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Reachability Analysis of Generalized Input-Affine
Systems with Bounded Measurable Time-varying

Uncertainties
François Bidet, Éric Goubault, Member, IEEE , and Sylvie Putot

Abstract—This paper presents an approach to over-
approximate the reachable set of states of a system whose
uncertainties are arbitrarily time-varying. Most approaches
generally assume piecewise continuity or sometimes Riemann-
integrability of the uncertainties. In this paper we go one
step further, only assuming Lebesgue measurability, which
is the weakest meaningful hypothesis. We develop our new
technique, based on a decomposition of components as a
difference of positive functions, for separable systems, a
generalization of control-affine systems. We compare the over-
approximation produced by our method with the ones obtained
using the tools Flow* and CORA on simple examples, and
show that correct outer-approximations of the reachable sets
are computable with a high degree of precision even for these
general forms of uncertainties.

Index Terms—Switched systems, Time-varying systems,
Uncertain systems

I. INTRODUCTION

MANY interesting systems, such as vehicles, have
there dynamic modelled as non autonomous differ-

ential equations and depend on external time-varying un-
certainties. It is often unrealistic to make strong assump-
tions about these uncertainties, in particular when they
account for physical modeling uncertainties, sensor and
actuator noise, external measurable events, or phenomena
that are complicated to model such as friction in contact
mechanics. Despite those uncertainties, we still want to
prove some guarantees about the possible behaviors of the
systems: for instance, we want to keep a minimal distance
between vehicles, that ensures that vehicles will not collide
after an emergency breaking, whatever the environment
state.

Computing the reachable states of the system is a clas-
sical way to prove such properties: knowing the set of pos-
sible states at one instant, we compute all possible states
in the future. Such computations are often impossible to
do exactly, but approximations can be computed. An over-
approximation of the reachable set is a set guaranteed to
contain all reachable states. It can be used to prove safety
properties: if all states of the over-approximation satisfy
the property, the system is proved safe.

The presence of external time-varying uncertainties is
generally modelled either as switched systems or hybrid
automata or as differential inclusions. In all these cases, a
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specific difficulty when trying to compute the reachable set
of such systems with arbitrary time-varying uncertainties
arises when different dynamics tend to interact closely.
This is in particular the case in sliding mode conditions in
a hybrid system, when both dynamics across a switching
surface tend to bring back the trajectory towards this
surface. In these cases, existing reachability approaches
and tools often tend to use ad-hoc solutions that often rely
on linearization and on chattering, necessarily bounded by
the maximal number of switches to consider.

In this paper, we present a set-based algorithm relying
on a decomposition of the vector field as a difference
of positive functions to compute an over-approximation
of the reachable set of a generalization of control-affine
systems, in which the set of arbitrary time-varying controls
or uncertainties is only bounded and measurable1. The
first result is to prove that we do not need (piecewise)
continuity conditions. The second result is algorithmi-
cal: our approach avoids inelegant and inefficient chatter-
ing approaches to reachability, while being sound for a
very general class of time-varying uncertainties. We then
demonstrate on various examples that this approach can
yield even better over-approximations than some state-of-
the-art tools, while under more general hypotheses.

The paper is organized as follows. In Section IV, we
introduce the problem of interest. Section V presents the
main result at the basis of the computation of an over-
approximation of the reachable set. In Section VI, we
introduce Taylor models as set representations. In Section
VII, we detail the algorithm and present in Section VIII an
optimal solution to the decomposition of the vector field
that appears in this algorithm. Finally, we demonstrate in
Sections IX and X our algorithm on various examples and
compare it to state-of-the-art tools.

II. RELATED WORK

Our work is linked, first, to the theory of switched
systems, see e.g. [2], and in particular of arbitrary switched
systems. An old result (see [3, Theorem 7]) states that
given a compact set U , an ordinary differential equation
(ODE) ẋ = f(x, u), with f a continuous mapping from

1Which, in some sense, is the weakest condition one may hope for:
exhibiting a non-mesurable set of switching events requires going past
classical Zermelo-Fraenkel set theory without the axiom of choice [1].



