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ON THE PERIOD MAP FOR POLARIZED HYPERKÄHLER FOURFOLDS

OLIVIER DEBARRE AND EMANUELE MACRÌ

Abstract. We study smooth projective hyperkähler fourfolds that are deformations of Hilbert
squares of K3 surfaces and are equipped with a polarization of fixed degree and divisibility.
They are parametrized by a quasi-projective irreducible 20-dimensional moduli space and
Verbitksy’s Torelli theorem implies that their period map is an open embedding.

Our main result is that the complement of the image of the period map is a finite union of
explicit Heegner divisors that we describe. We also prove that infinitely many Heegner divisors
in a given period space have the property that their general points correspond to fourfolds
which are isomorphic to Hilbert squares of a K3 surfaces, or to double EPW sextics.

In two appendices, we determine the groups of biregular or birational automorphisms of
various projective hyperkähler fourfolds with Picard number 1 or 2.

1. Introduction

We consider smooth projective hyperkähler fourfoldsX which are deformations of Hilbert
squares of K3 surfaces (one says that X is of K3[2]-type). The abelian group H2(X,Z) is free
of rank 23 and it is equipped the Beauville–Bogomolov–Fujiki form qX , a non-degenerate Z-
valued quadratic form of signature (3, 20) ([B1, Théorème 5]). A polarization H on X is the
class of an ample line bundle on X that is primitive (i.e., non-divisible) in the group H2(X,Z).
The square of H is the positive even integer 2n := qX(H) and its divisibility is the integer
γ ∈ {1, 2} such that H ·H2(X,Z) = γZ (the case γ = 2 only occurs when n ≡ −1 (mod 4)).

Smooth polarized hyperkähler fourfolds (X,H) of K3[2]-type of degree 2n and divisibility

γ admit an irreducible quasi-projective coarse moduli space M
(γ)
2n of dimension 20. The period

map (see Section 3.2)

℘
(γ)
2n : M

(γ)
2n −→ P

(γ)
2n

is algebraic and it is an open embedding by Verbitsky’s Torelli Theorem 3.2. Our main result

is that the image of ℘
(γ)
2n is the complement of a finite union of Heegner divisors (this can also

be deduced from the general results in [AV]) which can be explicitly listed (Theorem 6.1).

The main ingredient in the proof is the explicit determination of the nef and movable
cones of smooth projective hyperkähler fourfolds of K3[2]-type (see Theorem 5.1). This is a
simple consequence of previous results by Markman ([M2]), Bayer–Macr̀ı ([BM2]), Bayer–
Hassett–Tschinkel ([BHT]), and Mongardi ([Mo]).

The Noether–Lefschetz locus is the inverse image by the period map in M
(γ)
2n of the union

of all Heegner divisors. Its irreducible components were shown in [BLMM, Theorem 1.5] to
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generate (over Q) the Picard group of M
(γ)
2n . As an application of our Theorem 5.1, we study

in Section 7 birational isomorphisms between some of these components. In particular, we
show that points corresponding to Hilbert squares of K3 surfaces are dense in the moduli

spaces M
(γ)
2n .

In the two appendices, we collect results on biregular and birational automorphisms of
certain projective hyperkähler fourfolds with Picard number 1 or 2. These results are needed
in some of the arguments in Section 7.

Since the nef and movable cones can be described in all dimensions, many of our results
extend with some modifications to smooth projective hyperkähler manifolds of K3[n]-type.
More details in the higher dimensional case will appear in [D2].

Acknowledgements. We would like to thank Ekaterina Amerik, Arend Bayer, Samuel Bois-
sière, Christian Lehn, Eyal Markman, Kieran O’Grady, and Emmanuel Ullmo for useful dis-
cussions and suggestions.

2. Lattices

A lattice is a free abelian group Λ of finite rank endowed with a Z-valued non-degenerate
quadratic form q. It is even if q only takes even values. We extend q to a Q-valued quadratic
form on Λ⊗Q, hence also on the dual

Λ∨ := HomZ(Λ,Z) = {x ∈ Λ⊗Q | ∀y ∈ Λ x · y ∈ Z}.
The discriminant group of Λ is the finite abelian group

D(Λ) := Λ∨/Λ.

The lattice Λ is unimodular if the group D(Λ) is trivial. If x is a non-zero element of Λ, we
define the integer divΛ(x) (the divisibility of x) as the positive generator of the subgroup x ·Λ
of Z. We also consider x/divΛ(x), a primitive (i.e., non-zero and non-divisible) element of Λ∨,
and its class x∗ = [x/divΛ(x)] in the group D(Λ), an element of order divΛ(x).

If t is a non-zero integer, we let Λ(t) be the lattice (Λ, tq). We let I1 be the lattice Z with
the quadratic form q(x) = x2 and we let U (the hyperbolic plane) be the even unimodular
lattice Z2 with the quadratic form q(x1, x2) = 2x1x2. There is a unique positive definite even
unimodular lattice of rank 8, which we denote by E8.

Assume now that the lattice Λ is even. Following [Ni], we define a quadratic form

q̄ : D(Λ) → Q/2Z by setting q̄([x]) := q(x) ∈ Q/2Z. The stable orthogonal group Õ(Λ, q)
is the kernel of the canonical map

O(Λ, q) −→ O(D(Λ), q̄).

This map is surjective when Λ is indefinite and its rank is at least the minimal number of
generators of the finite abelian group D(Λ) plus 2 ([Ni, Theorem 1.14.2]).

We will use the following classical result (see [GHS2, Lemma 3.5]).

Theorem 2.1 (Eichler’s criterion). Let Λ be an even lattice that contains at least two orthog-

onal copies of U . The Õ(Λ, q)-orbit of a primitive vector x ∈ Λ is determined by the integer
q(x) and the element x∗ of D(Λ).
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3. Moduli spaces, period spaces, and period maps

3.1. Moduli spaces. Let X be a (smooth) hyperkähler (also called irreducible symplectic)

fourfold of K3[2]-type (see [GHS3, Section 3] for the main definitions). The lattice (H2(X,Z), qX)
defined in the introduction is isomorphic to the even lattice

ΛK3[2] := U⊕3 ⊕ E8(−1)⊕2 ⊕ I1(−2)

with signature (3, 20) and discriminant group Z/2Z. The divisibility of a primitive element is

therefore 1 or 2, and Õ(ΛK3[2]) = O(ΛK3[2]).

As recalled in the introduction, hyperkähler fourfolds X of K3[2]-type with a polarization
of fixed (positive) square 2n and divisibility γ in the lattice (H2(X,Z), qX) have a quasi-

projective coarse moduli space M
(γ)
2n which is irreducible and 20-dimensional when γ = 1, or

when γ = 2 and n ≡ −1 (mod 4) ([GHS3, Remark 3.17]).

3.2. Period spaces and period maps. By Eichler’s criterion (Theorem 2.1), primitive
elements of the lattice ΛK3[2] with fixed positive square 2n and fixed divisibility γ ∈ {1, 2}
form a single O(ΛK3[2])-orbit. We fix one such element h0.

If γ = 1, we have

(1) h⊥
0 ≃ U⊕2 ⊕E8(−1)⊕2 ⊕ I1(−2)⊕ I1(−2n) =: Λ

(1)

K3[2],2n
,

a lattice with discriminant group Z/2nZ × Z/2Z, with q̄(1, 0) = − 1
2n

and q̄(0, 1) = −1
2
(see

the proof of Proposition 4.1).

If γ = 2, we have n ≡ −1 (mod 4) and

(2) h⊥
0 ≃ U⊕2 ⊕ E8(−1)⊕2 ⊕

(
−2 −1
−1 −n+1

2

)
=: Λ

(2)

K3[2],2n
,

a lattice with discriminant group Z/nZ, with q̄(1) = − 2
n
(see the proof of Proposition 4.1).

We now describe the period map for polarized hyperkähler fourfolds of K3[2]-type. The
complex variety

Ωh0 := {x ∈ P(ΛK3[2] ⊗C) | x · h0 = 0, x · x = 0, x · x̄ > 0}
has two connected components, interchanged by complex conjugation, which are Hermitian
symmetric domains of type IV. It is acted on by the group

O(ΛK3[2] , h0) := {Φ ∈ O(ΛK3[2]) | Φ(h0) = h0}.

By results of Baily–Borel and Griffiths, the quotient P
(γ)
2n := O(ΛK3[2] , h0)\Ωh0 is an irreducible

quasi-projective variety and the period map

(3) ℘
(γ)
2n : M

(γ)
2n −→ P

(γ)
2n

is algebraic. Alternatively, one has

Ωh0 ≃ {x ∈ P(Λ
(γ)

K3[2],2n
⊗C) | x · x = 0, x · x̄ > 0}

and the group O(ΛK3[2] , h0) can be identified with the stable orthogonal group Õ(Λ
(γ)

K3[2],2n
)

([GHS2, Proposition 3.12 and Corollary 3.13]).
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The full orthogonal group O(Λ
(γ)

K3[2],2n
) also acts on Ωh0 , hence the quotient group

O(Λ
(γ)

K3[2],2n
)/Õ(Λ

(γ)

K3[2],2n
) ≃ O(D(Λ

(γ)

K3[2],2n
))

acts on the period space P
(γ)
2n (where − Id acts trivially). We determine this group and describe

this action in the next proposition, assuming for simplicity that n is odd. For any non-zero
integer r, we denote by ρ(r) the number of prime factors of r.

Proposition 3.1. Assume that n is odd. The period space P
(γ)
2n is acted on generically freely

by the following groups:

• if n ≡ 1 (mod 4) (so that γ = 1), by the group (Z/2Z)max{ρ(n),1};
• if n ≡ −1 (mod 4), by the group (Z/2Z)ρ(n)−1.

Proof. Case γ = 1. Since n is odd, (1) implies D(Λ
(γ)

K3[2],2n
) ≃ Z/nZ × Z/2Z × Z/2Z. This

decomposition is still orthogonal for q̄ and the values of q̄ at the points of order 2 are q̄(0, 0, 1) =
−1

2
, q̄(0, 1, 0) = −n

2
, and q̄(0, 1, 1) = −n+1

2
in Q/2Z.

When n ≡ −1 (mod 4), these three values are all distinct and any isometry Φ of

(D(Λ
(1)

K3[2],2n
), q̄) must therefore be the identity on both Z/2Z factors, hence must preserve

their orthogonal Z/nZ. Write Φ(1, 0, 0) = (a, 0, 0); since q̄(1, 0, 0) = − 2
n
, we have 2

n
= 2a2

n

(mod 2Z), hence a2 = 1 (mod n). Since n is odd, the group O(D(Λ
(1)

K3[2],2n
)) is therefore iso-

morphic to (Z/2Z)ρ(n). The proposition follows since only − Id acts trivially.

When n ≡ 1 (mod 4), there are extra isometries given by (0, 1, 0) ↔ (0, 0, 1), (1, 0, 0) 7→
(a, 0, 0), where a2 ≡ 1 (mod n) (and when n = 1, we have − Id = Id).

