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ABSTRACT

In neural networks, the property of being equivariant to transformations improves generalization
when the corresponding symmetry is present in the data. In particular, scale-equivariant networks
are suited to computer vision tasks where the same classes of objects appear at different scales, like
in most semantic segmentation tasks. Recently, convolutional layers equivariant to a semigroup
of scalings and translations have been proposed. However, the equivariance of subsampling and
upsampling has never been explicitly studied even though they are necessary building blocks in
some segmentation architectures. The U-Net is a representative example of such architectures, which
includes the basic elements used for state-of-the-art semantic segmentation. Therefore, this paper
introduces the Scale Equivariant U-Net (SEU-Net), a U-Net that is made approximately equivariant
to a semigroup of scales and translations through careful application of subsampling and upsampling
layers and the use of aforementioned scale-equivariant layers. Moreover, a scale-dropout is proposed
in order to improve generalization to different scales in approximately scale-equivariant architectures.
The proposed SEU-Net is trained for semantic segmentation of the Oxford Pet IIIT and the DIC-
C2DH-HeLa dataset for cell segmentation. The generalization metric to unseen scales is dramatically
improved in comparison to the U-Net, even when the U-Net is trained with scale jittering, and to
a scale-equivariant architecture that does not perform upsampling operators inside the equivariant
pipeline. The scale-dropout induces better generalization on the scale-equivariant models in the Pet
experiment, but not on the cell segmentation experiment.

1 Introduction

Convolutional Neural Networks (CNN) are based on convolutional layers and achieve state-of-the-art performance in
many image analysis tasks. A translation applied to the inputs of a CNN is equivalent to a translation applied to its
features maps, a property illustrated by Figure 1(a). This property is a particular case of group equivariance [2] and helps
improve the generalization of the network to new data if the data has translation symmetry. An operator φ : X → Y
is equivariant w.r.t. a group if applying a group action in the input and then φ, amounts applying a group action to
the output of φ given the original inputs. This is illustrated in Figure 1. In addition to translations, group actions can
model many interesting classes of spatial transformations such as rotations, scalings, and affine transformations. Group
equivariant CNNs [2] are a generalization of CNNs that are equivariant to some transformation group. Many approaches
focus on equivariance to rotations, in different kinds of data [2, 18, 17, 14] and to scalings [20, 3, 7].

Deep scale-spaces [19] introduce neural networks equivariant to the action of semigroups, instead of groups. Semigroup
actions are considered as they can model non-invertible transformations, and the authors focus on equivariance to
downsampling in discrete domains as a way to address equivariance to scalings without creating spurious information
through interpolation. This seminal work laid the basis to define scale-equivariant CNNs, although it only focused on
convolutional layers and did not address the equivariance of pooling and upsampling layers, which are key elements in
many neural architectures, such as U-Net.

The U-Net [10] has become famous for its great performance in semantic segmentation. It is a fully convolutional
neural network, i.e. a CNN without any dense layer, and therefore it is equivariant to a certain subgroup of translations.
However, architectures like U-Net are not scale equivariant a priori, and experiments show they are not in practice [11]
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Figure 1: Example of equivariance in the cases of translation and scaling. In this case, φ is an ideal operator that
computes the semantic segmentation of images. The operators Tv and Rs are, respectively, a translation and a re-scaling.
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Figure 2: Example where a U-Net trained on one scale and is applied to predict an output on the training(a) and an
unseen(b) scale. The image with the unseen scale represents the same object but the U-Net no longer segments it
correctly.

as illustrated by Figure 2. A scale-equivariant counterpart of such an architecture is desirable as scale symmetry is
frequently present in semantic segmentation data. For example, in urban scenes, objects of the same class appear at
different scales depending on their distances to the camera.

In this work we introduce the Scale-Equivariant U-Net (SEU-Net) based on semigroup cross-correlations [19] and
an adapted use of pooling and upsampling. The rest of the paper is organized as follows. In Section 2 we discuss
some of the related work in the literature. In Section 3 we review the semigroup equivariant neural networks. The
main contribution of this paper, the SEU-Net, is introduced in Section 4 along with its fundamental building blocks.
The whole architecture is tested empirically for its equivariance in Section 5. More precisely, we test the SEU-Net 1

in segmentation tasks where the test images are in scales unseen during training, on the Oxford-IIIT Pet [9] and the
DIC-HeLa cell [15] datasets. The SEU-Net is shown to overperform the U-Net even when the latter is training with
large values of scale jittering. The paper ends in Section 6 with some conclusions and perspectives for future work.

