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ON THE CONVERGENCE OF CRITICAL POINTS OF THE

AMBROSIO-TORTORELLI FUNCTIONAL

JEAN-FRANÇOIS BABADJIAN, VINCENT MILLOT, AND RÉMY RODIAC

Abstract. This work is devoted to study the asymptotic behavior of critical points {(uε, vε)}ε>0

of the Ambrosio-Tortorelli functional. Under a uniform energy bound assumption, the usual Γ-
convergence theory ensures that (uε, vε) converges in the L2-sense to some (u∗, 1) as ε→ 0, where u∗
is a special function of bounded variation. Assuming further the Ambrosio-Tortorelli energy of (uε, vε)
to converge to the Mumford-Shah energy of u∗, the later is shown to be a critical point with respect

to inner variations of the Mumford-Shah functional. As a byproduct, the second inner variation is

also shown to pass to the limit. To establish these convergence results, interior (C∞) regularity and
boundary regularity for Dirichlet boundary conditions are first obtained for a fixed parameter ε > 0.

The asymptotic analysis is then performed by means of varifold theory in the spirit of scalar phase

transition problems. Lastly, a complete one-dimensional study allows one to exhibit non-minimizing
critical points of the Ambrosio-Tortorelli functional that do satisfy our energy convergence assumption.

1. Introduction

Let Ω ⊂ RN be a bounded open set with Lipschitz boundary (N ≥ 1) and g ∈ H
1
2 (∂Ω) be a

prescribed Dirichlet boundary data on ∂Ω. For infinitesimal parameters ε → 0 and ηε → 0 with
0 < ηε � ε, we consider the Ambrosio-Tortorelli functional defined by

ATε(u, v) :=

ˆ
Ω

(ηε + v2)|∇u|2 dx+

ˆ
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx , (1.1)

for all pairs (u, v) ∈ H1(Ω)×[H1(Ω)∩L∞(Ω)] satisfying (u, v) = (g, 1) on ∂Ω. This functional, originally
introduced in [3] can be interpreted as a phase-field regularization of the Mumford-Shah functional1

(u, v) 7→


MS(u) :=

ˆ
Ω

|∇u|2 dx+HN−1(Ju) +HN−1
(
∂Ω ∩ {u 6= g}

)
if

{
u ∈ SBV 2(Ω) ,

v = 1 in Ω ,

+∞ otherwise .

(1.2)

The Mumford-Shah functional is well known as a theoretical tool to approach image segmentation
[35, 34, 36]. It is also at the heart of the Francfort-Marigo model in fracture mechanics [14], and the
numerical implementation of this model heavily relies on Ambrosio-Tortorelli type functionals [7]. The
use of such phase-field approximation in numerics is usually justified through Γ-convergence theory.
In terms of the functionals defined above, it states that ATε Γ-converges in the [L2(Ω)]2-topology as
ε→ 0 towards the Mumford-Shah functional (see e.g. the seminal paper [4] and Proposition 4.1 below
for the proof of the lower bound inequality).

As a consequence, the fundamental theorem of Γ-convergence ensures the convergence of global
minimizers (uε, vε) of ATε to (u, 1) as ε → 0 where u ∈ SBV 2(Ω) is a global minimizer of MS. This
result is of course of importance, but it is somehow not fully satisfactory. Beyond the fact that the use
of global minimizers in the models mentioned above remains under debate, this convergence result does
not really provide a rigorous justification of the numerical simulations based on the Ambrosio-Tortorelli

1We refer to Section 2 for the notation used in the definition of MS.
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functional. One particular feature of ATε is its lack of convexity due to the nonconvex coupling term
v2|∇u|2 with respect to the pair (u, v). This is a high obstacle to reach global minimizers through
a numerical method. An idea employed in the context of image segmentation or fracture mechanics
consists in performing an alternate minimization algorithm, see [8]. Each iteration of the scheme is
well-posed since ATε is continuous, coercive, and separately strictly convex. Letting the number of steps
going to infinity, the sequence of iterates turns out to converge to a critical point of the energy ATε
[7, Theorem 1], but this critical point might fail to be a global minimizer. Consequently, the original
target of numerically approximating global minimizers of the Mumford-Shah functional might be lost.
These issues motivate the question of convergence as ε→ 0 of critical points of the Ambrosio-Tortorelli
functional and it constitutes the main goal of this article, continuing a task initiated in [13, 23] in
dimension N = 1. In higher dimension, a fundamental issue in such an analysis is the regularity of
critical points of ATε. It is also of importance for numerics as the efficiency of the numerical methods
crucially rests on it. Here, we fully resolve this last question showing smoothness of arbitrary critical
points according to the smoothness of ∂Ω and the Dirichlet boundary data.

A critical point (uε, vε) of the Ambrosio-Tortorelli functional is a weak (distributional) solution of
the nonlinear elliptic system 

−div
(
(ηε + v2

ε)∇uε
)

= 0 in Ω ,

−ε∆vε +
vε − 1

4ε
+ vε|∇uε|2 = 0 in Ω ,

(uε, vε) = (g, 1) on ∂Ω .

(1.3)

To be more precise, critical points of ATε are defined as follows.

Definition 1.1. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary and g ∈ H 1
2 (∂Ω). A

pair

(uε, vε) ∈ Ag(Ω) :=
{

(u, v) ∈ H1(Ω)× [H1(Ω) ∩ L∞(Ω)] : (u, v) = (g, 1) on ∂Ω
}

is a critical point of the Ambrosio-Tortorelli functional if

d

dt

∣∣∣
t=0

ATε(u+ tφ, v + tψ) = 0 for all (φ, ψ) ∈ H1
0 (Ω)× [H1

0 (Ω) ∩ L∞(Ω)] ,

that is ˆ
Ω

(ηε + v2
ε)∇uε · ∇φdx = 0 for all φ ∈ H1

0 (Ω) , (1.4)

and

ε

ˆ
Ω

∇vε · ∇ψ dx+

ˆ
Ω

(
vε − 1

4ε
+ vε|∇uε|2

)
ψ dx = 0 for all ψ ∈ H1

0 (Ω) ∩ L∞(Ω) . (1.5)

By density, test functions (φ, ψ) in (1.4)-(1.5) can equivalently be chosen in [C∞c (Ω)]2, and (1.3) holds
in the sense of distributions in Ω.

One may expect that critical points of ATε with uniformly bounded energy converge along some
subsequence ε → 0 to a limit satisfying some first order criticality conditions for MS. Unfortunately,
the theory of Γ-convergence does not provide convergence of critical points towards critical points of the
limiting functional. Even for local minimizers such a result usually fails. We refer to [22, Remark 4.5]
and [9, Example 3.5.1] for counter-examples. However, it has been proved in some specific examples that
critical points do converge to critical points, possibly under the assumption of convergence of critical
values. This is the case for the Allen-Cahn (or Modica-Mortola) functional from phase transitions
approximating the (N − 1)-dimensional area functional [37, 21, 43, 44, 19, 16], the Ginzburg-Landau
functional approximating the (N − 2)-dimensional area functional [2, 5, 28, 42, 38], and the Dirichlet
energy of manifold valued stationary harmonic maps [27, 29, 30, 31, 32]. These functionals share many
features with ATε, and we shall take advantage of the existing theory to develop our asymptotic analysis



CRITICAL OF POINTS OF THE AMBROSIO-TORTORELLI FUNCTIONAL 3

of critical points of ATε. In particular, we shall make an essential use of both outer and inner variations
of the energy, a common approach in all these studies.

