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GUSHEL–MUKAI VARIETIES: MODULI

OLIVIER DEBARRE AND ALEXANDER KUZNETSOV

Abstract. We describe the moduli stack of Gushel–Mukai varieties as a global quotient
stack and its coarse moduli space as the corresponding GIT quotient. The construction
is based on a comprehensive study of the relation between this stack and the stack of
Lagrangian data (as defined in [DK1, Section 3]); roughly speaking, we show that the
former is a generalized root stack of the latter. As an application, we define the period map
for Gushel–Mukai varieties and construct some complete nonisotrivial families of smooth
Gushel–Mukai varieties. In an appendix, we describe a generalization of the root stack
construction used in our approach to the moduli space.
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1. Introduction

This article is the third in the series started in [DK1, DK2] and devoted to the inves-
tigation of Gushel–Mukai (GM) varieties defined over a field k of characteristic zero. These
varieties are positive-dimensional, dimensionally transverse intersections

X = CGr(2, V5) ∩P(W ) ∩Q,

where CGr(2, V5) ⊂ P(k ⊕
∧

2V5) is the cone over the Grassmannian of two-dimensional
vector subspaces in a k-vector space V5 of dimension 5, P(W ) ⊂ P(k⊕

∧
2V5) is a projective

space of dimension n+ 4, and Q is a quadric hypersurface in P(W ). We have

dim(X) = n ∈ {1, . . . , 6}.

Various geometric characterizations of GM varieties can be found in [DK1, Section 2.3];
for instance, [DK1, Theorem 2.16] shows that smooth GM varieties of dimension n ≥ 3 are
exactly the Fano varieties of Picard rank 1, coindex 3, and degree 10.

In [DK1], we described the set of isomorphism classes of all GM varieties. In particu-
lar, we associated with each GM variety what we called a GM data set. Roughly speaking,
it is a collection (W,V6, V5, µ,q), where W , V6, and V5 are k-vector spaces of respective
dimensions n+ 5, 6, and 5, with V5 ⊂ V6, and

µ : W →
∧

2V5 and q : V6 → Sym2W∨

are k-linear maps. The map µ is the composition the embedding W →֒ k ⊕
∧

2V5 coming
from the definition of X with the projection onto the second summand, whereas the map q

is obtained by identifying V6 with the space of quadratic equations of X in P(W ). Under
this identification, the hyperplane V5 ⊂ V6 corresponds to the space of Plücker quadrics
defining CGr(2, V5) in P(k⊕

∧
2V5).

There are two types of smooth GM varieties: ordinary and special, distinguished by
the injectivity or the noninjectivity of the map µ. When the field k is quadratically closed,
there is a natural bijection between the set of isomorphisms classes of special GM varieties of
dimension n and the set of ordinary GM varieties of dimension n− 1 ([DK1, Lemma 2.33]).
On the other hand, special GM varieties can be obtained from ordinary GM varieties of the
same dimension by a specialization (except in the case n = 6, when there are no ordinary GM
varieties). However, they behave in a slightly different way and provide various complications
to the theory.

The first main result of [DK1], Theorem 2.9, provides a bijection between the set of
isomorphism classes of GM varieties of dimension n and an appropriate subset of the set of
isomorphism classes of GM data sets. After introducing in Sections 3.1 and 3.2 the stacks of
GM varieties and GM data, we present in Section 3.3 a version of this bijection that works
for families and promotes the bijection of sets of isomorphism classes to an isomorphism of
moduli stacks (see Theorem 3.7).

The second main result of [DK1], Theorem 3.6, relates GM data sets of ordinary GM
varieties to so-called Lagrangian data sets. These consist of triples (V6, V5, A), where V6 is a
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vector space of dimension 6, V5 ⊂ V6 is a hyperplane, and A ⊂
∧

3V6 is a subspace which is
Lagrangian for the det(V6)-valued symplectic form on

∧
3V6 given by wedge product. Theo-

rem 3.6 of [DK1] establishes a bijection between ordinary GM data sets of dimension n and
Lagrangian data sets such that dim(A∩

∧
3V5) = 5−n, as well as, (if k is quadratically closed)

using the bijection between ordinary and special GM data sets, a bijection between special
GM data sets of dimension n and Lagrangian data sets such that dim(A ∩

∧
3V5) = 6− n.

A nice feature of this bijection, proved in [DK1, Theorem 3.16], is that the smoothness
of the GM variety associated with a Lagrangian data set (V6, V5, A) only depends on A:
when n ≥ 3, the corresponding GM variety is smooth if and only if A has no decomposable
vectors, that is,

P(A) ∩ Gr(3, V6) = ∅,

the intersection being taken inside P(
∧

3V6).

The main goal of the present article is to combine all these constructions into a single
construction of the moduli stack of smooth GM varieties. In other words, we find analogs
of the above constructions that work for “mixed” families (with both ordinary and special
varieties as members). The main difficulty is that the GM/Lagrangian data sets bijection
of [DK1] does not work with these “mixed” families. Nevertheless, we define in Section 3.5
the stack of Lagrangian data that classifies all Lagrangian data sets (V6, V5, A) such that

dim(A ∩
∧

3V5) ∈ {5− n, 6− n}

and such that A has no decomposable vectors. We observe in Section 4.1 (see Proposi-
tion 4.1) that the natural family version of the construction from [DK1, Theorem 3.6] that
associates with a family of GM data (S,W ,V6,V5, µ,q) over a scheme S a family of La-
grangian data (S,V6,V5,A ) is still well defined and gives a morphism of stacks. However,
this morphism cannot be an isomorphism for the following simple reason.

For any family of GM data (S,W ,V6,V5, µ,q) over a scheme S, we define in Section 3.4
a closed subset SGM,spe ⊂ S corresponding to points of S that parameterize GM data sets of
special varieties and endow it with a natural scheme structure (Definition 3.11). Similarly,
given a family of Lagrangian data (S,V6,V5,A ), we consider the closed subset SLag,spe ⊂ S
corresponding to points of S such that dim(A ∩

∧
3V5) = 6− n and endow it with a natural

scheme structure (Definition 3.19). An important consequence of Proposition 4.1 is that
although the special loci of an S-family of GM data and of the associated S-family of
Lagrangian data are the same set-theoretically, they have different scheme structures: the
ideal of SLag,spe is the square of the ideal of SGM,spe. Consequently, if we start with a family
of Lagrangian data such that the ideal of its special locus is not a square, there is no
corresponding family of GM data!

However, we prove in Section 4.2 that the inverse construction can be made when the
ideal of the subscheme SLag,spe ⊂ S for an S-family of Lagrangian data is a square and SLag,spe

is a Cartier divisor in S (this second condition seems to be of technical nature but we do
not know how to make the inverse construction without it). This is the central construction
of the article. It is based on two vector bundle constructions which we develop in Section 2
and which are interesting by themselves.

The first is the canonical factorization construction of Proposition 2.8: given a mor-
phism of vector bundles ϕ : E → F of generic rank r over a scheme S, such that the rank
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of ϕ is everywhere at least r−1 and the degeneration scheme of ϕ is a Cartier divisor D ⊂ S,
we construct a canonical factorization

E ։ E1
ϕ1

−−→ F1 →֒ F ,

where E1 and F1 are vector bundles of rank r, the first map is an epimorphism, the last map
is a fiberwise monomorphism, and the map ϕ1 is an embedding of coherent sheaves whose
cokernel is a line bundle on D.

Given a family of Lagrangian data (S,V6,V5,A ) such that SLag,spe is a Cartier divisor
in S, we apply in Section 4.2 this construction to the composition

ϕ : A →֒
∧

3V6
λ3−−→

∧
2V5 ⊗ (V6/V5)

(where the second map is induced by the natural projection λ : V6 → V6/V5) and obtain a
factorization

(1) A ։ W ′ ϕ1

−−→ W ′′ →֒
∧

2V5 ⊗ (V6/V5).

The cokernel of the morphism ϕ1 is supported on the Cartier divisor D = SLag,spe. Assuming
that this divisor can be written as

D = 2E,

where E is also a Cartier divisor, we find a unique vector bundle W such that the mor-
phism ϕ1 factors as

W ′ ϕ′

−−→ W
ϕ′′

−−→ W ′′,

where both ϕ′ and ϕ′′ are embeddings of sheaves whose cokernels are line bundles on E. We
prove in Proposition 4.6 that (S,W ,V6,V5, µ,q), where µ is the composition

W
ϕ′′

−−→ W ′′ →֒
∧

2V5 ⊗ (V6/V5)

and the map q will be defined below, is a family of GM data corresponding to a smooth family
of GM varieties, whose associated family of Lagrangian data is equivalent to (S,V6,V5,A ).

The construction of the map q : V6 → Sym2W ∨ is carried out in three steps (there is
actually an extra line bundle twist on the target of q, but we will ignore it here for simplicity).
First, we define a map

qA : V6 −→ Sym2A ∨

by an explicit formula (35), which is just a family version of a formula used in the proof
of [DK1, Theorem 3.6]. We then observe that the kernel of the epimorphism A ։ W ′ is
contained in the kernel of qA , hence there is a morphism

(2) q′ : V6 −→ Sym2W ′∨

induced by qA . The last step is the construction of a map

(3) q : V6 −→ Sym2W ∨

such that (Sym2ϕ′T ) ◦ q = q′; it uses the second vector bundle construction from Section 2.

This second construction is explained in Section 2.5; we call it the Hecke transform of
a family of quadratic forms. It starts from a morphism V → Sym2E ∨ of vector bundles over
a scheme S (viewed as a family of quadrics in PS(E ) parameterized by PS(V )), a double
Cartier divisor D = 2E on S, and a line subbundle K ⊂ E |D contained in the kernel of
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all quadratic forms (restricted to D). We define a new vector bundle Ẽ on S by the exact
sequence

0 → Ẽ ∨ ǫ
−→ E ∨ → K ∨|E → 0

and check in Proposition 2.12 that there is a unique family of quadratic forms V → Sym2Ẽ ∨

such that the original family of quadratic forms is the composition of this family with Sym2ǫ.

We apply this construction to the family of quadratic forms q′ from (2), with V = V6

and E = W ′, taking D = SLag,spe and K = Ker(ϕ1|D : W ′|D → W ′′|D). The corresponding

Hecke transform W̃ ′ is just W , so Proposition 2.12 provides the required family q of quadratic
forms on W as in (3). We also prove in Proposition 2.12 that there is a canonical direct sum
decomposition

W |E ≃ (W ′|E)/(K |E)⊕ (K |E)(E)

which is orthogonal for all quadrics in the family q|E and which recovers the canonical direct
sum decomposition of [DK1, Proposition 2.30] for special GM data sets. This observation is
essential for proving that the constructed family of GM varieties is smooth.

In Section 5, we use the constructions of Section 4 to provide a description of the
stack of smooth GM varieties as a global quotient stack. We first fix a vector space V6 of
dimension 6 and consider the scheme

Sn =

{
(A, V5) ∈ LGr(

∧
3V6)×P(V ∨

6 )

∣∣∣∣
dim(A ∩

∧
3V5) ∈ {5− n, 6− n} and

A has no decomposable vectors

}
.

The condition dim(A∩
∧

3V5) ≥ 5−n is closed, while the conditions dim(A∩
∧

3V5) ≤ 6−n
and “A has no decomposable vectors” are open, so Sn ⊂ LGr(

∧
3V6) × P(V ∨

6 ) is a locally
closed subscheme. When n ∈ {3, 4, 5}, this scheme contains a closed subscheme Sn−1 and its
open complement Sn, defined by the conditions that dim(A ∩

∧
3V5) equals 6− n and 5− n

respectively, while S6 = S5. The fibers of the projection Sn → LGr(
∧

3V6) over a point [A]
are just the strata of the Eisenbud–Popescu–Walter stratification of P(V ∨

6 ) associated with
A (see [O1, Section 2] or Section 5.1) and the fibers of Sn are unions of these strata. In
particular, the schemes S6 and S5 are smooth, and for n ∈ {3, 4}, one has Sn−1 = Sing(Sn)
and both strata Sn−1 and Sn are Lagrangian intersection loci.

The construction of the moduli stack of smooth GM varieties of dimension n goes as
follows. Assume n ∈ {3, 4, 5} (the case n = 6 is slightly different and we skip it in this
introduction). It was proved in [DK3] that, if a certain divisibility condition holds in the
group Pic(Sn) (in fact it does not, but we will go back to this point later), there is a double
covering

S̃n −→ Sn

branched over Sn−1 such that S̃n is smooth. Note that codimSn
(Sn−1) = 6− n, so for n ≤ 4,

this is not a classical double covering branched over a hypersurface. We consider the quotient
stack

Ŝn := S̃n/µ2

with respect to the involution of the double covering (this is the canonical stack of Sn in
the terminology of [V]). This is a smooth Deligne–Mumford stack and the natural PGL(V6)-

action on the scheme Sn lifts to a PGL(V6)-action on Ŝn. Our main theorem, Theorem 5.11,
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states that there is an isomorphism

M
GM
n ≃ Ŝn/PGL(V6)

between the moduli stack MGM
n of smooth GM varieties of dimension n ∈ {3, 4, 5} and the

quotient stack Ŝn/PGL(V6).

The main step in the proof of this theorem is the construction of a family of smooth

GM varieties over the stack Ŝn or, more precisely, over a certain scheme ̂̂Sn that provides

a covering of Ŝn in the smooth topology (the morphism ̂̂Sn → Ŝn is actually a Gm-torsor).

There is also a double covering map from ̂̂Sn to a certain Gm-torsor over Sn which is branched

over the preimage of Sn−1. Consequently, pulling back from Sn, we construct on ̂̂Sn a family
of Lagrangian data (S,V6,V5,A ) with trivial V6 = V6 ⊗ O and (pullbacks of) tautological
bundles V5 and A . The Lagrangian special locus of this family is the scheme-theoretic
preimage of Sn−1, that is, the preimage of the branch locus of the double covering, hence its

ideal is the square of the ideal of a certain smooth subscheme in ̂̂Sn. Considering the blow

up β : S → ̂̂Sn of this subscheme, we arrive at the situation of Section 4.2.

Applying Proposition 4.6, we obtain a family (S,W ,V6,V5, µ,q) of GM data. We check

that this family is the pullback by β of a family of GM data on the scheme ̂̂Sn. Moreover,
this family is equivariant with respect to the natural action of the algebraic group

Gn = GL(V6)/µ3(5−n)

and thus descends to a family of GM data over

(4) ̂̂Sn/Gn ≃ Ŝn/PGL(V6).

This construction provides a morphism from the quotient stack Ŝn/PGL(V6) to the moduli
stack of GM data. For the construction in the opposite direction, we use the much simpler

procedure of Proposition 4.1 and a universal property of the stack Ŝn proved in Proposi-
tion A.6. Combining these two constructions, we obtain an isomorphism between the moduli
stack of smooth GM varieties and the global quotient stack (4).

To deal with the fact that the double covering S̃n → Sn does not exist (since the required
divisibility condition does not hold in Pic(Sn)), we note that the divisibility condition holds

locally over Sn, so the double covering exists locally. One can obtain the stack Ŝn by gluing
the quotients stacks of the local coverings, as in the standard construction of the root stack.

Alternatively, one can construct the stack Ŝn directly (see Appendix A). After that, the
construction goes as explained above.

To conclude this introduction, we mention that the global quotient stack description
of Theorem 5.11 gives, via GIT, a construction of the coarse moduli space for smooth GM
varieties (Theorem 5.15). This provides a foundation for the period map of GM varieties
that was discussed in [DK2] (see Proposition 6.1). We also use our results to construct in
Section 6.2 several examples of complete nonisotrivial families of smooth GM varieties.

Acknowledgements. We are grateful to Ariyan Javanpeykar and to Alex Perry for
interesting discussions and extremely useful comments on preliminary drafts of this article.
A.K. is also grateful to Sergey Gorchinskiy for sharing his understanding of stacks.
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2. Preliminaries on vector bundles

All schemes are over a fixed field k.

We first discuss some aspects of the theory of vector bundles on possibly nonreduced
schemes. Most of the material in Sections 2.1 and 2.2 is well known but we collect it for
the reader’s convenience. The results of Sections 2.3, 2.4, and 2.5 seem to be new and are
essential for our treatment of the stack of GM varieties.

2.1. Epimorphisms and fiberwise monomorphisms. Let S be a scheme. By a point

of S, we mean a K-point s : Spec(K) → S for some field K. A geometric point of S is a
K-point with K algebraically closed.

A vector bundle E on S is a locally free sheaf of OS-modules of constant finite rank.
Given a K-point s of S, we let Es be the K-vector space E ⊗OS

K, the fiber of E at s.

Lemma 2.1. A morphism ϕ : E → F between vector bundles on the scheme S is surjective

if and only if, for every geometric point s of S, the induced linear map ϕs : Es → Fs between

fibers is surjective.

Proof. Let C be the cokernel of ϕ. Since the tensor product functor is right exact, we have,
for each point s of S, an exact sequence

Es
ϕs

−−→ Fs → Cs → 0.

By Nakayama’s lemma, C = 0 if and only if Cs = 0 for every geometric point s of S. �

We say that ϕ is a fiberwise monomorphism if, for every geometric point s of S, the
morphism ϕs : Es → Fs is a monomorphism.

Lemma 2.2. A morphism ϕ : E → F between vector bundles on a scheme S is a fiberwise

monomorphism if and only if the dual map ϕ∨ : F∨ → E ∨ is surjective.

Proof. Since (E ∨)s = (Es)
∨, (F∨)s = (Fs)

∨, and (ϕ∨)s = (ϕs)
∨, the result follows from

Lemma 2.1. �

Epimorphisms and fiberwise monomorphisms enjoy the following nice properties.

Lemma 2.3. Let ϕ : E → F be a morphism between vector bundles on a scheme S.

If ϕ is surjective, Ker(ϕ) is a vector bundle and the natural map Ker(ϕ) → E is a

fiberwise monomorphism.

If ϕ is a fiberwise monomorphism, Coker(ϕ) is a vector bundle and the natural map

F → Coker(ϕ) is surjective.

Proof. The kernel is locally free since this is a local property and the kernel of an epimorphism
of projective modules over a ring is projective. Furthermore, since F is locally free, we have
Tor1(F ,K) = 0 for any K-point s of S, hence the sequence

0 → Ker(ϕ)s → Es → Fs → 0

is exact. By definition, the map Ker(ϕ) → E is therefore a fiberwise monomorphism. The
second part of the lemma follows by duality. �



8 O. DEBARRE AND A. KUZNETSOV

An effective Cartier divisor on a scheme is a subscheme locally defined by a regular
function which is not a zero divisor.