Case γ = 2 (hence n ≡ −1 (mod 4)). We have D(Λ
(γ)

K3[2],2n
) ≃ Z/nZ, with q̄(1) = − 2

n
,

and we proceed as in the first case. This proves the proposition. �

3.3. The Torelli theorem. Verbitsky’s Torelli theorem takes the following form ([V], [GHS3,
Theorem 3.14]).

Theorem 3.2 (Verbitsky). For each positive integer n and each divisibility γ ∈ {1, 2}, the
period map

℘
(γ)
2n : M

(γ)
2n −→ P

(γ)
2n

is an open embedding.

In particular, the commuting involutions of P
(γ)
2n described in Proposition 3.1 induce

rational involutions on the moduli space M
(γ)
2n . In the case n = γ = 1 (double EPW sextics;

see Example 6.3), the unique non-trivial involution was described geometrically in [O1] in
terms of projective duality.

4. Special polarized hyperkähler fourfolds

A hyperkähler fourfold corresponding to a very general point of M
(γ)
2n has Picard num-

ber 1. The Noether–Lefschetz locus (or special locus) is the subset of M
(γ)
2n corresponding to

hyperkähler fourfolds with Picard number at least 2. It can be described as follows.
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Let K be a primitive, rank-2, signature-(1, 1) sublattice of ΛK3[2] containing the class h0

chosen in Section 3.2. The codimension-2 subspace P(K⊥ ⊗C) in P(ΛK3[2] ⊗C) cuts out an

irreducible hypersurface in Ωh0 whose image in P
(γ)
2n will be denoted by D

(γ)
2n,K and called a

Heegner divisor. The Noether–Lefschetz locus is then the inverse image in M
(γ)
2n by the period

map ℘
(γ)
2n of the countable union

⋃
K D

(γ)
2n,K of irreducible hypersurfaces.

For each integer d, the union

D
(γ)
2n,d :=

⋃

disc(K⊥)=−d

D
(γ)
2n,K ⊂ P

(γ)
2n

of Heegner divisors is finite, hence it is either empty or of pure codimension 1. Following

Hassett, we say that the polarized hyperkähler fourfolds whose period point is in D
(γ)
2n,d are

special of discriminant d (the lattice K⊥ has signature (2, 19), hence d is positive). We use

the notation C
(γ)
2n,d := (℘

(γ)
2n )

−1(D
(γ)
2n,d) ⊂ M

(γ)
2n .

We now describe the irreducible components of the loci D
(γ)
2n,d (the case n = 3 and γ = 2

was originally studied by Hassett in [H] and the case n = γ = 1 in [DIM]).

Proposition 4.1. Let n and d be positive integers and let γ ∈ {1, 2}. If the locus D
(γ)
2n,d is

non-empty, the integer d is even; we set e := d/2.

(1) (a) The locus D
(1)
2n,2e is non-empty if and only if either e or e− n is a square modulo 4n.

(b) If n is square-free and e is divisible by n and satisfies the conditions in (a), the locus

D
(1)
2n,2e is irreducible, except when

• either n ≡ 1 (mod 4) and e ≡ n (mod 4n),
• or n ≡ −1 (mod 4) and e ≡ 0 (mod 4n),

in which cases D
(1)
2n,2e has two irreducible components.

(c) If n is prime and e satisfies the conditions in (a), D
(1)
2n,2e is irreducible, except when

n ≡ 1 (mod 4) and e ≡ 1 (mod 4), or when n ≡ −1 (mod 4) and e ≡ 0 (mod 4), in which

cases D
(1)
2n,2e has two irreducible components.

(2) Assume moreover n ≡ −1 (mod 4).

(a) The locus D
(2)
2n,2e is non-empty if and only if e is a square modulo n.

(b) If n is square-free and n | e, the locus D
(2)
2n,2e is irreducible.

(c) If n is prime and e satisfies the conditions in (a), D
(2)
2n,2e is irreducible.

Remark 4.2. In cases (1)(b) and (1)(c), when the hypersurface D
(1)
2n,2e is reducible, its two

components are exchanged by one of the involutions of the period space described in Proposi-
tion 3.1 when n ≡ 1 (mod 4), but not when n ≡ −1 (mod 4) (in that case, these involutions
are in fact trivial when n is prime).

Proof of Proposition 4.1. Case γ = 1. Let (u, v) be a standard basis for a hyperbolic plane
U contained in ΛK3[2] and let ℓ be a basis for the I1(−2) factor. We may take h0 := u + nv
(it has the correct square and divisibility), in which case h⊥

0 = Z(u − nv) ⊕ Zℓ ⊕ M , where
M := {u, v, ℓ}⊥ = U⊕2 ⊕ E8(−1)⊕2 is unimodular. The discriminant group D(h⊥

0 ) ≃ Z/2Z ×
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Z/2nZ is generated by ℓ∗ = ℓ/2 and (u − nv)∗ = (u − nv)/2n, with q̄(ℓ∗) = −1/2 and
q̄((u− nv)∗) = −1/2n.

Let κ be a generator of K ∩ h⊥
0 . We write

κ = a(u− nv) + bℓ + cw,

where w ∈ M is primitive. Since K has signature (1, 1), we have κ2 < 0 and the formula
from [GHS3, Lemma 7.5] reads

(4) d =
∣∣disc(K⊥)

∣∣ =
∣∣∣∣
κ2 disc(h⊥

0 )

s2

∣∣∣∣ =
8n(na2 + b2 +mc2)

s2
≡ 8n(na2 + b2)

s2
(mod 8n),

where m := −1
2
w2 and s := gcd(2na, 2b, c) is the divisibility of κ in h⊥

0 . If s | b, we obtain

d ≡ 2
(
2na
s

)2
(mod 8n), which is the first case of (1)(a): d is even and e := d/2 is a square

modulo 4n. Assume s ∤ b and, for any non-zero integer x, write x = 2v2(x)xodd, where xodd is
odd. One has then ν2(s) = ν2(b) + 1 and

d ≡ 2
(2na

s

)2

+ 2n
( bodd
sodd

)2

≡ 2
(2na

s

)2

+ 2n (mod 8n),

which is the second case of (1)(a): d is even and d/2 − n is a square modulo 4n. It is then
easy, taking suitable integers a, b, c, and vector w, to construct examples that show that these
necessary conditions on d are also sufficient, thereby proving (1)(a).

We now prove (1)(b) and (1)(c).

Given a lattice K containing h0 with disc(K⊥) = −2e, we let as above κ be a generator

of K ∩ h⊥
0 . By Eichler’s criterion (Theorem 2.1), the group Õ(h⊥

0 ) acts transitively on the
set of primitive vectors κ ∈ h⊥

0 of given square and fixed κ∗ ∈ D(h⊥
0 ). Since κ and −κ give

rise to the same lattice K (obtained as the saturation of Zh0 ⊕ Zκ), the locus D
(1)
2n,2e will be

irreducible (when non-empty) if we show that the integer e determines κ2, and κ∗ up to sign.

We write as above κ = a(u−nv)+bℓ+cw ∈ h⊥
0 , with gcd(a, b, c) = 1 and s = divh⊥

0
(κ) =

gcd(2na, 2b, c). From (4), we get

(5) κ2 = −es2/2n = −2(na2 + b2 +mc2) and κ∗ = (2na/s, 2b/s) ∈ Z/2nZ× Z/2Z.

If s = 1, we have e ≡ 0 (mod 4n) and κ∗ = 0.

If s = 2, the integer c is even and a and b cannot be both even (because κ is primitive).
We have e = n(na2 + b2 +mc2) and





e ≡ n2 (mod 4n) and κ∗ = (n, 0) if b is even (and a is odd);

e ≡ n (mod 4n) and κ∗ = (0, 1) if b is odd and a is even;

e ≡ n(n + 1) (mod 4n) and κ∗ = (n, 1) if b and a are odd.

Assume now that n is square-free and n | e. From (4), we get n |
(
2na
s

)2
, hence s2 | 4na2,

and s | 2a because n is square-free. This implies s = gcd(2a, 2b, c) ∈ {1, 2}.
When n is even (i.e., n ≡ 2 (mod 4)), we see from the discussion above that both s

(hence also κ2) and κ∗ are determined by e, so the corresponding hypersurfaces D
(1)
2n,2e are

irreducible.

If n is odd, there are coincidences:
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• when n ≡ 1 (mod 4), we have n ≡ n2 (mod 4n), hence D
(1)
2n,2e is irreducible when

e ≡ 0 or 2n (mod 4n), has two irreducible components (corresponding to κ∗ = (n, 0)
and κ∗ = (0, 1)) when e ≡ n (mod 4n), and is empty otherwise;

• when n ≡ −1 (mod 4), we have n(n + 1) ≡ 0 (mod 4n), hence D
(1)
2n,2e is irreducible

when e ≡ −n or n (mod 4n), has two irreducible components (corresponding to κ∗ = 0
and κ∗ = (n, 1)) when e ≡ 0 (mod 4n), and is empty otherwise.

This proves (1)(b).

We now assume that n is prime and prove (1)(c). Since s | 2n, we have s ∈ {1, 2, n, 2n};
the cases s = 1 and s = 2 were explained above. If s = n (and n is odd), we have n | b, n | c,
n ∤ a, and

e ≡ 4a2 (mod 4n) and κ∗ = (2a, 0).

If s = 2n, the integer c is even, a and b cannot be both even, n | b, and n ∤ a. We have






e ≡ a2 (mod 4n) and κ∗ = (a, 0) if 2n | b (hence a is odd);

e ≡ a2 + n (mod 4n) and κ∗ = (a, 1) if b is odd (and n is odd);

e ≡ a2 + 2 (mod 8) and κ∗ = (a, 1) if 4 ∤ b is odd and n = 2.

When n = 2, one checks that the class of e modulo 8 (which is in {0, 1, 2, 3, 4, 6})
completely determines s, and κ∗ up to sign. The corresponding divisors D

(1)
4,2e are therefore all

irreducible.

When n ≡ 1 (mod 4), we have n ≡ n2 (mod 4n) and a2 ≡ (n− a)2 + n (mod 4n) when
a is odd (in which case a2 ≡ 1 (mod 4)). When n ≡ −1 (mod 4), we have n(n + 1) ≡ 0
(mod 4n) and a2 ≡ (n − a)2 + n (mod 4n) when a is even (in which case a2 ≡ 0 (mod 4)).
Together with changing a into −a (which does not change the lattice K), these are the only

coincidences: the corresponding hypersurfaces D
(1)
2n,2e therefore have two components and the

others are irreducible. This proves (1)(c).