Rn ×Rk → Rn and u : R→ Rk measurable, has the same
solutions as the differential inclusion ẋ ∈ f(x,U) if for all
x, f(x,U) is convex and for all time t, u(t) ∈ U . However, it
does not give any procedure to compute the set of solutions
or an approximation and no proof was found stating the
convexified differential inclusion produces the same set
of solutions. Generalizing this result to this context, and
making it practical, is one of the aims of this paper.
The center of our work is reachability analysis of hybrid

systems. Many papers focus on the reachability prob-
lem for linear vector fields: [4] and [5] propose over-
approximations of the reachable states over time of lin-
ear dynamics with additive uncertainties using support
functions, [6] handles uncertain linear dynamics ẋ(t) =
A(t)x(t) + u(t) with A and u piecewise continuous, i.e.
Riemann-integrable on intervals. We consider more general
(measurable) uncertainties and non-linear dynamics.

Some authors consider the more general ordinary dif-
ferential equations ẋ(t) = f(x(t), u(t)) but use various
hypotheses to enclose the original dynamic by a differential
inclusion with a specific simpler form. For instance, the
approach of [7] is based on linearizations of the dynamic.
The more recent [8], assuming f to be differentiable, uses
polynomial approximants, implemented in the MATLAB
toolbox CORA, to which we will be comparing our results.
Similarly, [9] assumes for all u, x 7→ f(x, u) is C2(Rn),
without assumptions on u 7→ f(x, u), which is still much
more than we assume.

Finally, some authors as [10], exploit different hypothe-
ses on f , such as minimal Lipschitz condition or differen-
tiability. This allows them to compute errors of different
orders between the solutions of initial dynamics and the
ones of similar dynamic in which the uncertainties are
replaced by specific time varying functions.

The closest approach to ours is the approach taken by
[11] in the Flow* tool. It handles time-varying uncertain-
ties by replacing their occurrences by intervals and by
using Taylor models to compute over-approximations of
the solutions of the resulting differential inclusions, only
assuming Lipschitz condition on f . Although we believe
their approach would most probably be correct under our
weaker assumptions as well, this does not seem to be
explicitly stated anywhere, to the best of our knowledge.

III. NOTATIONS

Sets are denoted by rounded capital letters (e.g. X ).
The powerset is denoted by the rounded capital letter P:
given a set X , P(X ) is the set of all subsets of X .
Sets of consecutive integers are denoted as real intervals

but with double squared brackets. E.g.:

Ja, bK = {n | n ∈ N, a ≤ n ≤ b} = N ∩ [a, b]
All integrals are Lebesgue integrals.

IV. PROBLEM FORMULATION

We consider particular differential systems with arbi-
trary time-varying bounded uncertain inputs:

ẋ(t) = f(t, x(t), u(t)) (1)

with ẋ denoting the vector of L1 weak derivatives of the
components of the state x that takes values in X ⊂ Rn,
u denoting some uncertainties which takes values in the
bounded set U ⊂ Rk. Solutions of (1) are considered in the
sense of Carathéodory, i.e. for almost all time t ∈ [0, T ].

The particular systems we will be studying are those
that can be written:

f(t, x(t), u(t)) = g(u(t)) · h(t, x(t)) (2)

with h a vector-valued continuous function from [0, T ] ×
X → Rm and g a matrix-valued continuous function from
U → Rn × Rm. We assume x(0) = x0 ∈ X0, with X0 ⊂ X
the set of possible initial states, and the input u to be
measurable and taking values in a bounded set U ⊂ Rk.
We call such systems separable with respect to the

arbitrary time-varying bounded uncertain inputs u. They
are a generalization of control-affine systems (see [12]).

Carathéodory’s existence theorem guarantees the ex-
istence of solutions yx0,u to the system (see [13, Theo-
rem 1]) when we assume that for all possible functions
u taking values in U , there exists a Lebesgue-integrable
function m : [0, T ] → R+ such that ∀(x, t) ∈ X ×
[0, T ], ‖f(t, x, u(t))‖ ≤ m(t). To guarantee the uniqueness
of the solution (see [13, Theorem 2]), we also assume for
all inputs u, there exists a Lebesgue-integrable function
k : [0, T ] → R+ such that ∀(x1, x2, t) ∈ X × X ×
[0, T ], ‖f(t, x1, u(t)− f(t, x2, u(t))‖ ≤ k(t) ‖x1 − x2‖.

