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Abstract

Nucleation phenomena commonly observed in our every day life are of fundamen-
tal, technological and societal importance in many areas, but some of their most
intimate mechanisms remain however to be unraveled. Crystal nucleation, the early
stages where the liquid-to-solid transition occurs upon undercooling, initiates at
the atomic level on nanometer length and sub-picoseconds time scales and involves
complex multidimensional mechanisms with local symmetry breaking that can
hardly be observed experimentally in the very details. To reveal their structural
features in simulations without a priori, an unsupervised learning approach founded
on topological descriptors loaned from persistent homology concepts is proposed.
Applied here to a monatomic metal, namely Tantalum (Ta), it shows that both trans-
lational and orientational ordering always come into play simultaneously when
homogeneous nucleation starts in regions with low five-fold symmetry.

Understanding homogeneous crystal nucleation under deep undercooling conditions remains a
formidable issue, as crystallization is essentially heterogeneous in nature and initiated from impurities,
surfaces, or near grain boundaries that often hinder its occurrence [1]. Unreachable until very recently,
experimental observations of early stages of nuclei was achieved by a tour de force using time
tracking of three-dimensional (3D) Atomic Electron Tomography [2] of metallic nanoparticles. Those
complex phenomena remain to date out-of-reach experimentally for bulk systems, thus hindering our
theoretical understanding. This line of research still belongs mostly to the domain of atomic-level
simulations and more particularly to molecular dynamics (MD) with generic interaction models [3, 4].
To reach statistically meaningful events, large scale simulations are required1.

To identify translational and orientational orderings during homogeneous nucleation in MD sim-
ulations, an unsupervised learning approach based on topological data analysis (TDA) signatures,
and more precisely persistent homology (PH) [5, 6] was developed. PH is an intrinsically flexible,
yet highly informative, tool which detects meaningful topological features deduced from atomic

1This still remains challenging as only few studies are providing now million-atom simulations for monatomic
metals [1].
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Figure 1: Unsupervised learning of homogeneous nucleation. Snapshot of a ten-million atom MD
simulation of Ta during nucleation along the T = 1900 K isotherm (a and b). Independent local
atomic structures form a train set represented in the descriptor space by 215 PH components up to
the second order. (c) Evolution of the ICL criterion as a function of number of clusters is used to get
the optimal number of clusters shown in (d). In (a) the snapshot is represented only with atoms in
cluster C1 and cluster C2 revealing all nuclei, while in (b) atoms of all clusters are displayed.

configurations. It was successfully applied very recently to characterize structural environments in
metallic glasses [7], ice [8] and complex molecular liquids [9]. Always used as a structural analysis
in these studies, the originality here is to use PH as a translational and rotational invariant descriptor
to encode the local structures required for the clustering method. More precisely, a persistence
diagram is drawn from each local structure and then encoded into a topological vector as in [6]. Each
coordinate of the topological vector is associated to a pair of points (x, y) in a persistence diagram D
for a fixed level of homology, except the infinite point, and is calculated by

mD(x, y) = min{‖x− y‖∞, d∆(x), d∆(y)}, (1)

where d∆(·) denotes the `∞ distance to the diagonal, and those coordinates are sorted by decreasing
order. For the clustering, a model-based method is used, namely Gaussian Mixture Models (GMM)
[10, Chapter 14] and its estimation by an Expectation Maximization (EM) algorithm [11]. The number
of clusters is selected by Integrated Criterion Likelihood (ICL, [12]), a refinement for clustering of
Bayesian Integrated Likelihood (BIC, [13]). The inferred model from the method called hereafter
TDA-GMM, is used to identify and describe the structural and morphological properties of the nuclei
as well as their liquid environment at various steps of crystal nucleation. With this unsupervised
approach, the homogeneous nucleation process was studied in liquid Ta, a monatomic metal having an
underlying body-centered cubic (bcc) crystalline phase. Large-scale molecular dynamics simulations
comprising ten million atoms were performed. Figure 1 depicts the result of the methodology. A
configuration of the simulation is chosen during crystal nucleation as described below. As it contains
many nuclei with different sizes and a substantial amount of liquid, it is considered as representative
of the phenomenon. From its inherent structure [14], a training set of 5 000 non overlapping local
spherical structures (encoded trough their topological vectors) within a cutoff radius of 6.8 Å was
sampled for the unsupervised learning, with the constraints of covering the entire simulation box
uniformly and randomly. Among all possible sets upon applying the GMM, the one with 6 clusters
(later on denoted by C1 through C6) shown in 1 (d) was automatically inferred to be representative of
the system based on the minimum ICL criterion 1(c). The snapshot of the simulation box in Fig. 1(a)
displays only local structure from clusters C1 and C2, as they show clearly a crystalline order. They
reveal all nuclei as it will be seen below, along with their structure, size and morphology out of the
simulation box displayed in Fig. 1(b). From this model, each atom of each configuration generated
by the MD simulation can be assigned, when considered with its surrounding local structure, to one
of the six clusters (the one with the highest probability). Such a clustering training is performed and
shows that more than 99.99 % of the structures have a probability to belong to the most probable
Gaussian component greater than 0.999, even for structures not in the initial training set. An analysis
of the eigenvalues of the covariance matrices shows elliptical shapes, which proves the necessity
of the GMM with general covariance matrices compared to simpler unsupervised algorithms (e.g.,
k-means would only fit hyperspheres).