Case γ = 2 (hence n ≡ −1 (mod 4)). We may take h0 := 2
(
u+ n+1

4
v
)
+ ℓ, in which case

h⊥
0 = Zw1 ⊕Zw2 ⊕M , with w1 := v+ ℓ and w2 := −u+ n+1

4
v. The matrix of the intersection

form on Zw1 ⊕ Zw2 is
(

−2 −1

−1 −
n+1
2

)
as in (2) and the discriminant group D(h⊥

0 ) ≃ Z/nZ is

generated by (w1 − 2w2)∗ = (w1 − 2w2)/n, with q̄((w1 − 2w2)∗) = −2/n.

Let (h0, κ
′) be a basis for K, so that disc(K) = 2nκ′2 − (h0 · κ′)2. Since div(h0) = γ = 2,

the integer h0 · κ′ is even and since κ′2 is also even (because ΛK3[2] is an even lattice), we have
4 | disc(K) and − disc(K)/4 is a square modulo n. Since the discriminant of ΛK3[2] is 2, the
integer d = | disc(K⊥)| is either 2 | disc(K)| or 1

2
| disc(K)|, hence it is even and e = d/2 is a

square modulo n, as desired.

Conversely, it is easy to construct examples that show that these necessary conditions
on d are also sufficient. This proves (2)(a).

We now prove (2)(b) and (2)(c). To prove that the loci D
(2)
2n,2e are irreducible (when

non-empty), we need to show that e determines κ2, and κ∗ up to sign (where κ is a generator
of K ∩ h⊥

0 ).
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With the notation above, we have κ = ((h0 · κ′)h0 − 2nκ′)/t, where t := gcd(h0 · κ′, 2n)
is even and κ2 = 2n

t2
disc(K). Formula (4) then gives

2e =
∣∣disc(K⊥)

∣∣ =
∣∣∣∣∣
κ2 disc(h⊥

0 )

divh⊥

0
(κ)2

∣∣∣∣∣ =
∣∣∣∣∣
2n2 disc(K)

t2 divh⊥

0
(κ)2

∣∣∣∣∣ .

Since n is odd and t is even, and, as we saw above, disc(K) ∈ {−e,−4e}, the only possibility
is disc(K) = −4e and t divh⊥

0
(κ) = 2n.

Assume that n is square-free and n | e. Since −4e = disc(K) = 2nκ′2 − (h0 · κ′)2, we
get 2n | (h0 · κ′)2 hence, since n is square-free and odd, 2n | h0 · κ′. This implies t = 2n and
divh⊥

0
(κ) = 1; in particular, κ∗ = 0 and κ2 = −2e/n are uniquely determined. This proves

(2)(b).

We now assume that n is prime. Since t divh⊥

0
(κ) = 2n and t is even,

• either (t, divh⊥

0
(κ), κ2) = (2n, 1,−2e/n) and n | e;

• or (t, divh⊥

0
(κ), κ2) = (2, n,−2ne) and n ∤ e (because n ∤ h0 · κ′ and d = −1

2
disc(K) ≡

1
2
(h0 · κ′)2 (mod n)).

Given e = a2 + nn′, the integer κ2 is therefore uniquely determined by e:

• either n | a, κ2 = −2e/n, and κ∗ = 0;
• or n ∤ a, κ2 = −2ne, κ∗ = κ/n, and q̄(κ∗) = −2a2/n (mod 2Z).

In the second case, κ∗ = ±a(w1−2w2)∗; it follows that in all cases, κ∗ is also uniquely defined,
up to sign, by e. This proves (2)(c). �

5. The nef cone of a projective hyperkähler fourfold of K3[2]-type

Cones of divisors on projective hyperkähler manifolds of K3[n]-type were described
in [BHT, BM2, M2, Mo]. When n = 2, these results take a very special form.

Let X be a projective hyperkähler fourfold of K3[2]-type. The positive cone

Pos(X) ⊂ Pic(X)⊗R

is the connected component of the open subset {x ∈ Pic(X) ⊗ R | x2 > 0} containing the
class of an ample divisor. The movable cone

Mov(X) ⊂ Pic(X)⊗R

is the (not necessarily open nor closed) convex cone generated by classes of movable divi-
sors (i.e., those divisors whose base locus has codimension at least 2). We have inclusions
Int(Mov(X)) ⊂ Pos(X) of the interior of the movable cone into the positive cone, and
Amp(X) ⊂ Mov(X) of the ample cone into the movable cone.

We set

DivX := {a ∈ Pic(X) | a2 = −2},
F lopX := {a ∈ Pic(X) | a2 = −10, divH2(X,Z)(a) = 2}.

Given a divisor class a ∈ Pic(X)⊗R, we denote by Ha the hyperplane

Ha := {x ∈ Pic(X)⊗R | x · a = 0}.
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Theorem 5.1. Let X be a hyperkähler fourfold of K3[2]-type.

(a) The interior Int(Mov(X)) of the movable cone is the connected component of

Pos(X)r
⋃

a∈DivX

Ha

that contains the class of an ample divisor.

(b) The ample cone Amp(X) is the connected component of

Int(Mov(X))r
⋃

a∈FlopX

Ha

that contains the class of an ample divisor.

Proof. Statement (a) follows from the general result [M2, Lemma 6.22]. We sketch instead the
proof of (b).

There is an extension H2(X,Z) ⊂ Λ̃X of lattices and weight-2 Hodge structures, where

the lattice Λ̃X is isomorphic to the lattice U⊕4⊕E8(−1)⊕2 and the orthogonalH2(X,Z)⊥ ⊂ Λ̃X

is generated by a primitive vector vX of square 2 ([M2, Section 9], [BHT, Section 1]). We denote

by Λ̃alg,X the algebraic (i.e., (1, 1)-type) part of Λ̃X , so that Pic(X) = v⊥X ∩ Λ̃alg,X . Finally, we
set

F lop′X := {ã ∈ Λ̃alg,X | ã2 = −2, ã · vX = 1}.
The dual statement to [BHT, Theorem 1] is then the following: the ample cone Amp(X) is
the connected component of

Int(Mov(X))r
⋃

ã∈Flop′
X

Hã

containing the class of an ample divisor, where the hyperplane Hã is defined as before by
Hã := {x ∈ Pic(X)⊗R | x · ã = 0}. We notice that the actual statement of [BHT, Theorem
1] says that we need to exclude the hyperplanes Ha, where a2 ≥ −2 and |a · vX | ≤ 1. We may
in fact only consider classes with a2 = −2, as explained in [BM2, Sections 12 and 13].

Given a class ã ∈ F lop′X , we let a := 2ã−vX . Then a ∈ F lopX andHa = Hã. Conversely,

given a ∈ F lopX , we let b̃ := a + vX ∈ Λ̃alg. Since divH2(X,Z)(a) = 2, we have b̃ = 2ã, and
ã ∈ F lop′X with Hã = Ha. This proves (b). �

Remark 5.2. We can make the description in Theorem 5.1 more precise.

(a) As explained in [M2, Section 6], it follows from [M3] that there is a group of reflections
WExc acting on Pos(X). Using the Zariski decomposition ([Bo]), one shows ([M2, Lemma 6.22])
that WExc acts faithfully and transitively on the set of connected components of

Pos(X)r
⋃

a∈DivX

Ha.

In particular, Mov(X) ∩ Pos(X) is a fundamental domain for the action of WExc on Pos(X).

(b) By [Ma, Proposition 2.1] (see also [HT2, Theorem 7]), each connected component of

Int(Mov(X))r
⋃

a∈FlopX

Ha
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corresponds to the ample cone of a hyperkähler fourfold X ′ of K3[2]-type via a birational
map X 99K X ′ which is a composition of Mukai flops with respect to numerically equivalent
Lagrangian planes ([WW, Theorem 1.1]).

(c) By [A, Proposition 4] (generalized to the twisted case in [Hu2, proof of Proposition 4.1])
and [BM1, BM2], if DivX 6= ∅, the fourfold X is isomorphic to a moduli space M of stable
sheaves on a possibly twisted K3 surface (S, α). The moduli space M is birational to the
Hilbert square of a K3 surface if there exists a ∈ DivX with divH2(X,Z)(a) = 2; otherwise, M
is birational to a moduli space of possibly twisted rank-2 torsion-free sheaves.

(d) Similarly, if there exists a class w ∈ Pic(X) with w2 = 0, the fourfold X is birational to
a moduli space M of torsion sheaves on a (possibly twisted) K3 surface (S, α). If the divisor
class w is also nef and primitive, X is actually isomorphic to such an M and the Beauville
integral system f : X ∼→M → P2 is a Lagrangian fibration on X such that w = [f ∗OP2(1)].

Before discussing a few examples of Theorem 5.1 when Pic(X) has rank 2, we briefly
review Pell-type equations (see [N, Chapter VI]). Given non-zero integers e and t with e > 0,
we denote by Pe(t) the equation

(6) a2 − eb2 = t,

where a and b are integers. A solution (a, b) of this equation is called positive if a > 0 and
b > 0. If e is not a perfect square, (a, b) is a solution if and only if the norm N(a+ b

√
e) in the

quadratic number field Q(
√
e) is t. The positive solution with minimal a is called the minimal

solution; it is also the positive solution (a, b) for which the ratio a/b is minimal when t < 0,
maximal when t > 0.

Assume that e is not a perfect square. There is always a minimal solution (a1, b1) to the
Pell equation Pe(1) and if x1 := a1+b1

√
e, all the solutions of the equation Pe(1) correspond

to the “mth powers” ±xm
1 in Z[

√
e], for m ∈ Z.

Example 5.3 ([BM2, Proposition 13.1 and Lemma 13.3]1). Let (S, L) be a polarized K3
surface such that Pic(S) = ZL and L2 =: 2e. Then Pic(S [2]) = ZL2⊕Zδ, where L2 is the class
on S [2] induced by L and 2δ is the class of the divisor in S [2] that parametrizes non-reduced
length-2 subschemes of S ([B1, Remarque, p. 768]). In the lattice (H2(S [2],Z), qS[2]), we have
the following products

L2
2 = 2e , δ2 = −2 , L2 · δ = 0.

Cones of divisors on S [2] can be described as follows.

(a) The extremal rays of the (closed) movable cone Mov(S [2]) are spanned by L2 and
L2 − µeδ, where

• if e is a perfect square, µe =
√
e;

• if e is not a perfect square and (a1, b1) is the minimal solution of the equation
Pe(1), µe = e b1

a1
.

(b) The extremal rays of the nef cone Nef(S [2]) are spanned by L2 and L2 − νeδ, where
• if the equation P4e(5) is not solvable, νe = µe;
• if the equation P4e(5) is solvable and (a5, b5) is its minimal solution, νe = 2e b5

a5
.2

1Parts of the results of this example were first proved in [HT2, Theorem 22] and the rationality of the nef
cone was also proved, by very different methods, in [Og1, Corollary 5.2].