Our goal is to determine an over-approximation of
the reachable set of the system on a time interval
[0, T ], given the set X0 of all possible initial states and
a bounded set U of inputs value: we want to define
a set-valued function ϕ such that for all t ∈ [0, T ],
{yx0,u(t) | x0 ∈ X0, u : [0, T ]→ U} ⊂ ϕ(t).

V. REACHABILITY THEOREM

Lemma 1: Let U be a bounded subset of R and gi,j

be a Lebesgue-integrable function from U → R. Let
hj be a Lebesgue-integrable function from [0, T ] → R
and consider any decomposition of hj as a difference
of positive functions, i.e. hj = h+

j − h−j . Consider any
interval over-approximation C of the closure of the convex
hull of {gi,j(v) | v ∈ U}. Then for all Lebesgue-integrable
functions u : [0, T ]→ U , we have:∫ T

0
gi,j(u(s))hj(s) ds ∈

{
u1

∫ T

0
h+

j (s) ds

−u2

∫ T

0
h−j (s) ds

∣∣∣∣∣ u1 ∈ C, u2 ∈ C

}
Proof: Let [a, b] = C. For all s ∈ [0, T ], we have

ah+
j (s)− bh−j (s) ≤ gi,j(u(s))hj(s) ≤ bh+

j (s)− ah−j (s)

Then, integrating each part, we obtain

a

∫ T

0
h+

j (s) ds− b
∫ T

0
h−j (s) ds ≤

∫ T

0
gi,j(u(s))hj(s) ds∫ T

0
gi,j(u(s))hj(s) ds ≤ b

∫ T

0
h+

j (s) ds− a
∫ T

0
h−j (s) ds



Let I− denote the lower bound and I+ denote the
upper bound. Then there exists α ∈ [0, 1] such that∫ T

0 gi,j(u(s))hj(s) ds = αI− + (1 − α)I+. Let u1 = αa +
(1 − α)b and u2 = αb + (1 − α)a, we have u1 ∈ [a, b] and
u2 ∈ [a, b].

Remark 1: We cannot directly replace the function u by
an element of C without decomposition. This is illustrated
by the following example. Let h(t) = g(u(t)) = −1 if t < 1
and h(t) = g(u(t)) = 1 if t ≥ 1. We have C = [−1, 1] but∫ 2

0
g(u(s))h(s) ds = 2 ∀α ∈ C,

∫ 2

0
h(s) ds = 0

So we have
∫ 2

0 g(u(s))h(s) ds 6∈
{
α
∫ 2

0 h(s) ds
∣∣∣α ∈ C}.

Remark 2: This lemma is only valid for one-dimensional
systems. To illustrate this, let us consider:

∀t ∈ [0, 2], h(t) =
(
t
t2

)
g(u(t)) =

(
u(t) 0

0 u(t)

)
with for t ≤ 1, u(t) = −1 and for t > 1, u(t) = 1. We have:∫ 2

0
g(u(s))h(s) ds =

(
0.5 0
0 0.75

)∫ 2

0
h(s) ds

and
(

0.5 0
0 0.75

)
is not in the convex hull of the image of

g(u(t)), which is
{(

α 0
0 α

)∣∣∣∣α ∈ [−1, 1]
}
.