Lemma 2.4. Let S be a scheme, let i : D →֒ S be an effective Cartier divisor, let E be a

vector bundle on S, and let F be a vector bundle on D. If ϕ : E → i∗F is surjective, Ker(ϕ)
is a vector bundle on S.

Proof. We may assume that D is nonempty. Since D is a Cartier divisor, locally, the pro-
jective dimension of OD, hence also of i∗F , as an OS-module is 1. Therefore, the projective
dimension of Ker(ϕ) is 0, so Ker(ϕ) is locally free. �

2.2. Degeneration schemes. Let ϕ : E → F be a morphism between vector bundles on a
scheme S. For every nonnegative integer k, it induces a morphism

∧
kϕ :

∧
kE −→

∧
kF

locally given by the k × k-minors of a matrix of regular functions defining ϕ. The rank of ϕ
is the smallest integer r such that

∧
r+1ϕ = 0 (identically on S). In particular, ϕ = 0 if and

only if its rank is 0.

Given any nonnegative integer k, we define the rank-k degeneration scheme of ϕ as
the zero locus on S of the morphism

∧
k+1ϕ. If the rank of ϕ is r, we abbreviate its rank-

(r − 1) degeneration scheme to just degeneration scheme (the degeneration scheme of the
zero morphism is empty).

The morphism ϕ : E → F is generically surjective if its rank on every irreducible com-
ponent of S equals the rank of F . The cokernel of a generically surjective morphism is a
torsion sheaf supported on the degeneration scheme of ϕ.

If ϕ has rank r, for any K-point s of S, the rank of the K-linear map ϕs is at most r.
The converse may however not be true: if S = Spec(k[x]/x2), E = F = OS, and ϕ = x, the
rank of ϕ is 1 and ϕ is generically surjective, but ϕs = 0 at all points s of S. Its degeneration
scheme is Sred.

Lemma 2.5. Let ϕ : E → F be a morphism of positive rank r between vector bundles on a

scheme S. Assume that
∧

r−1ϕs does not vanish for any geometric point s of S.

The degeneration scheme of ϕ then equals the scheme-theoretic support of the sheaf

Coker(ϕ), that is, the subscheme corresponding to the annihilator ideal of Coker(ϕ). More-

over, the sheaf Coker(ϕ) is isomorphic to the pushforward of a line bundle on this subscheme.

Proof. For any K-point s of S, one of the (r−1)× (r−1)-minors of ϕ does not vanish in K,
hence it spans OS,s; this means that the first Fitting ideal of Coker(ϕ) (generated by the
(r−1)×(r−1)-minors of ϕ) is trivial ([E, Corollary-Definition 20.4]). By [E, Proposition 20.7],
the zeroth Fitting ideal (which defines the degeneration scheme of ϕ) is then equal to the
annihilator of Coker(ϕ).

To prove the second part, we base change to the support of Coker(ϕ). By [E, Corol-
lary 20.5], the first Fitting ideal of Coker(ϕ) is still trivial, while the zeroth Fitting ideal is
equal to zero; [E, Proposition 20.8] then implies that Coker(ϕ) is a line bundle. �

Lemma 2.5 can also be proved by the argument of Proposition 2.8 below.
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Lemma 2.6. Let ϕ : E → F be a morphism between vector bundles of rank r on a scheme S.
Assume that the degeneration scheme of ϕ is a Cartier divisor D on S.

We have Ker(ϕ) = 0 and Coker(ϕ) is supported scheme-theoretically on D.

Proof. Let L := det(E ∨)⊗det(F ). By definition of the degeneration scheme, the ideal of D
is generated by det(ϕ), so the assumption that D be a Cartier divisor means that det(ϕ),
viewed as a section of L , is not a zero divisor. Consider the diagram

0 // Ker(ϕ) // E
ϕ

//

det(ϕ)

��

F //

det(ϕ)

��

ϕ̂

yyss
ss
ss
ss
ss
s

Coker(ϕ) // 0

0 // Ker(ϕ)⊗ L // E ⊗ L
ϕ

// F ⊗ L // Coker(ϕ)⊗ L // 0

where ϕ̂ is the composition

F ≃
∧

r−1F∨ ⊗ det(F )
∧
r−1ϕ∨

−−−−−−→
∧

r−1E ∨ ⊗ det(F ) ≃ E ⊗ L ,

that is, ϕ̂ is the adjoint morphism of ϕ. In particular, the diagram commutes. It follows that
the morphism induced by det(ϕ) on Ker(ϕ) and Coker(ϕ) is zero, hence both sheaves are
supported on D. Since E is torsion free, it follows that Ker(ϕ) = 0. �

Lemma 2.7. Let ϕ : E → E ′ be a morphism between vector bundles on a scheme S, which
is surjective on the complement of an effective Cartier divisor, and let F be a vector bun-

dle on S. Then the map Hom(E ′,F )
◦ϕ

−−→ Hom(E ,F ) is injective. In other words, if a

morphism ψ : E → F factors through E ′, such a factorization is unique.

Proof. Let C be the cokernel of ϕ. By the left exactness of the Hom functor, it is enough to
show that Hom(C ,F ) = 0. The question is local, so we may assume F = OS. Moreover,
since the degeneration scheme is contained in an effective Cartier divisor, we may assume
that C is annihilated by a regular function f on S which is not a zero divisor. But the image
of any morphism C → OS is then annihilated by f , hence is zero. �

If we do not assume that the degeneration scheme is contained in an effective Cartier di-
visor, the conclusion of Lemma 2.7 may not hold. For example, let S = Spec(k[x, y]/(xy, y2)),
E = OS ⊕ OS, E ′ = F = OS, and ϕ = (x, y). Consider the nonzero map E ′ → F given
by y; its composition with ϕ is zero. The degeneration scheme of ϕ is defined by the maximal
ideal (x, y); it is a Weil divisor, but not a Cartier divisor.

2.3. Canonical factorization. The following canonical factorization of a morphism be-
tween vector bundles seems to be little known, but it will be crucial for our construction.

Proposition 2.8. Let ϕ : E → F be a morphism of positive rank r between vector bundles

on a scheme S. Assume that its degeneration scheme is a Cartier divisor D on S and

that
∧

r−1ϕs does not vanish for any geometric point s of S. There is a unique factorization

ϕ : E ։ E1
ϕ1

−−→ F1 →֒ F

such that

• E1 and F1 are vector bundles of rank r,
• the map E ։ E1 is an epimorphism,
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• the map F1 →֒ F is a fiberwise monomorphism,

• the map ϕ1 is a monomorphism and its cokernel is a line bundle on D.

Proof. For any such factorization, ϕ1 is injective by Lemma 2.6, hence E1 is the image of ϕ
and F1 is the dual of the image of ϕ∨, so the uniqueness is clear. It is therefore enough to
prove the proposition locally so we may assume that E and F are trivial vector bundles
and ϕ is given by a matrix of regular functions on S.

Let s be a geometric point on S. The rank of ϕs is either r or r − 1. If it is r, one of
the r× r-minors of ϕ is nonzero at s, hence is invertible in a neighborhood of s. Restricting
to such a neighborhood and considering appropriate bases for the fibers Es and Fs, we may
assume that the minor corresponds to the first r basis vectors in each basis. In other words,
the matrix has the form

ϕ =

(
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

)
,

where ϕ1,1 is a square matrix of size r with invertible determinant. The matrix ϕ1,1 is there-
fore invertible and, upon multiplying it by its inverse, we may assume that it is the iden-
tity matrix Ir. Applying elementary transformations to rows and columns, we may assume
that ϕ1,2 = ϕ2,1 = 0. The entries of the matrix ϕ2,2 are then (r + 1)× (r + 1)-minors of the
matrix ϕ, hence they all vanish. In a neighborhood of s, the map ϕ can therefore be written
as a composition of the epimorphism of E onto the trivial vector bundle of rank r (corre-
sponding to the first r basis vectors) and its fiberwise monomorphism into F . In particular,
ϕ1 is an isomorphism.

If the rank of ϕs is r − 1, restricting to a neighborhood of s and choosing bases
of Es and Fs appropriately, we may assume that ϕ is in the form as above, but where
now ϕ1,1 = Ir−1 and ϕ1,2 = ϕ2,1 = 0. Again, the entries of ϕ2,2 are the r × r-minors of ϕ,
hence they generate the ideal generated by the equation f of the Cartier divisor D. There-
fore, we can write ϕ2,2 = fϕ′

2,2; the ideal generated by the entries of ϕ′
2,2 is trivial, hence the

matrix ϕ′
2,2 vanishes nowhere.

On the other hand, the 2×2-minors of the matrix ϕ2,2 are equal to (some) (r+1)×(r+1)-
minors of ϕ, hence they all vanish identically; therefore (recall that f is not a zero divisor), the
same is true for the matrix ϕ′

2,2. Applying the same arguments as above, we can assume the
matrix ϕ2,2 has top left entry f and all other entries 0. In a neighborhood of s, the map ϕ
can thus be written as the composition of the epimorphism of E onto the trivial vector
bundle O⊕r (corresponding to the first r basis vectors), a map ϕ1 given by the diagonal
matrix diag(1, . . . , 1, f), and a fiberwise monomorphism from O⊕r into F . In particular, ϕ1

is a monomorphism and its cokernel is (locally) the structure sheaf of D. �

2.4. Families of quadratic forms and residual families. Let E and V be vector bundles
of respective ranks r and k on a scheme S and let

(5) q : V −→ Sym2E ∨

be a morphism of sheaves. We may think of q as a family E ⊗ E → V ∨ of quadratic forms
on E with values in V ∨.
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When V has rank 1, we define the discriminant subscheme Disc(q) ⊂ S of the family q

as the degeneration scheme of the associated morphism

E
q

−−→ E ∨ ⊗ V ∨

of rank-r vector bundles, that is, the zero locus of the induced section det(q) of the line
bundle det(E ∨)⊗2 ⊗ (V ∨)⊗r.

Let i : D →֒ S be an effective Cartier divisor. Let K ⊂ i∗E be a line subbundle
which is contained in the kernel of the quadratic forms i∗q. In other words, the composition

i∗V
i∗q

−−−→ Sym2(i∗E ∨) → i∗E ∨ ⊗ K ∨ vanishes (when V has rank 1, this implies that D is
contained in the discriminant Disc(q)). In this situation, we construct a family of quadratic
forms on the line bundle K over D as follows.

Let K̃ ⊂ E be a local extension over an open subset of S of the line subbundle

K ⊂ i∗E . The family of quadratic forms q induces a map V → Sym2E ∨ → Sym2K̃ ∨ which
by our assumption vanishes on the divisor D, hence factors through a map

V (D) −→ Sym2K̃ ∨.

Restricting it to D, we get a map

V (D)|D −→ Sym2K ∨

which we call the residual family of quadratic forms.

Lemma 2.9. The residual family of quadratic forms on D is independent of the choices

made.

If the rank of V is 1 and Disc(q) = D as subschemes of S, the rank of q on D is equal

to r − 1 and the residual family of quadratic forms vanishes nowhere on D.

Proof. Let s0 be a section of E extending locally a section generating K . Any other extension
can be written as s0+ ts for some section s of E , where t is a local equation of the divisor D.
The evaluation of q on this section is equal to

q(s0 + ts, s0 + ts) = q(s0, s0) + 2tq(s0, s) + t2q(s, s).

The factorization through V (D) is then given by

1

t

(
q(s0, s0) + 2tq(s0, s) + t2q(s, s)

)∣∣∣
t=0

=
(1
t
q(s0, s0) + 2q(s0, s)

)∣∣∣
t=0
.

It remains to note that q(s0, s) vanishes on D since s0 is in the kernel of i∗q.

Let us choose local trivializations of E and V such that q corresponds to a k-tuple
of symmetric matrices (qαij)1≤i,j≤r of regular functions on S (where α ∈ {1, . . . , k}) and the

section s0 (defining a local extension K̃ of K ) corresponds to the first basis vector of E .
The condition that K be in the kernel of i∗q then means

(6) qα1i = tq̄α1i for all 1 ≤ i ≤ r and all 1 ≤ α ≤ k,

and the residual quadric is just q̄α11|D.

When the rank of V is one (so we have just one symmetric matrix (qij)), we have

det(qij) ≡ tq̄11 det(qi,j)2≤i,j≤r (mod t2).
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The condition Disc(q) = D implies that the last factor det(qi,j)2≤i,j≤r is invertible (hence
the rank of q on D is r − 1) and q̄11 is invertible on D too, so that the residual family of
quadratic forms vanishes nowhere. �

2.5. Hecke transform of a family of quadratic forms. We continue working in the setup
of the previous section. The construction presented here (which we call Hecke transform) is
a generalization of the construction from [S, Lemma 1.14].

Definition 2.10. An effective Cartier divisor D is a double if there is an effective Cartier
divisor E on S such that D = 2E, that is, the ideal of D is the square of the ideal of E.

Assume that the effective Cartier divisor D considered in the previous section is a
double and write D = 2E. For any line subbundle K ⊂ E |D, we set

KE := K |E, K ∨
E := K ∨|E, ED := E |D, EE := E |E.

Since K is a line bundle on D and E is a Cartier divisor on S, the kernel of the natural

epimorphism E ∨ → K ∨
E is a vector bundle (Lemma 2.4). We denote by Ẽ its dual, so that

there is an exact sequence

(7) 0 → Ẽ ∨ → E ∨ → K ∨
E → 0

of sheaves on S, whose dual sequence can be written as

(8) 0 → E → Ẽ → KE(E) → 0.

The following lemma will be very useful later.

Lemma 2.11. Assume D = 2E. Let K ⊂ ED be a line subbundle contained in the kernel

of q|D. Define the vector bundle Ẽ by the exact sequence (7). The family of quadratic forms

q : V → Sym2E ∨ then factors through Sym2Ẽ ∨ in a unique way.

Proof. We can use a representation of q by a matrix (qαij) as in the proof of Lemma 2.9 with
the same conventions on the coordinates, assuming in particular that (6) holds. Let u be an
equation of E in S, so that the equation of D can be written as t = u2. The sequence (7)
can then be written in local coordinates on S as

(9) 0 → O⊕r
S

diag(u,1,...,1)
−−−−−−−−→ O⊕r

S −→ OE → 0.

The factorization condition that we want to prove just means that qα11 is divisible by u2

and qα12, . . . , q
α
1r are divisible by u; since t = u2, this follows from (6). The uniqueness of the

factorization follows from Lemma 2.7 applied to the symmetric square of (8). �

We denote by q̃ : V → Sym2Ẽ ∨ the induced map and call it the Hecke transform of q
with respect to the line subbundle K ⊂ ED.

Proposition 2.12. Let E and V be vector bundles of respective ranks r and k on a scheme S.
Let q : V → Sym2E ∨ be a family of quadratic forms on E with values in V ∨. Assume finally

that there exist a double Cartier divisor D = 2E and a line subbundle K ⊂ ED on D which

is contained in the kernel of q|D. Let q̃ : V → Sym2Ẽ ∨ be the Hecke transform of q with

respect to K .
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(a) The restriction of the sequence (8) to E splits and gives a canonical direct sum

decomposition

(10) ẼE ≃ (EE/KE)⊕ KE(E)

of the restriction ẼE of Ẽ to E.

(b) The summands of (10) are mutually orthogonal with respect to the quadratic form q̃|E.
Moreover, the restriction of q̃|E to the first summand of (10) is induced by q|E and the re-

striction of q̃|E to the second summand is the residual family of quadratic forms for q.

Proof. Consider the vector bundle Ê on S defined as the dual of the kernel of the natural
map E ∨ → K ∨. We have an exact sequence

(11) 0 → E → Ê → K (D) → 0.

By construction, the embedding E → Ê factors as E → Ẽ → Ê and the map Ẽ → Ê fits
into the exact sequence

(12) 0 → Ẽ → Ê → KE(2E) → 0.

Restricting (8), (12), and (11) to E, we obtain exact sequences

0 → KE → EE → ẼE → KE(E) → 0,(13)

0 → KE(E) → ẼE → ÊE → KE(2E) → 0,(14)

0 → KE → EE → ÊE → KE(2E) → 0.(15)

Since the composition of the middle arrows of (13) and (14) is the middle arrow of (15),

the composition KE(E) → ẼE → KE(E) is an isomorphism, hence the sheaf KE(E) is a

direct summand of ẼE . The sequence (13) identifies the other summand with EE/KE . This
proves (a).

Let us prove (b). The first map in (8) restricted to E can be written as a composition

EE ։ EE/KE →֒ ẼE .

Taking the symmetric square and dualizing, we see that the map Sym2Ẽ ∨
E → Sym2E ∨

E can
be written as the composition

Sym2Ẽ ∨
E ։ Sym2(EE/KE)

∨ →֒ Sym2E ∨
E .

By Lemma 2.11, the quadric q|E (considered as a map from V to Sym2E ∨
E ) factors through

Sym2Ẽ ∨
E as q̃|E. Hence it a fortiori factors through the middle term. Such a factorization is

nothing but the induced family of quadratic forms on EE/KE and the image of q̃|E is the
restriction of q|E to EE/KE . These two families of quadratic forms therefore coincide.

We now show that the summands in (10) are mutually orthogonal and that the re-
striction of q̃|E to the summand KE(E) is given by the residual family of quadratic forms.
The question is local, so we can assume that E , K , and V are trivialized as in the proof
of Lemma 2.9. Under these assumptions, the sequence (7) can be rewritten as in (9). This
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means that the matrix of q̃ is



qα
11
/u2 qα

12
/u ... qα

1r/u

qα
21
/u qα

22
... qα

2r

...
...

...
...

qαr1/u qαr2 ... qαrr


 .

In particular, its restriction to the summand KE(E) is given by (qα11/u
2)|E = (qα11/t)|E, which

is the residual family of quadratic forms. Moreover, if we set q̄α1i := qα1i/t for all i > 1 as in (6),
we have (qα1i/u)|E = (uq̄α1i)|E = 0, hence the summands in (10) are mutually orthogonal. �

3. The moduli stack of smooth GM varieties

In this section, we introduce the stack of GM varieties and the closely related stacks
of GM and Lagrangian data. We mostly work in the étale topology, but one can also work
with the fppf topology. From now on, we assume that the characteristic of the base field k

is zero.

3.1. The stack of GM varieties. We start with a definition of the stack of GM varieties.

Definition 3.1. A family of smooth polarized GM varieties of dimension n over a scheme S is a
pair (X → S,H ), where

• πX : X → S is a smooth and proper morphism,
• H ∈ PicX /S(S) is a relative πX -ample divisor class,

such that for every geometric point s of S,

• the pair (Xs,H |Xs
) is a smooth polarized GM variety of dimension n in the sense

of [DK1, Definition 2.1].

