.

5 Relative marginal purity

Based on both the Williamson decomposition (10)
and Bogoliubov transformation (14), we can derive
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(see Appendices A and B) a general expression of
relative marginal purity

µ−A
µA

=1
2 +

[
1
2(

mA∑
i=1

Ñi

ni
)2 + 1

2 |αg|
4 + |

mA∑
i=1

kili
n2
i − 1
2ni

|2

+α∗g
2(
mA∑
i=1

kili(n2
i − 1)

2ni
) + α2

g(
mA∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

)

+|αg|2
mA∑
i=1

Ni

]
/(
mA∑
i=1

Ni + |αg|2)2, (15)

where Ni = |ki|2 ni+1
2 + |li|2 ni−1

2 , and Ñi =
|ki|2 ni+1

2 −|li|
2 ni−1

2 . By minimising this expression,
we find that

µ−A
µA
> 1/2. (16)

We thus show that photon subtraction decreases
the marginal purity of an arbitrary state by at most
a factor two. In the examples at the end of this
Article, we show that this lower bound is tight in the
sense that there are states for which µ−A = µA/2.
Furthermore, when there is no entanglement in the
initial Gaussian state, i.e. when µA = 1, we find that
µ−A = 1.

6 Bounds on the increase of Rényi-2
entanglement

When the state for the global system is pure, we can
immediately combine the definition (6) with (16) to
obtain that the entanglement increase is governed by

∆ER = logµA − logµ−A 6 log 2. (17)

For mixed states, on the other hand, we use the
definition of (8), which implies that we must con-
sider all possible decompositions of the state. For
each state in the decomposition we can use (7) to
calculate ER(|ψλ〉) based on the Wigner function.
This construction naturally implies that ER(ρ̂G) 6∫

dλp′(λ)ER(|ψλ〉), for any possible decomposition
of ρ̂ in pure states. For Gaussian states this idea was
explicitly used to define Gaussian entanglement of
formation [49] as an upper bound to the entanglement
of formation. A similar idea was later used to define
the Gaussian Rényi-2 entanglement [43]. Here, we
generalise this idea to the class of photon-subtracted
states by using that every mixed photon-subtracted
state can be decomposed as a mixture of pure photon-
subtracted states.

……

……

Subsystem  Subsystem  

 Global  system

Non-Gaussian mode

Gaussian mode

A B
……

（a）

（b） （c）
1ρ̂

3ρ̂

2ρ̂

gρ̂

mρ̂

gâ

1ρ̂

3ρ̂

2ρ̂

gρ̂

mρ̂

b̂ Û D̂D̂Û

AA

Figure 1: (a) Schematic diagram of assigning all modes in
a global pure state to subsystems A and B. The green dots
refer to non-Gaussian modes, and the small black circles refer
to Gaussian modes. (b) Thermal decomposition of subsys-
tems A, in which a photon is subtracted (surrounded by a
green circle) in the mode-g after the displacement operator
D̂. (c) A combined operator b̂ (surrounded by a green el-
lipses), which adds and subtracts a photon to and from each
thermal mode before the unitary operator Û . The operations
in (b) and (c) are different, but the Bogoliubov transform tells
us that the ultimate output state is strictly the same.

The Wigner function [48] of a Gaussian state ρ̂G

can be written as

WG(~β) =
exp[−1

2(~β − ~α0)>V −1(~β − ~α0)]
(2π)m

√
det(V )

,(18)

where ~β = (x1, · · · , xm, p1, · · · , pm)> ∈ R2m is a
set of amplitude and phase quadrature and ξ is the
corresponding displacement vector. And the covari-
ance matrix V can be decomposed as V = Vp + Vc,
where Vp is the covariance matrix of a pure state, and
Vc is some positive-definite matrix that describes ad-
ditional classical noise. This decomposition is gener-
ally not unique, but we can use a constructive tech-
nique to prove that this decomposition always exists
[32]. We can think of the state ρ̂G as being gener-
ated by injecting a pure state ρ̂p into a noisy Gaussian
channel, so that the Gaussian state ρ̂G can be decom-
posed [49] as