Consider now the higher-dimensional case h : [0, T ] ×
X → Rm. Let us suppose h = h+−h−, i.e. each component
of h is decomposed as a difference of positive functions h+

and h−. Given two matrices A = (ai,j) and B = (bi,j) such
that for all (i, j) ∈ J1, nK × J1,mK, ai,j and bi,j belong to
the interval Ci,j ⊃ {gi,j(v)|v ∈ U} and x0 the initial state,
we define the following operator on the set of functions
p : [0, T ]→ X :

Px0,A,B (p) := t 7→ x0 +A

∫ t

0
h+(s, p(s)) ds

−B
∫ t

0
h−(s, p(s)) ds (3)

This operator is the counterpart of Picard’s operator used
in the proof of the Picard-Lindelöf theorem when the right-
hand side of the ODE is continuous in time. In the sequel,
we call this operator the modified Picard operator. This
operator can be naturally lifted on set-valued functions
ϕ : [0, T ]→P(X ).
Let ϕx0,A,B be a bounded set-valued function from [0, T ]

to P(Rn) such that ∀t ∈ [0, T ], Px0,A,B (ϕx0,A,B) (t) ⊂
ϕx0,A,B(t). Such functions always exist for small enough
T ≥ 0, because h+ and h− are continuous thus bounded
on every compact set. We will furthermore suppose for all
t ∈ [0, T ], the set ϕx0,A,B(t) is closed and convex, which
will be the case using Taylor models (cf. Section VI). Let ϕ
be the union of all fixed-point set-valued functions ϕx0,A,B :

ϕ = t 7→
⋃

x0∈X0, ai,j∈Ci,j , bi,j∈Ci,j

ϕx0,A,B(t)

Theorem 1: For all t ∈ [0, T ], ϕ(t) is an over-
approximation of the reachable set at time t of (1).

Proof: Let y be a solution of the dynamics with
uncertainties u and initial state x0. Then y has to satisfy
the integral equation for all t ∈ [0, T ]

y(t) = x0 +
∫ t

0
g(u(s)) · h(s, x(s)) ds

Using Lemma 1 on each component of y, there exist
matrices A and B such that y = Px0,A,B (y). Because
for all t ∈ [0, T ], ϕx0,A,B(t) is closed and convex, using
Schauder’s fixed-point theorem as in [14, section 3], we
have y(t) ∈ ϕx0,A,B(t) ⊂ ϕ(t).
We thus obtain a way to check that a set-valued function

parametrized by the initial vector and the uncertainties
values is an over-approximation of the solutions set. A
direct application of this result will be presented in Sec-
tion VII.

VI. SET REPRESENTATION

We represent the uncertainties on time dependent vari-
ables with Taylor models (see [15] and [11]). A Taylor
model is defined on a domain D as a pair TM (p, R)
consisting of a polynomial to encode an approximation of
the dependence in the initial conditions x0 and time t (or
even more parameters) and a set R (called remainder) to
encode the error between this polynomial and the actual
function: TM (p, R) (x0, t) = {p(x0, t) + r | r ∈ R}. It is
convenient to use intervals as representation of the remain-
der. A Taylor model TM (p, R) is an over-approximation
of a function ϕ if all possible values of ϕ are in the
corresponding evaluation of the Taylor model:

∀x ∈ D, ∃r ∈ R, ϕ(x) = p(x) + r (4)

We can soundly interpret operations on Taylor models
(see [16] and [14]):

TM (p1, R1) + TM (p2, R2) = TM (p1 + p2, R1 +R2)

Subtraction is handled similarly as addition.

TM (p1, R1) · TM (p2, R2) =
TM (p1 · p2, [p1] · R2 +R1 · [p2] +R1 · R2)

with [p] the interval enclosure of the polynomial p over its
domain of definition. And, for all t ∈ [0, T ]∫ t

0
TM (p, R) (s) ds = TM

(∫ t

0
p(s) ds, R · [0, T ]

)
Taylor models provide bounded, closed and convex set-

valued functions (see [14]). Therefore, Taylor models will
be used in Section VII to compute set-valued functions
ϕx0,A,B to apply Theorem 1.

On the practical side, Taylor models are convenient for
implementation purposes since we can also handle floating
point arithmetic errors by replacing coefficients of the
polynomial part by guaranteed intervals (see [17]).



VII. ALGORITHM

In this section, we assume all variables are uni-
dimensional variables: X0 ⊂ R and U ⊂ R. We can
generalize the algorithm to the general multidimensional
case by applying each step to each dimension.

To compute an over-approximation of the reachable set
of system (1), we will use Taylor models as a representation
for sets, with a given maximal order. We need a function
to convert an uncertainty or a state variable to a Taylor
model. We call Lift such a function which simply consists
in defining a Taylor model with a symbolic variable as
polynomial and a null set as remainder.