1.1. Outer and inner variations. Definition 1.1 is simply saying that the first outer variation of ATε
vanishes at (uε, vε) ∈ Ag(Ω) in any direction (φ, ψ). In case of a smooth functional like ATε, outer
variations coincide with Gâteaux differentials. For (u, v) ∈ Ag(Ω) and (φ, ψ) ∈ H1

0 (Ω)×[H1
0 (Ω)∩L∞(Ω)]

as before, we introduce the following notation for the first and second outer variations of ATε (see
Lemma A.9 for explicit formulas)

dATε(u, v)[φ, ψ] :=
d

dt

∣∣∣
t=0

ATε(u+ tφ, v + tψ) ,

d2ATε(u, v)[φ, ψ] :=
d2

dt2

∣∣∣
t=0

ATε(u+ tφ, v + tψ) .

Concerning the Mumford-Shah functional, the notion of critical points requires some definition and
notation. Before doing so, let us first comment on the functional MS in (1.2) we are considering.
Contrary to ATε, the admissible u’s for MS are not required to agree with g on ∂Ω in the sense
of traces. In turn, the additional term HN−1(∂Ω ∩ {u 6= g}) in the expression of MS(u) penalizes
“boundary jumps” where the inner trace of u (still denoted by u) differs from g. The expression u 6= g
on ∂Ω is also intended in the sense of traces. In the sequel, we shall often use the following compact
notation

MS(u) =

ˆ
Ω

|∇u|2 dx+HN−1(Ĵu) , u ∈ SBV 2(Ω) ,

where Ĵu = Ju ∪ (∂Ω ∩ {u 6= g}), so that

Ĵu = Jû with û := u1Ω +G1RN\Ω ∈ SBV 2(RN ) ,

and G ∈ H1(RN ) is an arbitrary extension of g.

Unlike ATε, the Mumford-Shah functional is not smooth and outer variations must be accordingly

defined (see e.g. [1, Section 7.4]). Given u, φ ∈ SBV 2(Ω) such that Ĵφ ⊂ Ĵu, the first and second outer
variations of MS at u in the direction φ are respectively defined and given by

dMS(u)[φ] :=
d

dt

∣∣∣
t=0

MS(u+ tφ) = 2

ˆ
Ω

∇u · ∇φ dx ,

d2MS(u)[φ] :=
d2

dt2

∣∣∣
t=0

MS(u+ tφ) = 2

ˆ
Ω

|∇φ|2 dx .

In this definition, the requirement Ĵφ ⊂ Ĵu ensures the differentiability at t = 0 of the function

t 7→MS(u+ tφ) since HN−1(Ĵu+tφ) remains constantly equal to HN−1(Ĵu) . As a consequence, these
differentials provide only information on the “regular part” of the function u, and not on the jump

set Ĵu. Note also that the second order condition d2MS(u)[φ] ≥ 0 is obviously satisfied at any u, φ as

above. On the other hand, the condition Ĵφ ⊂ Ĵu also implies that the direction φ must agree with g
on ∂Ω ∩ {u = g}, in agreement with the notion of Dirichlet boundary condition.

It is clear that outer variations are not sufficient to define a notion of critical point for MS since

admissible perturbations leave the “singular part”HN−1(Ĵu) unchanged. The way to complement outer
variations is to consider inner variations, i.e., variations under domain deformations. In doing so (up
to the boundary), we shall assume that ∂Ω is at least of class C 2.

Given a vector field X ∈ C 1
c (RN ; RN ) satisfying X ·νΩ = 0 on ∂Ω (here νΩ denotes the outward unit

normal field on ∂Ω), we consider its flow map Φ : R×RN → RN , i.e., for every x ∈ RN , t 7→ Φ(t, x)
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is defined as the unique solution of the system of ODE’s
dΦ

dt
(t, x) = X(Φ(t, x)) ,

Φ(0, x) = x .

According to the standard Cauchy-Lipschitz theory, Φ ∈ C 1(R×RN ; RN ) is well-defined, and {Φt}t∈R
with Φt := Φ(t, ·) is a one-parameter group of C 1-diffeomorphisms of RN into itself satisfying Φ0 = id.
Then the requirement X · νΩ = 0 on ∂Ω implies that Φt(∂Ω) = ∂Ω for every t ∈ R. Hence (the
restriction of) Φt is a C 1-diffeomorphism of ∂Ω into itself, and a C 1-diffeomorphism of Ω into itself.

Definition 1.2. Let u ∈ SBV 2(Ω), X ∈ C 1
c (RN ; RN ), and G ∈ H1(RN ) satisfying X · νΩ = 0 and

G = g on ∂Ω. Setting {Φt}t∈R to be the integral flow of X and

ut := u ◦ Φ−1
t −G ◦ Φ−1

t +G ∈ SBV 2(Ω) ,

the first and second inner variations of MS at u are defined by

δMS(u)[X,G] :=
d

dt

∣∣∣
t=0

MS(ut) , δ2MS(u)[X,G] :=
d2

dt2

∣∣∣
t=0

MS(ut) .

It can be checked that, provided ∂Ω, g, and G are smooth enough, the above derivatives exist and
they can be explicitly computed (see Lemma A.12). Analogously, we define inner variations of the
Ambrosio-Tortorelli functional.

Definition 1.3. Let (u, v) ∈ Ag(Ω), X ∈ C 1
c (RN ; RN ), and G ∈ H1(RN ) satisfying X · νΩ = 0 and

G = g on ∂Ω. We set

(ut, vt) :=
(
u ◦ Φ−1

t −G ◦ Φ−1
t +G, v ◦ Φ−1

t

)
∈ Ag(Ω) .

We define the first and second inner variations of ATε at (u, v) by

δATε(u, v)[X,G] :=
d

dt

∣∣∣
t=0

ATε(ut, vt), δ2ATε(u, v)[X,G] :=
d2

dt2

∣∣∣
t=0

ATε(ut, vt) . (1.6)

Once again, the limits in (1.6) exist whenever ∂Ω, g, and G are sufficiently smooth, and one can
compute them explicitly (see Lemmas A.10 & A.11).

We emphasize that we are considering in Definitions 1.2 & 1.3 deformations up to the boundary.
Compare to the usual deformations involving compactly supported perturbations in Ω of the original
maps, it requires the additional test function G. This is of fundamental importance for the MS
functional to recover information at the boundary since the Dirichlet boundary condition is implemented
in the functional as a penalization. Of course, the type of deformations we are using includes as a
particular case the usual ones defined only through a vector field X compactly supported in Ω, see
Remark A.3.

1.2. First order criticality conditions for MS. In view of the discussion above, the non smooth
character ofMS forces the appropriate notion of critical point to involve both outer and inner variations.
In other words, a critical point of the Mumford-Shah functional is a critical point with respect to both
outer and inner variations, a property obviously satisfied by global (and even local) minimizers.