ρ̂G =
∫
R2m

d2m~α D̂(~α)ρ̂Gp D̂†(~α)pGc (~α), (19)

where ρ̂p is a pure squeezed vacuum state with co-
variance matrix Vp. We also introduce the probability
distribution

pGc (~α) = e−
1
2 (~α−~α0)>V −1

c (~α−~α0)

(2π)m
√

det(Vc)
, (20)
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with ~α0 the mean field of ρ̂G. This gives us an explicit
way to decompose any Gaussian state as a mixture of
squeezed vacuum states. This decomposition of the
Gaussian state can be used to decompose the associ-
ated photon-subtracted state as

ρ̂− =
∫
R2m

d2m~αρ̂−p,~αp
−
c (~α), (21)

where the pure state ρ̂−p,α is the state that is obtained
by subtracting a single photon from D̂(α)ρ̂pD̂†(α),
and p−c (α) a probability distribution that is explicitly
given by [32]

p−c (~α) =
(

tr[Vp;g] + ‖~αg‖2 − 2
tr[Vg] + ‖~α0;g‖2 − 2

)

× e[− 1
2 (~α−~α0)>V −1

c (~α−~α0)]

(2π)m
√

det(Vc)
,

(22)

where we introduce Vg and Vp;g as the 2 × 2 sub-
matrices of V and Vp, respectively, that describe the
mode g. Analogously, the 2-dimensional vectors ~αg
and ~α0;g describe the projections of ~α and ~α0, respec-
tively, to mode g.

The definition (8) imposes to take the infimum
over all possible decompositions of ρ̂− in terms of
pure states. This implies that the average entangle-
ment of the pure state in any possible decomposition
is higher than ER(ρ̂−). The decomposition (21) can
thus be used to derive an upper bound for the entan-
glement increase, optimised over all possible decom-
positions of V . This leads to a first important result,
we find that

ER(ρ̂−) 6 inf
Vp6V

∫
R2m

d2m~αp−c (~α)ER(ρ̂−p,~α). (23)

We may then use (22) to explicitly bound ER(ρ̂−) by
using only the initial state’s covariance matrix V , the
mean field ~α0, and the subtraction mode g. Still, ap-
proaching the infimum in (23) remains a challenging
task, which we will not explore in detail in this Arti-
cle.

Rather than looking for state-dependent bounds,
we now focus on a universal bound that quanti-
fies the best possible entanglement increase through
photon subtraction. Because ρ̂−p,α is a single-
photon subtracted pure state, we can use (17) to ob-
tain that ER(ρ−p,~α) 6 log 2 + ER(D̂(~α)ρ̂pD̂(~α)†).
Furthermore, because entanglement is unchanged
under local unitary transformations, we find that
ER(D̂(~α)ρ̂pD̂(~α)†) = ER(ρ̂p). Inserting all these el-
ements in (23), we find that

ER(ρ̂−) 6 log 2 + inf
Vp6V

[ER(ρ̂p)]. (24)

∆ER 

0

0.4

log2

 

S

S

S

S

S

S

S

S

S

D

（a） （b）

Figure 2: Two examples of multimode entangled pure states.
The optical modes are indicated by black circles, in which the
color code indicates the increase (∆ER) in Rényi-2 entangle-
ment between the corresponding mode and the rest of the
system. The mode g with one photon subtracted is indicated
by a downward green arrow and its neighboring mode, mode
g′, are marked with a green circle. (a) is a parallel optical
network with 10 modes, and all these modes are in the initial
vacuum sates. S indicates the two-mode squeezer operator
with parameter r = 1. D is the displacement operator, which
makes mode g produce a displacement of αg = 0.5. (b) is a
3×3 graph state. All these modes are in the initial squeezed
vacuum with 10 dB of squeezing. And the mode g also has
a displacement of αg = 0.5.