A morphism of families of GM varieties from (X → S,H ) to (X ′ → S ′,H ′) is a
pair (f, ϕ) giving a Cartesian square

(16) X
ϕ

//

πX

��

X ′

π
X ′

��

S
f

// S ′

such that H = ϕ∗H ′ in the relative Picard group PicX /S(S).

Families of smooth polarized GM varieties of dimension n form a category fibered in
groupoids over the category Sch/k of schemes over k; we denote it by M

GM
n .

Smooth GM varieties exist in each dimension n ∈ {1, . . . , 6}. A GM variety of dimen-
sion 1 is a Clifford general curve of genus 6 ([DK1, Proposition 2.12]) and a GM variety
of dimension 2 is a Brill–Noether general polarized K3 surface of genus 6 ([DK1, Proposi-
tion 2.13]) and their moduli stacks are well studied. Accordingly, we will concentrate in this
article on GM varieties of dimension n ∈ {3, 4, 5, 6}. There is then an isomorphism

PicX /S ≃ Z

between étale sheaves (see [DK1, Lemma 2.29]); over a connected scheme S, there is therefore
a unique choice of a relative divisor class H .
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Proposition 3.2 ([KP, Proposition A.2]). For n ∈ {2, . . . , 6}, the fibered category MGM
n is

a smooth and irreducible Deligne–Mumford stack of dimension 25 − (5 − n)(6 − n)/2. It is
of finite type over Q with affine diagonal of finite type.

We call MGM
n the moduli stack of smooth GM varieties of dimension n. We will see later

(Theorem 5.11) that MGM
n is separated.

3.2. The stack of GM data. GM data sets over a field were defined in [DK1, Defini-
tion 2.5]. It will be convenient to change the definition slightly as follows.

Definition 3.3. A normalized family of GM data of dimension n over a scheme S is a collec-
tion (S,W ,V6,V5, µ,q), where

• W , V6, and V5 are vector bundles on S of respective ranks n + 5, 6, and 5,
• V5 →֒ V6 is a fiberwise monomorphism,
• µ : W →

∧
2V5 ⊗ (V6/V5) and

• q : V6 → Sym2W ∨ ⊗ det(V5)⊗ (V6/V5)
⊗2 are morphisms between vector bundles,

such that the diagram

(17)

V5 ⊗ Sym2W

Sym2µ
��

�

�

// V6 ⊗ Sym2W

q

��

V5 ⊗ Sym2(
∧

2V5)⊗ (V6/V5)
⊗2 ∧

// det(V5)⊗ (V6/V5)
⊗2

(the bottom arrow is given by wedge product) commutes.

A morphism of normalized families (S,W ,V6,V5, µ,q) and (S ′,W ′,V ′
6 ,V

′
5 , µ

′,q′) of
GM data over schemes S and S ′ is a morphism f : S → S ′ and isomorphisms

ϕV : PS(V6)
∼−→PS(f

∗V ′
6 ) and ϕW : PS(W ) ∼−→PS(f

∗W ′)

such that ϕV (PS(V5)) = PS(f
∗V ′

5 ) and the following diagrams commute

PS(W )
ϕW

//

µ

��
✤

✤

✤
PS(f

∗W ′)

µ′

��
✤

✤

✤

PS(
∧

2V5)
∧

2ϕV
// PS(f

∗
∧

2V ′
5 )

and

PS(V6)
ϕV

//

q

��
✤

✤

✤
PS(f

∗V ′
6 )

q′

��
✤

✤

✤

PS(Sym
2W ∨) PS(f

∗ Sym2W ′∨).
Sym2ϕ∨

W
oo

It is sometimes convenient to express the commutativity of (17) as the equality

(18) q(v)(w1, w2) = v ∧ µ(w1) ∧ µ(w2) on V5 ⊗ Sym2W .

Families of normalized GM data of dimension n form a category fibered in groupoids over
the category Sch/k of schemes over k; we denote it by MGM-data

n .

Remark 3.4. One could alternatively define morphisms of families of GM data to be triples
(f, ϕ̃V , ϕ̃W ), where f is a morphism S → S ′ and

ϕ̃V : V6
∼−→ f ∗V ′

6 and ϕ̃W : W ∼−→ f ∗W ′
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are isomorphisms compatible with the subbundle V5 ⊂ V6 and the morphisms µ and q. This

also defines a category fibered in groupoids over Sch/k, which we denote M̃
GM-data
n and call

the category of linearized GM data.

Denoting by Ãut(S,W ,V6,V5, µ,q) the automorphisms group scheme in M̃GM-data
n , we

obtain an embedding of group schemes

Gm(S) −֒→ Ãut(S,W ,V6,V5, µ,q)(19)

u 7−→ (ϕ̃V = u, ϕ̃W = u3).

We have
Aut(S,W ,V6,V5, µ,q) ≃ Ãut(S,W ,V6,V5, µ,q)/Gm(S),

which essentially means that the fibered category of GM data is the rigidification ([ACV,
AGV]) of the fibered category of linearized GM data with respect to the embeddings (19).

This observation implies that any morphism in MGM-data
n over f : S → S ′ can be locally

over S ′ lifted to a morphism in M̃GM-data
n (and such a lifting is unique up to composition

with the action of Gm(S)). We will frequently use these liftings.

Lemma 3.5. The fibered categories MGM-data
n and M̃GM-data

n are stacks over Sch/k.

Proof. For the fibered category M̃GM-data
n , this is a consequence of the fact that quasicoherent

sheaves form a stack in the fppf topology: a family of linearized GM data is a collection of
quasicoherent sheaves and morphisms between them that satisfy some properties that are
stable under base change.

For the fibered category MGM-data
n , use [ACV, Theorem 5.1.5]. �

3.3. Equivalence of stacks. The main result of this section is a relation between the
stack MGM

n of smooth polarized GM varieties and an open substack of the stack MGM-data
n

of normalized GM data. To define this substack, we use the notion of a GM intersection
associated with a GM data set defined in [DK1, (2.8)].

Definition 3.6. A family (S,W ,V6,V5, µ,q) of normalized GM data of dimension n over a
scheme S is smooth if for each geometric point s in S, the GM intersection

⋂

v∈V6,s

{q(v) = 0} ⊂ P(Ws)

corresponding to the GM data set (Ws,V6,s,V5,s, µs,qs) is a smooth GM variety of dimen-
sion n.

By [DK1, Lemma 2.8], a GM intersection corresponding to a GM data set of di-
mension n is a smooth GM variety of dimension n if and only if the GM intersection has
dimension n and is smooth. As we will see in the proof of Lemma 3.8 below, n is the expected
dimension of the corresponding GM intersection, hence the condition for the GM intersection
to be a smooth GM variety of dimension n is open. Therefore, families of smooth normalized
GM data of dimension n are classified by an open substack of MGM-data

n .

Theorem 3.7. For each n ∈ {1, . . . , 6}, the stack of polarized GM varieties MGM
n is equiva-

lent to the open substack of MGM-data
n classifying families of smooth normalized GM data of

dimension n.
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Proof. Let (S,W ,V6,V5, µ,q) be a smooth family of normalized GM data over a scheme S
and let πPS(W ) : PS(W ) → S be the natural projection. We have

H0
(
PS(W ), π∗

PS(W )

(
V ∨
6 ⊗ det(V5)⊗ (V6/V5)

⊗2
)
⊗ OPS(W )(2)

)

≃ H0
(
S,V ∨

6 ⊗ det(V5)⊗ (V6/V5)
⊗2 ⊗ πPS(W )∗OPS(W )(2)

)

≃ H0
(
S,V ∨

6 ⊗ det(V5)⊗ (V6/V5)
⊗2 ⊗ Sym2W ∨

)

≃ Hom
(
V6, Sym

2W ∨ ⊗ det(V5)⊗ (V6/V5)
⊗2
)
.

Thus, the morphism q can be thought of as a global section

(20) q ∈ H0
(
PS(W ), π∗

PS(W )

(
V ∨
6 ⊗ det(V5)⊗ (V6/V5)

⊗2
)
⊗ OPS(W )(2)

)
.

Consider the subscheme X ⊂ PS(W ) defined as the zero locus of this global section. Define
the morphism πX : X → S as the restriction of the projection πPS(W ) : PS(W ) → S and
the polarization H on X as the restriction of the hyperplane class of PS(W ). Each geo-
metric fiber (Xs,H |Xs

) is a smooth polarized GM variety of dimension n. Moreover, the
map πX : X → S is proper by definition and flat by Lemma 3.8 below. Since all fibers are
smooth (by Definition 3.6), the map πX is also smooth. Thus, (X → S,H ) is a family of
smooth polarized GM varieties. This construction together with a relative version of [DK1,
Theorem 2.3] implies

(21) PS(W ) ≃ PS((πX ∗OX (H ))∨) and PS(V6) ≃ PS(πPS(W )∗IX /PS(W )(2)).

Similarly, given a morphism (f, ϕW , ϕV ) of families of GM data from (S,W ,V6,V5, µ,q)
to (S ′,W ′,V ′

6 ,V
′
5 , µ

′,q′), we consider the isomorphism

PS(W )
ϕW

−−−→ PS(f
∗W ′) ∼−→PS′(W ′)×S′ S.

Since ϕV and ϕW are compatible with q, it induces a morphism ϕ : X → X ′ such that (16) is
a Cartesian square. Moreover, by construction, we have ϕ∗H ′ = H in PicX /S(S). Therefore,
(f, ϕ) is a morphism of families of GM varieties.

This means that we have defined a morphism of stacks

ζ : MGM-data
n,smooth −→ M

GM
n

from the open substack of MGM-data
n classifying families of smooth normalized GM data of

dimension n to the stack MGM
n of smooth polarized GM varieties. It remains to prove that ζ

is an isomorphism of stacks.

Let us check that ζ is faithful: assume that (f1, ϕ1W , ϕ1V ) and (f2, ϕ2W , ϕ2V ) are
morphisms between GM data (S,W ,V6,V5, µ,q) and (S ′,W ′,V ′

6 ,V
′
5 , µ

′,q′) such that the
corresponding morphisms (f1, ϕ1) and (f2, ϕ2) between the corresponding families of GM
varieties X and X ′ are the same. Set f := f1 = f2 and ϕ := ϕ1 = ϕ2. By construction of ϕ,
there is a commutative diagram

X
ϕ

//

��

X ′

��

PS(W )
ϕiW

// PS(f
∗W ′) // P(W ′).
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By (21), the fiberwise linear span of X in PS(W ) isPS(W ), hence ϕ1W = ϕ2W . Furthermore,
there is a commutative diagram

PS(V6)

q

��

ϕiV
// PS′(V ′

6 )

q′

��

PS(Sym
2W ∨) PS′(Sym2W ′∨)

Sym2ϕ∨

iW
oo

in which the vertical arrows are embeddings (again by (21)) and the maps ϕiV become iso-
morphisms after base change to S. Since we already have ϕ1W = ϕ2W , the equality ϕ1V = ϕ2V

follows. This proves faithfulness.

Next, we check that ζ is full. Assume (S,W ,V6,V5, µ,q) and (S ′,W ′,V ′
6 ,V

′
5 , µ

′,q′)
are families of smooth normalized GM data, let (X → S,H ) and (X ′ → S ′,H ′) be the
corresponding families of GM varieties, and let (f, ϕ) be a morphism between them. We must
show that it comes from a morphism of GM data. By the stack property and the faithfulness
proved above, it is enough to prove this locally over S ′. Moreover, applying base change
along f , we can assume that S ′ = S and f = idS. Then ϕ : X → X ′ is an isomorphism, so
we can identify X and X ′ via ϕ.

By construction of the morphism ζ above, the line bundles OX (H ) = OPS(W )(1)|X
and OX (H ′) = OPS(W ′)(1)|X agree up to the pullback of a line bundle on S. Shrinking S if
necessary, we can assume that this line bundle is trivial, so we can choose an isomorphism

ϕH : OX (H ) ∼−→OX (H ′).

Using the formulas (21), we see that ϕH induces isomorphisms ϕW : PS(W ) ∼−→PS(W ′)
and ϕV : PS(V6)

∼−→PS(V ′
6 ). It is easy to see that these isomorphisms are compatible with

the subbundle V5 and the morphisms µ and q, so that (idS, ϕV , ϕW ) is an isomorphism of
GM data. Moreover, the isomorphism of GM varieties that it induces coincides with the one
we started from. This proves fullness.

Finally, we check that ζ is essentially surjective. Given a family (X → S,H ) of
smooth polarized GM varieties, we need to construct a family of smooth normalized GM
data (S,W ,V6,V5, µ,q) such that (X → S,H ) = ζ(S,W ,V6,V5, µ,q). Since we are dealing
with stacks and since we already proved that ζ is fully faithful, it is enough to construct this
locally over S. So we can assume that H is the class of a line bundle on X . Denoting it
by OX (H ) and following the proof of [DK1, Theorem 2.3], we set

(22) Ŵ := (πX ∗OX (H ))∨, V6 := π
PS(Ŵ )∗(IX (2)), L := πX ∗(

∧
2UX ⊗ OX (H )).

These are vector bundles of respective ranks n + 5, 6, and 1 on S.

To be more precise, we first define the bundle Ŵ by the first equality in (22) and

note that the natural rational map X 99K PS(Ŵ ) is regular and a closed embedding (both
statements can be verified fiberwise and follow from [DK1, Theorem 2.3]).

Then, we define the bundle V6 by the second equality in (22) (here IX (2) is the twist

of the ideal sheaf of X in PS(Ŵ ) by the square of the Grothendieck bundle on PS(Ŵ )).

Finally, we let UX be the excess conormal bundle for the embedding X → PS(Ŵ )
(see [DK1, Definition A.1]) and define the line bundle L by the third equality in (22).
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By [DK1, Theorem 2.3] again, there is a natural fiberwise monomorphism UX → π∗
X V6

inducing a regular map X → GrS(2,V6) and this map factors through GrS(2,V5) for a unique
subbundle V5 ⊂ V6 of rank 5.

Let us renormalize the bundle Ŵ by setting

W := Ŵ ⊗ (V6/V5)⊗ L .

In order to construct the morphisms µ and q, we use again the construction of [DK1, The-
orem 2.3] in a relative setting, which produces maps

µ̂ : L ⊗ Ŵ →
∧

2V5, q̂ : V6 → Sym2Ŵ ∨, ε : det(V5)
∼−→L ⊗2.

We then set
µ = µ̂⊗ idV6/V5

, q = ε−1 ◦ q̂.

The relation (18) is equivalent to the relation [DK1, (2.7)] (with W replaced by Ŵ ), which is
proved in [DK1, Lemma 2.7]. Thus, we obtain a family of normalized GM data on S. Finally,
by [DK1, Theorem 2.3] again, the family of GM varieties corresponding to this family of GM
data is isomorphic to (X → S,H ). �

The following lemma was used in the proof of Theorem 3.7.

Lemma 3.8. Let (S,W ,V6,V5, µ,q) be a family of normalized GM data over a scheme S.
Consider the subscheme X ⊂ PS(W ) defined as the zero locus of the global section (20) and
assume that for every geometric point s in S, the fiber Xs of X is a smooth GM variety of

dimension n. Then πX : X → S is a (flat) family of smooth GM varieties.

Proof. We only have to check that the morphism πX : X → S is flat. Locally over S,
the rational linear projection µ : PS(W ) 99K PS(

∧
2V5) can be lifted to a linear closed

embedding PS(W ) → PS(K ⊕
∧

2V5), where K is a vector bundle over S. Consider the
subscheme MX ⊂ PS(W ) defined as the zero locus of

q|V5
∈ H0

(
PS(W ), π∗

PS(W )

(
V ∨
5 ⊗ det(V5)⊗ (V6/V5)

⊗2
)
⊗ OPS(W )(2)

)
.

By the commutativity of (17), this subscheme can be represented as

MX = PS(W )×PS (
∧
2V5⊕K ) ConePS(K ) GrS(2,V5),

where ConePS(K ) GrS(2,V5) ⊂ PS(K ⊕
∧

2V5) is the cone over the relative Grassman-
nian GrS(2,V5) with vertex PS(K ). Furthermore, on MX , the map q defines a section

qV6/V5
∈ H0

(
MX , π∗

MX

(
det(V5)⊗ (V6/V5)

)
⊗ OPS(W )(2)|MX

)

whose zero locus is the subscheme X ⊂MX ⊂ PS(W ).

Since every fiber of X → S has dimension n, every fiber of MX has dimension
at most n + 1. On the other hand, it is the intersection of a codimension-3 subvariety
ConePS(K ) GrS(2,V5) ⊂ PS(

∧
2V5 ⊕ K ) with the linear projective subbundle PS(W ) of

dimension n+ 4, hence each fiber has dimension at least n+ 1. Combining these two obser-
vations, we see that each fiber of MX has dimension n+ 1, hence the intersection (the fiber
product) defining MX is dimensionally transverse.

Let us show that MX is flat over S. The cone ConePS(K ) GrS(2,V5) is flat over S
and MX is cut in it by relative hyperplane sections. Since the intersection is dimensionally



20 O. DEBARRE AND A. KUZNETSOV

transverse, each of these hyperplanes decreases the dimension of fibers by 1, hence they form
a regular sequence at every fiber. This implies flatness of MX over S.

Finally, as observed above, X is the zero locus of a global section of a line bundle
onMX and each fiber of X has codimension 1 in the corresponding fiber ofMX . Therefore,
this global section is not a zero divisor at every fiber, hence X is also flat over S. �

We can restate Theorem 3.7 as follows.

Corollary 3.9. For each n ∈ {1, . . . , 6}, the stack MGM
n of smooth polarized GM varieties

of dimension n is equivalent to the stack MGM-data
n,smooth of smooth normalized GM data of dimen-

sion n.

From now on, we will identify the stacks MGM
n and MGM-data

n,smooth by using the equiva-

lence above. In particular, we will sometimes think of an S-point of the stack MGM
n as a

family (S,W ,V6,V5, µ,q) of smooth normalized GM data over S.

3.4. The ordinary and special substacks. Let (X → S,H ) be a family of smooth
GM varieties. Consider the corresponding family (S,W ,V6,V5, µ,q) of GM data. There is a
commutative diagram

(23)

V5 ⊗ det(V5)
∨ ⊗ ((V6/V5)

∨)⊗2 ⊗ W
q

,,❩❩❩❩
❩❩❩❩❩

❩❩❩❩❩
❩

µ

��

W ∨

∧
2V ∨

5 ⊗ (V6/V5)
∨,

µT

22❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

where the vertical arrow is defined as the composition of the map µ with the canonical
morphism V5 ⊗ det(V5)

∨ ⊗
∧

2V5 →
∧

2V ∨
5 . The commutativity of (23) follows from the

commutativity of (17).

Lemma 3.10. The cokernels of the horizontal maps in (23) are isomorphic. They are line

bundles on a closed subscheme of S.