Definition 1.4. Let Ω ⊂ RN be a bounded open set with boundary of class at least C 2 and g ∈ C 2(∂Ω).
A function u∗ ∈ SBV 2(Ω) is a critical point of the Mumford-Shah functional if

dMS(u∗)[φ] = 0 for all φ ∈ SBV 2(Ω) with Ĵφ ⊂ Ĵu∗ , (1.7)

and

δMS(u∗)[X,G] = 0 (1.8)

for all X ∈ C 1
c (RN ; RN ) and G ∈ C 2(RN ) satisfying X · νΩ = 0 and G = g on ∂Ω.
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From these criticality conditions, one can derive a set of Euler-Lagrange equations which can be

written in a strong form if the smoothness of u∗ and Ĵu∗ allows it. Specializing first the condition (1.7)
to φ ∈ C∞c (Ω) yields

div(∇u∗) = 0 in D ′(Ω) . (1.9)

Then, if Ĵu∗ is regular enough, one can choose test functions φ in (1.7) with a non trivial jump set but

smooth up to Ĵu∗ from both sides. It leads to the following homogeneous Neumann condition

∂νu∗ = 0 on Ĵu∗ , (1.10)

see [1, formula (7.42)]. In other words, allowing test functions φ in (1.7) with Ĵφ ⊂ Ĵu∗ (and not only
in φ ∈ C∞c (Ω)) provides the weak formulation of (1.10) which complements (1.9).

Computing δMS(u∗)[X,G] (see formula (A.38)) and using equation (1.9), the stationarity condition
(1.8) appears to be independent of the test function G and it reduces toˆ

Ω

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: DX dx+

ˆ
Ĵu∗

divĴu∗X dHN−1 = −2

ˆ
∂Ω

(∇u∗ ·νΩ)(Xτ ·∇τg) dHN−1

for all X ∈ C 1
c (RN ; RN ) with X · νΩ = 0 on ∂Ω . (1.11)

Here divĴu∗X = tr ((Id− νu∗ ⊗ νu∗)DX) is the tangential divergence of X on the countably HN−1-

rectifiable set Ĵu∗ with νu∗ the approximate unit normal to that set. The boundary term in the right
hand side of (1.11) is interpreted in the sense of duality by (1.9), and ∇τg denotes the tangential
derivative of g. If Ju∗ and u∗ are regular enough, then (1.11) provides the coupling equation

Hu∗ +
[
|∇u∗|2

]±
= 0 on Ju∗ ,

where Hu∗ denotes the scalar mean curvature of Ju∗ with respect to the normal νu∗ and
[
|∇u∗|2

]±
the

(accordingly oriented) jump of |∇u∗|2 across Ju∗ (see [1, Chapter 7, Section 7.4]).

Remark 1.1 (1D case). In the one-dimensional case N = 1, if Ω = (0, L) for some L > 0, we can
see that if u ∈ SBV 2(0, L) satisfies conditions (1.9)-(1.10), then u is either piecewise constant with a
finite number of jumps or u is a globally affine function (with no jump). Indeed, the very definition of
SBV 2(0, L) shows that u has a finite number of jumps. Then, condition (1.9) implies that u is affine
in between to consecutive jump points, and (1.10) implies that the slope of all affine functions must
be zero. However, condition (1.11) does not play any role because it only implies that |u′| is constant
in (0, L), where u′ is the approximate derivative of u. From this, we just deduce that u is a piecewise
affine function with equal slopes in absolute value, and it is not sufficient by itself to prove that u is
piecewise constant. It indicates that the use of SBV 2-test functions in (1.7) can not be relaxed to a
class of smooth functions (in any dimension).

1.3. Main results. As already mentioned, the main purpose of this article is to investigate the as-
ymptotic behavior of critical points of the Ambrosio-Tortorelli functional as ε → 0. In view of the
Γ-convergence result, one may expect that critical points converge to critical points, possibly under
the assumption of convergence of energies. Without fully resolving this question, our analysis provides
the first answer in this direction in arbitrary dimensions showing that a limit of critical points of ATε
must at least be a critical point of MS with respect to inner variations, i.e., a stationary point of MS.
If a critical point (uε, vε) of ATε is smooth enough, then it is easy to see that it is also stationary,
i.e., δATε(uε, vε) = 0 (see Lemma A.10). Hence, if regularity of critical points ATε holds, proving the
convergence of the first inner variations implies the announced stationarity of the limit. This is the
path we have followed, and the regularity issue is the object of our first main theorem.

Theorem 1.1. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary and g ∈ H
1
2 (∂Ω). If

(uε, vε) ∈ Ag(Ω) is a critical point of ATε, then (uε, vε) ∈ [C∞(Ω)]2 and the following regularity up to
the boundary holds.
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(i) If g ∈ H 1
2 (∂Ω) ∩ L∞(∂Ω), then uε ∈ L∞(Ω).

(ii) If ∂Ω is of class C k∨2,1 and g ∈ C k,α(∂Ω) with k ≥ 1 and α ∈ (0, 1), then (uε, vε) ∈ C k,α(Ω)×
C k∨2,α(Ω).

We emphasize that the regularity in Theorem 1.1 is highly non trivial since the second equation in
(1.3) is of the form ∆v = f with f ∈ L1 and standard linear elliptic theory does not directly apply.
Instead, we shall rely on arguments borrowed from the regularity theory for harmonic maps into a
manifold, or more generally for variational nonlinear elliptic systems, see e.g. [17]. The key issue is
to prove Hölder continuity of vε, that we achieve by proving that it belongs to a suitable Morrey-
Campanato space. We treat interior and boundary regularity in a similar way through a reflection
argument of independent interest originally devised in [40].

In our second main theorem, we show that, under the assumption of convergence of energies, limits
(up to a subsequence) of critical points of ATε are critical points of MS for the inner variations.

Theorem 1.2. Assume that Ω ⊂ RN is a bounded open set of class C 2,1 and g ∈ C 2,α(Ω) for some
α ∈ (0, 1). Let {(uε, vε)}ε>0 ⊂ Ag(Ω) be a family of critical points of the Ambrosio-Tortorelli functional.
Then, the following properties hold:

(i) If the energy bound
sup
ε>0

ATε(uε, vε) <∞ (1.12)

is satisfied, up to a subsequence, uε → u∗ strongly in L2(Ω) as ε→ 0 for some u∗ ∈ SBV 2(Ω)∩
L∞(Ω) satisfying ∇u∗ · νΩ ∈ L2(∂Ω), and dMS(u∗)[φ] = 0 for all φ ∈ C∞c (Ω), i.e.,

div(∇u∗) = 0 in D ′(Ω) .

(ii) If, further, the energy convergence

ATε(uε, vε)→MS(u∗) (1.13)

is satisfied, then δMS(u∗) = 0, i.e.,ˆ
Ω

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: DX dx+

ˆ
Ĵu∗

divĴu∗X dHN−1 = −2

ˆ
∂Ω

(∇u∗ · νΩ)(Xτ · ∇τg) dHN−1

(1.14)
for all vector field X ∈ C 1

c (RN ; RN ) with X · νΩ = 0 on ∂Ω.

Remark 1.2. At this stage, it is still open whether or not u∗ is a critical point of MS as we do not
know if the outer variation dMS(u∗) also vanishes on arbitrary functions φ ∈ SBV 2(Ω) satisfying

Ĵφ ⊂ Ĵu∗ (and not only on C∞c (Ω)). In other words, the weak form of the homogeneous Neumann

condition (1.10) on Ĵu∗ remains to be established. This is the only missing ingredient to obtain that
u∗ is a critical point of MS.