The second term of the right side is by definition the
Gaussian Rényi-2 entanglement of the mixed state ρ̂G

[43]. This entanglement measure is defined by min-
imising over all possible Gaussian decompositions,
but it is a priori not clear that there cannot be any
decomposition in non-Gaussian states that yields a
lower entanglement. In other words, we know that
inf
Vp6V

ER(ρ̂p) 6 ER(ρ̂G), but it is not clear whether or

not this is actually an equality.
Hence, we have shown that photon subtraction

on any arbitrary Gaussian state ρ̂G can increase the
Rényi-2 entanglement by at most log 2 as compared
to its Gaussian Rényi-2 entanglement. A completely
analogous calculation for photon-added state results
in the same bound even though photon subtraction
and photon addition tend to increase the entangle-
ment by different amounts depending on the state.

7 Examples

To get a better understanding of the quality of the
bound and its physical interpretation, we will con-
sider a range of examples. Because there is no ex-
act method to calculate the entanglement for non-
Gaussian mixed states, we restrict ourselves to pure
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states where we can use (17) to calculate the entan-
glement increase. We consider the following two typ-
ical entangled pure states as examples:

1. We subtract a photon from a linear entangled
network, which is composed of several two-
mode squeezer gates, as shown in Fig. 2(a).
All the modes are initially in vacuum states
ρ̂o, then the output state can be expressed as
ρ̂ = D̂Û ρ̂oÛ

†D̂†, where Û = Ŝm−1 · · · Ŝ1
with Ŝi = exp[r(âiâi+1 − â†i â

†
i+1)/2]. To test

the effect of a mean field, we add the operator
D̂ that adds a displacement (αg) to the mode-
g. Thus the covariance matrix of the state ρ̂ is
Vnetwork = CtC, where C is a symplectic ma-
trix that implements the multimode squeezing
operation on the quadratures Û †β̂Û = Cβ̂.

2. We subtract a photon from a graph state, as
shown in Fig. 2(b), which is the backbone of
measurement-based CV quantum computation.
We start out from a set of independent squeezed
modes, with a joint covariance matrix given by
V0 = diag(s, · · · , s, s−1, · · · , s−1). Every edge
of the graph corresponds to a CZ gate, which
turn those non-correlated modes into a graph
state. On the level of covariance matrices, the
action of the set of CZ gates is represented by a
symplectic transformationC, applied to V0 [33]:

Vgraph = CtV0C, with C =
(
1 A

0 1

)
, where

A is m×m adjacency matrix.

We can use methods purely based on phase space
representations [32, 31] to describe the Wigner func-
tion of a reduced photon subtracted state for any sub-
system A. A very detailed derivation can be found in
[47], leading to the general expression

W−A (~βA) =
(
‖XV −1

A (~βA − ~αA)− ~αg‖2 (25)

+tr(Vg −XV −1
A X>)− 2

)
× WG

A (~βA)
‖~αg‖2 + tr(Vg)− 2 ,

where ~βA ∈ R2mA and X = G>(V − 1)A. Here,
G is a 2m× 2 matrix where the two columns are the
basis vectors ~g(x) and ~g(p) associated with the two
phase space axes of mode g:

G =

 | |
~g(x) ~g(p)

| |

 . (26)

Analogously, A is a 2m × 2mA matrix where
the columns are the symplectic basis vectors
~a

(x)
1 , . . . ,~a

(x)
mA ,~a

(p)
1 , . . . ,~a

(p)
mA that generate the phase

space of subsystem A:

A =

 | | | |
~a

(x)
1 · · · ~a

(x)
mA ~a

(p)
1 · · · ~a

(p)
mA

| | | |

 . (27)

In (25), we then obtain the matrices VA = A>V A
and Vg = G>V G, and the displacement vectors
~αA = A>~α and ~αg = G>~α. We can now use stan-
dard techniques of Gaussian integrals to evaluate the
marginal purity (7) fromW−A (~βA) for an arbitrary bi-
partition A. This in turn allows to directly evaluate
the entanglement increase (17).