2 Related Work

Scale-equivariance and scale-invariance are topics already discussed in the deep learning literature [20, 3, 5, 7, 13].
The experimental benchmarks found in those papers are interesting as a first way to measure equivariance, but tend to
be based on very simple tasks, such as the classification of re-scaled digits from the MNIST dataset or low resolution
images of clothes from the Fashion-MNIST dataset. In [12], combinations of base filters are optimized to minimize the
equivariance error of discrete scale convolutions. This is applied to classification, tracking and geometry estimation, but
not segmentation.

In [19], instead of treating the scaling as an invertible operation, such as it would behave in a continuous domain, it
is considered the action of downsampling the input image in a discrete domain. Therefore a semigroup-equivariant
generalization of the convolution is introduced. Specifically, the focus is put on a semigroup of scalings and translations.
These operators can be efficiently applied even on large images, since applying it at larger scales has the same
computational cost. In [19] the semigroup equivariant models were applied to classification and semantic segmentation
of datasets of large images, achieving better results compared to matched non-equivariant architectures. Yet, the role of

1Code available at https://github.com/mateussangalli/ScaleEquivariantUNet
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scale-equivariance was not isolated, as the performance of the models was not measured for inputs on scales unseen
in the training set. Later on, this approach was revisited by [11], where the Gaussian scale-space originally used was
generalized to other scale-spaces and the models were tested in experiments where the networks are trained in one
fixed scale and tested on unseen scales, albeit on synthetic or simple datasets. In all these approaches, the authors
either avoided pooling and upsampling in their architectures, or used them but did not discuss their impact on scale
equivariance.

While scale-equivariance has been a topic in the literature for some time, as far as we know a scale-equivariant U-Net
has not yet been proposed, contrary to the rotation-equivariance case [1]. Moreover, the current benchmarks for
scale-equivariance were either based on simple datasets like MNIST or did not explicitly measure the equivariance
in their segmentation or classification experiments, by training the networks on one fixed scale and testing on unseen
scales. Here we propose semantic segmentation experiments based on natural data which measure the equivariance of
the predictions.

3 Semigroup Equivariant Convolutional Networks

In this work and following [19], image scalings are restricted to image downscalings, which can be viewed as actions
of a semigroup on images. As illustrated by Figure 1, we seek equivariance with respect to both downscalings and
translations. Hence, the network layers are designed to be equivariant with respect to a semigroup combining both
transformations.

3.1 Semigroup Equivariance

A semigroup, contrary to a group, can model non-invertible transformations, e.g. the downsampling operation in a
discrete domain. In the following, (G, ·) denotes a discrete semigroup.

Let X be a set, a family of mappings (ϕg)g∈G from X to itself, is a semigroup action on X if it is homomorphic to the
semigroup, that is, if either ∀g, h ∈ G, ϕg ◦ ϕh = ϕg·h (left action), or ∀g, h ∈ G, ϕg ◦ ϕh = ϕh·g (right action). In
this paper we will consider in particular the following right action, acting on F the set of functions from G to Rn.

∀u, g ∈ G,∀f ∈ F , Ru(f)(g) = f(u · g). (1)

Given two sets X and Y , a mapping H : X → Y is said equivariant with respect to G if there are semigroup actions
(ϕg)g∈G and (ψg)g∈G on X and Y respectively, such that ∀g ∈ G, H ◦ ϕg = ψg ◦H . This definition gets more
intuitive when X = Y is a set of images and (ϕg)g∈G = (ψg)g∈G are scalings or translations, as illustrated in Figure 1.