An assumption of convergence of energies similar to (1.13) has been used in [33, 24, 25, 26] to prove
that critical points of the Allen-Cahn functional (from phase transitions) converge towards critical
points of the perimeter functional, hence to minimal surfaces. The analysis without this assumption
has been first carried out in [21], and it shows that critical points converge (in the sense of inner vari-
ations) towards integer multiplicity stationary varifolds, a measure theoretic generalization of minimal
surfaces allowing for multiplicities. Interfaces with multiplicities do appear as limits of critical points
of the Allen-Cahn energy and cannot be excluded, see e.g. [21, Section 6.3]. In our context, a similar
phenomenon may appear, so that assumption (1.13) is probably necessary.

In [24, 25, 26], convergence of energies is also used to pass to the limit in the second inner variation.
Following the same path, (1.13) allows us to pass to the limit in the second inner variation of ATε. It
shows that the second inner variations of ATε do not converge to the second inner variation of MS, but
to the second inner variation plus a residual additional term. As a byproduct, it follows that limits of



CRITICAL OF POINTS OF THE AMBROSIO-TORTORELLI FUNCTIONAL 7

stable critical points of ATε satisfy an “augmented” second order minimality condition. Second order
minimality criteria for MS has been addressed in [11, 6]. We also note that the convergence of the
second inner variation for the Allen-Cahn functional without the assumption of convergence of energies
has been studied in [15], see also [20]. Convergence of second inner variations is our third and last main
result.

Theorem 1.3. Assume that Ω ⊂ RN is a bounded open set of class C 3,1 and g ∈ C 3,α(∂Ω) for some
α ∈ (0, 1). Let {(uε, vε)}ε>0 ⊂ Ag(Ω) be a family of critical points of the Ambrosio-Tortorelli functional
and u∗ ∈ SBV 2(Ω) ∩ L∞(Ω) be as in Theorem 1.2, satisfying the convergence of energy (1.13). Then,

(i) For all X ∈ C 2
c (RN ; RN ) and all G ∈ C 3(RN ) with X · νΩ = 0 and G = g on ∂Ω,

lim
ε→0

δ2ATε(uε, vε)[X,G] = δ2MS(u∗)[X,G] +

ˆ
Ĵu∗

|DX : (νu∗ ⊗ νu∗)|2 dHN−1 ; (1.15)

(ii) If (uε, vε) is a stable critical point of ATε, i.e.

d2ATε(uε, vε)[φ, ψ] ≥ 0 for all (φ, ψ) ∈ [C∞c (Ω)]2,

then u∗ satisfies the second order inequality

δ2MS(u∗)[X,G] +

ˆ
Ĵu∗

|DX : (νu∗ ⊗ νu∗)|2 dHN−1 ≥ 0

for all X ∈ C 2
c (RN ; RN ) and all G ∈ C 3(RN ) with X · νΩ = 0 and G = g on ∂Ω.

In the one-dimensional case, the asymptotic analysis as ε → 0 of critical points of the Ambrosio-
Tortorelli functional has already been carried out in [13, 23], in the slightly different setting where a
homogeneous Neumann boundary condition is assumed for the phase field variable v. The authors
proved that if {(uε, vε)}ε>0 is a family of critical points of the Ambrosio-Tortorelli functional satisfying
(1.12), then, up to a subsequence, (uε, vε)→ (u, 1) in [L2(Ω)]2 with u ∈ SBV 2(Ω) that is either globally
affine or piecewise constant with a finite number of jumps, see Remark 1.1 . This result is extended
in [23] to the Ambrosio-Tortorelli functional with a fidelity term. We have also carried out the 1D
analysis in our setting, i.e., with the Dirichlet boundary condition on the v variable. In this case, we
establish a convergence result for critical points without assuming the convergence of the energy (1.13),
but proving (1.13) as a consequence of the energy bound (1.12), see Theorems 7.1 & 7.2 and Remark
7.2. The analysis is very similar to [13, 23], the only difference being in the boundary condition on
v. As in those references, we observe a selection criterion of all attainable critical points which can be
here of two types: either a globally affine function or a piecewise constant function with a single jump
at the middle point of the interval Ω = (0, L). As a by-product, this one-dimensional analysis allows us
to exhibit non-minimizing critical points of ATε satisfying our energy convergence assumption (1.13).

1.4. Ideas of the convergence proof. The proof of Theorem 1.2 relies on the classical compactness
argument and the lower bound inequality for the Ambrosio-Tortorelli functional. Indeed, the energy
bound for a family {(uε, vε)}ε>0 ⊂ Ag(Ω) of critical points for ATε implies the L2(Ω)-convergence
(up to a subsequence) of uε to a limit u∗ ∈ SBV 2(Ω), together with a Γ-liminf inequality MS(u∗) ≤
lim infεATε(uε, vε). Our energy convergence assumption (1.13) leads to the equipartition of phase field
energy, as well as the convergence of the bulk energy. Then, as in [21], we associate an (N − 1)-varifold
Vε to the phase field variable vε, which converges (again up to a subsequence) to a limiting varifold V∗.

The energy convergence (1.13) allows us to identify the mass of V∗, that is ‖V∗‖ = HN−1 Ĵu∗ . Next,
we use the equations satisfied by (uε, vε) in their conservative form to pass to the limit, and find an
equation satisfied by u∗ and V∗. The idea is then to employ a blow-up argument similar to [2] to identify

(the first moment of) V∗, and show that it is the rectifiable varifold associated to Ĵu∗ with multiplicity
one.
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To prove Theorem 1.3, we argue as in [24, 25, 26]. We observe that the convergence Vε ⇀ V∗ in the
sense of varifolds and the identification of V∗ implies the convergence of quadratic terms ε∇vε⊗∇vε ⇀
1
2νu∗ ⊗νu∗H

N−1 Ĵu∗ in the sense of measures. This information is precisely what is needed to pass to
the limit in the second inner variation of ATε, and we infer from a stability condition on (uε, vε) ∈ Ag(Ω)
a stability condition on the limit u∗ ∈ SBV 2(Ω).

The paper is organised as follows. Section 2 collects several notation that will be used throughout
the paper. In Section 3, we study the regularity theory for critical points of the Ambrosio-Tortorelli
functional proving first smoothness in the interior of the domain, and then smoothness at the bound-
ary. In Section 4, we prove compactness of a family {(uε, vε)}ε>0 satisfying a uniform energy bound
supεATε(uε, vε) < ∞. The regularity result allows one to derive the conservative form of the equa-
tions satisfied by these critical points which itself provides bounds on the normal traces of uε and
vε on ∂Ω. Then, in Section 5, we improve the previous results by assuming the energy convergence
ATε(uε, vε)→MS(u∗). From this assumption we obtain equipartition of the phase field part of the en-
ergy. Then, we employ a reformulation in terms of varifolds to pass to the limit in the inner variational
equations satisfied by critical points of ATε to prove that the weak limit u∗ of uε is a stationary point
of the Mumford-Shah energy. The asymptotic behavior of the second inner variations is performed in
Section 6. Finally, Section 7 is devoted to the one-dimensional case.