In Fig. 2, each circle represents a mode in a mul-
timode quantum state, and the color code inside the
circle indicate the increase in entanglement between
the mode (subsystemA) and the rest system (subsys-
tem B). When a photon is subtracted from the mode
g ( marked by the green arrow) in the pure multimode
systems, non-Gaussian features will spread from the
mode g to other modes, whose entanglement can also
increase. In Fig. 3(a) and Fig. 3(b), we respectively
show the increase of entanglement (∆ER) related to
mode g and mode g′ (representing the neighboring
mode of g and marked by a green circle in Fig. 2). As
shown by the blue and pink curves, ∆ER increases as
the degree of squeezing increases until it approaches
a maximum. The maximum values are usually differ-
ent for different initial Gaussian states, but they are
all less than log 2. In Figs. 3(c) and 3(d), each dots
represents a different bi-partition for the examples of
Figs. 2(a) and 2(2), respectively, which we group de-
pending on the number of modes in subsystem A.
The entanglement increase varies depending on the
modes that are comprised in each subsystem, but it is
never greater than log 2.

Finally, we aim to provide an intuition for the
value log 2 of entanglement increase. To this goal,
we restrict to a two-mode system prepared in a non-
displaced pure state |ψ〉 = Û(|0〉⊗|0〉), where Û is a
Bogoliubov transformation. When we subtract a pho-
ton in one of the two modes, we can use (14) to write
the photon-subtracted state |ψ−〉 = Û b̂(|0〉⊗ |0〉)/N
(with N a normalisation factor). We recall that b̂ =
Û †âgÛ = ~k · ~̂a† +~l · ~̂a, which implies that∣∣ψ−〉 = 1

N
Û (k1 |1〉 ⊗ |0〉+ k2 |0〉 ⊗ |1〉) . (28)

In particular in the limit where the squeezing induced
by Û is small, we find that |ψ〉 resembles the vacuum
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state with negligible entanglement. On the other
hand, |ψ−〉 is close to a single photon that passed
through a beam splitter. The maximal entanglement
in this low squeezing limit is achieved for the Bell
state |ψ−〉 ≈ (|1〉 ⊗ |0〉 ± |0〉 ⊗ |1〉)/

√
2, which

has a Rényi-2 entanglement ER(|ϕ〉) = log 2. This
corresponds exactly to the maximal entanglement
increase and thus we can interpret our findings
as a generalisation of this phenomenon to mixed
states of arbitrary many modes with arbitrary
amounts of squeezing. Because of this connection
to Bell states, the maximal entanglement increase
∆ER = log 2 may also be referred to as one ebit [50].

8 Discussion

We strictly prove that single-photon subtraction can
reduce the purity of any multimode Gaussian state by
at most a factor 1/2. This means that for any bipartite
entanglement of all Gaussian pure states, the amount
of Rényi-2 entanglement that can be gained by single-
photon subtraction is at most log 2. We then show
that mixed photon-subtracted Gaussian states can be
decomposed as a mixture of pure photon subtracted
states and that the upper bound on entanglement in-
crease also applies to mixed states. A fully equivalent
treatment of single-photon addition yields the same
result (see end of Appendix B). Finally, we evaluate
the actual Rényi-2 entanglement of two multimode
examples based on the Wigner function and show that
the bound can be reached.

Furthermore, we highlight that eq. (23) can more
generally be used to evaluate state-dependent upper
bounds for the increase in Rényi-2 entanglement
due to photon subtracted states. It can thus be
used to evaluate the robustness of the additional
non-Gaussian entanglement to photon loss using the
methods of [51]. Furthermore, photon subtraction is
also a method to remotely generate Wigner negativity
through Einstein-Podolsky-Rosen Steering [52, 53].
As an outlook, we expect that the bound of eq. (23)
can help understand whether there is a trade-off

between the generated Wigner negativity and the
increase in non-Gaussian entanglement. This high-
lights the importance of our results in understanding
the resourcefulness of non-Gaussian operations and
their potential use in quantum technologies.
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A Decomposition of single-photon subtraction operation

In CV quantum optics, for an arbitrary m-mode Gaussian state ρ̂0, we can write a thermal decomposition as

ρ̂0 = D̂Û ρ̂M Û †D̂†, (29)

where Û is an arbitrary canonical unitary and D̂ =
m∏
i=1

D̂(αi) is displacement operator, which displace the

vacuum state to generate coherent states |αi〉 = D̂(αi)|0〉. Furthermore, ρ̂M =
m⊗
i=1

ρ̂i, where single- mode

thermal states ρ̂i = (0, Vi) can be fully characterised by a covariance matrix Vi = diag(ni, ni), , where ni
is the fraction of thermal noise compared to shot noise. Then the purity of ρ̂0(x̄, V ) can be expressed as

µ0 =
m∏
i=1

tr(ρ̂2
i ) =

m∏
i=1

1
ni

.