3.2 Scale-cross-correlation

For γ > 1 an integer, let Sγ = {γn|n ∈ N}, endowed with the multiplication, the semigroup representing discrete
scalings of base γ. Then we consider the semigroup G = Sγ × Z2 of discrete scalings and translations, endowed with
the internal operator “ · ”, defined by

∀k, l ∈ N, z, y ∈ Z2 (γk, z) · (γl, y) = (γk+l, γky + z). (2)

Following (1), the action of this semigroup on functions mapping Sγ × Z2 to R is Rγk,z[f ](γl, y) = f(γk+l, γky + z).
In analogy to convolutions, which are linear and equivariant to translations, a key step in equivariant CNNs is defining
linear operators which are equivariant to some class of operators. The semigroup cross-correlation, defined for an image
f : G→ R and a filter h : G→ R is a generalization of the convolution which is linear and equivariant to the action
Rg of a semigroup. When applied to the semigroup of scales and translations, we obtain the scale-cross-correlation.
Both were introduced in [19]. The scale-cross-correlation is written2

(f ?G h)(γk, z) =
∑

(γl,y)∈G

Rγk,z[f ](γl, y)h(γl, y) =
∑
l≥0

∑
y∈Z2

f(γk+l, γky + z)h(γl, y). (3)

This operator is suited for single channel images on G, but it can be easily extended to multichannel images. Let the
input f = (f1, . . . , fn) ∈ (Rn)G be a signal with n channels. Assuming the output has m channels, the filter is of the

form h : G→ Rn×m. We compute the operator f ?G h at channel o ∈ {1, . . . ,m} as (f ?G h)o :=
n∑
c=1

(fc ?G hc,o).

The resulting map is equivariant to scalings and translations: (Rgf ?G h)o = Rg((f ?G h)o). Note that the composition
of operators which commute with Rg still commutes with Rg, for which concatenating scale-cross-correlation layers
followed by pointwise activation functions and batch normalization yields equivariant architectures.

2The equations in the case of a general semigroup can be found in Appendix A.
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3.3 Lifting and Projection

The operators of the previous section are defined on the set of functions with the semigroup as a domain, F = (Rn)G,
but images input to networks are functions f : Z2 → Rn. In this section we review the lifting and projections layers -
operators which map images to functions on the semigroup and vice-versa.

Lifting. A lifting operator Λ is used to map an input function f : Z2 → Rn into a function Λf : G→ Rn. Once lifted
to the semigroup space, linear equivariant operators can be applied according to Eq. (3). As pointed out in [11], a
sufficient condition to have equivariance of the composition of the lifting followed by the semigroup cross-correlations,
is that Λ ◦R′γk,z = Rγk,z ◦ Λ, where R′γk,z is the re-scaling action for images on Z2: R′γk,z[f ](t) = f(γkt+ z).

Whereas in [11] several liftings are explored, in this paper we set the lifting to the Gaussian scale-space ΛG , like in [19].
For an image f : Z2 → R a point z ∈ Z2 and a scale level k ∈ N,

ΛG(f)(γk, z) = (f ∗ Gγk)(z) (4)

where ∗ is the classic discrete convolution and Gγk the discrete Gaussian kernel with scale γk.

Projection. To project back into the image space, we apply a max-projection along the scale dimension, defined
by ∀z ∈ Z2 Π[f ](z) = supk∈N{f(γk, z)}. To be consistent with the lifting, we would like to have R′γk,z ◦ Π =

Π ◦ Rγk,z . Instead, we have R′γk,zΠf(y) = supl∈N f(γl, γky + z) and ΠRγk,zf(y) = supl∈N f(γl+k, γky + z) =

supl≥k f(γl, γky+ z) so that R′γk,zΠf(y) = max{ΠRγk,zf(y),max0≤l<k f(γl, γky+ z)}. The previous expression
will be equivariant if the scale where the maximum is attained is smaller than k, but in general we can only hope
for approximate equivariance for small enough k. The approximate equivariance will be empirically verified in
experiments in Section 5. Note that other projections (e.g. sum or average) have the same flaw, as this is intrinsic to the
semigroup-equivariant approach, even though it was omitted previously in the literature.

4 Scale-Equivariant U-Net

Recall that the U-Net [10], illustrated in Figure 3, is a CNN architecture for semantic segmentation based on an
auto-encoder structure with skip connections linking the encoder and decoder. As such, it has four main components:
convolution blocks, pooling, upsampling and skip connections. In this section we aim to propose the Scale-Equivariant
U-Net (SEU-Net), in order to have a U-Net with increased generalization capacity.