2There is a typo in [BM2, Lemma 13.3(b)]: one should replace d with 2d.
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Example 5.4. Let n be a positive integer such that n ≡ −1 (mod 4). Let (X,H) be a

polarized hyperkähler fourfold of K3[2]-type with H of divisibility 2 and Pic(X) = ZH ⊕ ZL,
with intersection matrix

(
2n 0
0 −2e′

)
. Since any two embeddings of the lattice K = I1(2n) ⊕

I1(−2e′) into ΛK3[2] for which the image of a generator of I1(2n) has divisibility 2 differ by
an isometry of ΛK3[2] ,

3 they represent very general elements of one component of the special

divisor C
(2)
2n,2e′n (we will prove in Theorem 6.1 that they exist if and only if n > 0 and e′ > 1).

We assume in the rest of this example that n is square-free. The hypersurface C
(2)
2n,2e′n is

then irreducible by Proposition 4.1(2)(b) and very general elements of C
(2)
2n,2e′n are of the type

described above. Cones of divisors on X can be described as follows (we set e := e′n).

(a) The extremal rays of the closure of the movable cone Mov(X) are spanned by H−µn,eL
and H + µn,eL, where

• if the equation Pe(−n) is not solvable, µn,e = n/
√
e;

• if the equation Pe(−n) is solvable and (a−n, b−n) is its minimal solution, µn,e =
a−n

e′b−n

.

(b) The extremal rays of the nef cone Nef(X) are spanned by H − νn,eL and H + νn,eL,
where

• if the equation P4e(−5n) is not solvable, νn,e = µn,e;
• if the equation P4e(−5n) is solvable and (a−5n, b−5n) is its minimal solution,
νn,e =

a−5n

2e′b−5n
.

To prove these statements, it is enough to notice that, in the notation of Theorem 5.1, a
class in DivX corresponds to a solution to the equation Pe(−n); similarly, a class in F lopX
corresponds to a solution to the equation P4e(−5n). The description of the cones of divisors
on X then follows from Theorem 5.1 by a direct computation.

6. The image of the period map

The description of the cones of divisors for hyperkähler fourfolds of K3[2]-type given in
Section 5 easily implies our main result on the images of their period maps.

Theorem 6.1. Let n be a positive integer and let γ ∈ {1, 2}. The image of the period map

℘
(γ)
2n : M

(γ)
2n −→ P

(γ)
2n

is exactly the complement of the union of finitely many Heegner divisors. More precisely, these
Heegner divisors are

• if γ = 1,

– some irreducible components of the hypersurface D
(1)
2n,2n (two components if n ≡ 0

or 1 (mod 4), one component if n ≡ 2 or 3 (mod 4));

– one irreducible component of the hypersurface D
(1)
2n,8n;

– one irreducible component of the hypersurface D
(1)
2n,10n;

– and, if n ≡ ±5 (mod 25), some irreducible components of the hypersurface D
(1)
2n,2n/5;

3In the notation of the second part of the proof of Proposition 4.1 (case γ = 2), a generator of I1(2n) can be
sent to the class h0; a generator of I1(−2e′) is then sent to the class κ′ = κ. We have t := gcd(h0 ·κ′, 2n) = 2n
and the formula t divh⊥

0
(κ) = 2n implies divh⊥

0
(κ) = 1, i.e., κ∗ = 0 in D(K⊥). We then apply Eichler’s criterion

again in K⊥ and conclude by using the isomorphism O(ΛK3[2] , h0) ≃ Õ(K⊥).
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• if γ = 2 (and n ≡ −1 (mod 4)), one irreducible component of the hypersurface D
(2)
2n,2n.

Remark 6.2. Assume that n is square-free (so in particular n 6≡ 0 (mod 4)). We proved in
Proposition 4.1 that

• the hypersurface D
(1)
2n,2n has two components if n ≡ 1 (mod 4), one component other-

wise;

• the hypersurface D
(1)
2n,8n has two components if n ≡ −1 (mod 4), one component oth-

erwise;

• the hypersurface D
(1)
2n,10n has two components if n ≡ 1 (mod 4), one component other-

wise;

• the hypersurface D
(1)
2n,2n/5 has two components if n ≡ 1 (mod 4), one component oth-

erwise;

• the hypersurface D
(2)
2n,2n is irreducible (when n ≡ −1 (mod 4)).

Furthermore, it follows from the proof of the theorem that when moreover n ≡ ±5 (mod 25),

• the hypersurface D
(1)
2n,2n/5 is irreducible.

Proof of Theorem 6.1. Take a point x ∈ P
(γ)
2n . Since the period map for smooth compact (not

necessarily projective) hyperkähler fourfolds is surjective ([Hu1, Theorem 8.1]), there exists a
compact hyperkähler fourfold X ′ with the given period point x. Since the class h0 is algebraic
and has positive square, X ′ is projective by [Hu1, Theorem 3.11]. Moreover, the class h0

corresponds to the class of an integral divisor H in the positive cone of X ′. By Remark 5.2(a),
we can let an element in the groupWExc act and assume that the pair (X ′, H), representing the

period point x and the class h0, is such that H is in Mov(X ′) ∩ Pos(X ′). By Remark 5.2(b),
we can find a projective hyperkähler fourfold X which is birational to X ′ (hence still has
period x), such that the divisor H , with class h0, is nef and big on X and has divisibility γ.
Note that, since X ′ is birational to X , it is deformation equivalent to X ([Hu1, Theorem 4.6]),

hence still of K3[2]-type.

To summarize, the point x is in the image of the period map ℘
(γ)
2n if and only if H is

actually ample on X . We now use Theorem 5.1: H is ample if and only if it is not orthogonal
to any algebraic class either with square −2, or with square −10 and divisibility 2.

If H is orthogonal to an algebraic class κ with square −2, the Picard group of X contains
a rank-2 lattice K with intersection matrix

(
2n 0
0 −2

)
; the fourfold X is therefore special of

discriminant 2e := − disc(K⊥) (its period point is in the hypersurface D
(γ)
2n,K).

If γ = 1, the divisibility s := divh⊥

0
(κ) is either 1 or 2. By (5), we have es2 = −2nκ2 = 4n,

hence

• either s = 1, e = 4n, and κ∗ = 0: the period point is then in one irreducible component

of the hypersurface D
(1)
2n,8n;

• or s = 2, e = n, and
– either κ∗ = (0, 1);
– or κ∗ = (n, 0) and n ≡ 1 (mod 4);
– or κ∗ = (n, 1) and n ≡ 0 (mod 4).

The period point x is in one irreducible component of the hypersurface D
(1)
2n,2n if n ≡ 2 or 3

(mod 4), or in the union of two such components otherwise.
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If γ = 2, we have e = − disc(K)/4 = n, t =
√

2n disc(K)/κ2 = 2n, and div(κ) = 2n/t =

1, hence κ∗ = 0: the period point x is in one irreducible component of the hypersurface D
(2)
2n,2n.

If H is orthogonal to an algebraic class with square −10 and divisibility 2, the Picard
group of X contains a rank-2 lattice K with intersection matrix

(
2n 0
0 −10

)
, hence X is special

of discriminant 2e := − disc(K⊥). Again, we distinguish two cases, keeping the same notation.

If γ = 1, the divisibility s := divK⊥(κ) is even (because the divisibility in H2(X,Z) is 2)
and divides κ2 = −10, hence it is either 2 or 10 . Moreover, es2 = −2nκ2 = 20n, hence

• either s = 2, e = 5n, and κ∗ = (0, 1): the period point x is then in one irreducible

component of the hypersurface D
(1)
2n,10n;

• or s = 10 and e = n/5: the period point is then in the hypersurface D
(1)
2n,n/5.

In the second case, since the divisibility of κ in H2(X,Z) is 2, a and c are even, so that b is
odd and κ∗ = (a, 1). We have 10 = s = gcd(2na, 2b, 2c), hence b and c are divisible by 5, but
not a, because gcd(a, b, c) = 1. We have e ≡ a2 + n (mod 4n), hence e ≡ a2 ≡ ±1 (mod 5).

In general, there are many possibilities for a = 2a′, with a′2 ≡ e (mod 5e). However, if
n is square-free, e divides a′ and (a′/e)2 ≡ 1 (mod 5), so that a ≡ ±2e (mod 2n). It follows
that ±a (hence also ±κ∗) is well determined (modulo 2n), so we have a single component of

D
(1)
2n,n/5.

If γ = 2, we have e = − disc(K)/4 = 5n and t2 = 2n disc(K)/κ2 = n2/10, which is
impossible.

Conversely, in each case described above, it is easy to construct a class κ with the
required square and divisibility which is orthogonal to H . �

Example 6.3 (Double EPW sextics: n = γ = 1). Double EPW sextics were defined in [O2] as
ramified double covers of certain singular sextic hypersurfaces in P5. When smooth, they are
hyperkähler fourfolds of K3[2]-type with a polarization of degree 2. They fill out a dense open

subset U
(1)
2 of M

(1)
2 whose complement contains the irreducible hypersurface H

(1)
2 whose

general points correspond to pairs (S [2], L2 − δ), where (S, L) is a polarized K3 surface of
degree 4 ([O3, Section 5.3]).

O’Grady proved that the image of U
(1)
2 in the period space does not meet D

(1)
2,2 , D

(1)
2,4 ,

D
(1)
2,8 , and one component of D

(1)
2,10 ([O3, Theorem 1.3]4); moreover, by [DIM, Theorem 8.1],

this image does meet all the other components of the non-empty hypersurfaces D
(1)
2,d . The

hypersurface H
(1)
2 maps to D

(1)
2,4 . These results agree with Theorem 6.1 and Remark 6.2,

which say that the image of M
(1)
2 in the period space is the complement of the union of D

(1)
2,2 ,

D
(1)
2,8 , and one of the two components of D

(1)
2,10. However, our theorem says nothing about the

image of U
(1)
2 . O’Grady conjectures that it is the complement of the hypersurfaces D

(1)
2,2 , D

(1)
2,4 ,

D
(1)
2,8 , and one component of D

(1)
2,10; this would follow if one could prove M

(1)
2 = U

(1)
2 ∪ H

(1)
2 .

Example 6.4 (Varieties of lines on cubic fourfolds: n = 3 and γ = 2). If W ⊂ P5 is a
smooth cubic fourfold, the variety F (W ) of lines contained in W is a hyperkähler fourfold and
its Plücker polarization has square 6 and divisibility 2 ([BD], [H, Proposition 2.1.2]). These

4O’Grady’s hypersurfaces S′2 ∪ S′′2 , S4, S
⋆
2, are our D

(1)
2,2 , D

(1)
2,4 , D

(1)
2,8 .
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fourfolds fill out a dense open subset U
(2)
6 of M

(2)
6 whose complement contains an irreducible

hypersurface H
(2)
6 whose general points correspond to pairs (S [2], 2L2 − δ), where (S, L) is a

polarized K3 surface of degree 2 (see Proposition 7.9).