When subtracting a photon to the mode-g, it corresponds to a unitary Bogoliubov transformation

Û †D̂†âgD̂Û = b̂+ α∗g, with b̂ = ~k · ~̂a† +~l · ~̂a, (30)

where ~̂a† = (â†1, · · · , â†m)> and ~̂a = (â1, · · · , âm)> . A set of 1×m complex matrices ~k = (k1, · · · , km) and
~l = (l1, · · · , lm) corresponds an canonical unitary Û . Thus, we convert the single-photon subtraction operation
on the mode-g into the addition and subtraction operation on each thermal mode. Thus the single-photon
subtracted state can then be written as

âgρ̂0â
†
g

tr(âgρ̂0â
†
g)

=
D̂Û(b̂+ αg)ρ̂M (b̂† + α∗g)Û †D̂†

N
, (31)
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where the normalization factorN = tr(b̂ρ̂M b̂†) + |αg|2. Due to D̂Û will not change the purity, so the purity of
an arbitrary single-photon subtracted state can be expressed as

µN 2 = tr([b̂ρ̂M b̂† + |αg|2ρ̂M + αgρ̂M b̂
† + α∗gb̂ρ̂M ]2)

= tr((b̂ρ̂M b̂† + |αg|2ρ̂M )2 + (αgρ̂M b̂
† + α∗gb̂ρ̂M )2)

= tr(b̂ρ̂M b̂†b̂ρ̂M b̂†) + |αg|4tr(ρ̂2
M ) + αg

2tr(ρ̂M b̂†ρ̂M b̂†) + α∗g
2tr(b̂ρ̂M b̂ρ̂M ) +

|αg|2[tr(ρ̂M b̂ρ̂M b̂†) + tr(b̂ρ̂M b̂†ρ̂M )] + |αg|2[tr(ρ̂M b̂†b̂ρ̂M ) + tr(b̂ρ̂M ρ̂M b̂†)]. (32)

where we have used that tr(b̂ρ̂M b̂†ρ̂M b̂†) = tr(b̂ρ̂M b̂†b̂ρ̂M ) = tr(ρ̂M ρ̂M b̂†) = tr(ρ̂M b̂ρ̂M ) = 0, since ρ̂i is a
diagonal matrix, and â†i (âi) is off-diagonal matrices. Similarly, for single-photon addition, the calculation is
equivalent the same expression just by swapping the values of ~k and ~l and the values of α∗g with αg.

For the same Gaussian state, different form Eq.(29), we can also take the following decomposition

ρ̂0 = ÛD̂(x̄)ρ̂M D̂(x̄)†Û †. (33)

In this case, we just need to to replace α∗g with
∑m
i=1 kiα

∗+ liα in Eq.(32), which is still applicable, regardless
of the decomposition form.

B Generalized expression of relative purity

B.1 When αg = 0

When αg = 0, only the first term of (32) is retained.
Let us take m = 1, so that (32) becomes

µ1N
2
1 =tr(b̂ρ̂M b̂†b̂ρ̂M b̂†) (34)

=|k1|4tr(â†1ρ̂1â1â
†
1ρ̂1â1) + |l1|4tr(â1ρ̂1â

†
1â1ρ̂1â

†
1) + k2

1l
∗2
1 tr(â†1ρ̂1â

†
1â
†
1ρ̂1â

†
1) + k∗21 l

2
1tr(â1ρ̂1â1â1ρ̂1â1)

+|k1|2|l1|2[tr(â†1ρ̂1â1â1ρ̂1â
†
1) + tr(â1ρ̂1â

†
1â
†
1ρ̂1â1)] + |k1|2|l1|2[tr(â†1ρ̂1â

†
1â1ρ̂1â1) + tr(â1ρ̂1â1â

†
1ρ̂1â

†
1)]