Proof. Let us show that the arrow µ in (23) is surjective. By Lemma 2.1, this can be done
pointwise, so it is enough to consider the case where S is the spectrum of an algebraically
closed field K. Then, (S,W ,V6,V5, µ,q) is just a normalized GM data set (W,V6, V5, µ,q)
over K.

Assume that the map µ is not surjective. Trivializing det(V5) and V6/V5 for simplicity,
we can rewrite the nonsurjectivity condition as follows: there is an element ξ ∈

∧
2V5 such

that the subspace W0 = Im(µ) ⊂
∧

2V5 is orthogonal to the space V5 ∧ ξ ⊂
∧

3V5, that is,

V5 ∧ ξ ⊂W⊥
0 .

The space P(V5 ∧ ξ) contains quite a lot of decomposable vectors—if ξ is decomposable,
P(V5 ∧ ξ) ≃ P2 consists of decomposable vectors only, while if ξ has rank 4, P(V5 ∧ ξ) ≃ P4

contains a P3 of decomposable vectors. But by [DK1, Proposition 3.13], the space W⊥
0 is

equal to A∩
∧

3V5, where A ⊂
∧

3V6 is the Lagrangian subspace associated with X by [DK1,
Theorem 3.6]. By [DK1, Theorem 3.16], for smooth GM varieties of dimension n ≥ 3, it
contains no decomposable vectors, and for smooth GM curves and surfaces, it contains at
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most a curve of decomposable vectors ([DK1, Remark 3.17]). The arrow µ in (23) is therefore
surjective.

The isomorphism between the cokernels of the horizontal arrows then follows by ab-
stract nonsense. Finally, the rank of the cokernel sheaves is at most 1 by [DK1, Proposi-
tion 2.28]. Therefore, it is a line bundle on a subscheme of S by Lemma 2.5. �

Definition 3.11. Given a GM data set over a scheme S, consider the cokernel sheaf

(24) C := Coker(µT ) ≃ Coker(q)

discussed in Lemma 3.10 and denote by SGM,spe ⊂ S its (closed) scheme-theoretic support
(we call it the GM-special locus) and by JGM,spe ⊂ OS its ideal.

By Lemma 2.5, the scheme SGM,spe is the degeneration scheme for both morphisms µT

and q in (23). We further define

SGM,ord := S r SGM,spe

to be the open complement of SGM,spe in S (we call it the GM-ordinary locus).

Lemma 3.12. For each n ∈ {1, . . . , 6}, there is an open substack MGM
n,ord ⊂ MGM

n and a

closed substack MGM
n,spe ⊂ MGM

n such that

M
GM
n,ord(S) = {(X → S,H ) ∈ M

GM
n (S) | Sspe = ∅},

M
GM
n,spe(S) = {(X → S,H ) ∈ M

GM
n (S) | Sspe = S}.

Moreover, MGM
n,ord is the open complement of the closed substack MGM

n,spe ⊂ MGM
n .

Proof. It is enough to prove that the formation of the GM-ordinary SGM,ord ⊂ S and GM-
special SGM,spe ⊂ S loci is functorial in S, that is, that it is compatible with base change.
This follows from the fact that the formation of the cokernel sheaf commutes with base
change (since the pullback functor is right exact). �

By [DK1, Section 2.5], the open substack M
GM
n,ord ⊂ M

GM
n classifies families of smooth

ordinary GM varieties of dimension n, while the closed substack MGM
n,spe ⊂ MGM

n classifies
families of smooth special GM varieties.

In the case n = 2, consider also the open substack

(25) M
GM
2,ord,ss ⊂ M

GM
2,ord

that classifies strongly smooth ordinary GM surfaces ([DK1, Definition 3.15]).

Lemma 3.13. The stacks MGM
n,ord for n ∈ {2, . . . , 5} and the stacks MGM

n,spe for n ∈ {3, . . . , 6}
are smooth Deligne–Mumford stacks of finite type over Q with affine diagonals of finite type.

We have

dim(MGM
n,ord) = 25− (5− n)(6− n)/2, dim(MGM

n,spe) = 25− (6− n)(7− n)/2.

In particular, for n ∈ {3, . . . , 6}, the stack MGM
n,spe has codimension 6− n in MGM

n .

For n ≥ 4, the stack MGM
n,spe is a µ2-gerbe over the stack MGM

n−1,ord, and the stack MGM
3,spe

is a µ2-gerbe over the stack M
GM
2,ord,ss.
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Proof. Since MGM
n,ord is an open substack in MGM

n , it inherits the properties of the latter
established in Proposition 3.2; in particular, it has the same dimension.

We show next that for n ≥ 4, the stack MGM
n,spe is a µ2-gerbe over the stack MGM

n−1,ord.
Consider the Gm-gerbes

M̃
GM-data
n,spe → M

GM
n,spe, M̃

GM-data
n−1,ord → M

GM
n−1,ord

obtained by passing to linearized data (see Remark 3.4), so that the arrows are rigidifica-

tions functors with respect to the natural Gm-actions. We will show that M̃GM-data
n,spe is a µ2-

gerbe over M̃GM-data
n−1,ord and that the corresponding µ2- and Gm-actions on objects of M̃GM-data

n,spe

commute. This will prove that, after passing to Gm-rigidifications, there is a morphism of
stacks MGM

n,spe → MGM
n−1,ord which is a µ2-gerbe.

To be more precise, we will show that M̃GM-data
n,spe is the root stack over M̃GM-data

n−1,ord asso-
ciated with its line bundle det(V6) in the sense of [AGV, Section B.1] (in fact, this is the
reason why we pass to stacks of linearized data, since the line bundle det(V6) is just not
defined on the stack MGM-data

n−1,ord ). For this, we check that the groupoid of linearized fami-
lies (S,W ,V6,V5, µ,q) of special GM data of dimension n over a scheme S is equivalent to
the groupoid of linearized families (S,W0,V6,V5, µ0,q0) of ordinary GM data of dimension
n− 1 equipped with a line bundle W1 and an isomorphism

q1 : Sym2W1
∼−→ det(V6).

Indeed, given a family of special linearized GM data over a scheme S, we set

W1 := Ker(W
µ

−−→
∧

2V5 ⊗ (V6/V5)).

This is a line bundle because, by definition of special GM data and Lemma 3.10, the map µ
has constant rank n+4, while W is a vector bundle of rank n+5. Furthermore, we consider
the map

V6 ⊗ Sym2W1 →֒ V6 ⊗ Sym2W
q

−−→ det(V5)⊗ (V6/V5)
⊗2 ∼−→ det(V6)⊗ (V6/V5).

By (18), this map vanishes on the subbundle V5 ⊗ Sym2W1 ⊂ V6 ⊗ Sym2W1 hence factors
through a morphism (V6/V5) ⊗ Sym2W1 → det(V6)⊗ (V6/V5). Twisting it by (V6/V5)

∨, we
obtain a morphism

Sym2W1 −→ det(V6)

which we denote by q1. It is surjective by Lemma 2.1 and [DK1, Lemma 2.33], hence an iso-
morphism by Lemma 2.3, since its source and target are both line bundles. Finally, by [DK1,
Proposition 2.30], there is a canonical direct sum decomposition W ≃ W0 ⊕ W1 (orthogonal
with respect to all quadrics). We denote by µ0 and q0 the restrictions of µ to W0 and of q
to V6 ⊗ Sym2W0. By [DK1, Lemma 2.33], (S,W0,V6,V5, µ0,q0) is a linearized family of ordi-
nary GM data of dimension n− 1. This defines a functor between the groupoids (the action
of the functor on morphisms is obvious).

Conversely, assume we are given a family (S,W0,V6,V5, µ0,q0) of ordinary GM data of
dimension n− 1, a line bundle W1, and an isomorphism q1 : Sym2W1

∼−→ det(V6). We set

W := W0 ⊕ W1, µ = (µ0, 0), q = q0 ⊕ q1,
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where, by an abuse of notation, we denote by q1 the map

V6 ⊗ Sym2W1 ։ (V6/V5)⊗ Sym2W1
q1

−−→ (V6/V5)⊗ det(V6)
∼−→ det(V5)⊗ (V6/V5)

⊗2.

By [DK1, Lemma 2.33], this is a family of smooth special GM data of dimension n.

It is straightforward to see that the constructed functors are mutually inverse, so the

groupoids are equivalent, hence M̃GM-data
n,spe is the root stack over M̃GM-data

n−1,ord and MGM
n,spe is

a µ2-gerbe over MGM
n−1,ord.

For n = 3, the argument is the same; the only difference is that the ordinary GM
surface associated with a smooth special GM threefold is automatically strongly smooth
(see [DK1, Section 3.4]).

This implies that MGM
n,spe is a smooth Deligne–Mumford stack and gives its dimension.

The other properties of M
GM
n,spe follow from Proposition 3.2, since it is a closed substack

in MGM
n . The statement about the codimension is a simple computation. �

Remark 3.14. The proof of Lemma 3.13 shows that the automorphism group scheme of each
object of the stack MGM

n,spe contains the constant group scheme µ2 and that the morphism of

stacks MGM
n,spe → MGM

n−1,ord is the µ2-rigidification.

3.5. Lagrangian data. In [DK1, Section 3], we explained the relation between GM and
Lagrangian data sets. We now define families of Lagrangian data and show that they form
a stack.

Definition 3.15. A family of Lagrangian data over a scheme S is a quadruple (S,V6,V5,A ),
where V6 is a vector bundle of rank 6 on S, V5 ⊂ V6 is a subbundle of corank 1, and A ⊂

∧
3V6

is a Lagrangian subbundle.

A morphism between families of Lagrangian data (S,V6,V5,A ) and (S ′,V ′
6 ,V

′
5 ,A

′) is
a pair (f, ϕ) fitting into a Cartesian square

PS(V6)
ϕ

//

��

PS′(V ′
6 )

��

S
f

// S ′

and such that ϕ(PS(V5)) = PS′(V ′
5 ) and (

∧
3ϕ)(PS(A )) = PS′(A ′).

Families of Lagrangian data form a category fibered in groupoids over the category
Sch/k, which we denote MLag.

Remark 3.16. As for GM data (see Remark 3.4), we can define a category M̃
Lag of families

of linearized Lagrangian data (fibered in groupoids over Sch/k) with the same objects as
in MLag but with morphisms defined as pairs (f, ϕ̃) formed by a morphism f : S → S ′ and
an isomorphism ϕ̃ : V6

∼−→ f ∗V ′
6 such that ϕ̃(V5) = f ∗V ′

5 and (
∧

3 ϕ̃)(A ) = f ∗A ′.

Denoting by Ãut(S,V6,V5,A ) the automorphism group scheme in M̃Lag, we obtain an
embedding of group schemes

(26) Gm(S) −֒→ Ãut(S,V6,V5,A )
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that takes an invertible function u to the automorphism given by ϕ̃ = u. We have

Aut(S,V6,V5,A ) ≃ Ãut(S,V6,V5,A )/Gm(S)

and the fibered category of Lagrangian data is the rigidification of the fibered category of
linearized Lagrangian data with respect to the embeddings (26).

This observation implies that any morphism in MLag over f : S → S ′ can be locally

over S ′ lifted to a morphism in M̃Lag (and such a lifting is unique up to the composition
with the action of Gm(S)). In what follows, we will frequently use such a lifting.

The argument of the proof of Lemma 3.5 implies the following.

Lemma 3.17. The fibered categories MLag and M̃Lag are stacks over Sch/k.

Given a family of Lagrangian data (S,V6,V5,A ), we consider the natural epimorphism

λ : V6 −→ V6/V5.

For each p ∈ {1, . . . , 6}, it extends by the Leibniz rule to an epimorphism

λp :
∧

pV6 −→
∧

p−1V5 ⊗ (V6/V5)

whose kernel is the subbundle
∧

pV5 ⊂
∧

pV6.

Definition 3.18. We say that a family of Lagrangian data (S,V6,V5,A ) has rank k if the
composition

(27) ϕ : A −֒→
∧

3V6
λ3−−→

∧
2V5 ⊗ (V6/V5)

has rank k and
∧

k−1ϕs does not vanish for any geometric point s in S. We say that the La-
grangian data avoids decomposable vectors if, for each geometric point s in S, the Lagrangian
subspace As ⊂

∧
3V6,s contains no decomposable vectors, that is, P(As) ∩ Gr(3,V6,s) = ∅.

The above two conditions define a locally closed substack in MLag classifying families
of Lagrangian data of rank k avoiding decomposable vectors. We denote it by M

Lag
k . We will

show later (Proposition 5.7) that this stack is a global quotient stack.

Finally, we define the special and ordinary loci for Lagrangian data.

Definition 3.19. Given a family (V6,V5,A ) of Lagrangian data on a scheme S, of rank k, we
denote by

SLag,spe ⊂ S

the degeneracy locus of the composition ϕ and by JLag,spe ⊂ OS its ideal (it is generated by
the k × k-minors of ϕ). We call SLag,spe the Lagrangian special locus of S. Its complement

SLag,ord = S r SLag,spe

is called the Lagrangian ordinary locus.

As in the proof of Lemma 3.12, this gives rise to a closed substack M
Lag
k,spe ⊂ M

Lag
k of

special Lagrangian data and an open substack M
Lag
k,ord ⊂ M

Lag
k of ordinary Lagrangian data,

such that MLag
k,ord is the open complement of MLag

k,spe ⊂ M
Lag
k .
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4. Relation between families of GM and Lagrangian data

We consider below two constructions relating GM data to Lagrangian data. We pay
special attention to the relation between their special loci.

4.1. From families of GM data to families of Lagrangian data. Let (S,W ,V6,V5, µ,q)
be a family of smooth normalized GM data. We construct over the same scheme S an
associated family of Lagrangian data avoiding decomposable vectors (Definition 3.18).

Our construction is a relative (and normalized) version of the construction of the proof
of [DK1, Theorem 3.6] (with “the odd part” omitted). We consider the diagram

(28) V5 ⊗ W ⊗ (V6/V5)
∨

f1
//
∧

3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)
∨)

f2
//

f3
��

W ∨ ⊗ det(V6)

∧
3V6

with morphisms defined by

f1(v ⊗ w) = (−v ∧ µ(w), v ⊗ w),

f2(ξ, v ⊗ w)(w′) = ξ ∧ µ(w′) + q(v)(w,w′),

f3(ξ, v ⊗ w) = ξ + v ∧ µ(w)

(we omit factors corresponding to line bundles, which do not matter here). We have f2◦f1 = 0
by (18) and f3 ◦ f1 = 0. If we set

(29) A := Ker(f2)/ Im(f1),

the morphism f3 induces a morphism A →
∧

3V6.

Proposition 4.1. Let (S,W ,V6,V5, µ,q) be a family of smooth normalized GM data of

dimension n ≥ 3. Define A by (29). Then (S,V6,V5,A ) is a family of Lagrangian data of

rank n + 5 avoiding decomposable vectors. This defines a morphism of stacks

a : MGM
n −→ M

Lag
n+5

(S,W ,V6,V5, µ,q) 7−→ (S,V6,V5,A ).

Moreover, the Lagrangian and GM special loci in S coincide set-theoretically but not neces-

sarily scheme-theoretically: we have

JLag,spe = J 2
GM,spe,

that is, the ideal of the Lagrangian special locus is the square of the ideal of the GM special

locus.

Proof. Checking that A is a vector bundle of rank 10 (it is enough for that to check that f2
is an epimorphism and that f1 is a fiberwise monomorphism) and that the map A →

∧
3V6

induced by f3 is a fiberwise monomorphism can be done pointwise and thus follows from the
proof of [DK1, Theorem 3.6].

We now show that A has the Lagrangian property, that is, that the composition

(30) A ⊗ A −→
∧

3V6 ⊗
∧

3V6
∧

−−→ det(V6)
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vanishes identically. It is not enough to prove this property pointwise, since the scheme S
might be nonreduced, but it is enough to check it locally. It will be convenient to compose (30)
with the isomorphism λ6 : det(V6)

∼−→ det(V5)⊗ (V6/V5). We will also use the definition (29)
of A and the fact that the map A →

∧
3V6 is induced by f3. The resulting composition

(
∧

3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)
∨))⊗ (

∧
3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)

∨))

f3∧f3
−−−−→ det(V6)

λ6−−→ det(V5)⊗ (V6/V5)

is given by

(31) (ξ1, v1 ⊗ w1)⊗ (ξ2, v2 ⊗ w2) 7−→ λ6
(
(ξ1 + v1 ∧ µ(w1)) ∧ (ξ2 + v2 ∧ µ(w2))

)
.

It is thus enough to check that (31) vanishes on Ker(f2)⊗Ker(f2).

Since ξ1 and ξ2 are sections of
∧

3V5, we have ξ1∧ξ2 = 0. Choosing locally a direct sum
decomposition V6 = V5 ⊕ (V6/V5) and a generator v0 for the second summand, we can write

vi = v′i + λ(vi)v0, with v′i ∈ V5,

where we think of λ(vi) as of a scalar. We can rewrite the right side of (31) as

λ6(ξ1∧v2 ∧ µ(w2)) + λ6(v1 ∧ µ(w1) ∧ ξ2) + λ6(v1 ∧ µ(w1) ∧ v2 ∧ µ(w2))

=− λ(v2)ξ1 ∧ µ(w2) + λ(v1)ξ2 ∧ µ(w1)

+ λ(v1)v
′
2 ∧ µ(w1) ∧ µ(w2)− λ(v2)v

′
1 ∧ µ(w1) ∧ µ(w2)

=− λ(v2)(ξ1 ∧ µ(w2) + q(v′1)(w1, w2)) + λ(v1)(ξ2 ∧ µ(w1) + q(v′2)(w1, w2))

=− λ(v2)(ξ1 ∧ µ(w2) + q(v1)(w1, w2)) + λ(v2)λ(v1)q(v0)(w1, w2)

+ λ(v1)(ξ2 ∧ µ(w1) + q(v2)(w1, w2))− λ(v1)λ(v2)q(v0)(w1, w2)

=− λ(v2)f2(ξ1, v1 ⊗ w1)(w2) + λ(v1)f2(ξ2, v2 ⊗ w2)(w1)

(in the first equality, we use the Leibniz rule for λ6 and the fact that λ vanishes on ξi
and on µ(wi), as well as the relation λ2(v1 ∧ v2) = λ(v1)v2 − λ(v2)v1 = λ(v1)v

′
2 − λ(v2)v

′
1;

in the second equality, we use (18); in the third equality, we use the definition of v′i;
and in the last equality, we use the definition of f2 and cancel out two summands equal
to ±λ(v1)λ(v2)q(v0)(w1, w2)). It follows that the map (31) vanishes identically on the sub-
bundle Ker(f2)⊗Ker(f2), hence the induced map vanishes identically on A .