2. Notation and preliminaries

2.1. Measures. The Lebesgue measure in RN is denoted by LN , and the k-dimensional Hausdorff
measure by Hk. We will sometime write ωk for the Lk-measure of the k-dimensional unit ball in Rk.

If X ⊂ RN is a locally compact set and Y an Euclidean space, we denote byM(X;Y ) the space of Y -
valued bounded Radon measures in X endowed with the norm ‖µ‖ = |µ|(X), where |µ| is the variation
of the measure µ. If Y = R, we simply write M(X) instead of M(X; R). By Riesz representation
theorem, M(X;Y ) can be identified with the topological dual of C0(X;Y ), the space of continuous
functions f : X → Y such that {|f | ≥ ε} is compact for all ε > 0. The weak* topology of M(X;Y ) is
defined using this duality.

2.2. Functional spaces. We use standard notation for Lebesgue, Sobolev and Hölder spaces. Given
a bounded open set Ω ⊂ RN , the space of functions of bounded variation is defined by

BV (Ω) = {u ∈ L1(Ω) : Du ∈M(Ω; RN )}.

We shall also consider the subspace SBV (Ω) of special functions of bounded variation made of functions
u ∈ BV (Ω) whose distributional derivative can be decomposed as

Du = ∇uLN + (u+ − u−)νuHN−1 Ju.

In the previous expression, ∇u is the Radon-Nikodým derivative of Du with respect to LN , and it
is called the approximate gradient of u. The Borel set Ju is the (approximate) jump set of u. It
is a countably HN−1-rectifiable subset of Ω oriented by the (approximate) normal direction of jump
νu : Ju → SN−1, and u± are the one-sided approximate limits of u on Ju according to νu. Finally we
define

SBV 2(Ω) = {u ∈ SBV (Ω) : ∇u ∈ L2(Ω; RN ) and HN−1(Ju) <∞}.

We say that a Lebesgue measurable set E ⊂ Ω has finite perimeter in Ω if its characteristic function
1E ∈ BV (Ω). We denote by ∂∗E its reduced boundary. We refer to [1] for a detailed description of the
space BV .

We recall the following compactness result which can be found in [10, Theorem 16].
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Lemma 2.1. Let (uk)k∈N be a sequence in H1(Ω) ∩ L∞(Ω) and (Ek)k∈N be a sequence of sets with
finite perimeter in Ω. Assume that

LN (Ek)→ 0, sup
k∈N
HN−1(∂∗Ek) <∞,

and that

sup
k∈N

{
‖uk‖L∞(Ω) + ‖∇uk‖L2(Ω\Ek;RN )

}
<∞.

Then, there exist a (not relabled) subsequence and u ∈ SBV 2(Ω)∩L∞(Ω) such that ũk := uk1Ω\Ek → u

strongly in L2(Ω), ∇ũk = ∇uk1Ω\Ek ⇀ ∇u weakly in L2(Ω; RN ) and
ˆ

Ω

|∇u|2 dx ≤ lim inf
k→∞

ˆ
Ω\Ek

|∇uk|2 dx, 2HN−1(Ju) ≤ lim inf
k→∞

HN−1(∂∗Ek).

2.3. Varifolds. Let us recall several basic ingredients of the theory of varifolds (see [41] for a detailed
description). We denote by GN−1 the Grassmannian manifold of all (N − 1)-dimensional linear sub-
spaces of RN . The set GN−1 is as usual identified with the set of all orthogonal projection matrices
onto (N − 1)-dimensional linear subspaces of RN , i.e., N ×N symmetric matrices A such that A2 = A
and tr(A) = N − 1, in other words, matrices of the form

A = Id− e⊗ e

for some e ∈ SN−1.
A (N−1)-varifold in X (a locally compact subset of RN ) is a bounded Radon measure on X×GN−1.

The class of (N − 1)-varifold in X is denoted by VN−1(X). The mass of V ∈ VN−1(X) is simply the
measure ‖V ‖ ∈ M(X) defined by ‖V ‖(B) = V (B ×GN−1) for all Borel sets B ⊂ X. We define the
first variation of an (N − 1)-varifold in V in an open set U ⊂ RN by

δV (ϕ) =

ˆ
U×GN−1

Dvarphi(x) : A dV (x,A) for all ϕ ∈ C 1
c (U ; RN ).

We say that an (N − 1)-varifold is stationary in U if δV (ϕ) = 0 for all ϕ in C 1
c (U ; RN ). We recall that

such a varifold satisfies the monotonicity formula

‖V ‖(B%(x0))

%N−1
=
‖V ‖(Br(x0))

rN−1
+

ˆ
(B%(x0)\Br(x0))×GN−1

|PA⊥(x− x0)|2

|x− x0|N+1
dV (x,A)

for all x0 ∈ U and 0 < r < % with B%(x0) ⊂ U , where PA⊥ is the orthogonal projection onto the
one-dimensional space A⊥ (see [41, paragraph 40]).

2.4. Tangential divergence. Let Γ be a countably HN−1-rectifiable set and let TxΓ its approximate
tangent space defined for HN−1-a.e. x ∈ Γ. We consider an orthonormal basis {τ1(x), . . . , τN−1(x)} of
TxΓ and denote by ν(x) a normal vector to TxΓ. If ζ : RN → RN is a smooth vector field, we denote
by

divΓζ :=

N−1∑
i=1

τi · ∂τiζ = (Id− ν ⊗ ν) : Dζ

the tangential divergence, and (∂τiζ)⊥ = ((∂τiζ) · ν)ν = ∂τiζ −
∑N−1
j=1 (τj · ∂τiζ)τj .

3. Regularity theory for critical points of the Ambrosio-Tortorelli energy

In this section, we investigate interior and boundary regularity properties of critical points of the
Ambrosio-Tortorelli functional ATε for a parameter ε > 0 which is kept fixed.
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3.1. Interior regularity. We first establish interior regularity following ideas used by T. Rivière in
[39] to prove the regularity of harmonic maps with values into a revolution torus.

Theorem 3.1. Let Ω ⊂ RN be a bounded open set. If (uε, vε) ∈ H1(Ω) × [H1(Ω) ∩ L∞(Ω)] satisfies
(1.4)-(1.5), then (uε, vε) ∈ [C∞(Ω)]2.

Proof. For simplicity, we drop the subscript ε in (uε, vε) and write instead (u, v). We also assume
N ≥ 2 since in the case N = 1, the regularity of (u, v) solution of (1.4)-(1.5) is elementary.

By (1.4), u weakly solves

−div
(
(ηε + v2)∇u

)
= 0 in Ω . (3.1)

Setting M := ‖v‖L∞(Ω), the matrix field (ηε+v2)Id has bounded measurable coefficients and it satisfies

ηεId ≤ (ηε + v2)Id ≤ (ηε + M2)Id a.e. in Ω in the sense of quadratic forms. It is therefore uniformly
elliptic and the De Giorgi-Nash-Moser regularity theorem applies to equation (3.1). It provides the

existence of α ∈ (0, 1) such that u ∈ C 0,α
loc (Ω) together with the estimate:

K(ω) := sup
x0∈ω, %>0, B%(x0)⊂ω

1

%N−2+2α

ˆ
B%(x0)

|∇u|2 dx <∞ (3.2)

for every open subset ω such that ω ⊂ Ω (see e.g. Theorem 8.13 and Eq. (8.18) in [17]).