In the framework of the previous section, a network can be written as Γ = Π ◦Σ ◦Λ, where Λ and Π are the lifting and
projection respectively, and Σ is the core part of the network mapping the lifted space to itself. We already saw that
Λ ◦R′γk,z = Rγk,z ◦ Λ and we assume R′γk,z ◦ Π ≈ Π ◦Rγk,z . Hence, to build a (approximately) scale-equivariant
network, it is sufficient to have Σ ◦ Rγk,z = Rγk,z ◦ Σ. In particular, a way to render the U-Net scale-equivariant
is to design scale-equivariant versions of its components in Σ. Convolutions are already rendered equivariant by
scale-cross-correlations, and pointwise-non-linearities, batch-normalization and skip connections are equivariant as is.
The rest of this section is dedicated to examining the remaining components: subsampling and upsampling.

4.1 Subsampling

Classical pooling operators naively applied scale by scale do not result in scale-equivariant poolings in the lifting space.
For example, the max-pooling MP[f ](x) = maxy∈N f(rx+ y) with strides r ∈ N and neighborhood N ⊆ Z2 (usually
a r × r square). Its naive extension to the lifted space MP′[f ](γk, x) = MP[f(γk, ·)](x) ∀k ∈ N does not commute
with Rγk,x.

Strided convolutions however, generalize well to this scenario, written as the subsampling operator Dt[f ](γk, x) =
f(γk, tx) following a scale-cross-correlation. We can verify that it is scale-equivariant: Dt[Rγk,xf ](γl, y) =

(Rγk,xf)(γl, ty) = f(γl+k, γkty) = Dt[f ](γl+k, γky) = Rγk,x[Dtf ](γl, y). We use strides as the subsampling
in our networks, with a stride of t = 2.

4.2 Upsampling

Upsampling blocks are a well established part of modern neural network architectures for segmentation and other tasks.
In order to extend upsampling to a scale-equivariant setting, we look at the case where f is defined on a continuous
domain. In that case, the downsampling Dγl has an inverse Uγl which is the natural upsampling.

4



Scale Equivariant U-Net

Λ
H
×
W
×
C

in

H ×W × S × C

Π

H
×
W
×
C

ou
t

H/2 ×W/2 × S × 2C

H/4 ×W/4 × S × 4C

H/8 ×W/8 × S × 8C

H/16 ×W/16 × S × 16C

subsample

upsample

Figure 3: Illustration of the SEU-Net architecture. We parametrize it by the height (i.e. number of subsam-
plings/upsamplings set to four in this example) and number of filters C in the first layer (after pooling we double the
number of filters and after subsampling we halve it). The values H,W represent the height, width of the inputs images,
S is the number of scales in the lifting and Cin, are the number of channels in the input image or convolutional filters
and Cout is the number of classes. Two convolutions are performed between subsamplings and between upsamplings.
Feature maps connected by skip connections have the same spatial dimensions.

In the discrete case the problem becomes more complicated as downscaling is not invertible, but for k, l ∈ N we can
define an upsampling Uγl as an operator satisfying ∀x ∈ Z2

Uγk [f ](γl, γkx) = f(γl, x) and Uγlk = Uγk ◦ Uγl . (5)

With this, we have Dγk ◦ Uγk = id. For all k, Uγk(f) values are only restricted in the points y ∈ kZ2 = {kx|x ∈ Z2},
and the values on the other pixels can be defined in several ways (e.g. copies, interpolation) as long as it satisfies (5).
Now, if UγlRγk,xf = Rγk,γlxUγlf for any f then Σ◦Rγk,x = Rγk,x◦Σ. Indeed let ψi = Li · · ·DγlL1, i = 1, . . . ,m
denote the part of a SEU-Net of height m before the i-th downsampling block, where Lj , j = 1, . . . ,m, are blocks
that commute with Rγk,x(constructed by scale-cross-correlations, pointwise activations and batch normalization).
Denote φm = Lm+1ψm and φi = LiC(Uγlφi+1, ψi), i = m, . . . , 1 where C denotes concatenation. With the above
hypothesis, we have φiRγk,xf = Rγk,γlixφif . In particular, Rγk,xφ0f = φ0Rγk,xf , and we notice that φ0 is precisely
Σ.