Consider now the map ϕ defined by (27). It is induced by the composition of the maps
in the top row and the right column of the diagram

(32)

Ker(f2)
�

�

//

����

∧
3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)

∨)
f3

//

(0,λ)

��

∧
3V6

λ3

��

A
ν

// W
µ

//
∧

2V5 ⊗ (V6/V5).

The right square of the diagram is commutative because λ3 vanishes on
∧

3V5 and λ2 vanishes
on

∧
2V5. The arrow (0, λ) vanishes on Im(f1) ⊂ Ker(f2) hence factors through A , thus
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defining the arrow ν. Therefore, we obtain a commutative diagram

(33)

A �

�

//

ν

��

ϕ

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

∧
3V6

λ3

��

W
µ

//
∧

2V5 ⊗ (V6/V5).

The rank of W is n+5, hence the rank of ϕ is at most n+5. The fact that it is at least n+4 at
each geometric point of S can be verified pointwise and follows from [DK1, (3.9)]. Also, [DK1,
(3.9) and Theorem 3.16] proves that A has no decomposable vectors (this is the only place
where we use the condition n ≥ 3). Thus, (S,V6,V5,A ) is a family of Lagrangian data of
rank n+ 5 avoiding decomposable vectors.

Let us show that the association a : MGM
n → M

Lag
n+5 that takes a family of smooth

normalized GM data (S,W ,V6,V5, µ,q) to the family of Lagrangian data (S,V6,V5,A ),
where A is defined by (29), is a morphism of stacks, meaning that it is defined on morphisms.

Assume for simplicity that f = idS (the general case reduces to this by base change).
A morphism of families of GM data from (S,W ,V6,V5, µ,q) to (S,W ′,V ′

6 ,V
′
5 , µ

′,q′) is
then given by a pair of isomorphisms ϕV : PS(V6)

∼−→PS(V
′
6 ) and ϕW : PS(W ) ∼−→PS(W

′)
over S. The first can be lifted to an isomorphism

ϕ̃V : V6
∼−→V ′

6 ⊗ δ

for an appropriate line bundle δ on S. Using compatibility with the morphism µ, we conclude
that ϕW lifts to an isomorphism

ϕ̃W : W ∼−→W ′ ⊗ δ⊗3.

It is straightforward to see that the pair (ϕ̃V , ϕ̃W ) defines a morphism from the diagram (28)
to the analogous diagram for the family of GM data (S,W ′,V ′

6 ,V
′
5 , µ

′,q′) twisted by δ⊗3. It
follows that the morphism

∧
3ϕ̃V :

∧
3V6 →

∧
3V ′

6 ⊗ δ⊗3 takes A to A ′ ⊗ δ⊗3. Therefore, we
have

∧
3ϕV (PS(A )) = PS(A

′), hence ϕV is a morphism between the associated families of
Lagrangian data. This operation is compatible with compositions of morphisms and takes
the identity to the identity, hence a is a morphism of stacks.

Finally, consider the special locus of the family of Lagrangian data constructed above.
Its ideal JLag,spe is generated by the (n+ 5)× (n+5)-minors of the map ϕ defined by (27).
Because of the factorization in (33) (and since the rank of W is n+5), every such minor is the
product of a minor of ν and a minor of µ of the same size. Consequently, the ideal JLag,spe is
the product of two ideals, one generated by the minors of ν and the other generated by the
minors of µ. The latter ideal is by definition equal to the ideal JGM,spe defining the special
GM locus. To finish the proof, we must show that the minors of ν generate the same ideal.

Since the left vertical arrow in (32) is surjective, this ideal coincides with the ideal gen-
erated by the minors of the map Ker(f2) → W , that is, by Lemma 2.5, with the annihilator

of the cokernel of this map. Since f2 is surjective, the cokernel of the map Ker(f2)
(0,λ)
−−→ W

is isomorphic to the cokernel of the map

∧
3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)

∨)
(0,λ)+f2

−−−−−−→ W ⊕ (W ∨ ⊗ det(V6)).
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Since (0, λ) is surjective, this sheaf is isomorphic to the cokernel of the map Ker(0, λ)
f2

−−→
W ∨ ⊗ det(V6). Altogether, this means

Coker(ν) ≃ Coker
(∧

3V5 ⊕ (V5 ⊗ W ⊗ (V6/V5)
∨)

(µ,q)
−−−−→ W ∨ ⊗ det(V6)

)
.

By Lemma 3.10, the images of the two components of this map coincide, hence the cokernel
of their sum equals to the cokernel of each of them, that is,

(34) Coker(ν) ≃ C ,

where C is the cokernel sheaf of the family of GM data as defined in (24). The annihilator
of Coker(ν) is thus again the ideal JGM,spe of the GM special locus. �

Remark 4.2. The argument of Proposition 4.1 also applies to families of smooth normalized
GM data of dimension n = 2 such that the corresponding GM varieties are strongly smooth
([DK1, Definition 3.15]) ordinary GM surfaces since, by [DK1, (3.9) and Theorem 3.16], the
corresponding Lagrangian subspaces have no decomposable vectors. It defines a morphism
of stacks MGM

2,ord,ss → M
Lag
7 .

We will need some properties of the construction presented above. Consider the family

qA : V6 ⊗ Sym2A −→ det(V5)⊗ (V6/V5)
⊗2(35)

v ⊗ a1 ⊗ a2 7−→ −λ4(v ∧ a1) ∧ λ3(a2)

of quadratic forms on A (the formula is symmetric in ξ1 and ξ2 by the Lagrangian property
of A ; see the proof of [DK1, Theorem 3.6] for details).

Lemma 4.3. The quadratic form on A defined by (35) is equal to the form induced by q

via the map ν : A → W .

Proof. Let v be a local section of V6 and let a1 and a2 be local sections of A . Choose a lift
of ai to a local section (ξi, vi ⊗ wi) of Ker(f2) ⊂

∧
3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)

∨). We have

λ4(v ∧ f3(ξ1, v1 ⊗ w1)) = λ4(v ∧ (ξ1 + v1 ∧ µ(w1))) = λ(v)ξ1 + λ2(v ∧ v1) ∧ µ(w1)

and
λ3(f3(ξ2, v2 ⊗ w2)) = λ3(ξ2 + v2 ∧ µ(w2)) = λ(v2)µ(w2).

Therefore,

qA (v)(a1, a2) = −λ4(v ∧ f3(ξ1, v1 ⊗ w1)) ∧ λ3(f3(ξ2, v2 ⊗ w2))

= −(λ(v)ξ1 + λ2(v ∧ v1) ∧ µ(w1)) ∧ λ(v2)µ(w2)

= −λ(v2)λ(v)ξ1 ∧ µ(w2)− λ(v2)λ2(v ∧ v1) ∧ µ(w1) ∧ µ(w2).

On the other hand, since (ξ1, v1⊗w1) is in the kernel of f2, we have ξ1∧µ(w2) = −q(v1)(w1, w2).
Using this and (18), the above equals

λ(v2)λ(v)q(v1)(w1, w2)− λ(v2)λ2(v ∧ v1) ∧ µ(w1) ∧ µ(w2) =

q(λ(v2)λ(v)v1 − λ(v2)λ2(v ∧ v1))(w1, w2).

It remains to observe that λ(v2)λ(v)v1 − λ(v2)λ2(v ∧ v1) = λ(v1)λ(v2)v, so that finally

qA (v)(a1, a2) = λ(v1)λ(v2)q(v)(w1, w2) = q(v)(λ(v1)w1, λ(v2)w2) = q(v)(ν(a1), ν(a2)).

This is precisely the compatibility we were claiming. �
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Lemma 4.4. Assume that the GM special locus SGM,spe of a smooth family of normalized

GM data is a Cartier divisor. The map (27) of the corresponding family of Lagrangian data

then factors as

A

    
❆❆

❆❆
❆❆

❆❆

ν
// W

!!❈
❈❈

❈❈
❈❈

❈❈

µ
//
∧

2V5 ⊗ (V6/V5)

W ′

>>⑥⑥⑥⑥⑥⑥⑥⑥

W ′′,
.

�

==⑤⑤⑤⑤⑤⑤⑤⑤

where W ′ and W ′′ are vector bundles of rank n + 5, the left diagonal arrow is an epimor-

phism, the right diagonal arrow is a fiberwise monomorphism, the inner diagonal arrows are

monomorphisms, and their cokernels are line bundles on the subscheme SGM,spe.

Proof. Let W ′ be the image of ν (so that the map A → W ′ is surjective). We have an exact
sequence

0 → W ′ → W → Coker(ν) → 0.

By (34) and Lemma 3.10, Coker(ν) is a line bundle on SGM,spe. Since SGM,spe is a Cartier
divisor, we conclude that W ′ is a vector bundle (Lemma 2.4). Analogously, considering the
dual of the map µ, we construct the vector bundle W ′′ and the other factorization. �

4.2. From families of Lagrangian data to families of GM data. As in the previous
section, we assume n ≤ 5. Let (S,V6,V5,A ) be a family of Lagrangian data of rank n + 5
avoiding decomposable vectors. Let SLag,spe ⊂ S be its special locus. Assume additionally
that SLag,spe is a double Cartier divisor (Definition 2.10), that is,

(36) SLag,spe = 2E

(equivalently, JLag,spe = I 2
E), where E is an effective Cartier divisor. We will construct

from (S,V6,V5,A ) a family of smooth normalized GM data on S.

Consider the map (27). By definition, its rank is n + 5, it is at least n + 4 at every
geometric point, and SLag,spe is its degeneration scheme. Since SLag,spe is a Cartier divisor,
Proposition 2.8 applies and implies that the map can be written as a composition

A ։ W ′ → W ′′ →֒
∧

2V5 ⊗ (V6/V5),

where W ′ and W ′′ are vector bundles of rank n + 5, the left arrow is an epimorphism, the
right arrow is a fiberwise monomorphism, and the middle map is a monomorphism whose
cokernel W ′′/W ′ is a line bundle on SLag,spe = 2E. Tensoring over O2E the exact sequence
0 → OE(−E) → O2E → OE → 0 with W ′′/W ′, we obtain an exact sequence

0 → (W ′′/W ′)⊗O2E
OE(−E) → W ′′/W ′ → (W ′′/W ′)⊗O2E

OE → 0,

where both the first and the last terms are line bundles on E. Moreover, this is the unique
representation of W ′′/W ′ as an extension of two line bundles on E.

We define W as the kernel of the map W ′′
։ W ′′/W ′

։ (W ′′/W ′) ⊗O2E
OE, so that

we have a factorization

(37) ϕ : A ։ W ′ → W → W ′′ →֒
∧

2V5 ⊗ (V6/V5),

where W ′, W , and W ′′ are vector bundles of rank n+5, the two middle maps are monomor-
phisms, and W /W ′ and W ′′/W are line bundles on E. This is the unique factorization of ϕ
with these properties.
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We define the map
µ : W −→

∧
2V5 ⊗ (V6/V5)

as the composition of the third and the fourth arrows in (37) and the map

ν : A −→ W

as the composition of the first and the second arrows. With these definitions, we have again
a commutative square (33).

Lemma 4.5. The family of quadratic forms qA : V6⊗Sym2A → det(V5)⊗(V6/V5)
⊗2 defined

by (35) induces a family of quadratic forms q : V6 ⊗ Sym2W → det(V5)⊗ (V6/V5)
⊗2.

Proof. We will proceed in two steps. First, we show that qA induces a family q′ of quadratic
forms on W ′. Since A ։ W ′ is surjective, it is enough to show that its kernel bundle is
contained in the kernel of qA . This is obvious, since the kernel of that map is contained in
the kernel of λ3 (by definition of W ′) which in turn is contained in the kernel of qA by (35).

We then show that the family of quadratic forms q′ on W ′ induces a family of quadratic
forms on W given by the Hecke transform of q′ as defined in Lemma 2.11. We set

E := W ′ K := W ′′/W ′(−2E), V := V6 ⊗ det(V5)
∨ ⊗ (V6/V5)

∨.

Restricting the sequence 0 → W ′ → W ′′ → W ′′/W ′ → 0 to 2E, we obtain

0 → K → W ′
2E → W ′′

2E → W ′′/W ′ → 0,

thus the line bundle K on 2E is the kernel of the map W ′
2E → W ′′

2E . In particular, it is a line
subbundle in E2E . Moreover, K is contained in the kernel of the map W ′ →

∧
2V5⊗ (V6/V5)

restricted to 2E, hence, by definition of qA in (35), it is contained in the kernel of q′.

We are therefore in the setup of Lemma 2.11. By definition of W , there is an exact
sequence

0 → W ′ → W → KE(E) → 0.

Comparing with (8), we see that the bundle W ≃ Ẽ can be identified with the Hecke
transform of W ′ with respect to K , and Lemma 2.11 provides it with a family of quadratic
forms. �

We can now prove the main result of this section.

Proposition 4.6. The collection (S,W ,V6,V5, µ,q) constructed above is a family of smooth

normalized GM data of dimension n. Its special locus coincides scheme-theoretically with the

Cartier divisor E.

Proof. To show that (S,W ,V6,V5, µ,q) is a family of GM data, we only have to verify (18).
Since q is induced by qA , it is enough to check that qA (v)(a1, a2) = v ∧ µ(ν(a1))∧ µ(ν(a2))
for v ∈ V5. But this follows from the equality λ4(v∧ξ) = −v∧λ3(ξ) for v ∈ V5 and ξ ∈

∧
3V6,

and the commutativity of (33).

The statement about the special locus is also clear, since by construction, the map µ is
a composition W → W ′′ →֒

∧
2V5⊗ (V6/V5), where the second map is a fiberwise monomor-

phism and the degeneration scheme of the first map is equal to E.

It remains to show that the family of GM data is smooth, that is, that for each geometric
point s of S, the GM intersection corresponding to the GM data at the point s is smooth.
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If s /∈ E, then Ws = W ′
s is the image of the map As

(λ3)s
−−−−→

∧
2V5,s ⊗ (V6/V5)s and

the quadratic form q on it is induced by the form qA on As. Therefore, by [DK1, The-
orem 3.6], the corresponding GM intersection is just the ordinary GM variety associated
with the Lagrangian subspace As ⊂

∧
3V6,s, which has no decomposable vectors, and the

hyperplane V5,s ⊂ V6,s. It is smooth by [DK1, Theorem 3.16].

Now assume s ∈ E. For brevity, we write V6, V5, A,W
′,W,W ′′ and so on for the fibers

of the corresponding vector bundles at the geometric point s. We also choose a trivialization
for V6/V5 to get rid of it in the formulas. Consider the restriction

(38) A։ W ′ → W →W ′′ →֒
∧

2V5

of the sequence (37) to s. Denote by KA, K
′, and K the respective kernels of the first three

maps in (38). We have dim(KA) = 5 − n and dim(K ′) = dim(K) = 1. Since the rank of
the composition of the maps in (38) is n + 4 (because s is a point of the special locus), it
follows that K ′ is equal to the kernel of the composition W ′ → W →

∧
2V5. Therefore the

map µ : W →
∧

2V5 is injective on W0 = ν(A). In particular, we have a canonical direct sum
decomposition

(39) W = K ⊕W0.

Note that (W0, V6, V5, µ|W0
,q|W0

) is a GM data set corresponding to a smooth GM variety X0

of dimension n− 1: this follows from [DK1, Theorem 3.6 and Theorem 3.16].

The direct sum decomposition (39) coincides with the direct sum decomposition of
Proposition 2.12(a) (its construction is the same). Therefore, by Proposition 2.12(b), the
decomposition is orthogonal with respect to the quadrics q(v) for all v ∈ V6. Furthermore,
the subspace K is contained in the kernel of the quadric q(v) for all v ∈ V5, since (18) holds
and K is the kernel of µ. It follows that

MX =
⋂

v∈V5

{q(v) = 0} ⊂ P(W )

is the cone with vertex P(K) ⊂ P(W ) over the Grassmannian hull MX0
⊂ P(W0) of X0

(see [DK1, Section 2.4]) and, if v0 ∈ V6 r V5, the last quadric q(v0) can be written as the
sum q(v0) = q1 ⊕ q0, where q1 ∈ Sym2K∨ and q0 ∈ Sym2W∨

0 is the equation of X0 in MX0
.

If q1 6= 0, then X is the double covering of MX0
branched over X0, that is, the special

GM variety associated with X0 (see [DK1, Lemma 2.33]). In particular, X is a smooth GM
variety. If q1 = 0, then X is the cone over MX0

. It remains to show that q1 6= 0. For this
we recall from Proposition 2.12(b) that q1 is the residual quadric of q′(v0). We describe it
below.

For a general vector v0 ∈ V6 r V5, we have A ∩ (v0 ∧
∧

2V6) = 0 (see Remark 5.3).
Consider the family of quadratic forms q(v0) in a small neighborhood S0 of s in S. Upon
shrinking S0, we may assume that the vector bundle V6 is trivial with fiber V6, that

∧
3V6 ⊗ O =

∧
3V5 ⊕ (v0 ∧

∧
2V6)⊗ O

is a Lagrangian direct sum decomposition, and that A ∩ (v0 ∧
∧

2V6)⊗ O = 0 at all points
of S0. By [DK1, Lemma C.5], we obtain

Coker(qA (v0) : A → A ∨) ≃ Coker(ϕ∨ :
∧

2V ∨
5 → A ∨)
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(where we assume that the line bundles det(V5) and V6/V5 are trivial on S
0). Since the kernel

of the epimorphism A ։ W ′ is contained in the kernels of both qA (v0) and ϕ, we can cancel
it out and obtain

Coker(q′(v0) : W ′ → W ′∨) ≃ Coker(
∧

2V ∨
5 → W ′∨).

The rightmost map factors as an epimorphism
∧

2V ∨
5 → W ′′∨ followed by the dual of the map

W ′ → W ′′. Dualizing the sequence 0 → W ′ → W ′′ → W ′′/W ′ → 0 and taking into account
that W ′′/W ′ is a line bundle on the Cartier divisor 2E (by construction of the bundles
W ′ and W ′′ at the beginning of Section 4.2), we deduce that Coker(

∧
2V ∨

5 → W ′∨) is a
line bundle on 2E, hence so is Coker(q′(v0) : W ′ → W ′∨). By Lemma 2.5, the discriminant
Disc(q′(v0)) is equal to 2E and by Lemma 2.9, the residual quadric q1 is nonzero.

As explained above, this means that the GM intersection corresponding to the point s
is a smooth GM variety of dimension n. �

4.3. Compositions of the constructions. We show that the constructions introduced in
Sections 4.1 and 4.2 are mutually inverse.