The algorithm consists in four steps:
Step 1, a priori global enclosure:
Given the initial set of states, we compute a rough en-
closure of the solution on the entire time step, e.g. using
contraction of intervals.
Step 2, functions’ decomposition:
Using the a priori enclosure, we decompose each function
hi (for i ∈ J1,mK) as a difference of positive functions h+

i

and h−i (see Section VIII).
Step 3, polynomial expansion:
We start by computing the (multivariate) polynomial part
of the expected Taylor model of the solution. We start
with a simple Taylor model ϕ0(x0, t) = TM (x0, [0]) and
we iterate the operator defined in (3), with matrices A and
B encoded as Taylor models returned by the Lift function,
until the polynomial part of the Taylor model, depending
on x0, t, A, and B, reaches a fixed-point due to truncation.
Step 4, valid remainder computation:
Given TM (p, I) the result of the polynomial expansion,
we have to guess a remainderR such that P (TM (p, R)) ⊂
TM (p, R). We can for example enlarge I until we get
such a contraction by P () and then iterate TM (p, In+1) =
P (TM (p, In)) until reaching a fixed-point to get a tighter
over-approximation.

VIII. FUNCTION DECOMPOSITION

The second step of the algorithm consists in decom-
posing the functions hi of the dynamics as differences of
positive functions.

Consider a function h : X → [a, b] from a convex
compact domain X ⊂ Rd to an interval [a, b]. If a ≥ 0
or b ≤ 0, the decomposition we are looking for is trivial.
We assume now a < 0 < b. A simple possibility is to shift
the function in the positive or the negative side:

h(x) = (h(x)− a)− (−a) (shifted in the positive side)
h(x) = (b)− (b− h(x)) (shifted in the negative side)

We can also use an affine transformation:

h(x) =
(

b

b− a
h(x)− ab

b− a

)
−
(

a

b− a
h(x)− ab

b− a

)
(5)

Of course we can imagine many other valid decomposi-
tions, e.g. h(x) = (h(x) + 0.5)2 −

(
h(x)2 + 0.25

)
.

The best decompositions are those that minimize the
over-approximation of the Taylor Model returned by the

TABLE I
DECOMPOSITIONS AND RESULTING OVER-APPROXIMATIONS

Decomposition Over-Approximation
(h1 + 0.1) − 0.1 [−0.04, 0.04]

(0.5h1 + 0.05) − (0.05 − 0.5h1) [−0.02, 0.02]
(h1 + 0.5)2 − (h2

1 + 0.25) [−0.102, 0.102]
(h1 + 0.25)2 − (h1 − 0.25)2 [−0.027, 0.027]

algorithm. Because we are using Taylor Models with inter-
vals as remainders, we want to minimize ‖h+‖1 +‖h−‖1. It
can be proven that the affine decomposition (5) minimizes
this quantity.2

For example, let ẋ(t) = (0.1 − t)u(t) with x(0) = 0
and for all t ∈ [0, 0.2], u(t) ∈ [−1, 1]. We have h1(x, t) =
(0.1 − t) and for all t ∈ [0, 0.2], h1(x, t) ∈ [−0.1, 0.1]. We
compare over-approximations produced by our algorithm
using different decompositions in the Table I. We note that
the affine decomposition given in (5) produces the tightest
over-approximation on this example, even with respect to
some polynomial decompositions.

IX. A DETAILED EXAMPLE

In this section, we detail the steps of the algorithm
of Section VII on a simple one-dimensional system in
which the derivative is independent of its state, similar
to Example 1 in [9]:{

ẋ(t) = (0.1− t)u(t)
x(0) = 0 with

{
u(t) ∈ [−1, 1]
t ∈ [0, 0.2] (6)

(we refer to this example as "Simple" in Section X).
We use this example to illustrate the importance of

handling time-varying uncertainties during the integra-
tion’s step: if u is constant over [0, 0.2], x(0.2) = 0
whereas if u can arbitrarily vary over [0, 0.2], x(0.2) can
have non zero values. We can deduce the exact reachable
set using the fact the minimal (resp. maximal) value is
reached for always minimal (resp. maximal) derivative:
x(t) ∈