Theorem 6.1 and Remark 6.2 say that the image of M
(2)
6 in the period space is the

complement of the irreducible hypersurface D
(2)
6,6 . This (and much more) was first proved by

Laza in [La, Theorem 1.1], together with the fact that M
(2)
6 = U

(2)
6 ∪H

(2)
6 ; since H

(2)
6 maps

onto D
(2)
6,2 , the image of U

(2)
6 is the complement of D

(2)
6,2 ∪ D

(2)
6,6 .

7. Unexpected isomorphisms between hyperkähler fourfolds

In this section, we study birational isomorphisms between components of various Noether–
Lefschetz loci induced by “unexpected” isomorphisms between hyperkähler fourfolds. We treat
first the case of Hilbert squares.

7.1. Special hyperkähler fourfolds isomorphic to Hilbert squares of K3 surfaces.

If a polarized hyperkähler fourfold is isomorphic to the Hilbert square of a K3 surface, it is
special in the sense defined in Section 4. We use standard notation for cohomology classes on
a Hilbert square (see Example 5.3). The slope νe was defined in the same example and the

special loci C
(γ)
2n,2e ⊂ M

(γ)
2n in Section 4.

Proposition 7.1. Let n and e be positive integers. Assume that the equation Pe(−n) (see
(6)) has a positive solution (a, b) that satisfies the conditions

(7)
a

b
< νe and gcd(a, b) = 1.

If K2e is the moduli space of polarized K3 surfaces of degree 2e, the rational map

̟ : K2e 99K M
(γ)
2n

(S, L) 7−→ (S [2], bL2 − aδ),

where γ = 2 if b is even, and γ = 1 if b is odd, induces a birational isomorphism onto an

irreducible component of C
(γ)
2n,2e.

Proof. If (S, L) is a polarized K3 surface of degree 2e and K := ZL2 ⊕ Zδ ⊂ H2(S [2],Z),
the lattice K⊥ is the orthogonal in H2(S,Z) of the class L. Since the lattice H2(S,Z) is
unimodular, K⊥ has discriminant −2e, hence S [2] is special of discriminant 2e.

The class H := bL2 − aδ has divisibility γ and square 2n. It is primitive, because
gcd(a, b) = 1, and ample on S [2] when Pic(S) = ZL because of the inequality in (7). Therefore,

the pair (S [2], H) corresponds to a point of C
(γ)
2n,2e.

The map ̟ therefore sends a very general point of K2e to C
(γ)
2n,2e. To prove that ̟ is

generically injective, we assume to the contrary that there is an isomorphism ϕ : S [2] ∼→S ′[2]

such that ϕ∗(bL′
2 − aδ′) = bL2 − aδ, although (S, L) and (S ′, L′) are not isomorphic. It is

straightforward to check that this implies ϕ∗δ′ 6= δ and that the extremal rays of the nef cone
of S [2] are spanned by the primitive classes L2 and ϕ∗L′

2. Comparing this with the description
of the nef cone given in Example 5.3, we see that e is not a perfect square, ϕ∗L′

2 = a1L2−eb1δ
and ϕ∗(a1L

′
2 − eb1δ

′) = L2, where (a1, b1) is the minimal solution to the Pell equation Pe(1).
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The same proof as that of Theorem B.1 implies e > 1, the equation Pe(−1) is solvable and
the equation P4e(5) is not.

By Theorem B.1 again, S [2] has a non-trivial involution σ and (ϕ ◦ σ)∗(L′
2) = L2 and

(ϕ ◦ σ)∗(δ′) = δ. This implies that ϕ ◦ σ is induced by an isomorphism (S, L) ∼→(S ′, L′), which
contradicts our hypothesis. The map ̟ is therefore generically injective and since K2e is

irreducible of dimension 19, its image is a component of C
(γ)
2n,2e. �

Remark 7.2. Assume that n is prime. The locus C
(2)
2n,2e is irreducible by Proposition 4.1.

Therefore, under the assumptions of Proposition 7.1 and when b is even, we have a birational

isomorphism K2e
∼
99KC

(2)
2n,2e. When e > 61, the varieties K2e are known to be of general type

([GHS1]), hence so is C
(2)
2n,2e. More precise results on the geometry of the varieties C

(2)
6,2e can be

found in [Nu, TV, L].

Example 7.3. Assume n = 1. Under the assumptions of Proposition 7.1, b is odd. The locus

C
(1)
2,2e has either one or two components, according to whether e is even or odd (Proposition 4.1).

If e is odd, we have e > 1 and one checks that the image of ̟ is the component of C
(1)
2,2e denoted

by C
(1)′′
2,2e in [O3, Section 4.3]. Therefore, we have birational isomorphisms

̟ : K2e
∼
99K

{
C

(1)
2,2e if e is even;

C
(1)′′
2,2e if e is odd.

Remark 7.4. When e is a perfect square, the positive solutions (a, b) to the equation Pe(−n)
satisfy a−b

√
e = −n′′ and a+b

√
e = n′, with n = n′n′′. This implies a = 1

2
(n′−n′′) and b

√
e =

1
2
(n′ + n′′), hence 0 < n′′ < n′. We then have a

b
= n′−n′′

n′+n′′

√
e <

√
e = νe hence Proposition 7.1

applies to all positive solutions (a, b) of the equation Pe(−n) with gcd(a, b) = 1. In particular,
when n is odd and n > 1, we obtain a geometric description of the fourfolds corresponding

to general points of some component of C
(γ)
2n,2, where γ = 1 if n ≡ 1 (mod 4), and γ = 2 if

n ≡ −1 (mod 4) (take n′ = n and n′′ = 1).

Remark 7.5. Under the hypotheses of Proposition 7.1, one can show that all polarized

hyperkähler fourfolds (X,H) with Picard number 2 which are in the component of C
(γ)
2n,2e

dominated by K2e are actually isomorphic to a Hilbert square S [2]; however, some generality
condition on X is needed: the varieties of lines of some smooth cubic fourfolds of discrimi-
nant 14 (n = 3, γ = 2, e = 7) are not isomorphic to the Hilbert square of a K3 surface.

We deduce from Proposition 7.1 a characterization of Hilbert squares of general polarized
K3 surfaces that are isomorphic to double EPW sextics.

Corollary 7.6. Let e be an integer such that e ≥ 3 and let (S, L) be a general polarized K3
surface of degree 2e. The following conditions are equivalent:

(i) the equation Pe(−1) is solvable and the equation P4e(5) is not;
(ii) the equation Pe(−1) has a positive solution (a, b) such that a

b
< νe;

(iii) the Hilbert square S [2] is isomorphic to a double EPW sextic of discriminant 2e;
(iv) the variety S [2] has a non-trivial automorphism.

When these conditions are realized, S [2] then has a non-trivial involution σ, the quotient S [2]/σ
is an EPW sextic Y ⊂ P5, and the complete linear system |bL2−aδ| defines a morphism which
factors as S [2]

։ S [2]/σ = Y →֒ P5.
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Proof. The equivalence (i) ⇔ (iv) is Theorem B.1. The implication (iv) ⇒ (ii) comes from
the facts that the equation Pe(−1) has a minimal solution (a−1, b−1) and, if σ is the non-
trivial automorphism of S [2] (Theorem B.1), the class b−1L2 − a−1δ is positively proportional
to L2 + σ∗L2, hence ample. The implication (ii) ⇒ (iii) is Proposition 7.1 and Example 6.3.
The implication (iii) ⇒ (iv) is obvious. The consequences stated at the end follow from [O4,
Section 4], which explains why dim(|H|) = 5, where H is the canonical polarization on the
double EPW sextic. �

Remark 7.7. When e = 2, all the conditions of Corollary 7.6 hold except for (iii). The
fourfold S [2] carries the non-trivial Beauville involution σ (Example B.2) and the complete

linear system |L2 − δ| defines a morphism which factors as S [2]
։ S [2]/σ

3:1
։ Gr(2, 4) →֒ P5.

This fits with the fact that 3Gr(2, 4) is a (degenerate) EPW sextic ([O5, Claim 2.14]).

Example 7.8. When e = 13, the equivalent conditions of Corollary 7.6 are satisfied, hence
the Hilbert square of a general polarized K3 surface (S, L) of degree 26 is a double EPW
sextic, with canonical involution σ. Moreover, two positive solutions, (7, 2) and (137, 38), of
the equation P13(−3) satisfy the conditions (7) of Proposition 7.1 with b even. It follows that

S [2] is also isomorphic to a general element of C
(2)
6,26, i.e., to the variety of lines F (W ) on a

special cubic hypersurface W ⊂ P5 of discriminant 26 (the two isomorphisms S [2] ≃ F (W )
differ by σ, and σ∗(2L2 − 7δ) = 38L2 − 137δ).

We now show that given any positive integer n, Proposition 7.1 applies to infinitely
many integers e.

Proposition 7.9. Let n be a positive integer. There are infinitely many distinct hypersurfaces

in the moduli spaces M
(1)
2n , and M

(2)
2n if n ≡ −1 (mod 4), whose general points correspond to

Hilbert squares of K3 surfaces. In both cases, the union of these hypersurfaces is dense in the
moduli space for the euclidean topology.

Sketch of proof. When m > 0, the pair (m, 1) is a solution of the equation Pe(−n), with
e = m2 + n, and one easily checks that the inequality m < νe holds when (n,m) 6= (1, 2).

When m ≥ 0, the pair (2m + 1, 2) is a solution of the equation Pe(−n), with e =
m2+m+ n+1

4
and one easily checks that the inequality m+ 1

2
< νe holds when (n,m) 6= (3, 1).

Finally, the density statement follows from a powerful result of Clozel and Ullmo (The-
orem 7.10 below). �

Theorem 7.10 (Clozel–Ullmo). The union of infinitely many Heegner divisors in any moduli

space M
(γ)
2n is dense for the euclidean topology.

Proof. This follows from the main result of [CU]: the space M
(γ)
2n is a Shimura variety and

each Heegner divisor Dx is a “strongly special” subvariety, hence is endowed with a canonical
probability measure µDx

. Given any infinite family (Dxa
)a∈N of Heegner divisors, there exists

a subsequence (ak)k∈N, a strongly special subvariety Z ⊂ M
(γ)
2n which contains Dxa

k
for all

k ≫ 0 such that (µDxa
k

)k∈N converges weakly to µZ ([CU, th. 1.2]). For dimensional reasons,

we have Z = M
(γ)
2n ; this implies that

⋃
a Dxa

is dense in M
(γ)
2n . �

Remark 7.11. It was proved in [MM] that Hilbert schemes of projective K3 surfaces are dense

in the coarse moduli space of all (possibly non-algebraic) hyperkähler manifolds of K3[n]-type.
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7.2. Isomorphisms between various special hyperkähler fourfolds. We now apply a
similar construction with the polarized hyperkähler fourfolds (X,H) studied in Example 5.4,
whose notation we keep. For the sake of simplicity, we assume that n is square-free; these

fourfolds then correspond to points of the irreducible hypersurface C
(2)
2n,2e′n.