The sufficient condition UγlRγk,xf = Rγk,γlxUγlf is not verified in general (see Appendix B), but Proposition 1
introduces a setting where it does.
Proposition 1. For N ∈ N∗ and i ∈ {1, . . . , N}, let Ui = {Uγni+lfi|l ∈ N}, where each fi : G→ Rn is a function

on G and each ni an integer. Let n0 ≤ min{ni|i = 1, . . . , N} and U =
N⋃
i=1

Ui. Then for all f ∈ U , and k, l ∈ N such

that k − l ≤ n0, we have3 UγlRγk,xf = Rγk,γlxUγlf .

This property states that upsampling behaves as an equivariant operator as long as the input image is an upsampling
of some image in a base scale. It can be interpreted as saying that the downscaling should not destroy information of
the images in U . We model this by constraining the scaling factors of the downscaling actions and assuming that the
objects of interest in an image are sufficiently big. We would like to point out that this hypothesis is never verified but
reasonable for most of the datasets for semantic segmentation.

Before moving on to the experimental part, let us sum up the theoretical properties of a SEU-Net Γ = Π ◦Σ ◦Λ. By our
construction we can hope for an approximated scale-equivariance Γ ◦R′γk,z ≈ R

′
γk,z ◦ Γ. Two approximations prevent

from exact equivariance: The approximated equivariance of the projection operator Π, which is intrinsic to the lifting
approach, and the assumption to guarantee an equivariant upsampling, which is never verified in practice. We will see
in our experiments that the SEU-Net shows a high degree of scale-equivariance despite these approximations. Each
of these approximations is intrinsic to the problem. If the problem was formulated in a continuous domain Sγ × R2

upsampling would be theoretically equivariant, but its implementation would have the same problems.
3For a proof, see Appendix C.
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5 Experiments

In this section we test the proposed SEU-Net in two segmentation tasks where we evaluate its generalization to unseen
scales. We train the SEU-net on a set where objects have roughly the same scale and test it on a wide range of scales.
For these experiments we use a scale base of γ = 2, downsampling D2 and upsampling U2 computed by bilinear
interpolation. Quantitative results will be measured using Intersection over Union (IoU) and consistency. We define
consistency as follows: given a segmentation neural network φ, the consistency is the probability of assigning the same
label to a pixel after it has been transformed, formally Cons(φ, s) = P

(
φ(Rs,0[f ])(x) = Rs,0[φ(f)](x)

)
.

We compare the SEU-Net to U-Net and to the SResNet [19], a scale-equivariant residual architecture which applies
subsampling but no upsampling inside the equivariant pipeline, i.e. it only applies an upsampling after the projection
layer. Hence, it does not benefit from the features that made U-Net more suitable for segmentation, namely the skip
connections at several upsampling stages.

Scale Dropout. In order to produce more robust results with respect to scale changes we propose the use of Scale
Dropout before the projection layers. Given a feature map f : Sγ × Z2 → Rn, we compute its scale dropout of
rate p ∈ [0, 1] as ScaleDropoutp(f)(s, x) = X(s)f(s, x) where X(s) is a Bernoulli variable of parameter p, i.e.
P
(
X(s) = 1

)
= 1− p and P

(
X(s) = 0

)
= p. In our experiments we use values p = 0 (no dropout) and p = 0.25.

5.1 Oxford-IIIT Pet Dataset

The Oxford-IIIT Pet 4 dataset [9] consists of pictures containing cats and dogs. The relevant labeling for this paper, the
trimaps, is the segmentation of the images into three classes: the animal, the background and the boundaries of the
animal. In Figure 5(a) and (b) we see an example of an image and its corresponding ground truth. The dataset was
loaded from the TensorFlow package5, where it is divided into 3680 training samples and 3669 test samples. To make
the validation set we removed 200 test samples. During training and testing images are resized to 224× 224 pixels.
We define multiple test sets by re-scaling the original test set by s ∈ {2 i

2 |i ∈ {−4,−3, . . . , 4}}. We used bilinear
interpolation to up-scale images.