Figure 2 shows typical homogeneous nucleation events in undercooled Ta during an isothermal
process close to the nose of the time-temperature-transformation (TTT) curve2. The liquid above
the melting point TM (at T = 3300 K) was first quenched down at ambient pressure to the glass

2which can be done by standard MD simulations without the need of an accelerated method [15].
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Figure 2: Homogeneous nucleation in Ta undercooled liquids. Snapshots of the MD simulations,
during isothermal nucleation at different times for temperatures close to the nose of the Time-
Temperature Transformation (TTT). From stored configurations during fast cooling (blue curves),
nucleation events along several isotherms were observed by monitoring the sharp drop of the internal
energy (inset). The average nucleation times τN (symbols) were determined from 5 independent
simulations for each temperature giving the TTT curves in the vicinity of the nose (orange lines).

transition sufficiently rapidly to avoid nucleation. From stored configurations during cooling, the
TTT curves in the vicinity of the nose were built from observation of the nucleation along several
isotherms as shown in Figs. 2. An isotherm slightly above the TTT nose is chosen for the analysis
(T = 1900 K). From chosen configurations during the nucleation and growth process, the clustering
is obtained from application of the trained model. Strongly growing fraction of mainly two clusters,
concomitant to the sharp drop of the energy, is observed. Only local structures belonging to these
clusters are drawn in Figures 2, revealing evidently the nuclei and their evolution in time, recalling
that solely the topological vector is describing the local structure. The nuclei morphologies show
globular shapes that are rather spherical, characteristic of high ∆T . Interestingly, atoms from one of
the two clusters (in red) are mainly located inside the nuclei while atoms from the second one (in pink)
steadily remain essentially at the border upon growing. They stay finally at grain boundaries after full
solidification of the simulation boxes. The vast majority of the embryos3 seen in Fig. 2 dissolves back
to the liquid while those attaining the critical size are rare and grow. The large simulation box allows
to follow the nucleation process for a longer time, sufficient to observe more secondary nucleation
events [16].

The nucleation process is characterized at least by two order parameters, the translational order
(TO) and the crystalline ordering called hereafter the bond orientational order (BOO). A dedicated
representation of the TO is the number density. It is primarily applied to the embryos and the
nuclei at different stage of the growth, through the radial partial atomic density profiles ρi(r) =
Ni(r)/

4π
3 [(r + ∆r)3 − r3] as a function of distance r of the estimated center of the nucleus, Ni(r)

being the number of atoms belonging to cluster Ci in a spherical shell of radius r and thickness
∆r = 1 Å. Fig. 3(a) depicts the density profiles ρi(r) for all 6 clusters for the largest nucleus shown
in Fig. 2(a) and its surrounding liquid at time 2.7 ns. The corresponding slice of the nucleus through
its center is drawn in Fig. 3(b). Thus, the nucleus is defined by atoms belonging to clusters C1 and
C2 as described above, atoms of C1 forming the center of the nucleus, while atoms of C2 being
mainly located at its border. It should be noted that atoms of cluster C3 are mainly located at the
boundary of the nucleus, but they cannot be considered as being part of it, as they are also present
in the entire box. From the total density profile of the nucleus ρN (r) = ρ1(r) + ρ2(r), it can be
seen clearly that the density of nucleus has already reached at this stage the one of the bulk crystal at
the same temperature. Defining the remaining clusters (C3 to C6) as belonging to the liquid yields
to a total density profile ρL(r) =