Let S be a scheme and let E ⊂ S be an effective Cartier divisor. Denote by

M
GM
n (S,E) = {(S,W ,V6,V5, µ,q) ∈ M

GM
n (S) | SGM,spe = E},

M
Lag
n+5(S,E) = {(S,V6,V5,A ) ∈ M

Lag
n+5(S) | SLag,spe = E}

the subgroupoids of MGM
n (S) and M

Lag
n+5(S) (defined in Sections 3.1 and 3.5) formed by all

families of smooth normalized GM data of dimension n (resp. by all families of Lagrangian
data of rank n + 5 avoiding decomposable vectors) over S whose special loci is E.

Proposition 4.7. Assume n ∈ {3, 4, 5}. For every effective Cartier divisor E ⊂ S, the

morphism of stacks a defined in Proposition 4.1 induces an equivalence of groupoids

M
GM
n (S,E) ∼−→M

Lag
n+5(S, 2E).

Proof. By Proposition 4.1, the morphism of stacks a doubles the special locus, hence induces
a functor between the groupoids MGM

n (S,E) → M
Lag
n+5(S, 2E). Let us show that the construc-

tion of Section 4.2 defines its quasi-inverse functor. This construction is clearly functorial,
so it remains to consider its compositions with a.

Let us start with a family of smooth normalized GM data (S,W ,V6,V5, µ,q) with
special locus E and let (S,V6,V5,A ) be the family of Lagrangian data obtained by applying
the morphism a. Its special locus is 2E by Proposition 4.1. Applying the construction of
Section 4.2 to (S,V6,V5,A ), we must show that the family of GM data that we get is
isomorphic to the original one.

The first step of the construction of Section 4.2 is the factorization (37) of the mor-
phism ϕ defined by (27). Comparing it with the factorization of Lemma 4.4 and using the
uniqueness of such a factorization (Proposition 2.8), we deduce that the bundles W ′, W ,
W ′′, and the maps ν and µ defined by this factorization agree with those in the lemma. It
remains to show that the quadratic forms q agree. This follows from the compatibility of
Lemma 4.3 and the uniqueness of the induced quadratic form.

Conversely, let us start with a family of Lagrangian data (S,V6,V5,A ). We produce a
family (S,W ,V6,V5, µ,q) of smooth normalized GM data by the constructions of Section 4.2
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and apply the functor a. In other words, we consider the diagram (28) and our goal is to show
that the cohomology bundle Ker(f2)/ Im(f1) of its upper row is isomorphic to the Lagrangian
subbundle A ⊂

∧
3V6 we started with.

For this, we consider the map

f4 : V6 ⊗ A ⊗ (V6/V5)
∨ −→

∧
3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)

∨)

v ⊗ a 7−→ (λ4(v ∧ a), v ⊗ ν(a)).

We have

f2 ◦ f4(v ⊗ a)(w′) = λ4(v ∧ a) ∧ µ(w
′) + q(v)(ν(a), w′).

For w′ = ν(a′), we have µ(w′) = µ(ν(a′)) = λ3(a
′), hence the right side equals

−qA (v)(a, a′) + q(v)(ν(a), ν(a′)) = 0,

since q is induced by qA via the map ν. This means that the composition

V6 ⊗ A ⊗ A ⊗ (V6/V5)
∨ ν
−−→ V6 ⊗ A ⊗ W ⊗ (V6/V5)

∨ f2◦f4
−−−−→ det(V6)

vanishes. Since ν is surjective on the complement of a Cartier divisor, it follows from
Lemma 2.7 that f2 ◦ f4 = 0. Therefore, the map f4 factors through the kernel of f2.

Furthermore, the restriction of f4 to V5 ⊗ A ⊗ (V6/V5)
∨ can be rewritten as

f4(v ⊗ a) = (λ4(v ∧ a), v ⊗ ν(a)) = (−v ∧ λ3(a), v ⊗ ν(a)) = f1(v ∧ ν(a)),

hence the composition V6 ⊗ A ⊗ (V6/V5)
∨ f4
−−→ Ker(f2) → Ker(f2)/ Im(f1) factors as

V6 ⊗ A ⊗ (V6/V5)
∨ λ
−−→ A −→ Ker(f2)/ Im(f1).

Finally, by the commutativity of (33), we have

f3 ◦ f4(v ⊗ a) = f3(λ4(v ∧ a), v ⊗ ν(a)) = λ4(v ∧ a) + v ∧ µ(ν(a)) = λ(v)a.

Together with the above observation, this means that the composition

A −→ Ker(f2)/ Im(f1)
f3

−−→
∧

3V6

is the embedding of A . Since both A and Ker(f2)/ Im(f1) are Lagrangian subbundles
in

∧
3V6, they are isomorphic. �

Remark 4.8. The same argument proves that there is an equivalence MGM
2,ord,ss(S)

∼−→M
Lag
7 (S)

of groupoids, where MGM
2,ord,ss ⊂ MGM

2,ord is the substack defined by (25).

We finish this section by stating a combination of the above results (including Theo-
rem 3.7) which is a simplified version of Proposition 4.7.

Corollary 4.9. Let (S,V6,V5,A ) be a family of Lagrangian data of rank n + 5, avoiding
decomposable vectors, and such that its special locus is a double Cartier divisor SLag,spe = 2E.
There is a unique family of smooth GM varieties (S,X → S,H ) such that (S,V6,V5,A ) is
obtained from the corresponding family of GM data by the morphism a.

This corollary will be used later for constructing interesting families of GM varieties.
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5. Descriptions as global quotients

We describe the moduli stacksMGM
n andMLag

n (defined in Sections 3.1 and 3.5) as global
quotients stacks and derive a description of their coarse moduli spaces as the corresponding
GIT quotients.

5.1. EPW sextics. Let V6 be a 6-dimensional k-vector space and let A ⊂
∧

3V6 be a
Lagrangian subspace for the det(V6)-valued symplectic form defined by wedge product.

Definition 5.1. For any integer ℓ, we set

(40) Y ≥ℓ
A :=

{
[v] ∈ P(V6) | dim

(
A ∩ (v ∧

∧
2V6)

)
≥ ℓ

}

and endow it with a scheme structure as in [O1, Section 2]. The locally closed subsets

(41) Y ℓ
A := Y ≥ℓ

A r Y ≥ℓ+1
A

of P(V6) form the Eisenbud–Popescu–Walter (EPW) stratification and the sequence of inclu-
sions

P(V6) = Y ≥0
A ⊃ Y ≥1

A ⊃ Y ≥2
A ⊃ · · ·

is called the EPW sequence. When the scheme YA := Y ≥1
A is not the whole space P(V6), it is

a sextic hypersurface ([O1, (1.8)]) called an EPW sextic. The scheme Y ≥2
A is nonempty and

has everywhere dimension ≥ 2 ([O1, (2.9)]).

The following theorem gathers various results of O’Grady’s (see [DK1, Theorem B.2];
all these results were proved for k = C but, by the Lefschetz principle, they extend to any
field k of characteristic zero).

Theorem 5.2 (O’Grady). Let A ⊂
∧

3V6 be a Lagrangian subspace. If A contains no de-

composable vectors, that is P(A) ∩ Gr(3, V6) = ∅, then

(a) YA is an integral normal sextic hypersurface in P(V6);
(b) Y ≥2

A = Sing(YA) is an integral normal Cohen–Macaulay surface of degree 40;

(c) Y ≥3
A = Sing(Y ≥2

A ) is finite and smooth, and is empty for A general;

(d) Y ≥4
A is empty.

Remark 5.3. It follows that if A contains no decomposable vectors, we have A∩(v0∧
∧

2V6) = 0
for general v0 ∈ V6. We used this observation in the proof of Proposition 4.6.

If A ⊂
∧

3V6 is a Lagrangian subspace, its orthogonal A⊥ ⊂
∧

3V ∨
6 is also a Lagrangian

subspace. In the dual projective space P(V ∨
6 ) = Gr(5, V6), the EPW sequence for A⊥ can be

described in terms of A as

(42) Y ≥ℓ
A⊥ =

{
V5 ∈ Gr(5, V6) | dim(A ∩

∧
3V5) ≥ ℓ

}
.

The canonical identification Gr(3, V6) ≃ Gr(3, V ∨
6 ) induces an isomorphism between the in-

tersections P(A) ∩ Gr(3, V6) and P(A⊥) ∩ Gr(3, V ∨
6 ) ([O3, (2.82)]). In particular, A contains

no decomposable vectors if and only if the same holds for A⊥.

We will not need this fact, but if A contains no decomposable vectors, the hypersur-
faces YA and YA⊥ are projective dual ([O2, Corollary 3.6] or [DK1, Proposition B.3]).

If k = C and A contains no decomposable vectors, O’Grady defined in [O4, Section 1.2]

a canonical double cover ỸA → YA (called the double EPW sextic). This construction was
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generalized in [DK3, Theorem 5.2] to other EPW strata; it works over an arbitrary field k

of characteristic different from 2 and provides canonical double coverings

Ỹ ≥0
A → Y ≥0

A , Ỹ ≥1
A → Y ≥1

A , Ỹ ≥2
A → Y ≥2

A

branched over Y ≥1
A , Y ≥2

A , and Y ≥3
A , respectively (the first of these is the usual double covering

of P(V6) branched over the EPW sextic hypersurface). We denote the quotient stacks of these
coverings by their natural involutions by

(43) Ŷ ≥ℓ
A := Ỹ ≥ℓ

A /µ2.

They come with natural maps

ρℓA : Ŷ
≥ℓ
A −→ Y ≥ℓ

A .

For ℓ = 0, we obtain the root stack of P(V6) with respect to the EPW sextic hypersurface.

Consider the natural action of the group PGL(V6) on the Lagrangian Grassman-
nian LGr(

∧
3V6) and its natural linearization in the line bundle O(2) (note that the line

bundle O(1) does not admit a linearization). O’Grady showed ([O6]) that the GIT quotient

MEPW := LGr(
∧

3V6)//PGL(V6)

is a coarse GIT moduli space for double EPW sextics. The following lemma will be crucial
for us.

Lemma 5.4 (O’Grady). The hypersurface

Σ := {A ∈ LGr(
∧

3V6) | A has decomposable vectors}

is PGL(V6)-invariant and its complement

LGradv(
∧

3V6) = LGr(
∧

3V6)r Σ

is affine and consists of stable points. In particular, the stabilizer PGL(V6)A ⊂ PGL(V6) of

any A ∈ LGradv(
∧

3V6) is finite.

Proof. The stability statement is proved in [O6, Corollary 2.5.1] (over k = C, but stability
is defined over the algebraic closure ([MFK, Definition 1.7]) and by the Lefschetz principle,
stability over C implies stability over any algebraically closed field of characteristic zero)
and the rest is easy. �

The hypersurface Σ ⊂ LGr(
∧

3V6) has degree 42, the degree of Gr(3, V6). We denote
by ΣEPW the image of Σ in MEPW. Its complement

(44) MEPW := MEPW
rΣEPW = LGradv(

∧
3V6)//PGL(V6)

is affine; it is a coarse moduli space for EPW sextics YA such that A has no decomposable
vectors.
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5.2. The moduli stack of Lagrangian data. We deal here with the easier case of the
moduli stack of Lagrangian data.

For each integer n ∈ {2, . . . , 5}, we consider the following relative versions of some
EPW strata (we changed the number ℓ in (42) to n = 5− ℓ):

Sn := {(A, V5) ∈ LGradv(
∧

3V6)×P(V ∨
6 ) | dim(A ∩

∧
3V5) = 5− n}

(one could also define Sn for n ≤ 1, but it is empty) and

Sn := {(A, V5) ∈ LGradv(
∧

3V6)×P(V ∨
6 ) | dim(A ∩

∧
3V5) ∈ {5− n, 6− n}}.

The subscheme Sn−1 of Sn is closed and Sn is its open complement. The scheme Sn is locally
closed in LGradv(

∧
3V6)× P(V ∨

6 ) and in LGr(
∧

3V6)×P(V ∨
6 ). In particular, it is a quasipro-

jective scheme. We will need the following result.

Lemma 5.5. For n ≥ 2, the scheme Sn is smooth of dimension 60− 1
2
(5− n)(6− n).

For n ∈ {2, 5}, the scheme Sn is smooth; for n ∈ {3, 4} it is normal and Sing(Sn) = Sn−1.

Proof. The fiber of the projection Sn → LGradv(
∧

3V6) over a Lagrangian subspace A with
no decomposable vectors is the union Y 5−n

A⊥ ∪ Y 6−n
A⊥ of strata of the dual EPW stratification

associated with A, hence Theorem 5.2 applies. �

Consider now the action of PGL(V6) on the product LGr(
∧

3V6)×P(V ∨
6 ). As we noted

above, the line bundle O(2, 0) has a natural linearization. It is clear that O(0, 6) also admits
a linearization. Consequently, for any m ∈ Z, the line bundle O(2m, 6) admits a PGL(V6)-
linearization.

Corollary 5.6. Take n ∈ {2, 3, 4, 5}. For m≫ 0, the subschemes Sn ⊂ LGr(
∧

3V6)×P(V ∨
6 )

and Sn ⊂ Sn consist of PGL(V6)-stable points for the O(2m, 6)-linearization.

Proof. This follows from Lemma 5.4 and [MFK, Proposition 2.18] applied to morphisms
Sn → LGradv(

∧
3V6) and Sn → LGradv(

∧
3V6). �

The action of PGL(V6) on Sn also induces an action of GL(V6). The canonical morphism

Sn/GL(V6) −→ Sn/PGL(V6)

of global quotient stacks is a Gm-gerbe, because the center Gm ⊂ GL(V6) acts trivially
on Sn. In fact, this morphism is the rigidification for the natural embedding of Gm into the
automorphism groups of objects of the stack Sn/GL(V6). Recall also that the stack M

Lag
n+5 is

the rigidification of the stack M̃
Lag
n+5 (Remark 3.16).

Proposition 5.7. For each n ∈ {2, 3, 4, 5}, the moduli stack M
Lag
n+5 of families of Lagrangian

data of rank n+ 5 avoiding decomposable vectors is the global quotient stack

M
Lag
n+5 ≃ Sn/PGL(V6).

In particular, it is a separated Deligne–Mumford stack of finite presentation over Q. Its

special locus is also a global quotient stack

M
Lag
n+5,spe ≃ Sn−1/PGL(V6).

The stack M
Lag
n+5 is smooth for n ∈ {2, 5}; for n ∈ {3, 4}, it is singular along M

Lag
n+5,spe.
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Proof. We first prove that the stack of families of linearized Lagrangian data M̃Lag
n is isomor-

phic to the quotient stack Sn/GL(V6) by constructing morphisms in both directions between
these stacks.

The scheme Sn comes with the tautological family of Lagrangian data on the trivial
bundle V6 = V6 ⊗ OSn

(the Lagrangian subbundle is pulled back from LGr(
∧

3V6) and the

subbundle V5 is pulled back from P(V ∨
6 ) ≃ Gr(5, V6)). The definition of Sn ensures that this

family of Lagrangian data has rank n+5 and avoids decomposable vectors. Hence, it induces

a morphism Sn → M̃
Lag
n+5. The morphism is GL(V6)-equivariant, hence factors through a map

from the quotient stack Sn/GL(V6) to M̃
Lag
n+5.

Let us construct the inverse. Let S be a scheme and let (S,V6,V5,A ) be a family of lin-
earized Lagrangian data of rank n+5, avoiding decomposable vectors. Consider the GL(V6)-

torsor f : S̃ → S associated with the vector bundle V6, so that the pullback of the bundle V6

to S̃ comes with a canonical trivialization f ∗V6 ≃ V6 ⊗OS̃. The pullbacks of the bundles A
and V5 can be considered respectively as a Lagrangian subbundle f ∗A →֒

∧
3V6 ⊗ OS̃ and as

a corank-1 subbundle f ∗V5 →֒ V6⊗OS̃. Moreover, these subbundles are GL(V6)-equivariant.
Together they provide a GL(V6)-equivariant map

S̃ −→ LGr(
∧

3V6)×P(V ∨
6 ).

As the family (S,V6,V5,A ) has rank n+5 and avoids decomposable vectors, the map factors
through the subscheme Sn. This map is GL(V6)-equivariant, hence gives a map

S = S̃/GL(V6) → Sn/GL(V6).

This construction defines a morphism of stacks M̃Lag
n+5 → Sn/GL(V6).

It is easy to see that the morphisms we constructed above are mutually inverse, hence
define an isomorphism of stacks. Moreover, this isomorphism is compatible with the embed-

dings of Gm(S) into automorphisms groups of objects of the stacks M̃
Lag
n+5 and Sn/GL(V6).

Therefore, the rigidifications of these stacks, MLag
n+5 and Sn/PGL(V6), are also isomorphic.

Since Sn is quasiprojective and, by Corollary 5.6, consists of PGL(V6)-stable points,
the stack Sn/PGL(V6) is a separated Deligne–Mumford stack of finite presentation over Q.

It is clear that under the isomorphism M
Lag
n+5 ≃ Sn/PGL(V6), the special locus of MLag

n+5 cor-

responds to the substack Sn/PGL(V6). The description of the singular locus of Sn/PGL(V6)
follows immediately from Lemma 5.5. �

5.3. The moduli stack of GM varieties. We now describe the moduli stack of smooth
GM varieties (which we identify with the moduli stack of smooth normalized GM data).

As before, consider the product LGr(
∧

3V6)×P(V ∨
6 ). Set V6 := V6⊗O and let V5 ⊂ V6

and A ⊂
∧

3V6 be the pullbacks of the tautological subbundles from P(V ∨
6 ) and LGr(

∧
3V6)

respectively. Note that
∧

3V6/
∧

3V5 is isomorphic to
∧

2V5⊗ (V6/V5) via the map λ3, so that
the subscheme Sn ⊂ LGradv(

∧
3V6)×P(V ∨

6 ) is just the rank-(n+ 5) degeneracy locus of the
morphism ϕ defined by (27). In particular, Sn is a Lagrangian intersection locus (as defined
in [DK3, Section 4]) for the Lagrangian subbundles

A →֒
∧

3V6 and
∧

3V5 →֒
∧

3V6.
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Following [DK3, Section 4.1], we denote by Cn the cokernel sheaf of ϕ on Sn. By definition
of Sn, the rank of Cn is 5− n. Consider the reflexive hull of its top exterior power

(45) Rn := (
∧

5−nCn)
∨∨.

For n ≤ 4, this is a rank-1 reflexive sheaf on Sn, and for n = 5, we have R5 ≃ OS5
.

Furthermore, it was shown in the proof of [DK3, Theorem 4.2] that if Ln is the line bundle

(46) Ln :=
(
det(V6)

15−n ⊗ det(A ∨)⊗ det(V ∨
5 )⊗6

)∣∣
Sn
,

there is a natural morphism

mn : Rn ⊗ Rn −→ Ln

which, for n ≤ 4, identifies Ln with the reflexive hull (Rn ⊗ Rn)
∨∨, and for n = 5, is just a

global section of L5 (in fact, m5 = det(ϕ)).