Now we claim that the function v belongs to C 0,α
loc (Ω). Before proving this claim, we complete the

proof of the theorem. Assuming the claim to be true, we can use the Schauder estimates (see e.g. [17,

Theorem 5.19]) to derive from equation (3.1) that u ∈ C 1,α
loc (Ω). On the other hand, by (1.5), v weakly

solves

−ε∆v =
1− v

4ε
− |∇u|2v in Ω . (3.3)

Since the right-hand-side of (3.3) belongs to C 0,α
loc (Ω), it follows from standard Schauder estimates that

v ∈ C 2,α
loc (Ω). By a classical bootstrap, it now follows from equations (3.1) and (3.3) that both u and v

are of class C∞ in Ω.

Hence, it only remains to show the claim v ∈ C 0,α
loc (Ω). To this purpose, we fix an arbitrary ball

B2R(x0) ⊂ Ω, and we aim to prove that v ∈ C 0,α
loc (BR(x0)). Consider v1 ∈ H1(B2R(x0)) to be the

unique weak solution of  −∆v1 =
1− v
4ε2

in B2R(x0) ,

v1 = v on ∂B2R(x0) .
(3.4)

Since ∆v1 ∈ L∞(B2R(x0)), the Calderón-Zygmund estimates yield v1 ∈ W 2,p
loc (B2R(x0)) for every

p < ∞. By Sobolev embedding, it follows that v1 ∈ C1,β
loc (B2R(x0)) for every β ∈ (0, 1). In particular,

we have v1 ∈ L∞(BR(x0)).
Set v2 := v − v1 ∈ H1

0 (B2R(x0)). By (3.3) and (3.4), v2 is a weak solution of

−∆v2 = −1

ε
|∇u|2v in B2R(x0) . (3.5)

To show that v2 ∈ C 0,α
loc (BR(x0)), the Morrey-Campanato Theorem (see e.g. [17, Theorem 5.7]) ensures

that it suffices to prove the following Morrey type estimate:

sup
y∈BR(x0), %∈(0,R)

1

%N−2+2α

ˆ
B%(y)

|∇v2|2 dx <∞ . (3.6)

Let y ∈ BR(x0) and r ∈ (0, R) arbitrary. We denote by w ∈ v2 +H1
0 (Br(y)) the harmonic extension of

v2 in the ball Br(y), i.e., the unique (weak) solution of{
−∆w = 0 in Br(y) ,

w = v2 on ∂Br(y) .
(3.7)



CRITICAL OF POINTS OF THE AMBROSIO-TORTORELLI FUNCTIONAL 11

Since v2 = v − v1 ∈ L∞(BR(x0)), we have |w| ≤ ‖v2‖L∞(BR(x0)) on ∂Br(y), and the weak maximum

principle implies that w ∈ L∞(Br(y)) with ‖w‖L∞(Br(y)) ≤ ‖v2‖L∞(BR(x0)). Moreover, |∇w|2 being
subharmonic in Br(y), we get that for every % < r,ˆ

B%(y)

|∇w|2 dx ≤
(%
r

)N ˆ
Br(y)

|∇w|2 dx .

Recalling w also minimizes the Dirichlet integral among all functions agreeing with v2 on ∂Br(y), we
infer that ˆ

B%(y)

|∇v2|2 dx ≤ 2

ˆ
B%(y)

|∇w|2 dx+ 2

ˆ
B%(y)

∣∣∇(w − v2)
∣∣2 dx

≤ 2
(%
r

)N ˆ
Br(y)

|∇w|2 dx+ 2

ˆ
Br(y)

∣∣∇(w − v2)
∣∣2 dx

≤ 2
(%
r

)N ˆ
Br(y)

|∇v2|2 dx+ 2

ˆ
Br(y)

∣∣∇(w − v2)
∣∣2 dx

for every % < r. Since w − v2 = 0 on ∂Br(y), (3.5) and (3.7) lead toˆ
Br(y)

∣∣∇(w − v2)
∣∣2 dx =

1

ε

ˆ
Br(y)

|∇u|2v(w − v2) dx ≤ 2

ε
‖v‖L∞(Ω)‖v2‖L∞(BR(x0))

ˆ
Br(y)

|∇u|2 dx .

In view of (3.2), we have thus proved that for every y ∈ BR(x0) and 0 < % ≤ r < R,ˆ
B%(y)

|∇v2|2 dx ≤ 2
(%
r

)N ˆ
Br(y)

|∇v2|2 dx+ C1r
N−2+2α

with C1 := 4
ε‖v‖L∞(Ω)‖v2‖L∞(BR(x0))K(B2R(x0)). By using a classical iteration lemma (see e.g. [17,

Lemma 5.13]), we infer that for every y ∈ BR(x0) and 0 < % < R,ˆ
B%(y)

|∇v2|2 dx ≤ Cα%N−2+2α

(
1

RN−2+2α

ˆ
B2R(x0)

|∇v2|2 dx+ C1

)
,

for a constant Cα depending only on α and N . Hence v2 satisfies the Morrey estimate (3.6), and thus

v2 ∈ C 0,α
loc (BR(x0)). In turn, v = v1 + v2 ∈ C 0,α

loc (BR(x0)) and the proof of the claim is complete. �

3.2. Maximum principle and boundary regularity. We first show a (standard) maximum prin-
ciple which stipulates that vε takes values between 0 and 1, and that uε is bounded whenever the
boundary condition g is.

Lemma 3.1 (Maximum principle). Let Ω ⊂ RN be a bounded open set with Lipschitz boundary and
(uε, vε) ∈ H1(Ω) × [H1(Ω) ∩ L∞(Ω)] satisfying (1.4)-(1.5). If vε = 1 on ∂Ω, then 0 ≤ vε ≤ 1 a.e.

in Ω. In addition, if uε = g on ∂Ω for a function g ∈ H
1
2 (∂Ω) ∩ L∞(∂Ω), then uε ∈ L∞(Ω) and

‖uε‖L∞(Ω) ≤ ‖g‖L∞(∂Ω).

Proof. For a generic function f ∈ L1(Ω), we set f+ := (f+ |f |)/2 and f− := (|f |−f)/2. For simplicity,
we drop the subscript ε in (uε, vε) and write instead (u, v).

Since v−1 ∈ H1
0 (Ω)∩L∞(Ω), it follows that (v−1)+ ∈ H1

0 (Ω)∩L∞(Ω) with ∇(v−1)+ = ∇v1{v≥1}.

Using (v − 1)+ as a test function in (1.5) leads to

ε

ˆ
Ω

|∇(v − 1)+|2 dx+

ˆ
Ω

(
v − 1

4ε
+ v|∇u|2

)
(v − 1)+ dx = 0 .

Since both integrals are non negative, we infer thatˆ
Ω

|(v − 1)+|2 dx = 0 .
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Hence (v − 1)+ = 0 a.e. in Ω, which yields v ≤ 1 a.e. in Ω. Next, since v = 1 on ∂Ω, we have
−v− ∈ H1

0 (Ω) ∩ L∞(Ω). The same argument as before with −v− as test function in (1.5) shows that
−v = 0 a.e. in Ω, that is v ≥ 0 a.e. in Ω.