Both the U-Net and SEU-Net have height four and contain sixteen filters in the first layer and use 3× 3 filters. The
SEU-Net truncates at four scales, and filters have depth one in the scales dimension (their values is different from
zero in one scale value). The networks are trained using the Adam [6] optimizer with categorical cross-entropy loss.
Training the U-Net, SResNet and SEU-Net takes approximately 24, 73, and 97 seconds per epoch respectively, on a
Tesla P100-SXM2-16Gb GPU.

Comparison with data augmentation. We also performed scale jittering in the U-Net to compare the effect of the
equivariant network with the effect of data augmentation. Scale jittering is performed by rescaling the image by a
randomly chosen scale α and either random cropping or padding to the original image. We trained a U-Net with scale
jittering in the interval [ 1

4 , 4], equal to the interval of test scales.

Results. The overall results in terms of the IoU are shown in Figure 4. Firstly we notice that the SEU-Net increases
performance compared to both SResNet and U-Net. SResNet, however, does not consistently generalize better than the
U-Net. Dropout improves the quality of SEU-Net, particularly for more extreme scales, indeed, for larger scales the
augmented U-Net has a better IoU than the SEU-Net without scale dropout, but not than the one with scale dropout.
The augmented U-Net loses performance scale 1, it would probably need to be larger to retain the same performance.
We show examples of the predictions of the U-Net and SEU-Net in Figure 5.

5.2 Cell Segmentation

We also evaluate the models in a medical image segmentation dataset, namely the DIC-C2DH-HeLa dataset [15] of
HeLa cells on a flat glass recorded by differential interference contrast (DIC). We used 83 images for train/validation
and 83 for testing. Figure 7 (a) and (b) shows an example from the test set with its labels at different scales. Models are
trained with the AdamW optimizer [8]. Like in the previous experiment, we first train the models in the training set and
test in the test set re-scaled by different values. We also perform scale jittering, but now for both U-Net and SEU-Net.
For U-Net we trained models with scale jittering with ranges 4 (α is chosen each step from the interval [ 1

4 , 4]) and 1.5

(α is chosen from the interval [ 2
3 ,

3
2 ]) and for SEU-Net we used only the range 1.5 jittering.

4https://www.robots.ox.ac.uk/~vgg/data/pets/, CC BY-SA 4.0 license
5https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet
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Figure 4: Overall results in terms of IoU and Consistency for each scale of the Pet dataset.

(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net

Figure 5: Sample test image at different scales and ground truth from the Oxford-IIIT Pet dataset, along with the U-Net
and SEU-Net predictions. The scales present are 0.25, 0.5, 1 and 2 times the training scale.

Results. Figure 6 (a) shows the IoU of different models on the re-scaled test sets. Figure 7 shows some segmentation
examples. Again, the SEU-Net outperforms the U-Net. The poor results of the SResNet for smaller scales is possibly
due to the cell images containing more high-frequency information, compared to the pets images. In contrast to the
previous experiment, dropout did not seem to significantly increase performance of the SEU-Net, neither in the train
scale nor the test scales. Moreover the SResNet results were greatly decreased due to dropout. This is likely a result of
the agumented dataset being more difficult to segment than the original and not being representative of the dataset at
base scale. The gain in generalization is only better than the SEU-Net for the smallest scales. The jittering with range
1.5 does not have a very noticeable effect. On the other hand the SEU-Net with 1.5 jittering has a noticeable gain in
generalization to larger scales.

6 Conclusions and Future Work

In this paper we revisited the framework of scale semigroup-equivariant neural networks and applied it to the definition
of a Scale Equivariant U-Net for semantic segmentation. Experimental results show that the SEU-Net can greatly
improve the generalization to new scales and even the performance in the training scale. Moreover, the results lead us
to conjecture that the U-Net with scale jittering would need to have more parameters to have a good performance in
all the range of scales, while the SEU-Net achieves good results without increasing its size. The results suggest that
implementing that the improvement comes not only from the scale-equivariant cross-correlations, but also from the
SEU-Net global architecture and applying the pooling operators inside the equivariant pipeline. The proposed scale
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(a) IoU per scale.
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(b) Augmentation comparison.