Proposition 7.12. Let n, m, and e be positive integers. Assume that n is square-free, n ≡ −1
(mod 4), n | e, and n 6= e. Assume further that the equation Pe(nm) has a solution (na, b)
with a > 0 that satisfies the conditions

(8)
|b|
a

< νn,e and gcd(a, b) = 1.

There is a rational map

̟ : C
(2)
2n,2e 99K M

(γ)
2m

(X,H) 7−→ (X, aH + bL),

where γ = 2 if b is even, and γ = 1 if b is odd. This map induces a birational isomorphism

onto an irreducible component of C
(γ)
2m,2e.

In the proposition, the locus C
(2)
2n,2e is non-empty and irreducible by Proposition 4.1 and

Theorem 6.1.

Proof. The proof is the same as that of Proposition 7.1 and is based on the fact that if (X,H)

corresponds to a very general point of C
(2)
2n,2e, the class aH + bL is primitive, has square

2a2n − 2b2e′ = 2m and divisibility γ, and is ample on X because of the inequality in (8).

Therefore, the pair (X, aH + bL) corresponds to a point of C
(γ)
2m,2e.

To prove that ̟ is generically injective, assume that there is an isomorphism ϕ : X ∼→X ′

such that ϕ∗(aH ′ + bL′) = aH + bL. If ϕ∗H ′ 6= H , the matrix of ϕ∗ in the bases (H ′, L′) and
(H,L) is that of a non-trivial isometry with a fixed vector, hence a reflection.

As we will see during the proof of Proposition A.3, the matrix of such an isometry that ex-

tends to an isometry between H2(X ′,Z) and H2(X,Z) must be of the form
(
2s2e′+1 −2e′rs
2nrs −(2s2e′+1)

)
,

where (nr, s) is a solution to the equation Pe(n), both equations Pe(−n) and P4e(−5n) are
not solvable, and e is not a perfect square. We then have ϕ∗(rH ′ + sL′) = rH + sL. Since
ϕ∗(aH ′ + bL′) = aH + bL and aH ′ + bL′ is primitive, we must have m = 1 (and a = r, b = s).
In that case, by Proposition A.3, X does have an involution σ that acts as on Pic(X) as the
reflection with axis spanned by rH + sL. The isomorphism ϕ ◦ σ : X ∼→X ′ then pulls back H ′

to H . This proves the proposition. �

Example 7.13. Under the assumptions of Proposition 7.12, when m is prime and b is even,

the locus C
(2)
2m,2e is irreducible by Proposition 4.1. Therefore, there is a birational isomorphism

C
(2)
2n,2e

∼
99KC

(2)
2m,2e.

Example 7.14. Assume m = 1. As in Example 7.3, we have, under the assumptions of
Proposition 7.12, birational isomorphisms

̟ : C
(2)
2n,2e

∼
99K

{
C

(1)
2,2e if e is even;

C
(1)′′
2,2e if e is odd.



18 O. DEBARRE AND E. MACRÌ

Remark 7.15. Given a pair (a, b) that satisfies the conditions (8), we can construct two maps
̟± by sending (X,H) either to (X, aH+ bL) or to (X, aH− bL). These two maps are distinct
unless there exists an automorphism ϕ of X that sends aH+ bL to aH− bL. One checks using
the computations of the proof of Proposition A.3 that this is only possible when we are in
case (a) of that proposition, ϕ∗ acts as a rotation

(
2s2e+1 2e′rs
2nrs 2s2e+1

)
on Pic(X), with r2−es2 = 1,

and moreover, a = r, b = ns, and m = n. The maps ̟± : C
(2)
2n,2e

∼−→C
(2)
2n,2e then correspond

to changing the polarization by an automorphism of X : they are just particular cases of an
infinite family of such maps.

As in Section 7.2, we characterize which of our special hyperkähler fourfolds are isomor-
phic to double EPW sextics.

Corollary 7.16. Let n and e be positive integers. Assume that n is square-free, n ≡ −1
(mod 4), n | e, and n 6= e. Let (X,H) be a polarized hyperkähler fourfold corresponding to

a general point of C
(2)
2n,2e. Then X is isomorphic to a double EPW sextic if and only if the

equation Pe(n) is solvable but the equation P4e(−5n) is not.

Under the hypotheses of the corollary, the automorphism group of X is isomorphic to
Z⋊ Z/2Z hence contains infinitely many involutions (σm)m∈Z (Proposition A.3). When X is
very general, all the quotients X/σm are EPW sextics.

Proof. We may assume that (X,H) is very general in C
(2)
2n,2e. If X is isomorphic to a double

EPW sextic, it has a non-trivial automorphism and the conclusion follows from Proposi-
tion A.3. Conversely, if the equation Pe(n) is solvable but the equation P4e(−5n) is not, one
checks that e is not a perfect square, hence X has, by Proposition A.3, a non-trivial involution
σ (and in fact, countably many such involutions) that fixes a square-2 class rH + sL which is
positively proportional to H + νn,eL+ σ∗(H + νn,eL), hence ample. By Proposition 7.12, the

pair (X, rH+sL) is a general element of C
(1)
2,2e, hence X is a double EPW sextic by Example 6.3

(note that e ≥ 2n ≥ 6). �

Remark 7.17. Assume that both equations P4e(−5n) and Pe(n) are solvable. As in Re-
mark A.5, let X ′ be the other birational model of a general X in an irreducible component of

C
(2)
2n,2e. Then X ′ is isomorphic to a double EPW sextic by the same proof as above.

Finally, we show that given any positive integer n, Proposition 7.12 applies to infinitely
many integers e.

Corollary 7.18. Let n be a positive square-free integer such that n ≡ −1 (mod 4). There are

infinitely many distinct hypersurfaces in the moduli space M
(2)
2n whose general points corre-

spond to double EPW sextics. Their union is dense in M
(2)
2n .

Proof. When m > 0 and e = n(nm2−1), the pair (nm, 1) is a solution to the equation Pe(n).

If 5 | n, we will show in the proof of Proposition A.3 that P4e(−5n) is not solvable. If
5 ∤ n, we can choose m such that n(nm2 − 1) ≡ ±2 (mod 5) and by reducing modulo 5, we
see that the equation P4e(−5n) is then not solvable.

We can therefore apply Corollary 7.16. Since there are infinitely many such m, this
concludes the proof, using Theorem 7.10 for the density statement. �
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Appendix A. Automorphisms of special hyperkähler fourfolds

We determine the group Aut(X) of biregular automorphisms and the group Bir(X) of

birational automorphisms for some hyperkähler fourfolds X of K3[2]-type with Picard number
1 or 2. The case of Hilbert squares of very general polarized K3 surfaces is in Appendix B.

Let X be a hyperkähler fourfold. There are natural morphisms

(9) ΨA
X : Aut(X) → O(H2(X,Z), qX) and ΨB

X : Bir(X) → O(H2(X,Z), qX)

which send a (birational) automorphism ϕ of X to its action ϕ∗ on cohomology (see [GHJ,
Proposition 25.14] for ΨB

X). Elements of Im(ΨA
X) preserve the nef cone Nef(X), elements of

Im(ΨB
X) preserve the movable cone Mov(X), and both preserve the Picard lattice and the

Hodge structure.

The kernel of ΨB
X is contained in Aut(X), hence in the kernel of ΨA

X ([Og1, Proposi-
tion 2.4]). The group Ker(ΨA

X) is a finite group which is invariant by smooth deformations
([HT4, Theorem 2.1]) and is trivial for the Hilbert square of a K3 surface ([B2, Proposi-

tion 10]). It follows that for any hyperkähler fourfold X of K3[2]-type, both ΨA
X and ΨB

X are
injective.

Proposition A.1. Let X be a hyperkähler fourfold corresponding to a very general point of

a moduli space M
(γ)
2n . The group Bir(X) of birational automorphisms of X is trivial, unless

n = 1, in which case Aut(X) = Bir(X) ≃ Z/2Z.

Proof. As we saw in Section 4, the Picard group of X is generated by the class h of the polar-
ization. Any birational automorphism leaves this class fixed, hence is in particular biregular of
finite order. Let ϕ be a non-trivial automorphism of X . Since ϕ extends to small deformations
of X , the restriction of ϕ∗ to h⊥ is a homothety whose ratio is, by [B2, Proposition 7], a
root of unity; since it is real and non-trivial (by injectivity of ΨA

X), it must be − Id. We will
prove that such an isometry of Zh⊕ h⊥ does not extend to an isometry Φ of H2(X,Z) unless
h2 = 2n = 2.

When γ = 1, we may take h = u+ nv, where (u, v) is a standard basis for a hyperbolic
plane U contained in H2(X,Z). Then, u−nv is in h⊥, hence the isometry Φ, if it exists, must
satisfy

Φ(u+ nv) = u+ nv and Φ(u− nv) = −u+ nv,

which yields 2nΦ(v) = 2u. This is possible only when n = 1. Conversely, in the case n = 1,
the fourfold X is a double EPW sextic and does carry a non-trivial involution (Example 6.3).
Moreover, this involution is the only non-trivial automorphism of a very general double EPW
sextic (see the end of the proof of [DK, Proposition B.9]).

When γ = 2 (so that n ≡ −1 (mod 4)), we let ℓ be an element ofH2(X,Z) orthogonal to
U and such that ℓ2 = −2. We may take, as in the proof of Proposition 4.1, h = 2u+ n+1

2
v+ ℓ,

and h⊥ contains v + ℓ and u− n+1
4
v. The isometry Φ must then satisfy

Φ
(
2u+ n+1

2
v + ℓ

)
= 2u+ n+1

2
v + ℓ , Φ(v + ℓ) = −v − ℓ , Φ

(
u− n+1

4
v
)
= −u+ n+1

4
v,

hence nΦ(v) = 4u+ v + 2ℓ; this is absurd since n ≥ 3. �

Remark A.2. The conclusion of the proposition does not necessarily hold if we assume
only that the Picard number of X is 1. In fact, Proposition A.1 is also proved in [BCS,
Theorem 3.1] and the proof given there implies that Bir(X) is trivial when the Picard number
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of X is 1, unless n ∈ {1, 3, 23}. These three cases are actual exceptions: we just saw that all

fourfolds corresponding to points of M
(1)
2 carry a non-trivial biregular involution; there is a

10-dimensional subfamily of M
(2)
6 whose elements consists of fourfolds that have a biregular

automorphism of order 3 and whose very general elements have Picard number 1 ([BCS,

Section 7.1]); there is a (unique) fourfold in M
(2)
46 with Picard number 1 and a biregular

automorphism of order 23 ([BCMS, Theorem 1.1]).

We now turn our attention to the polarized hyperkähler fourfolds studied in Example 5.4.

Proposition A.3. Let n be a positive square-free integer such that n ≡ −1 (mod 4). Let
(X,H) be a polarized hyperkähler fourfold of K3[2]-type of degree 2n and divisibility 2, such
that Pic(X) = ZH ⊕ ZL, with intersection matrix

(
2n 0
0 −2e′

)
. Set e := e′n.