Now we assume that u = g on ∂Ω with g ∈ H 1
2 (∂Ω) ∩ L∞(∂Ω) and we set M := ‖g‖L∞(∂Ω). Since

|g| ≤M on ∂Ω, we have (u−M)+ ∈ H1
0 (Ω) with ∇(u−M)+ = ∇u1{u≥M}. Using (u−M)+ as a test

function in (1.4) yields

0 =

ˆ
Ω

(ηε + v2)∇u · ∇(u−M)+ dx =

ˆ
Ω

(ηε + v2)|∇(u−M)+|2 dx ,

Therefore ∇(u−M)+ = 0 a.e. in Ω which implies that (u−M)+ is constant. Since (u−M)+ ∈ H1
0 (Ω),

it follows that (u − M)+ = 0 a.e. in Ω, that is u ≤ M a.e. in Ω. The same argument applied to
(u+M)− ∈ H1

0 (Ω) shows that u ≥ −M a.e. in Ω, and thus ‖u‖L∞(Ω) ≤M . �

Next we study the boundary regularity of a critical point (uε, vε) of the Ambrosio-Tortorelli energy.
Our strategy is to use a local reflexion argument to extend (uε, vε) across the boundary. The extension
will then satisfy a modified system of PDEs for which we can apply an interior regularity result (similar
to that of Theorem 3.1). The reflexion argument originates in [40] and follows the arguments in [12].
Note that Lemma 3.1 and Theorem 3.2 together with a standard covering argument completes the
proof of Theorem 1.1.

Theorem 3.2. Let Ω ⊂ RN be a bounded open set and (uε, vε) ∈ H1(Ω)× [H1(Ω)∩L∞(Ω)] satisfying
(1.4)-(1.5). Assume that in some ball B4R(x0) with x0 ∈ ∂Ω, the boundary portion ∂Ω ∩B4R(x0) is of
class C k∨2,1 and (uε, vε) = (g, 1) on ∂Ω ∩ B4R(x0) for a function g ∈ C k,α(∂Ω ∩ B4R(x0)) with k ≥ 1
and α ∈ (0, 1). Then (uε, vε) ∈ C k,α(Ω∩BθR(x0))×C k∨2,α(Ω∩BθR(x0)) for some constant θ ∈ (0, 1).

Proof. We start by describing the reflexion method that we use to extend functions across ∂Ω in a
neighborhood of the point x0. We assume that x0 ∈ ∂Ω and R > 0 are fixed, and that the assumption of
the theorem is satisfied. Since ∂Ω∩B4R(x0) is (at least) of class C 2,1, we can find a small δ0 ∈ (0, R/2)
such that the nearest point projection on ∂Ω ∩B4R(x0), denoted by πΩ, is well-defined and (at least)
of class C 1,1 in a tubular neighborhood of size 2δ0 of ∂Ω ∩ B4R(x0) intersected with B3R(x0). For
δ ∈ (0, 2δ0], we set 

Uδ :=
{
x ∈ RN : dist(x, ∂Ω) < δ

}
∩B3R(x0) ,

U in
δ := Ω ∩ Uδ ,

U ex
δ := Uδ \ Ω .

The geodesic reflexion across ∂Ω ∩ U2δ0 is denoted by σΩ : U2δ0 → RN and it is defined by

σΩ(x) := 2πΩ(x)− x for all x ∈ U2δ0 .

The mapping σΩ is an involutive C 1,1-diffeomorphism (onto its image) which satisfies σΩ(x) = x for
all x ∈ ∂Ω ∩ U2δ0 . Reducing the value of δ0 if necessary, we have

σΩ

(
U ex
δ ∩BR(x0)

)
⊂ U in

δ ∩B2R(x0) and σΩ

(
U in
δ ∩BR(x0)

)
⊂ U ex

δ ∩B2R(x0) for δ ∈ (0, 2δ0) .

Next we consider the bounded open set

Ω̃ :=
(
Uδ0 ∩BR(x0)

)
∪ σΩ

(
Uδ0 ∩BR(x0)

)
⊂ Uδ0 ∩B2R(x0) . (3.8)

The mapping σΩ being involutive, we have

σΩ(Ω̃) = Ω̃ , σΩ(Ω̃ ∩ Ω) = Ω̃ \ Ω and σΩ(Ω̃ \ Ω) = Ω̃ ∩ Ω .

Differentiating the relation σΩ(σΩ(x)) = x yields DσΩ(x)DσΩ(σΩ(x)) = Id, and thus

DσΩ(σΩ(x)) =
(
DσΩ(x)

)−1
for every x ∈ Ω̃ . (3.9)
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For x ∈ ∂Ω∩Ω̃, one has (DσΩ(x))T v = 2px(v)−v for all v ∈ RN , where px is the orthogonal projection
from RN onto the tangent space Tx(∂Ω) to ∂Ω at x, i.e., (DσΩ(x))T is the reflexion matrix across the
hyperplane Tx(∂Ω). In particular,

(DσΩ(x))TDσΩ(x) = (DσΩ(x))T (DσΩ(x))T = Id for every x ∈ ∂Ω ∩ Ω̃ . (3.10)

Now we define for x ∈ Ω̃,

j(x) :=

{
1 if x ∈ Ω̃ ∩ Ω ,

|detDσΩ(x)| if x ∈ Ω̃ \ Ω ,

and

A(x) :=

{
Id if x ∈ Ω ,

j(x)
[
DσΩ(σΩ(x))

]T
DσΩ(σΩ(x)) if x ∈ Ω̃ \ Ω .

In view of (3.10), j and A are Lipschitz continuous in Ω̃ and A is uniformly elliptic, i.e., there exist
two constants 0 < λΩ ≤ ΛΩ such that

λΩ|ξ|2 ≤ A(x)ξ · ξ ≤ ΛΩ|ξ|2 for every (x, ξ) ∈ Ω̃×RN .

With these geometrical preliminaries, we are now ready to provide the extension of (uε, vε) to Ω̃.

We define for x ∈ Ω̃,

ûε(x) :=

{
uε(x) if x ∈ Ω

uε(σΩ(x)) if x ∈ Ω̃ \ Ω
, v̂ε(x) :=

{
vε(x) if x ∈ Ω

vε(σΩ(x)) if x ∈ Ω̃ \ Ω
, (3.11)

and

ũε(x) :=

{
uε(x) if x ∈ Ω

2g(πΩ(x))− uε(σΩ(x)) if x ∈ Ω̃ \ Ω
, ṽε(x) :=

{
vε(x) if x ∈ Ω

2− vε(σΩ(x)) if x ∈ Ω̃ \ Ω
. (3.12)

By the chain rule in Sobolev spaces and the fact that the traces of these functions coincide on both

side of ∂Ω ∩ Ω̃, each one of them belongs to H1(Ω̃). In addition, v̂ε and ṽε also belong to L∞(Ω̃) since
vε ∈ L∞(Ω). We finally set

g̃ := g ◦ πΩ ∈ C 1,α
(
Ω̃
)
.

Now we show that these extensions satisfy suitable equations in the domain Ω̃.