+|k1|2k1l
∗
1[tr(â†1ρ̂1â1â

†
1ρ̂1â

†
1) + tr(â†1ρ̂1â

†
1â
†
1ρ̂1â1)] + |k1|2k∗1l1[tr(â†1ρ̂1â1â1ρ̂1â1) + tr(â1ρ̂1â1â

†
1ρ̂1â1)]

+|l1|2k1l
∗
1[tr(â1ρ̂1â

†
1â
†
1ρ̂1â

†
1) + tr(â†1ρ̂1â

†
1â1ρ̂1â

†
1)] + |l1|2k∗1l1[tr(â1ρ̂1â

†
1â1ρ̂1â1) + tr(â1ρ̂1â1â1ρ̂1â

†
1)].

Remove the zero traces and replace the subscript 1 with i, we get any single-mode purity

µiN
2
i =|ki|4tr(â†i ρ̂iâiâ

†
i ρ̂iâi) + |li|4tr(âiρ̂iâ†i âiρ̂iâ

†
i ) (35)

+2|ki|2|li|2tr(â†i ρ̂iâiâiρ̂iâ
†
i ) + 2|ki|2|li|2tr(â†i ρ̂iâ

†
i âiρ̂1âi).

When we generalise this to a state with an arbitrary number of modesm, we find that the purity can be expressed
as

µm(
m∑
i=1

Ni)2 =
m∑
i=1

µiN
2
i · ni ·

m∏
i=1

1
ni

+ 4 · [|
m∑
i=1

[kilitr(âiρ̂iâ†i ρ̂i) · ni|
2 −

m∑
i=1
|kilitr(âiρ̂iâ†i ρ̂i) · ni|

2] ·
m∏
i=1

1
ni

+

[(
m∑
i=1

[|ki|2tr(â†i ρ̂
2
i âi) + |li|2tr(âiρ̂2

i â
†
i )] · ni)

2 −
m∑
i=1

[|ki|2tr(â†i ρ̂
2
i âi) + |li|2tr(âiρ̂2

i â
†
i )]

2 · n2
i ] ·

m∏
i=1

1
ni

+

[(
m∑
i=1

[(|ki|2 + |li|2)tr(âiρ̂iâ†i ρ̂i)] · ni)
2 −

m∑
i=1

[(|ki|2 + |li|2)tr(âiρ̂iâ†i ρ̂i)]
2 · n2

i ] ·
m∏
i=1

1
ni
, (36)

where Ni = |ki|2tr(â†iρiâi) + |li|2tr(âiρiâ†i ). Therefore, the traces in (36) are related to the single-mode
photon-added and -subtracted thermal states, which are the key to deriving the expression of final purity. For-
tunately, Winger function provides us with an easy way to calculate these traces. For a single-mode Gaussian
thermal state ρ̂i, the Wigner function is

wi(qi, pi) = 1
2πni

exp[−q
2
i + p2

i

2ni
], (37)
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where qi and pi are amplitude and phase quadrature. Then the Wigner functions due to photon addition or
subtraction are

w(i,+1)(qi, pi) = (ni + 1
2ni

(q2
i + p2

i )−
1
ni

)wi(qi, pi), (38)

w(i,−1)(qi, pi) = (ni − 1
2ni

(q2
i + p2

i ) + 1
ni

)wi(qi, pi). (39)

Thus, we can calculate the traces by the above Wigner functions:

tr(âρ̂iâ†) =
∫
q2
i + p2

i

4 widqidpi − 1 = ni − 1
2 , (40)

tr(â†ρ̂iâ) =
∫
q2
i + p2

i

4 widqidpi − 1 + 1 = ni + 1
2 , (41)

which are the quantities related to the average-photon in the thermal state. Similarly, we can get that

tr(âρ̂iâ†âρ̂iâ†) = tr(âρ̂iâ†âρ̂iâ†)
tr(âρ̂iâ†)2 · tr(âρ̂iâ†)2 = (1 + n2

i )
2n3

i

(ni − 1
2 )2, (42)

tr(â†ρ̂iââ†ρ̂iâ) = (1 + n2
i )