Figure 6: IoUs of the cell segmentation experiment with comparisons with U-Net, SResNet and data augmentation.
U-Net (aug. 4) refers to the U-Net trained with scale jittering with range 4 and U-Net (aug. 1.5) refers to the U-Net
trained with jittering with range 1.5. The same for SEU-Net (aug. 1.5).

(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net

Figure 7: Predictions from DIC-HeLa at different scales, namely scales 0.5, 1 and 2. Although the U-Net suffers from
the scale change, especially the change to a larger scale, the SEU-Net can still capture the overall structure of the cells.

dropout was also shown to have the potential to increase scale-equivariant models’ performance. In future works it
would be interesting to study an equivariant regularization term such as in [12] in addition to the scale-dropout.
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A Semigroup cross-correlation

Let F = RG denote the set of functions mapping G to R. Bearing in mind the final purpose of defining equivariant
CNN layers, we focus on linear operators on F . Let the semigroup right action (Ru)u∈G on F , defined by

∀u, g ∈ G,∀f ∈ F , Ru(f)(g) = f(u · g). (6)

Then for any h ∈ F , the linear operator defined by

∀u ∈ G, H(f)(u) = (f ?G h) =
∑
g∈G

Ru(f)(g)h(g) (7)

is equivariant to the semigroup action (Ru)u∈G, as H(Ru(f)) = Ru(H(f)). This class of semigroup equivariant
linear operators is the semigroup cross-correlation proposed in [19] as the key element to define scale-equivariant
convolutional layers. Note that when G is the group of image translations (groups are special semigroups), (7)
corresponds to the classic discrete convolution with the reversed filter h∗(g) = h(g−1). We use the notation f ?G h
remarking however that this operation is not symmetrical in f and h even when the law · on G is commutative. Also,
contrary to the group case, we do not have the property that every linear and equivariant operator can be written as a
semigroup-cross-correlation.
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Figure 8: Overall results in terms of IoU and Consistency for each scale of the Pet dataset. The SEU-Net has been
computed with different pooling functions.

B Different Pooling Operators

Besides the strided scale-crosscorrelations we used, we can define another class of pooling operators, inspired by
classical max-pooling. Let us place ourselves in a slightly different case of pooling a function in a continuous domain
f : S ×R2 → R, with S ×R2 acting on it by Rγl,zf(γk, x) = f(γk+l, γlx+ z), k, l ∈ N, x ∈ R2, z ∈ Z2. We define
the pooling of f as an operator F followed by a downsampling Dγl [f ](γk, z) = f(γk, γlz)

P [f ] = DγlFf. (8)

If F commutes with Rγk,x, then so does P . We consider three pooling functions: Fid = id (strides) and two dilation
scale-spaces [4]:

• The max-pooling of scale-semigroup-valued images is given by a re-scaled max-pooling

Fmax[f ](γk, z) = sup
y∈Nk×Nk

{f(z − y)} (9)

where Nk = {γkx|x ∈ N} and N is for example a γl-sided square in R2.
• The quadratic dilation (quadpool) scale-space is a morphological counterpart to the Gaussian scale-space [16]

defined by

Fquad[f ](γk, z) = sup
y∈R2

{
f(z − y)− ‖y‖

2

cγ2k

}
, (10)

where c > 0 is some constant.

In contrast to the strided scale-cross-correlations given by Fid, the functions Fmax and Fquad are scale-equivariant only
in this continuous setting, their discretized versions are not actually equivariant. Nonetheless, a network employing
scale-cross-correlations and these poolings would be equivariant when applied to signals in the domain S × R2.

In Figure 8 we extend the experiments from Section 5.2. Using different pooling functions did not improve the
performance of the SEU-Net compared to its performance using strided scale-cross-correlations.

C Non-equivariance of the upsampling

In this section we show that UγlRγk,xf 6= Rγk,γlxUγlf for at least one lifted image f , one couple of integers (k, l)

and a point x ∈ Z2. Note that Uγl is an upsampling defined in the associated paper.

