Distribution and quantification of remotely generated Wigner negativity
Résumé
Wigner negativity, as a well-known indicator of nonclassicality, plays an essential role in quantum computing and simulation using continuous-variable systems. The conditional preparation of Wigner-negative states through appropriate non-Gaussian operations on an auxiliary mode is common procedure in quantum optics experiments. Motivated by the demand of real-world quantum network, here we investigate the remote creation and distribution of Wigner negativity in the multipartite scenario from a quantitative perspective. By establishing a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality, we show that the amount of Wigner negativity cannot be freely distributed among different modes. Moreover, for photon subtraction-one of the main experimentally realized non-Gaussian operations-we provide an intuitive method to quantify remotely generated Wigner negativity. Our results pave the way for exploiting Wigner negativity as a valuable resource for numerous quantum information protocols based on non-Gaussian scenario.
Domaines
Physique Quantique [quant-ph]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|