∑6
i=3 ρi(r) showing that even in the vicinity of the nucleus the

liquid is negligibly influenced by its presence, keeping the density of the bulk undercooled liquid.
Fig. 3(c) shows the evolution of the density profile ρN (r) at different times of the growing process.
The average radius rN of the nucleus is taken as the value of r at half-maximum of ρN (r) and its

3Nuclei smaller than the critical size of 65 atoms.
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Figure 3: Translational and bond-orientational order parameters. (a) Radial density profile of
the largest nucleus during the growth at 2.7 ns along the T = 1900 K isotherm. The red and blue
dashed horizontal lines correspond respectively to the average bulk crystalline density and average
bulk undercooled liquid without nucleation events (b) Corresponding slice of the nucleus through
its centre and the surrounding liquid where atoms have been coloured according to the cluster they
belong to (see Fig. 1(d)). (c) Total radial density profile of the largest nucleus during growth before
solidification. Inset: time evolution of the radius of the nucleus. (d) Bond-orientational order in terms
of bonded pairs of the Common-Neighbor Analysis [17] for each cluster of the model.

evolution with time is shown in the inset, displaying a linear behaviour in agreement with CNT
[1]. Whatever the size of the nuclei, the density of the inner part is close to the bulk crystal. More
importantly, this is all the more true for all the embryos below the critical size up to a single atomic
structure corresponding to the minimal size of about 65 atoms belonging to cluster C1 or C2 as
identified from their local structure. The BOO of each cluster is identified through the Common
Neighbor Analysis (CNA) [17], chosen as a well-known and robust tool. The CNA signature [18]
given in Fig. 3(d) reveals that structures from clusters C1 and C2 possess respectively a perfect and
slightly distorted bcc crystalline ordering confirming the above analysis of nucleation and growth
in terms of topological descriptors. Local structures from clusters C4, C5 and C6 display various
high degrees of five-fold symmetry (FFS) characteristic of the liquid state together with a small but
non negligible degree of bcc ordering, while structures from cluster C3 retains both FFS and bcc
order in similar proportions. Such a BOO of the four clusters associated to the liquid agrees well
with ab initio molecular dynamics simulations [19] and was interpreted as compatible with the A15
crystalline phase. This analysis highlights and confirms that the TDA-GMM unsupervised learning
approach is a powerful method to capture the structural picture in its finest details.

The question whether the onset of nucleation is initiated primarily by translational or by orientational
ordering is still open, and was debated during the last decade with a controversy essentially centered
on the hard sphere and associated colloidal systems [20, 22]. The small emerging embryos at
the onset of nucleation, corresponding to one structure of 55 to 70 atoms belonging to C1 or C2

with bcc crystalline BOO, show bond lengths of their bcc lattice close to the density of the bulk
crystal. This provides evidence given the size of embryos that can be detected here: translational and
bond-orientational orders appear simultaneously and rule out the scenario in which homogeneous
nucleation is driven by BOO first [23] for metallic systems4.

4which is consistent with the fact that, unlike hard spheres, metallic systems with strong bonding are more
energy driven rather than entropy driven systems.
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The present unsupervised learning approach was shown to be a powerful tool to unravel the atomic
scale mechanisms of crystal nucleation in Ta. Other unsupervised methods can retrieve the dissocia-
tion between solid and liquid-like structure. For example, a simple Principal Component Analysis
discriminates those two states on the first axis, as well as the famous t-SNE [21] that represents the
points such that liquid related particles are closer . However, there is no clear frontier between them
(whereas our clusters are well defined, as given by the a posteriori probabilities), and there is for
example no distinction between cluster 3 and 4, although the interpretation is clear. Our results are
in line with the emerging idea that heterogeneities which exist in the undercooled liquid [22] play
the foremost role in the onset of nucleation. Nucleation have been indeed found to start in low FFS
regions, which is consistent with Frank’s argument [24], with translational and orientational ordering
taking place simultaneously in emerging embryos. Moreover, embryos as well as nuclei during the
growth possess the bulk crystal density driven by the metallic bond length while the surrounding
liquid keeps the bulk liquid density in accordance with the classical nucleation theory [1]. However,
our analysis reveals also some aspects beyond the CNT, such as nuclei having a diffuse interface
with the surrounding liquid. This promising methodology more generally opens the door to a deeper
and autonomous investigation of atomic level mechanisms in materials science. The nucleation
analysis on multicomponent systems is, for example, especially relevant to enhance materials design.
Also, it would be interesting to extend the method to learn the time evolution, e.g. through recent
generalization of the persistent homology to time series [25].
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