2n3
i

(ni + 1
2 )2, (43)

which are quantities related to the purity of the photon-added and -subtracted states.

tr(â†ρ̂iââρ̂iâ†) = tr(âρ̂iâ†â†ρ̂iâ) = tr(ρ̂iâ†â†ρ̂iââ) = (n2
i − 1)2

8n3
i

, (44)

which can be obtained by photon-added and -subtracted Wigner functions through the following integration

tr(â†ρ̂iââρ̂iâ†) = (4π
∫
w(i,+1) · w(i,−1)dqidpi) · (

∫
q2
i + p2

i

4 widqidpi − 1) · (
∫
q2
i + p2

i

4 widqidpi)(45)

= (n2
i − 1)2

8n3
i

.

With the help of Wigner function of single-photon added or subtracted and Gaussian thermal state Wigner
function, we can get

tr(ρ̂iâ†ρ̂iâ) = tr(ρ̂iâρ̂iâ†) = (4π
∫
wi · w(i,−1)dqidpi) · (

∫
q2
i + p2

i

4 widqidpi − 1) = ni + 1
2n2

i

(ni − 1
2 ).

Due to the noncommutative nature of creation and annihilation operators, we have

tr(âρ̂iââ†ρ̂iâ†) = tr(âρ̂iâ†âρ̂iâ†) + tr(ρ̂2
i â
†â) = tr(â†ρ̂iââ†ρ̂iâ)− tr(ρ̂2

i â
†â)− tr(ρ̂2

i ),

then we can deduce the following traces

tr(ρ̂2
i â
†â) = (ni − 1)2

4n2
i

, tr(ρ̂2
i ââ
†) = (ni + 1)2

4n2
i

and tr(âρ̂iââ†ρ̂iâ†) = (n2
i − 1)2

8n3
i

. (46)

By bringing the results of these traces into (36), we get

µ−m =[12(
m∑
i=1

Ni)2 + 1
2(

m∑
i=1

Ñi

ni
)2 + |

m∑
i=1

kili
n2
i − 1
2ni

|2]µ0/(
m∑
i=1

Ni)2.

where Ni = |ki|2 ni+1
2 + |li|2 ni−1

2 and Ñi = |ki|2 ni+1
2 − |li|2 ni−1

2 . Hence, we can immediately know the
relative purity is

µ−m
µ0

=1
2 + [12(

m∑
i=1

Ñi

ni
)2 + |

m∑
i=1

kili
n2
i − 1
2ni

|2]/(
m∑
i=1

Ni)2 > 1/2.
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B.2 When αg , 0

According to similar approach above, we can derive the following traces

|αg|4tr(ρ̂2
M ) = |αg|4µ0, (47)

αg
2tr(ρ̂M b̂†ρ̂M b̂†) = 2αg

2(
m∑
i=1

k∗i l
∗
i tr(âiρ̂iâ

†
i ρ̂i)ni)µ0 = αg

2(
m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

)µ0, (48)

α∗g
2tr(b̂ρ̂M b̂ρ̂M ) = 2α∗g

2(
m∑
i=1

kilitr(âiρ̂iâ†i ρ̂i)ni)µ0 = α∗g
2(

m∑
i=1

kili(n2
i − 1)

2ni
)µ0 (49)

and

|αg|2[tr(ρ̂M b̂ρ̂M b̂†) + tr(b̂ρ̂M b̂†ρ̂M ) + tr(ρ̂M b̂†b̂ρ̂M ) + tr(b̂ρ̂M ρ̂M b̂†)]

= 2|αg|2[
m∑
i

(|ki|2 + |li|2)tr(âiρ̂iâ†i ρ̂i)ni +
m∑
i

(|ki|2tr(ρ̂2
i âiâ

†
i )ni + |li|2tr(ρ̂2

i â
†
i âi)ni)]µ0

= 2|αg|2
m∑
i

Niµ0. (50)