[
−0.1t+ 0.5t2, 0.1t− 0.5t2

]
for t ∈ [0, 0.1] and

x(t) ∈
[
−0.01 + 0.1t− 0.5t2, 0.01− 0.1t+ 0.5t2

]
for t ∈

[0.1, 0.2]. So we have x(0.2) ∈ [−0.01, 0.01].
We compute the over-approximation with one integra-

tion step over [0, 0.2]. The first step of the algorithm is
the computation of an a priori global enclosure of the
solution on the entire integration step in order to be able
to decompose the dynamics. Here, the dynamics does not
depend on the state so the a priori enclosure is useless.

Using interval arithmetic, we can over-approximate the
image of t 7→ 0.1 − t by [−0.1, 0.1] and deduce the
decomposed dynamics (cf. Section VIII):

ẋ(t) = (0.1− 0.5t)u(t)− (0.5t)u(t)
Now, we compute with Taylor models arithmetic and

replace all occurrences of u by fresh variables to obtain
the following iterator:

Px0,u1,u2 (ϕ) (t) = x0+u1

∫ t

0
(0.1−0.5s) ds−u2

∫ t

0
(0.5s) ds

2Such a proof is presented in http://www.lix.polytechnique.fr/
Labo/Francois.Bidet/Ressources/Appendices_LCSS2021.zip

http://www.lix.polytechnique.fr/Labo/Francois.Bidet/Ressources/Appendices_LCSS2021.zip
http://www.lix.polytechnique.fr/Labo/Francois.Bidet/Ressources/Appendices_LCSS2021.zip


Starting with ϕ0 = TM (x0, [0]), x0 = 0, t ∈ [0, 0.2],
u1 ∈ [−1, 1] and u2 ∈ [−1, 1], we detect a fixed
point of the polynomial after two iterations: ϕn≥1(t) =
TM

(
0.1u1t− 0.25(u1 + u2)t2, [0]

)
.

We notice we also reach a fixed-point with Taylor mod-
els. We have therefore the over-approximation:

x(t) ∈
{

0.1u1t− 0.25(u1 + u2)t2
∣∣ (u1, u2) ∈ [−1, 1]2

}
which can be rewritten x(t) ∈ [−0.1t, 0.1t]. We deduce
x(0.2) ∈ [−0.02, 0.02], which is twice as large as the exact
reachable set [−0.01, 0.01].

X. COMPARISON WITH OTHER TOOLS

We compare here our algorithm with results of the
reachability tools Flow* [11] and CORA [8]. Our imple-
mentation has not been optimized and the comparison is
merely intended to illustrate the correctness and accuracy
of the method and not to demonstrate its efficiency.
We implemented the algorithm of Section VII. We

then iterate over multiple integration steps: the over-
approximation of a Taylor model obtained at the end of
the current time step becomes the initial domain for the
next integration step after being truncated so as to bound
the number of monomial terms (in these examples the
bound is 4). This is done by keeping the terms with larger
absolute coefficients and over-approximating the truncated
ones in the remainder. We consider fixed time-step for
easier comparison with other tools.
We compare below the three tools on simple examples

for which we are able to compute the exact reachable set.
The first example is the one presented in Section IX

with a unique time-step of integration, equation (6).
The second example is a variation of the classical de-

creasing exponential where we added a non-linearity using
a second state variable: ẋ(t) = −x(t)− x(t)y(t)u(t)

ẏ(t) = −y(t)
x(0) = 1; y(0) = 2

with
{
u(t) ∈ [−1, 1]
t ∈ [0, 5]

(we refer to this example as "NonLinear" in Table II).
There are no uncertainties on the dynamic of y, we

can thus compute its exact value: y(t) = 2e−t. Replacing
y by its expression in the dynamic of x, we obtain a
one-dimensional dynamic and we can compute the exact
reachable set: x(t) ∈

[
e2(e−t−1)−t, e2(1−e−t)−t

]
.