(a) If neither equations Pe(−n) and P4e(−5n) are solvable and e is not a perfect square, the
groups Aut(X) and Bir(X) are equal. They are infinite cyclic, except when the equation Pe(n)
is solvable, in which case these groups are isomorphic to the infinite dihedral group Z⋊Z/2Z.

(b) If the equation Pe(−n) is not solvable but the equation P4e(−5n) is, the group Aut(X)
is trivial and the group Bir(X) is infinite cyclic, except when the equation Pe(n) is solvable,
in which case it is infinite dihedral.

(c) If the equation Pe(−n) is solvable or if e is a perfect square, the group Bir(X) is trivial.

Proof. We saw that the map ΨA
X : Aut(X) → O(H2(X,Z)) is injective. Its image consists of

isometries which preserve Pic(X) and the ample cone and, since b2(X)− ρ(X) is odd, restrict
to ± Id on Pic(X)⊥ ([Og2, proof of Lemma 4.1]). Conversely, by the Torelli Theorem 3.2, any
isometry with these properties is in the image of ΨA

X . We begin with some general remarks
on the group G of isometries of H2(X,Z) which preserve Pic(X) and the components of the
positive cone, and restrict to ε Id on Pic(X)⊥, with ε ∈ {−1, 1}.

The orthogonal group of the rank-2 lattice (Pic(X), qX) ≃ I1(2n) ⊕ I1(−2e′) is easily
determined: if we let δ := gcd(n, e′) and we write n = δn′ and e′ = δe′′, we have

O(Pic(X), qX) =

{(
a αe′′b
n′b αa

) ∣∣∣ a, b ∈ Z, a2 − n′e′′b2 = 1, α ∈ {−1, 1}
}
.

Note that α is the determinant of the isometry and

• such an isometry preserves the components of the positive cone if and only if a > 0;
we denote the corresponding subgroup by O+(Pic(X));

• when e is not a perfect square, the group SO+(Pic(X)) is infinite cyclic, generated by
the isometry R corresponding to the minimal solution to the equation Pn′e′′(1) and
the group O+(Pic(X)) is infinite dihedral;

• when e is a perfect square, so is n′e′′ = e/δ2, and O+(Pic(X)) = {Id, ( 1 0
0 −1 )}.

As we saw during the proof of Proposition 4.1, there exist standard bases (u1, v1) and
(u2, v2) for two orthogonal hyperbolic planes in ΛK3[2], a generator ℓ for the I1(−2) factor, and
an isometric identification H2(X,Z) ∼→ΛK3[2] such that

H = 2u1 +
n+ 1

2
v1 + ℓ and L = u2 − e′v2.

The elements Φ of G must then have a > 0 and satisfy

Φ(2u1 +
n+1
2
v1 + ℓ) = a(2u1 +

n+1
2
v1 + ℓ) + n′b(u2 − e′v2)
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Φ(u2 − e′v2) = αe′′b(2u1 +
n+1
2
v1 + ℓ) + αa(u2 − e′v2)

Φ(v1 + ℓ) = ε(v1 + ℓ)

Φ(u1 − n+1
4
v1) = ε(u1 − n+1

4
v1)

Φ(u2 + e′v2) = ε(u2 + e′v2)

(the last three lines correspond to vectors in Pic(X)⊥). From this, we deduce

nΦ(v1) = 2(a− ε)u1 +
(
(a+ ε)n+1

2
− ε

)
v1 + (a− ε)ℓ+ n′b(u2 − e′v2)

2Φ(u2) = 2αe′′bu1 + αe′′bn+1
2
v1 + αe′′bℓ + (ε+ αa)u2 + e′(ε− αa)v2

2e′Φ(v2) = −2αe′′bu1 − αe′′bn+1
2
v1 − αe′′bℓ+ (ε− αa)u2 + e′(ε+ αa)v2.

From the first equation, we get δ | b and a ≡ ε (mod n); from the second equation, we deduce
that e′′b and ε + αa are even; from the third equation, we get 2δ | b and a ≡ αε (mod 2e′).
All this is equivalent to a > 0 and

(10) 2δ | b , a ≡ ε (mod n) , a ≡ αε (mod 2e′).

Conversely, if these conditions are realized, one may define Φ uniquely on Zu1 ⊕ Zv1 ⊕
Zu2 ⊕ Zv2 ⊕ Zℓ using the formulas above, and extend it by ε Id on the orthogonal of this
lattice in ΛK3[2] to obtain an element of G.

The first congruence in (10) tells us that the identity on Pic(X) extended by − Id
on its orthogonal does not lift to an isometry of H2(X,Z). This means that the restriction
G → O+(Pic(X)) is injective. Moreover, the two congruences in (10) imply a ≡ ε ≡ αε
(mod δ). If δ > 1, since n, hence also δ, is odd, we get α = 1, hence the image of G is
contained in SO+(Pic(X)).

Assume α = 1. The relations (10) imply that a− ε is divisible by n and 2e′, hence by their
least common multiple 2δn′e′′. We write b = 2δb′ and a = 2δn′e′′a′ + ε and obtain from the
equality a2 − n′e′′b2 = 1 the relation

4δ2n′2e′′2a′2 + 4εδn′e′′a′ = 4δ2n′e′′b′2,

hence

δn′e′′a′2 + εa′ = δb′2.

In particular, a′′ := a′/δ is an integer and b′2 = a′′(ea′′ + ε).

Since a > 0 and a′′ and ea′′ + ε are coprime, both are perfect squares and there exist
coprime integers r and s, with r > 0, such that

a′′ = s2 , ea′′ + ε = r2 , b′ = rs.

Since −1 is not a square modulo n, we obtain ε = 1; the pair (r, s) satisfies the Pell
equation r2 − es2 = 1, and a = 2es2 + 1 and b = 2δrs. In particular, either e is not a perfect
square and there are always infinitely many solutions, or e is a perfect square and we get r = 1
and s = 0, so that Φ = Id.

Assume α = −1. As observed before, we have δ = 1, i.e., n and e′ are coprime. Using (10), we
may write b = 2b′ and a = 2a′e′ − ε. Since 2 ∤ n and a ≡ ε (mod n), we deduce gcd(a′, n) = 1.
Substituting into the equation a2 − ne′b2 = 1, we obtain

a′(e′a′ − ε) = nb′2,
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hence there exist coprime integers r and s, with r ≥ 0, such that b′ = rs, a′ = s2, and
e′a′ − ε = nr2. The pair (r, s) satisfies the equation nr2 − e′s2 = −ε, and a = 2e′s2 − ε and
b = 2rs. In particular, one of the two equations Pe(±n) is solvable. Note that at most one
of the equations Pe(±n) may be solvable: if Pe(−εn) is solvable, εe′ is a square modulo n,
while −1 is not. These isometries are all reflections and, since n ≥ 2 and e′ ≥ 2, ( 1 0

0 −1 ) is not
one of them. In particular, if e is a perfect square, G = {Id}.

We now go back to the proof of the proposition. We proved that the composition
Aut(X) → G → O+(Pic(X)) is injective and so is the morphism Bir(X) → G → O+(Pic(X))
(any element of its kernel is in Aut(X)).

Under the hypotheses of (a), both slopes of the nef cone are irrational (Example 5.4).
By [Og1, Theorem 1.3], the groups Aut(X) and Bir(X) are then equal and infinite. The
calculations above allow us to be more precise: in this case, the ample cone is just one
component of the positive cone and the groups Aut(X) and G are isomorphic. The proposition
then follows from the discussions above (note that when there are involutions, the equation
Pe(n) has a solution (nr, s) hence, in the notation above, ε = −1 and these involutions act
on H2(X,Z) as the symmetries about ample square-2 classes rH + sL).

Under the hypotheses of (c), the slopes of the extremal rays of the nef and movable
cones are rational (Example 5.4) hence, by [Og1, Theorem 1.3] again, Bir(X) is a finite group.
By [Og1, Proposition 3.1(2)], any non-trivial element Φ of its image in O+(Pic(X)) is an
involution which satisfies Φ(Mov(X)) = Mov(X), hence switches the two extremal rays of
this cone. This means Φ(H±µn,eL) = H∓µn,eL, hence Φ(H) = H , so that Φ = ( 1 0

0 −1 ). Since
we saw that this is impossible, the group Bir(X) is trivial.

Under the hypotheses of (b), the slopes of the nef cone are both rational and the slopes
of the movable cone are both irrational (Example 5.4). By [Og1, Theorem 1.3] again, Aut(X)
is a finite group and Bir(X) is infinite. The same reasoning as in case (c) shows that the group
Aut(X) is in fact trivial; moreover, the group Bir(X) is a subgroup of Z, except when the
equation Pe(n) is solvable, where it is a subgroup of Z⋊ Z/2Z.

In the latter case, such an infinite subgroup is isomorphic either to Z or to Z⋊Z/2Z and
we exclude the first case by showing that there is indeed a regular involution on a birational
model of X (this generalizes the case n = 3 and e = 6 treated in [HT3]). We denote by
(nan, bn) the minimal solution to the equation Pe(n) and set xn := nan + bn

√
e ∈ Z[

√
e].

As observed in Remark 5.2(b), the set of all positive solutions (a, b) to the equation
na2 − 4e′b2 = −5 (so that aH ± 2bL ∈ F lopX , or equivalently, (na, b) is a solution to the
equation P4e(−5n)) determines an infinite sequence of rays R≥0(2e

′bH ± naL) in Mov(X)
and the nef cones of hyperkähler fourfolds birational to X can be identified with the chambers
with respect to this collection of rays. For example, if (na5n, b5n) is the minimal solution to
the equation P4e(−5n), the two extremal rays of the cone Nef(X) are spanned by α0 :=
2e′b−5nH − na−5nL and α1 := 2e′b−5nH + na−5nL. We want to describe all solutions (a, b).

Lemma A.4. The minimal solution to the Pell equation Pe(1) is given by y1 = na2n + e′b2n +
2anbn

√
e and all the solutions (na, b) to the equation P4e(−5n) are given by the two disjoint

families

na+ 2b
√
e = ±x−5ny

m
1 or ± x−5ny

m
1 , m ∈ Z,

where x−5n := na−5n + 2b−5n

√
e.
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Proof. Let (a, b) ∈ Z2 and set x := na + b
√
e ∈ Z[

√
e] and y := 1

n
xxn. We have

y = naan + e′bbn + (abn + anb)
√
e =: a′ + b′

√
e ∈ Z[

√
e]

and, if N is the norm in the ring Z[
√
e], we have N(xn) = n and, if t is any non-zero integer,

(na, b) solution to Pe(tn) ⇔ N(x) = tn ⇔ N(y) = t ⇔ (a′, b′) solution to Pe(t).

Since x = yxn, this establishes a one-to-one correspondance between the solutions of the
equation Pe(tn) and those of Pe(t). In particular, the minimal solution to the Pell equation
Pe(1) is given by y1 =

1
n
x2
n = na2n + e′b2n + 2anbn

√
e.