Thus the relative purity is

µ−m
µ0

=[12(
m∑
i=1

Ni)2 + 1
2(

m∑
i=1

Ñi

ni
)2 + 2|αg|2

m∑
i=1

Ni + |
m∑
i=1

kili
n2
i − 1
2ni

|2 + |αg|4 +

αg
2(

m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

) + α∗g
2(

m∑
i=1

kili(n2
i − 1)

2ni
)]/(

m∑
i=1

Ni + |αg|2)2

=1
2 + [12(

m∑
i=1

Ñi

ni
)2 + 1

2 |αg|4 + |
m∑
i=1

kili
n2
i − 1
2ni

|2

|αg|2
m∑
i=1

Ni + αg
2(

m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

) + α∗g
2(

m∑
i=1

kili(n2
i − 1)

2ni
)]/(

m∑
i=1

Ni + |αg|2)2. (51)

Since (αg + α∗g)2 > 0 and (αg − α∗g)2 6 0, thus we have −2|αg| 6 α2
g + α∗g

2 6 2|αg|2. Then

B2(
m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

) +B∗2(
m∑
i=1

kili(n2
i − 1)

2ni
) > −2|B|2

√√√√ m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

) ·

√√√√ m∑
i=1

kili(n2
i − 1)

2ni
,(52)

where B = α∗g. Furthermore, The left side of the equation has

|
m∑
i=1

kili(n2
i − 1)

2ni
|2 =

m∑
i=1

|ki|2|li|2(n2
i − 1)2

(2ni)2 +
m∑
i=1

m∑
j=1

(kilikj∗lj∗ + ki
∗li
∗kjlj)

(n2
i − 1)
2ni

(n2
j − 1)
2nj

6
m∑
i=1

|ki|2|li|2(n2
i − 1)2

(2ni)2 +
m∑
i=1

m∑
j=1

(2
√
|ki|2|li|2|kj |2|lj |2)(n2

i − 1)
2ni

(n2
j − 1)
2nj

= (
m∑
i=1

√
|ki|2|li|2

(n2
i − 1)
2ni

)2. (53)

So that

B2(
m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

) +B∗2(
m∑
i=1

kili(n2
i − 1)

2ni
) > −|B|2

m∑
i=1

√
|ki|2|li|2

(n2
i − 1)
ni

, (54)

and we add |B|2
∑m
i=1Ni to both sides of the equation

|B|2
m∑
i=1

Ni +B2(
m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

) +B∗2(
m∑
i=1

kili(n2
i − 1)

2ni
) (55)

> |B|2(
m∑
i=1

Ni −
m∑
i=1

√
|ki|2|li|2

(n2
i − 1)
ni

).
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Due to ni−1
2 ≥ 0, thus

(
m∑
i=1

Ni −
m∑
i=1

√
|ki|2|li|2

(n2
i − 1)
ni

)

=
m∑
i=1

[(
√
|ki|2

ni + 1
2 −

√
|li|2

ni − 1
2 )2 +

√
|ki|2|li|2(n2

i − 1)−
√
|ki|2|li|2

(n2
i − 1)
ni

)]

=
m∑
i=1

[(
√
|ki|2

ni + 1
2 −

√
|li|2

ni − 1
2 )2 +

√
|ki|2|li|2(n2

i − 1)(

√
n2
i −

√
n2
i − 1

ni
)]

> 0, (56)

so that

|B|2
m∑
i=1

Ni +B2(
m∑
i=1

k∗i l
∗
i (n2

i − 1)
2ni

) +B∗2(
m∑
i=1

kili(n2
i − 1)

2ni
) > 0. (57)

Therefore, the relative purity is always 1/2+ a positive number, so that

µ−m
µ0
> 1/2. (58)

It is a proof that for any Gaussian state, single-photon subtraction (or addition) can reduce the purity with at
most a factor 1/2.

The case of photon addition yields the same expressions with αg and α∗g interchanged. In practice, the case
of photon addition will also lead to different values for ki and li. However, this does not change any of the
proofs and as a consequence, we also find µ+

m/µ0 > 1/2 for photon addition.
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