The third example is such that multiple equilibrium
points exist depending on the uncertain value:{

ẋ(t) = u(t)− x(t)
x(0) = 3 with

{
u(t) ∈ [0, 1]
t ∈ [0, 20]

(we refer to this example as "Switching" in Table II).
This is a one-dimensional dynamics, thus using the fact

the minimal (resp. maximal) value is reached for always
minimal (resp. maximal) derivative, we obtain the exact
reachable set: x(t) ∈ [4e−t − 1, 2e−t + 1].

TABLE II
AREAS OF THE OVER-APPROXIMATIONS OF x(t)

CORA Flow* prototype exact
Simple 0.024 0.024 0.008 0.004
NonLinear 5.956 7.735 4.866 3.576
Switching 23.325 26.814 19.483 19.000
Dubins 0.114 0.114 0.099 0.086

TABLE III
PARAMETERS FOR THE DIFFERENT EXAMPLES

time-step Taylor models’ order
Simple 0.02 3
NonLinear 0.05 5
Switching 0.1 3
Dubins 0.01 5

The fourth and last example is a variation of the Dubins
car model with controls as uncertainties:

ẋ(t) = u1(t) cos(z(t))
ẏ(t) = u1(t) sin(z(t))
ż(t) = u2(t)
x(0) = y(0) = z(0) = 0

with

 u1(t) ∈ [0.9, 1]
u2(t) ∈ [0, 1]
t ∈ [0, 1]

(we refer to this example as "Dubins" in Table II).
We can trivially compute the exact reachable set of

z(t) ∈ [0, t] and we deduce the exact reachable set of x:
x(t) ∈ [0.9 sin(t), t].
For each example, we fix the same reasonable small

time-step for all the tools. The parameters for each exam-
ple are gathered in Table III. We tried in Flow* to raise
further the Taylor models’ orders to improve the precision
but without obtaining significantly different results. In the
same way, we set the zonotopes’ order’s limit in CORA to
quite high values in the hope of improving the precision,
without obtaining significantly different results.

We use the area of the over-approximation of the first
state variable over time to compare the precision of each
tool. These areas are computed from the outputs of the
tools, the over-approximation of the first state variable
with respect to the time. We also give the area of the exact
reachable set. Notice we consider for example “Simple”,
the bounded box of the reachable set, because it is what we
use as over-approximation for CORA and our prototype.
We gather the different areas in Table II. Our prototype
produces tighter over-approximation on all these exam-
ples.

We also represent graphically the results of the different
tools. Figure 1a shows the over-approximations produced
by the three tools and the exact reachable set of the
first component with respect to the time for the example
“Nonlinear”. Similar graphs are drawn in Figure 1b for ex-
ample “Switching” and in Figure 1c for example “Dubins”.
They confirm our prototype exhibits a more precise over-
approximation compared to CORA and Flow*, even very
close to the exact solution on the "Switching" example.
This is achieved even though ensuring the result is guar-
anteed for a larger class of uncertainties, i.e. measurable
uncertainties.
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Fig. 1. Reachable set of x with respect to time for each example and each tool
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Fig. 2. Reachable set on time interval [0.99, 1] for example "Dubins":
y with respect to x

However, while the over-approximations of the projec-
tion on each dimension with respect to the time are
tighter with our prototype, we lose dependencies between
components, as shown on Figure 2.

XI. CONCLUSION

We presented an approach based on a simple and sys-
tematic decomposition of the vector field as a difference
of positive functions to compute over-approximations of
the reachable set of non-linear initial value problems that
we call separable with respect to the uncertainties. We
demonstrated the good precision of an implementation of
our algorithm with Taylor models compared to the state-
of-the-art tools Flow* and CORA. This leads us to think
that the decomposition we propose, which guarantees cor-
rectness of results when handling uncertain inputs that are
not Riemann-integrable, is not too conservative despite its
simplicity. Measurable uncertainties such as considered in
this work are a good abstraction of uncertainties generated
by guards on states obtained for general switched or hybrid
systems. The practical application of our methods for
analysing precisely and efficiently the complete class of
hybrid systems is left for future work.
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