Lemma 5.8. The subscheme B(mn) ⊂ Sn, defined by the ideal image of the map mn twisted

by L −1
n , is equal to Sn−1 ⊂ Sn.

Proof. By [DK3, Theorem 4.2], the subscheme B(mn) coincides (locally over Sn) with the
branch locus of the double covering of Sn associated with the reflexive sheaf Rn and the
morphism mn. Since, by Lemma 5.5, the schemes Sn are smooth of expected dimensions,
[DK3, Corollary 4.7] identifies the branch locus with the scheme Sn−1. �

We are therefore in the setup of Appendix A. Accordingly, we consider the root stack

Ŝn → Sn

of (Rn,mn). For n = 5, the stack Ŝ5 is isomorphic to
√

(L5, det(ϕ))/ S5, the root stack with

respect to the hypersurface S4 ⊂ S5 in the sense of [AGV, Section B.2]. For n ≤ 4, the stacky

locus Sn−1 of Ŝn has codimension 6− n ≥ 2; in this sense Ŝn is a generalized root stack.

We have the following property.

Lemma 5.9. The stack Ŝn is a smooth separated Deligne–Mumford stack. The action of the

group PGL(V6) on Sn lifts to an action on Ŝn such that the morphism Ŝn → Sn is PGL(V6)-
equivariant.

Proof. To show that Ŝn is a smooth and separated Deligne–Mumford stack, it is enough, in

view of Proposition A.2, to check that the étale double cover S̃ of Sn associated with the
morphism mn and a square root M of Ln (which exists locally over Sn) is smooth. This
follows from [DK3, Corollary 3.7], since LGradv(

∧
3V6)×P(V ∨

6 ) is smooth and Sn is smooth
of expected codimension (Lemma 5.5).

To show that the PGL(V6) action on Sn lifts to Ŝn, recall from (54) that the stack Ŝn

can be defined as the quotient stack

Ŝn = ̂̂Sn/Gm, where ̂̂Sn := Spec Sn

(
OSn

[L ±1
n ,Rn]

)
,

the sheaf of algebras OSn
[L ±1

n ,Rn] is defined in (53), and the Gm-action corresponds to its
grading. The sheaves Rn and Ln and the morphism mn are GL(V6)-equivariant and the
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center Gm ⊂ GL(V6) acts on them with respective weights 3(5 − n) and 6(5 − n) by (45)
and (46). Therefore, the group

(47) Gn := GL(V6)/µ3(5−n)

acts on the sheaf of algebras OSn
[L ±1

n ,Rn] defined in (53), hence also on its relative spec-

trum ̂̂Sn, in such a way that the action of its center Gm/µ3(5−n) ≃ Gm corresponds to the

grading of the algebra. Therefore, the stack Ŝn carries an action of the quotient group
(
GL(V6)/µ3(5−n)

)/(
Gm/µ3(5−n)

)
≃ GL(V6)/Gm = PGL(V6)

and the map Ŝn → Sn is PGL(V6)-equivariant. �

The argument of the proof of the lemma also has the following useful consequence.

Corollary 5.10. There is an isomorphism of stacks Ŝn/PGL(V6) ≃
̂̂Sn/Gn.

We are now ready to prove the main result of this section.

Theorem 5.11. For n ∈ {3, 4, 5}, the stack of smooth polarized GM varieties MGM
n is

isomorphic to the global quotient stack

M
GM
n ≃ Ŝn/PGL(V6) ≃

̂̂Sn/Gn.

In particular, it is a smooth separated Deligne–Mumford stack of finite presentation over Q.

Proof. The first step is the construction of a morphism of stacks

̂̂Sn/Gn ≃ Ŝn/PGL(V6) −→ M
GM
n .

This is equivalent to the construction of a Gn-equivariant family of smooth GM varieties

over ̂̂Sn, which is accomplished by a combination of several constructions described earlier.

The natural morphism ̂̂Sn → Sn can be factored as the composition

̂̂Sn
f

−−→ Sn := Spec Sn
(OSn

[L ±1
n ]) = SpecSn

(⊕

i∈Z

L i
n

)
θ

−→ Sn,

where θ : Sn → Sn is the Gm-torsor associated with the line bundle Ln and f is the double
cover associated by [DK3, Proposition 2.5] with the reflexive sheaf θ∗Rn and the natural
morphism

θ∗Rn ⊗ θ∗Rn
θ∗(mn)

−−−−−→ θ∗Ln ≃ O .

The sheaf θ∗Rn is the reflexive sheaf associated with the Lagrangian intersection of the

subbundles θ∗A and θ∗(
∧

3V5) on the scheme Sn. Therefore, by [DK3, Corollary 3.6], the

double cover ̂̂Sn is smooth.

Recall from [DK3, Definition 2.8] the notions of branch and ramification loci, B(f)
and R(f), for the double cover f . By Lemma 5.8 and [DK3, Corollary 4.7], we have

B(f) = θ−1(Sn−1), R(f) ≃ θ−1(Sn−1) ⊂
̂̂Sn,

and the preimage f−1(B(f)) is the first order infinitesimal neighborhood of R(f).
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Denote by

S := BlR(f)

( ̂̂Sn

) β
−−→ ̂̂Sn

the blow up of the scheme ̂̂Sn along R(f) and let E be its exceptional divisor. The preimage
of the subscheme Sn−1 under the map β ◦ f ◦ θ is the Cartier divisor 2E. The following
diagram collects the stacks and morphisms that we constructed:

S
β

// ̂̂Sn µ2

f
//

Gm

��

Sn

Gm θ

��

Ŝn
root

// Sn
// LGradv(

∧
3V6)×P(V ∨

6 ).

The labels µ2, Gm, and “root” in the diagram mean that the corresponding arrows are
a µ2-torsor, Gm-torsors, and a root stack, respectively.

On Sn, we have the tautological family (S,V6,V5,A ) of Lagrangian data described
in Proposition 5.7. Its pullback to the blow up S is a family of Lagrangian data on S of
rank n + 5 avoiding decomposable vectors. Its special locus is the preimage of Sn−1, that is,
the Cartier divisor 2E. Since this divisor is a double, the construction of Section 4.2 applies:
by Proposition 4.7, there exists a family of smooth normalized GM data (S,W ,V6,V5, µ,q)
with special locus E. We claim that this family is the pullback with respect to the blow up

morphism β : S → ̂̂Sn. Since this is the blow up of a smooth scheme along a smooth center,
it is enough to check that all the bundles W , V6, and V5 restrict trivially to the fibers of the
exceptional divisor E.

For the bundles V6 and V5, this is obvious, since they do not change in the construction
of Proposition 4.7. For W , it is a bit more complicated. This bundle is constructed in
Lemma 4.5 and, according to Proposition 2.12, the restriction of W to E is a direct sum

W |E ≃ (W ′
E/KE)⊕ KE(E).

The first summand W ′
E/KE is isomorphic to the image of the restriction to E of the pullback

to S of the map ϕ : A →
∧

2V5 ⊗ (V6/V5). In particular, it is trivial on the fibers of E. The
second summand comes by Proposition 2.12 with a natural isomorphism

q1 : Sym2(KE(E))
∼−→V6/V5.

Its target is a line bundle trivial on the fibers of E, hence so is its source. Finally, the fibers
of E are projective spaces, hence a line bundle on a fiber, whose square is trivial, is trivial
itself. Thus, KE(E) is trivial on the fibers of E and so is W .

We conclude that there is a family of GM data on ̂̂Sn whose pullback to S is the family
of GM data obtained from the family of Lagrangian data (S,V6,V5,A ) by the construction of
Section 4.2. Let us check that it is Gn-equivariant. The family (S,V6,V5,A ) is Gn-equivariant
as a family of Lagrangian data (note, however, that it is not equivariant as a family of
linearized Lagrangian data; see Remark 3.16) because, in Definition 3.15 of a morphism
of Lagrangian data, we ask for isomorphisms between projectivizations of the appropriate
bundles. The construction of Section 4.2 is natural, hence the resulting family of GM data

on the blow up S of ̂̂Sn is also Gn-equivariant.
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Finally, the pullback functor for the blow up β : S → ̂̂Sn is fully faithful, hence the

resulting GM data on ̂̂Sn is Gn-equivariant (again, it is not equivariant as a family of linearized
GM data; see Remark 3.4). Consequently, we obtain a family of smooth normalized GM data

on the quotient stack ̂̂Sn/Gn ≃ Ŝn/PGL(V6), which gives the desired map to Ŝn/PGL(V6) →
MGM

n .

Let us construct the morphism in the opposite direction. Recall that MGM
n is a smooth

Deligne–Mumford stack by Proposition 3.2. Let

S −→ M
GM
n

be an étale covering by a smooth scheme S, let (S,W ,V6,V5, µ,q) be the corresponding

family of smooth normalized GM data, and let S̃ be the PGL(V6)-torsor associated with the

rank-6 bundle V6. The pullback of V6 to S̃ is trivial up to a twist. Replacing the bundles V6,
V5, and W by appropriate twists, we can assume that V6 is the trivial bundle V6 ⊗ OS̃.

Let (S̃,V6,V5,A ) be the family of Lagrangian data obtained from (S̃,W ,V6,V5, µ,q)
by the construction of Proposition 4.1. Since V6 is trivial, we obtain a morphism

S̃ −→ LGr(
∧

3V6)×P(V ∨
6 )

such that A and V5 are the pullbacks of the tautological bundles. Since (S̃,V6,V5,A ) has
rank n+5 and avoids decomposable vectors, this morphism factors through Sn. Let us show

that it also factors through the stack Ŝn → Sn.

If n = 5, the stack Ŝn is the root stack of the section det(ϕ) of the line bundle L5, so,
by [AGV, Section B.1], it is enough to check that the pullback of the ideal generated by det(ϕ)

is a square. Since this ideal defines the Lagrangian-special locus for the family (S̃,V6,V5,A ),

it is, by Proposition 4.1, the square of the ideal defining the GM-special locus on S̃. The
universal property of the root stack gives the required factorization.

If n < 5, we apply Proposition A.6. Its assumptions are satisfied because S̃ is smooth
and the locus B(mn) associated with the map mn is equal to Sn−1 by Lemma 5.8, so, by

Proposition 4.1, its preimage in S̃ is set-theoretically equal to the GM special locus in S̃,
which by Lemma 3.13 has codimension at least 2 since n < 5.

Therefore, we obtain a morphism S̃ → Ŝn. Passing to quotients by PGL(V6), we obtain
a morphism

S = S̃/PGL(V6) −→ Ŝn/PGL(V6).

If we replace the étale covering S → MGM
n by another étale covering S ′ → S → MGM

n , it is

easy to see that the morphisms S → Ŝn/PGL(V6) and S ′ → Ŝn/PGL(V6) are compatible.
Therefore, we obtain a morphism

M
GM
n −→ Ŝn/PGL(V6)

which is inverse to the one constructed before.

In view of Proposition 3.2, the only thing that remains to be proved is the separatedness
of the stack M

GM
n . This follows from the fact that the scheme Sn provides a covering of the

stack Sn/PGL(V6) in the smooth topology. The morphism Ŝn → Sn induced by the morphism

(48) Ŝn/PGL(V6) −→ Sn/PGL(V6)
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on this covering is proper by Corollary A.4 hence, by [SP, Lemma 06TZ] so is the mor-
phism (48). Consequently, the separatedness of Sn/PGL(V6) (proved in Proposition 5.7)

implies the separatedness of MGM
n ≃ Ŝn/PGL(V6). �

One immediate consequence of Theorem 5.11 is the following.

Corollary 5.12. For n ∈ {3, 4, 5}, the stack MGM
n,ord of ordinary smooth GM varieties of

dimension n is isomorphic to the quotient stack Sn/PGL(V6). Similarly, the stack MGM
2,ord,ss

of ordinary strongly smooth GM surfaces is isomorphic to the quotient stack S2/PGL(V6).
These stacks are smooth separated Deligne–Mumford stacks of finite presentation over Q.

Proof. The first part follows from Theorem 5.11. The second part follows from Remark 4.8
and Proposition 5.7, since S1 = ∅, hence S2 = S2. �

Theorem 5.11 does not describe the stack MGM
6 of smooth GM varieties of dimension 6.

However, since every such variety is special, we have the following result.

Corollary 5.13. We have an equality of stacks MGM
6 = MGM

6,spe. Therefore, M
GM
6 is a µ2-

gerbe over M
GM
5,ord ≃ S5/PGL(V6).

Proof. The first assertion is obvious and the second follows from Lemma 3.13 and Corol-
lary 5.12. �

5.4. Coarse moduli spaces. We use the global quotient descriptions from previous sections
to describe the coarse moduli spaces of GM varieties.

Recall that for any m ∈ Z, the line bundle O(2m, 6) on LGr(
∧

3V6) × P(V ∨
6 ) ad-

mits a PGL(V6)-linearization. This line bundle also admits a GL(V6)-linearization and, since
for n ∈ {3, 4, 5}, the subgroup µ3(5−n) ⊂ GL(V6) acts trivially on it, this linearization induces
a Gn-linearization (where Gn = GL(V6)/µ3(5−n) was defined in (47)).

Corollary 5.14. For each n ∈ {2, 3, 4, 5}, the scheme ̂̂Sn consists of Gn-stable points for

the O(2m, 6)-linearization.

Proof. As in Corollary 5.6, this follows from Lemma 5.4 and [MFK, Proposition 2.18] applied

to the morphism ̂̂Sn → LGradv(
∧

3V6). �

In the next theorem, we prove that the stacksMGM
n , MGM

n,ord, M
GM
n,spe, andM

Lag
n+5 all admit

coarse moduli spaces, which we denote by MGM
n , MGM

n,ord, M
GM
n,spe, and M

Lag
n+5, respectively, and

we describe them as GIT quotients.

Theorem 5.15. (a) For n ∈ {3, 4, 5, 6}, the respective coarse moduli spaces MGM
n and M

Lag
n+5

of the stacks MGM
n and M

Lag
n+5 are both isomorphic to the GIT quotient

MGM
n ≃ M

Lag
n+5 ≃ Sn//PGL(V6)

taken with respect to the natural linearization of the line bundle O(2m, 6) for sufficiently

large m.

https://stacks.math.columbia.edu/tag/06TZ
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(b) For n ∈ {3, 4, 5}, the respective coarse moduli spaces MGM
n,ord and MGM

2,ord,ss of the

stacks MGM
n,ord and MGM

2,ord,ss of ordinary GM varieties are isomorphic to the GIT quotients

MGM
n,ord ≃ Sn//PGL(V6), MGM

2,ord,ss ≃ S2//PGL(V6).

(c) For n ∈ {3, 4, 5, 6}, the coarse moduli space MGM
n,spe of the stack MGM

n,spe of special

GM varieties is isomorphic to the GIT quotient

MGM
n,spe ≃ Sn−1//PGL(V6).

Proof. We first prove part (a) for n ∈ {3, 4, 5}. Since, by Corollary 5.6, the scheme ̂̂Sn consists
of stable points for the Gn-linearization of the bundle O(2m, 6), the morphism

̂̂Sn/Gn −→ ̂̂Sn//Gn

to the corresponding GIT quotient is a tame moduli space ([Al, Theorem 13.6]), hence

is a coarse moduli space ([Al, Remark 7.3]). It remains to recall that MGM
n ≃ ̂̂Sn/Gn by

Theorem 5.11. Similarly, the GIT quotient Sn//PGL(V6) is the coarse moduli space for the

stack Sn/PGL(V6), which by Proposition 5.7 is isomorphic to M
Lag
n+5. So, it remains to

identify the GIT quotients ̂̂Sn//Gn and Sn//PGL(V6).

For this note that, since the group Gm/µ3(5−n) acts on the algebra OSn
[L ±1

n ,Rn] via
its grading, we have

̂̂Sn//(Gm/µ3(5−n)) = SpecSn(OSn
[L ±1

n ,Rn])//(Gm/µ3(5−n)) ≃ SpecSn(OSn
) ≃ Sn.

Moreover, we have PGL(V6) ≃ Gn/(Gm/µ3(5−n)). Therefore,

̂̂Sn//Gn ≃
( ̂̂Sn//(Gm/µ3(5−n))

)
//
(
Gn/(Gm/µ3(5−n))

)
≃ Sn//PGL(V6).

This proves part (a) for n ∈ {3, 4, 5}.

The proof of part (b) is completely analogous, using Corollary 5.12 instead of Theo-
rem 5.11.

Let us prove part (c). By Lemma 3.13 and Remark 3.14, the automorphism group
scheme of each object of the stack MGM

n,spe contains the constant group scheme µ2 and the

morphisms MGM
n,spe → MGM

n−1,ord for n ≥ 4, and MGM
3,spe → MGM

2,ord,ss for n = 3, are the µ2-
rigidifications. Therefore, by [AGV, Theorem C.1.1(4)], they have the same coarse moduli
space and we conclude by part (b).

Finally, part (a) for n = 6 follows from Corollary 5.13 and part (c). �

The coarse moduli space for smooth GM sixfolds (and for smooth ordinary GM five-
folds), which according to the above results is the GIT quotient S5/PGL(V6), can also be
constructed directly by following Mumford’s proof for hypersurfaces in the projective space.
Moreover, this approach gives the additional information that this moduli space is affine.

Proposition 5.16. The coarse moduli space for smooth ordinary GM fivefolds and for

smooth special GM sixfolds is affine.
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Proof. The argument is classical ([MFK, Proposition 4.2]). A smooth ordinary GM fivefold is
by definition a smooth hypersurface of degree 2 in G := Gr(2, V5). Inside the projective space
P(H0(G,OG(2))), the subset of points corresponding to sections whose zero locus in G is sin-
gular is a hypersurface. This hypersurface is ample, hence its complement P(H0(G,OG(2)))

0

is affine and SL(V5)-invariant. The action of the reductive group SL(V5) on this affine set is
linearizable and since the automorphism group of any smooth ordinary GM fivefold is finite
([DK1, Proposition 3.21(c)]), the stabilizers are finite at points of P(H0(G,OG(2)))

0, which
is therefore contained in the stable locus.

The coarse moduli space for smooth ordinary GM fivefolds is therefore a dense affine
open subset of the projective irreducible 25-dimensional GIT quotient

P(H0(G,OG(2)))//SL(V5).

This proves the proposition. �

The affineness properties can be also deduced from Theorem 5.15. Indeed, we have

MGM
5,ord ≃ MGM

6,spe ≃ S5//PGL(V6)

and the scheme S5 =
(
LGr(

∧
3V6) × P(V ∨

6 )
)
r

(
Σ ∪ {det(ϕ) = 0}

)
is affine since the divi-

sor Σ ∪ {det(ϕ) = 0} in LGr(
∧

3V6)×P(V ∨
6 ) is ample.