Given any k ∈ N, take l = k, x = (0, 0) and any two lifted images f1 and f2 that coincide on certain points,

f1(s, γky) = f2(s, γky) ∀s ∈ S, y ∈ Z2,
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downsample

upsample

upsample

downsample

downsample

upsample downsample

6=

Figure 9: Example illustrating the problem with upsampling in a scale-equivariant architecture. We have images f1 and
f2 such that when both are downsampled and then upsampled they yield the same result, but if both are upsampled and
then downsampled they yield different results.

and are different elsewhere, as illustrated in Figure 9. Let us show that UγlRγk,xfi 6= Rγk,γlxUγlfi either for i = 1 or
i = 2 or both. The set of points where f1 and f2 coincide implies in particular that Rγk,0f1 = Rγk,0f2. Then we have

Rγk,0Uγkf1 6= Rγk,0Uγkf2,

as Rγk,0Uγkfi : (s, y) 7→ fi(γ
ks, y), and f1(γks, y) 6= f2(γks, y) for y /∈ kZ2. Note that Rγk,0Uγk is nothing else

than an upsampling followed by a downsampling, as in Figure 9.
Since, on the other hand, Rγk,0f1 = Rγk,0f2, we get

UγkRγk,0f1 = UγkRγk,0f2.

Hence, either Rk,0Ukf1 6= UkRk,0f1 or Rk,0Ukf2 6= UkRk,0f2 or both, proving our point.

D Proof of Proposition 1

Proof. First, consider k < m

Rγk,0 ◦ Uγkf(γp, y) = (Uγkf)(γkγp, γky)

= f(γkγp, y)

so Rγk,0Uγmf(γp, y) = Uγm−kf(γp+m, y).

Now, let f = Uγmfi ∈ F , k ≤ min{ni|i = 1, . . . , N} ≤ m, we have

UγRγk,xf(γp, y) = UγRγk,xUγmfi(γ
p, y)

= UγR1,xRγk,0Uγmfi(γ
p, y)

= R1,γxUγUγm−kfi(γ
p+mr, y)

= Uγm−k+1fi(γ
m+p, y + γx)

and, on the other hand

Rγk,γxUγf(γp, y) = Rγk,γxUγUγmfi(γ
p, y)

= R1,γxRγk,0Uγm+1fi(γ
p, y)

= R1,γxUγm−k+1fi(γ
p+k, y)

= Uγm−k+1fi(γ
p+m, y + γx)

= UγRγk,xf(γp, y),

implying UγRγk,xf = Rγk,γxUγf . Repeated application gives us the desired result.
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E Details of the Experiments

E.1 Oxford IIIT Pet

All models, except for the augmented U-Net are trained for 300 epochs. The augmented U-Net is trained for four
times as many epochs. To train all models we apply data augmentation consisting of, rotations by a uniformly sampled
angles in [−10◦, 10◦], linear contrast changes by values in the range [0.9, 1.1], random horizontal flipping and random
cropping to size 112× 112. Learning rate starts at 10−3 an is reduced by 10 when the validation loss does not improve
for 30 epochs. We use a batch size of 8.

E.2 DIC-C2DH-HeLa

All models, except for the U-Net with jittering 4 are trained for 200 epochs. The augmented U-Net with jittering 4 is
trained for four times as many epochs. To train all models we apply data augmentation consisting of, rotations by a
uniformly sampled angles in [−10◦, 10◦], linear contrast changes by values in the range [0.9, 1.1], random horizontal
and vertical flipping and elastic transformations. Learning rate starts at 10−3, weight decay starts at 10−4 and both are
reduced by exponential decay such that they are divided by 10 every 100 epochs (the decay stops at epoch 300 for the
U-Net with size 4 jittering). We use a batch size of 1.

F More Examples of Predictions

In Figure 10 we can see some more examples of predictions from the Oxford Pet dataset, particularly when the U-Net
struggles to generalize to new scales. Similarly Figure 11 showcases some extra examples from the experiment from
the DIC-HeLa experiment.
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(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net

Figure 10: Sample test images at different scales and ground truth from the Oxford-IIIT Pet dataset, along with the
U-Net and SEU-Net predictions. The scales present are 0.25, 0.5, 1 and 2 times the training scale.
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(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net

Figure 11: Predictions from DIC-HeLa at different scales, namely scales 0.5, 1 and 2.
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