The solutions to the equation Pe(−5) were analyzed in [N, Theorem 110]: if y−5 corre-
sponds to its minimal solution, they are all given by ±y−5y

m
1 , m ∈ Z, and their conjugates.

It follows that all the solutions (na, b) to the equation Pe(−5n) are given by ±y−5xny
m
1 and

their conjugates. Since the “imaginary” part of y1 is even and its “real” part is odd, the parity
of the “imaginary” parts of these solutions are all the same. Since the equation P4e(−5n) is
solvable, they are all even, and we therefore obtain all the solutions to the equation P4e(−5n).

To prove that the conjugates provide a disjoint set of solutions, we need to check, by [N,
Theorem 110], that 5 does not divide 4e.

Assume first 5 | e′. Since the equation Pe(n) is solvable, we have
(
n
5

)
= 1; moreover,

since n ≡ −1 (mod 4), we have
(
e′

n

)
= −1. The solvability of the equation P4e(−5n) implies(

5
n

)
=

(
e′

n

)
; putting all that together contradicts quadratic reciprocity.

Assume now 5 | n and set n′ := n/5. Since the equation Pe(n) is solvable, we have(
e′

5

)
= 1; moreover, since n′ ≡ −1 (mod 4), we have

(
e′

n′

)
= −1. Since 5 ∤ e′, the equation

Pn′,20e′(−1) is solvable, hence
(
5e′

n′

)
= 1; again, this contradicts quadratic reciprocity. �

We can reinterpret this as follows. Since gcd(n, e′) = 1 (because na2n − e′b2n = 1), the

generator R of the group SO+(Pic(X)) previously defined is R =
(

na2n+e′b2n 2e′anbn
2nanbn na2n+e′b2n

)
. If we

set αi+2 := R(αi), the lemma means that the infinitely many rays in Mov(X) described above
are the (R≥0αi)i∈Z. The fact that the conjugate solutions form a disjoint family means exactly
that the ray R≥0α2 is “above” the ray R≥0α1; in other words, we have an “increasing” infinite
sequence of rays

· · · < R≥0α−1 < R≥0α0 < R≥0α1 < R≥0α2 < · · · .
It follows from the discussion above that the reflection R ( 1 0

0 −1 ) belongs to the group G
and preserves the nef cone of the birational model X ′ of X whose nef cone is generated by
α1 and α2. It is therefore induced by a biregular involution of X ′ which defines a birational
involution of X . This concludes the proof of the proposition. �

Remark A.5. It follows from the proof above that in case (b), if both equations P4e(−5n)
and Pe(n) are solvable, X has exactly one non-trivial birational model. It is obtained from
X by a composition of Mukai flops with respect to Lagrangian planes (Remark 5.2(b)).

Appendix B. Automorphisms of Hilbert squares of very general K3 surfaces

Since the extremal rays of the movable cone of the Hilbert square S [2] of a very general
K3 surface S of given degree 2e are rational (Example 5.3), its group Bir(S [2]) of birational
automorphisms is finite ([Og1, Theorem 1.3(2)]). Using the Torelli Theorem 3.2, one can
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determine the group Aut(S [2]) of its biregular automorphisms ([BCNS, Theorem 1.1]) and
also, using the description of the nef and movable cones (Example 5.3), the group Bir(S [2]).

Theorem B.1 (Boissière–Cattaneo–Nieper-Wißkirchen–Sarti). Let (S, L) be a polarized K3
surface of degree 2e with Picard group ZL. The variety S [2] has a non-trivial automorphism if
and only if either e = 1, or the equation Pe(−1) is solvable and the equation P4e(5) is not.

The non-trivial automorphism in Theorem B.1 is then unique and an anti-symplectic
involution. When e ≥ 2, this involution acts on H2(S [2],Z) as the symmetry sD about the line
spanned by the square-2 class D := b−1L2 − a−1δ, where (a−1, b−1) is the minimal solution of
the equation Pe(−1). When e = 1, this involution is induced by an involution of (S, L) and
its acts on H2(S [2],Z) as the symmetry about the plane Pic(S [2]).

Example B.2. Theorem B.1 applies for example for e = m2 + 1 with m 6= 2, or e = 13.
When e = 2, the surface S is a quartic in P3 which contains no lines nor conics, and the
involution σ of S [2] is the Beauville involution: it sends a pair of points in S to the residual
intersection with S of the line that they span. We have D = L2 − δ and sD(L2) = 3L2 − 4δ
([D1, Théorème 4.1], [BCNS, Section 6.1]); the quotient S [2]/σ is a triple cover of the Plücker
quadric Gr(2, 4) ⊂ P5. When e ≥ 3, the quotient S [2]/σ is an EPW sextic (Corollary 7.6).

Proposition B.3. Let (S, L) be a polarized K3 surface of degree 2e with Picard group ZL.
The group Bir(S [2]) is trivial except in the following cases:

• e = 1, or the equation Pe(−1) is solvable and the equation P4e(5) is not, in which
cases Aut(S [2]) = Bir(S [2]) ≃ Z/2Z;

• e > 1, and e = 5 or 5 ∤ e, and both equations Pe(−1) and P4e(5) are solvable, in
which case Aut(S [2]) = {Id} and Bir(S [2]) ≃ Z/2Z.5

In the second case, there is a difference between the case e = 5 and the case 5 ∤ e: when
5 ∤ e, there is a hyperkähler fourfold (in fact, a double EPW sextic) birational to S [2] on which
the involution is biregular, but not when e = 5.

Proof. If ϕ ∈ Bir(S [2]) is not biregular, ϕ∗ acts on the movable cone Mov(S [2]) in such a
way that ϕ∗(Amp(S [2])) ∩ Amp(S [2]) = ∅. This implies Mov(S [2]) 6= Nef(S [2]) hence, by
Example 5.3, the equation P4e(5) has a minimal solution (a5, b5). By Theorem B.1, the group
Aut(S [2]) is then trivial.

Moreover, ϕ∗ maps one extremal ray of the movable cone (spanned by L2) to the other
extremal ray (spanned by the primitive vector a1L2 − eb1δ). Therefore, we have ϕ∗(L2) =
a1L2−eb1δ and, by applying this relation to ϕ−1, also ϕ∗(a1L2−eb1δ) = L2. This implies that
ϕ∗ is a completely determined involution of Pic(S [2]). In particular, ϕ2 is an automorphism,
hence is trivial: ϕ is an involution.

The transcendental lattice Pic(S [2])⊥ ⊂ H2(S [2],Z) carries a simple rational Hodge struc-
ture.6 Since the eigenspaces of the involution ϕ∗ of H2(S [2],Z) are sub-Hodge structures, the
restriction of ϕ∗ to Pic(S [2])⊥ is ε Id, with ε ∈ {−1, 1}. On Pic(S [2]), we saw that ϕ∗ has
matrix

(
a1 b1

−eb1 −a1

)
in the basis (L2, δ). The extension from Pic(S [2]) ⊕ Pic(S [2])⊥ to the over-

lattice H2(S [2],Z) of such an involution can be studied as in the proof of Proposition A.3 (see

5There are cases where both equations Pe(−1) and P4e(5) are solvable and 5 ∤ e; for example, e = 29.
6This is a classical fact found for example in [Hu3, Lemma 3.1].
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also [BCNS, Lemma 5.2] when ε = −1). The conclusion is that there exist positive integers r
and s such that r2 − es2 = ε and a1 + b1

√
e = (r + s

√
e)2. The value ε = 1 would contradict

the minimality of the solution (a1, b1) to the equation Pe(1). Hence we have ε = −1 and (r, s)
is the minimal solution to the equation Pe(−1). In particular, ϕ∗ is a completely determined
involution of H2(S [2],Z) and, since ΨB

X is injective, Bir(S [2]) has at most 2 elements.

By [N, Theorem 110], the solutions to the equation P4e(5) are all given by ±x5x
m
1 ,

m ∈ Z, where x5 := a5 + 2b5
√
e and x1 := a1 + b1

√
e. The associated positive elements of

Z[
√
e] are ordered as follows

· · · < x5x
−2
1 ≤ x5x

−1
1 < x5x

−1
1 ≤ x̄ <

√
5 < x5 ≤ x5x1 < x5x1 ≤ x5x

2
1 < x5x

2
1 < · · ·

Still by [N, Theorem 110],

(a) either 5 | e, the conjugate solutions are the same, and x5 = x5x1;
(b) or 5 ∤ e, the conjugate solutions are different, and x < x5x

−1
1 .

Set x−1 := r + s
√
e, so that x1 = x2

−1. In case (a), we have x5x−1 = −x5x−1 and since
x5x−1x5x−1 = −5, we obtain e = 5. In that case, there is indeed a non-trivial birational
involution on S [2] (Example B.4).

In terms of the rays generated by aL2 − 2ebδ, where (a, b) is a solution to the equation
P4e(5), multiplying x = a+2b

√
e by x1 corresponds to applying the rotation R :=

(
a1 −b1

−eb1 a1

)
,

which sends the extremal ray R≥0L2 of the movable cone to its other extremal ray R≥0(a1L2−
eb1δ); the operation x 7→ x̄x1 therefore corresponds to applying the reflection R ( 1 0

0 −1 ) =(
a1 b1

−eb1 −a1

)
, which is the symmetry sD about the line spanned by the class D := b−1L2 − a−1δ

Geometrically, the situation is clear in case (b): we have exactly two rays inside Mov(S [2])
which are symmetric about the line RD. As explained in Remark 5.2(b), the three associated
chambers correspond to the hyperkähler fourfolds birational to S [2]: the “middle one” corre-
sponds to a fourfold X whose nef cone is preserved by the involution sD. There is a biregular
involution on X which induces a birational involution on S [2]. �

Example B.4 (The O’Grady involution). A general polarized K3 surface S of degree 10 is the
transverse intersection of the Grassmannian Gr(2,C5) ⊂ P(

∧
2C5) = P9, a quadric Q ⊂ P9,

and a P6 ⊂ P9. A general point of S [2] corresponds to V2,W2 ⊂ V5. Then

Gr(2, V2 ⊕W2) ∩ S = Gr(2, V2 ⊕W2) ∩Q ∩P6 ∩
∧

2(V2 ⊕W2)) ⊂ P2

is the intersection of two general conics in P2 hence consists of 4 points, including [V2] and
[W2]. The (birational) O’Grady involution S [2]

99K S [2] takes the pair of points ([V2], [W2]) to
the residual two points of this intersection.

References

[A] Addington, N., On two rationality conjectures for cubic fourfolds, Math. Res. Lett. 23 (2016), 1–13.
[AV] Amerik, E., Verbitsky, M., Teichmüller space for hyperkähler and symplectic structures, J. Geom.

Phys. 97 (2015), 44–50.
[BHT] Bayer, A., Hassett, B., Tschinkel, Y., Mori cones of holomorphic symplectic varieties of K3 type,
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