6. Applications

In this section, we work over k = C.

6.1. The period map. The coarse moduli space MEPW for double EPW sextics was con-
structed in (44). It is an affine integral scheme of dimension 20. The composition

πn : M
GM
n → MGM

n
∼−→ Sn//PGL(V6) → LGradv(

∧
3V6)//PGL(V6) = MEPW

defines a morphism from the stack MGM
n of smooth GM varieties, or from its coarse moduli

space MGM
n , to the coarse moduli space MEPW.

The period map

℘EPW : MEPW −֒→ D

for double EPW-sextics was constructed by O’Grady, with values in the appropriate period
domain D ; it is an open embedding by Verbitsky’s Torelli Theorem ([O5, Theorem 1.3]).

Proposition 6.1. Assume n ∈ {4, 6}. The map

(49) ℘GM := ℘EPW ◦ πn : M
GM
n −→ D

is the period map for GM varieties of dimension n.

Proof. This follows from [DK2, Proposition 5.27]. �

Remark 6.2. GM varieties of dimension n ∈ {3, 5} have intermediate Jacobians that are
10-dimensional principally polarized abelian varieties ([DK2, Proposition 3.1]). We expect
their period maps to factor as

M
GM
n

πn−−→ MEPW ֒
℘EPW

−−−−→ D −→ D/rD 99K A10,
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where rD is the involution of the domain D defined by O’Grady in [O2] (geometrically,
it corresponds to passing from an EPW sextic to its dual EPW sextic), A10 is the coarse
moduli space for 10-dimensional principally polarized abelian varieties, and the broken arrow
is expected to be generically injective. To prove this factorization, however, one would need
an analogue of [DK2, Proposition 5.27] for periods of odd-dimensional GM varieties.

We can use Proposition 6.1 to describe the fibers of ℘GM for n ∈ {4, 6}: they are the

same as the fibers of πn. The stacks Ŷ ≥ℓ
A⊥ were defined in (43).

Corollary 6.3. If A ⊂
∧

3V6 is a Lagrangian subspace with no decomposable vectors, there

is an isomorphism of stacks

(50) π−1
4 ([A]) ≃ ρ−1

A⊥(YA⊥ r Y 3
A⊥)/PGL(V6)A ⊂ Ŷ ≥1

A⊥ /PGL(V6)A,

where PGL(V6)A is the stabilizer of A in PGL(V6). Furthermore, the stack π−1
6 ([A]) is a µ2-

gerbe over Y 0
A⊥/PGL(V6)A. In particular, there are isomorphisms of coarse moduli spaces

π−1
4 ([A])coarse ≃ (YA⊥ r Y 3

A⊥)//PGL(V6)A and π−1
6 ([A])coarse ≃ Y 0

A⊥//PGL(V6)A.

Proof. By definition of the scheme S4, the fiber of the map S4 → LGradv(
∧

3V6) over the
point [A] is the union YA⊥ r Y 3

A⊥ = Y 1
A⊥ ⊔ Y 2

A⊥ of two EPW strata, hence the fiber of the

composition Ŝ4 → S4 → LGradv(
∧

3V6) is isomorphic to ρ−1
A⊥(YA⊥ r Y 3

A⊥) ⊂ Ŷ ≥1
A⊥ . Thus, the

stack π−1
4 ([A]) is isomorphic to the quotient stack ρ−1

A⊥(YA⊥ rY 3
A⊥)/PGL(V6)A and its coarse

moduli space is (YA⊥ r Y 3
A⊥)//PGL(V6)A.

Similarly, Corollary 5.13 identifies π−1
6 ([A]) with a µ2-gerbe over Y 0

A⊥/PGL(V6)A and
its coarse moduli space with Y 0

A⊥//PGL(V6)A. �

6.2. Complete families of smooth GM varieties. Complete nonisotrivial families of
smooth projective varieties are hard to find in general (expecially those parameterized by
rational curves) and are interesting for this reason. Using our results, one can construct such
families of GM varieties, some parameterized by the projective line.

We start with a simple observation.

Lemma 6.4. Let (X → S,H ) be a family of smooth GM varieties of dimension n over a

proper reduced connected scheme S. The map πn : S → MEPW is constant.

Proof. This follows from the fact that MEPW is affine. �

By Lemma 6.4, any family of smooth GM varieties of dimension n parameterized by a
proper connected scheme S corresponds to a fixed Lagrangian subspace A ⊂

∧
3V6 and vary-

ing Plücker hyperplanes V5 ⊂ V6. In other words, repeating the argument of Corollary 6.3,
we see that such a family corresponds to a morphism

S −→ π−1
n ([A]) = (ρ5−n

A⊥ )−1(Y ≥5−n
A⊥ r Y ≥5−n

A⊥ )/PGL(V6)A ⊂ Ŷ ≥5−n
A⊥ /PGL(V6)A.

The following result can be used to construct such a map.

Proposition 6.5. Let n ∈ {3, 4, 5, 6} and let S be a connected reduced scheme. Assume that

f : S → Y ≥5−n
A⊥ is a nonconstant morphism such that f−1(Y ≥7−n

A⊥ ) = ∅ and that

(51) f−1(Y ≥6−n
A⊥ ) is equal to 2E for some Cartier divisor E on S.
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Then there is a nonisotrivial family of smooth GM varieties X → S of dimension n.

Proof. The family X → S exists by Corollary 4.9: consider the family of Lagrangian data
on S given by the trivial bundles V6 =

∧
3V6 ⊗ OS and A = A ⊗ OS, and take for V5 the

pullback of the tautological rank-5 bundle on P(V ∨
6 ) via the map S

f
−−→ Y ≥5−n

A⊥ →֒ P(V ∨
6 ).

This family is not isotrivial, because the corresponding map from S to the coarse
moduli space MGM

n is nonconstant: this map is the composition of f with the quotient mor-
phism Y ≥5−n

A⊥ → Y ≥5−n
A⊥ //PGL(V6)A; since the group PGL(V6)A is finite and dim(f(S)) > 0,

this is clear. �

It is not easy to find a map satisfying the condition (51). Sometimes, a double covering
trick helps.

Example 6.6. Let L ⊂ P(V ∨
6 ) be a line such that L 6⊂ Y ≥1

A⊥ and L∩Y ≥2
A⊥ = ∅. Then L∩Y ≥1

A⊥ is

a divisor of degree 6 (because Y ≥1
A⊥ is a sextic hypersurface). Let L̃→ L be the normalization

of the double cover of L branched over L ∩ Y ≥1
A⊥ . Then,

• if the intersection L ∩ Y ≥1
A⊥ is transverse, L̃ is an integral curve of genus 2;

• if the intersection L∩Y ≥1
A⊥ has exactly one nonreduced point, and its multiplicity is 2

or 3, L̃ is an integral curve of genus 1;

• in all other cases, each component of L̃ is isomorphic to P1.

A general line falls into the first case. A general line tangent to Y ≥1
A⊥ at a general point falls

into the second case. Bitangent lines to Y ≥1
A⊥ (of which there is a 6-dimensional family) fall

into the third case.

Applying Proposition 6.5 to any of these families, we obtain a family of smooth GM

varieties of dimension 5 over L̃. It is not isotrivial by Proposition 6.5.

To construct families of GM varieties, one can also apply directly Corollary 6.3.

Example 6.7. Assume Y ≥3
A⊥ = ∅. There is a family of smooth GM fourfolds of maximal

variation parameterized by the double EPW sextic ỸA⊥. Indeed, by Corollary 6.3, there is a
map

ỸA⊥ −→ ỸA⊥/µ2 = ŶA⊥ −→ ŶA⊥/PGL(V6)A = π−1
4 ([A]) −֒→ M

GM
4 .

Since any smooth double EPW sextic contains a uniruled divisor (the Gromov–Witten in-
variants computed in [Ob] include the degree of the divisor spanned by deformations of
a rational curve of minimal degree on any smooth double EPW sextic, and this degree
is nonzero), hence many rational curves, one obtains smooth nonisotrivial families of GM
fourfolds parameterized by P1.

Example 6.8. Assume Y ≥3
A⊥ = ∅. As in the previous example, we can pull back the universal

family of GM threefolds by the composition (see (50) for the notation)

Y ≥2
A⊥

∼−→ Ŷ ≥2
A⊥ −→ Ŷ ≥2

A⊥ /PGL(V6)A −֒→ Ŝ3/PGL(V6) ≃ M
GM
3

and obtain a family of smooth ordinary GM threefolds with maximal variation parameterized
by the projective surface Y ≥2

A⊥ .
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When A is general, the cotangent bundle of Y ≥2
A⊥ is globally generated ([DIM, Corol-

lary 7.3]) hence this surface contains no rational curves. Any Lagrangian A with no decom-
posable vectors such that Y ≥2

A⊥ contains a rational curve and Y ≥3
A⊥ = ∅ would give rise to a

smooth nonisotrivial families of GM threefolds parameterized by P1, but we do not know
any such Lagrangian.

Appendix A. The generalized root construction

We discuss a generalization of the root stack construction of [AGV] which is also a
particular case of the canonical stack construction, as defined (under another name) in [V,
Note 2.9 and proof of Proposition 2.8] and developed in [GS].

Let S be a normal irreducible scheme. Let R be a reflexive sheaf of rank 1 on S such
that the reflexive hull

L := (R ⊗ R)∨∨

is a line bundle. If L ≃ M⊗2 for some line bundle M on S, there is a scheme

(52) S̃ := Spec(OS ⊕ (M−1 ⊗ R))

equipped with a map ρ̃ : S̃ → S which is finite of degree 2 and étale over the locally free

locus of R ([DK3, Proposition 2.5]), and an involution τ of S̃ over S. Let

Ŝ := S̃/µ2(τ)

be the quotient stack with respect to the µ2-action on S̃ generated by τ . There is a natural
map ρ̂ : Ŝ → S which is an isomorphism over the locally free locus of R; over Sing(R), it is
a nilpotent thickening of a µ2-gerbe over Sing(R).

We want to show that the construction that produces the stack Ŝ from S is more
natural in a sense than the construction of the double covering. In particular, it does not
require the existence (hence nor the choice) of a square root M of L .

The construction is very simple. Slightly generalizing the above setup, we assume
that R is a reflexive sheaf of rank 1 on S such that the sheaf (R ⊗ R)∨∨ is locally free and
let

m : R ⊗ R −→ L

be a nonzero morphism into a line bundle L . Consider the quasicoherent sheaf

OS[L
±1,R] :=

⊕

i∈Z

(L i ⊕ (L i ⊗ R))

≃ · · · ⊕ L −1 ⊕ (L −1 ⊗ R)⊕ OS ⊕ R ⊕ L ⊕ (L ⊗ R)⊕ · · ·

(53)

with the Z-grading defined by

deg(L i) = 2i and deg(L i ⊗ R) = 2i+ 1.

Lemma A.1. The morphism m induces on OS[L ±1,R] a commutative associative OS-

algebra structure.
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Proof. There is a natural associative algebra structure on the sheaf

OS[R] := OS ⊕ R ⊕ (R ⊗ R)∨∨ ⊕ (R ⊗ R ⊗ R)∨∨ ⊕ (R ⊗ R ⊗ R ⊗ R)∨∨ ⊕ · · ·

(the associativity follows from the functoriality of the reflexive hull). It is also commutative
since the automorphism of (R⊗R)∨∨ induced by the transposition of R⊗R is an automor-
phism of a reflexive sheaf which is the identity on the locally free locus of R, hence is itself the
identity. Finally, the morphismm induces a morphism OS[(R⊗R)∨∨] → OS[L ] →֒ OS[L ±1]
of commutative associative algebras and we have

OS[L
±1,R] = OS[R]⊗OS [(R⊗R)∨∨] OS[L

±1],

because (R⊗2m)∨∨ ≃ ((R ⊗ R)∨∨)⊗m and (R⊗(2m+1))∨∨ ≃ ((R ⊗ R)∨∨)⊗m ⊗ R. �

Consider the quotient stack

(54) Ŝ :=
(
SpecS(OS[L

±1,R])
)
/Gm

for the Gm-action corresponding to the grading defined above. We will call this stack the
root stack of (R,m).

Proposition A.2. Let M be a line bundle on S with an isomorphism L ≃ M⊗2. Consider

the double covering (52) of S corresponding to the morphism

(M−1 ⊗ R)⊗ (M−1 ⊗ R) ≃ M−2 ⊗ (R ⊗ R)
m

−−→ M−2 ⊗ L ≃ OS.

There is a natural isomorphism of stacks S̃/µ2 ≃ Ŝ.

Proof. Consider the sheaf of commutative algebras

(55) OS[M
±1,R] := OS[L

±1,R]⊕ (M ⊗ OS[L
±1,R])

with multiplication induced by the multiplication in the algebra OS[L ±1,R] and the isomor-
phism M ⊗ M ∼−→L →֒ OS[L ±1,R]. This algebra carries a natural ((Z/2) ⊕ Z)-grading
induced by the Z-grading of OS[L ±1,R] and

deg(M ) = (1, 1).

This grading corresponds to a (µ2 ×Gm)-action on SpecS(OS[M±1,R]).

By the definition (55) of the algebra OS[M±1,R], the µ2-action on SpecS(OS[M±1,R])
is free and the invariant part is equal to OS[L ±1,R]. Therefore, we get an étale double
covering

SpecS(OS[M
±1,R]) −→ SpecS(OS[L

±1,R]).

On the other hand, forgetting the Z/2-grading and keeping the Z-grading, we see that the
i-th component of the algebra is isomorphic to M i ⊗ (OS ⊕ (M−1 ⊗ R)). Therefore, the
corresponding Gm-action on SpecS(OS[M±1,R]) is also free and the invariant part is equal
to OS ⊕ (M−1 ⊗ R). Therefore, we get a Gm-torsor

SpecS(OS[M
±1,R]) −→ SpecS(O ⊕ (M−1 ⊗ R)) = S̃.
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Combining these maps, we obtain a diagram

SpecS(OS[M
±1,R])

µ2

//

Gm

��

SpecS(OS[L
±1,R])

S̃,

where the horizontal arrow is a µ2-torsor and the vertical arrow is a Gm-torsor. It induces
a µ2-torsor

S̃ −→ SpecS(OS[L
±1,R])/Gm = Ŝ.

It follows that Ŝ ≃ S̃/µ2 and since deg(M−1 ⊗ R) = (1, 0) ∈ (Z/2) ⊕ Z, the action of µ2

on S̃ is induced by the involution of the double covering S̃ → S. �

Remark A.3. In the case where R = OS and the morphism m : R ⊗ R → L is given by
a global section s of the line bundle L , the stack Ŝ coincides with the usual root stack√

(L , s)/S defined in [AGV, Section B.2]: this follows from Proposition A.2 applied (étale

locally) to the double covering S̃ of S branched over the zero locus of s.

We now discuss some properties of the root stack Ŝ.

Corollary A.4. The natural morphism ρ̂ : Ŝ → S is proper.

Proof. The question is local over S, so we may assume we are in the setup of Proposition A.2

and Ŝ = S̃/µ2. Then S̃ is proper over S by (52), hence so is Ŝ by [SP, Lemma 0CQK]. �

Consider the subscheme B(m) ⊂ S defined by the ideal image of the map

(56) L −1 ⊗ R ⊗ R
m

−−→ L −1 ⊗ L = OS.

Proposition A.2 implies the main properties of the root stack Ŝ.

Corollary A.5. The natural morphism ρ̂ : Ŝ → S is an isomorphism over the complement

of B(m) ⊂ S and is a nilpotent thickening of a µ2-gerbe over B(m).

Proof. Set Z := B(m). Over S r Z, we have an isomorphism R ⊗ R ≃ L , hence R

is invertible. The double covering S̃ → S (which exists locally over S) is therefore étale

over S r Z, hence its quotient stack Ŝ → S is an isomorphism over S r Z.

On the other hand, over Z, the multiplication in the algebra defining S̃ is zero, hence

there is a natural embedding Z → S̃ over Z ⊂ S, and the schematic preimage of Z ⊂ S
in S̃ is a nilpotent thickening of Z ⊂ S̃. The µ2-action on Z ⊂ S̃ is trivial, hence gives a

µ2-gerbe Z/µ2 →֒ S̃/µ2 over Z and the preimage of Z in Ŝ is its nilpotent thickening. �

The following property of the stack Ŝ is quite useful. It is similar to the universal
property of canonical smooth Deligne–Mumford stacks proved in [FMN, Theorem 4.6] (see
also [AV, Lemma 2.4.1]).

https://stacks.math.columbia.edu/tag/0CQK
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Proposition A.6. Let Ŝ
ρ̂

−−→ S be the root stack defined by (54) and let B(m) ⊂ S be the

subscheme defined by (56). Let T be a smooth scheme and let f : T → S be a morphism such

that codimT (f
−1(B(m))) ≥ 2. There is a unique factorization

f : T −→ Ŝ
ρ̂

−−→ S.

Proof. Consider the scheme

T ×S SpecS(OS[L
±1,R]) ≃ SpecT (OT [f

∗L ±1, f ∗R]).

The sheaf M := (f ∗R)∨∨ is a rank-1 reflexive sheaf on a smooth scheme T , hence is a line
bundle. Therefore, there is a natural epimorphism

f ∗R ։ M ⊗ I ,

where I is an ideal sheaf such that the support of O/I has codimension at least 2. Fur-
thermore, the morphism m : R ⊗R → L induces the morphism f ∗m : f ∗R ⊗ f ∗R → f ∗L
which factors through the tensor product of the reflexive hulls

f ∗R ⊗ f ∗R → M ⊗ M → f ∗L ,

and is an isomorphism away from f−1(B(m)) and the support of O/I , that is, in codimen-
sion 1. Since T is smooth, it follows that

f ∗L ≃ M⊗2.

Therefore, we have a natural morphism of graded OT -algebras

OT [f
∗L ±1, f ∗R] ։ OT [M

±2,M ⊗ I ] →֒ OT [M
±2,M ] = OT [M

±1].

It induces a morphism

SpecT (OT [M
±1]) → SpecT (OT [f

∗L ±1, f ∗R])

= T ×S SpecS(OS[L
±1,R]) → SpecS(OS[L

±1,R])

compatible with the Gm-actions corresponding to the gradings of the algebras. Since the

source is a Gm-torsor over T , passing to the quotients by Gm, we obtain a morphism T → Ŝ.
By construction, the composition T → Ŝ → S is equal to f and the constructed morphism
is unique with this property. �
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Université Paris-Diderot, PSL Research University, CNRS, École normale supérieure,
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