Lemma 3.2. We have

−div
(
(ηε + v̂ 2

ε )A∇ũε
)

= −2div
(
1Ω̃\Ω(ηε + v̂ 2

ε )A∇g̃
)

in D ′(Ω̃) , (3.13)

and

−εdiv(A∇ṽε) = (1Ω̃∩Ω − 1Ω̃\Ω)
( j

4ε
(1− v̂ε)−

(
A∇ûε · ∇ûε

)
v̂ε

)
in D ′(Ω̃) . (3.14)

Proof. Again, for simplicity, we drop the subscript ε. We fix an arbitrary test function ϕ ∈ D(Ω̃), and

we define for x ∈ Ω̃ the symmetric and anti-symmetric parts of ϕ,

ϕs(x) :=
1

2

(
ϕ(x) + ϕ ◦ σΩ(x)

)
, ϕa(x) :=

1

2

(
ϕ(x)− ϕ ◦ σΩ(x)

)
.

The functions ϕs and ϕa belong to C 1,1(Ω̃) and, by construction,

ϕs ◦ σΩ = ϕs and ϕa ◦ σΩ = −ϕa .
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Step 1: proof of (3.13). We start with the identity
ˆ

Ω̃\Ω
(ηε + v̂ 2)(A∇ũ) · ∇ϕs dx = −

ˆ
Ω̃\Ω

(ηε + v̂ 2)
(
A∇(u ◦ σΩ)

)
· ∇(ϕs ◦ σΩ) dx

+ 2

ˆ
Ω̃\Ω

(ηε + v̂ 2)(A∇g̃) · ∇ϕs dx . (3.15)

Using relation (3.9) and changing variables yieldsˆ
Ω̃\Ω

(ηε + v̂ 2)
(
A∇(u ◦ σΩ)

)
· ∇(ϕs ◦ σΩ) dx =

ˆ
Ω̃\Ω

(ηε + v̂ 2)∇u
(
σΩ

)
· ∇ϕs

(
σΩ

)
j dx

=

ˆ
Ω̃∩Ω

(ηε + v̂ 2)
(
A∇ũ

)
· ∇ϕs dx . (3.16)

Therefore, combining (3.15) and (3.16) yieldsˆ
Ω̃

(ηε + v̂ 2)(A∇ũ) · ∇ϕs dx = 2

ˆ
Ω̃\Ω

(ηε + v̂ 2)(A∇g̃) · ∇ϕs dx .

In the same way, we have
ˆ

Ω̃\Ω
(ηε + v̂ 2)(A∇ũ) · ∇ϕa dx =

ˆ
Ω̃\Ω

(ηε + v̂ 2)
(
A∇(u ◦ σΩ)

)
· ∇(ϕa ◦ σΩ) dx

+ 2

ˆ
Ω̃\Ω

(ηε + v̂ 2)(A∇g̃) · ∇ϕa dx .

Since ϕa = 0 on Ω̃∩∂Ω, we have ϕa ∈ H1
0 (Ω̃∩Ω). Hence, we can use the first equation in (1.3) to infer

that ˆ
Ω̃\Ω

(ηε + v̂ 2)
(
A∇(u ◦ σΩ)

)
· ∇(ϕa ◦ σΩ) dx =

ˆ
Ω̃\Ω

(ηε + v̂ 2)∇u
(
σΩ

)
· ∇ϕa

(
σΩ

)
j dx

=

ˆ
Ω̃∩Ω

(ηε + v 2)∇u · ∇ϕa dx = 0 .

Consequently, ˆ
Ω̃

(ηε + v̂ 2)(A∇ũ) · ∇ϕdx = 2

ˆ
Ω̃\Ω

(ηε + v̂ 2)(A∇g̃) · ∇ϕdx ,

and (3.13) follows.

Step 2: proof of (3.14). We proceed as above, starting with

ε

ˆ
Ω̃\Ω

(A∇ṽ) · ∇ϕs dx = −ε
ˆ

Ω̃\Ω

(
A∇(v ◦ σΩ)

)
· ∇(ϕs ◦ σΩ) dx = −ε

ˆ
Ω̃∩Ω

(A∇ṽ) · ∇ϕs dx ,

which yields

ε

ˆ
Ω̃

(A∇ṽ) · ∇ϕs dx = 0 . (3.17)

On the other hand,

ε

ˆ
Ω̃\Ω

(A∇ṽ) · ∇ϕa dx = ε

ˆ
Ω̃\Ω

(
A∇(v ◦ σΩ)

)
· ∇(ϕa ◦ σΩ) dx = ε

ˆ
Ω̃∩Ω

∇v · ∇ϕa dx . (3.18)

Since ϕa ∈ H1
0 (Ω̃ ∩ Ω), we can apply the second equation in (1.3) to deduce that

ε

ˆ
Ω̃∩Ω

∇v · ∇ϕa dx = −
ˆ

Ω̃∩Ω

|∇u|2vϕa dx+
1

4ε

ˆ
Ω̃∩Ω

(1− v)ϕa dx . (3.19)
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Summing up (3.17), (3.18), and (3.19), and using that σΩ is an involution leads to

ε

ˆ
Ω̃

(A∇ṽ) · ∇ϕdx = −
ˆ

Ω̃∩Ω

|∇û|2v̂ϕdx+
1

4ε

ˆ
Ω̃∩Ω

(1− v̂)ϕdx

+

ˆ
Ω̃∩Ω

|∇û|2v̂ϕ ◦ σΩ dx− 1

4ε

ˆ
Ω̃∩Ω

(1− v̂)ϕ ◦ σΩ dx .

Changing variables in the two last integrals, we obtain

ε

ˆ
Ω̃

(A∇ṽ) · ∇ϕdx = −
ˆ

Ω̃

(1Ω̃∩Ω − 1Ω̃\Ω)
(
(A∇û) · ∇û

)
v̂ϕdx+

1

4ε

ˆ
Ω̃

(1Ω̃∩Ω − 1Ω̃\Ω)(1− v̂)ϕj dx

and (3.14) follows. �

We now provide a general regularity result generalizing the argument used in the proof of the interior
regularity.

Lemma 3.3. Let A : BR →MN×N
sym be a Lipschitz field of symmetric N×N matrices which is uniformly

elliptic (i.e., there exist 0 < λ < Λ such that λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 for all (x, ξ) ∈ BR ×RN ), and
f ∈ L1(BR) satisfying

sup
B%(x0)⊂BR

1

%N−2+γ

ˆ
B%(x0)

|f |dx <∞ , (3.20)

for some γ ∈ (0, 2]. If z ∈ H1(BR) ∩ L∞(BR) solves

−div(A∇z) = f in D ′(BR) , (3.21)

then

sup
x0∈BR/2, %∈(0,R/2]

1

%N−2+2α

ˆ
B%(x0)

|∇z|2 dx <∞ , (3.22)

and z ∈ C 0,α(BR/2) for every α ∈ (0, γ/2).

Proof. Throughout the proof, we fix an exponent α ∈ (0, γ/2) and we set β := γ − 2α > 0. We also
denote by K an upper bound for ‖z‖L∞(BR), and by M an upper bound for (3.20). Then C > 0 shall
stand for a constant (which may vary from line to line) depending only on N , α, γ, λ, Λ, K, M , and
the Lipschitz constant of A.

Let us fix x0 ∈ BR/2 and % ∈ (0, R/2] arbitrary, and consider w ∈ H1(B%(x0)) the unique (weak)
solution of {

−div(A(x0)∇w) = 0 in B%(x0) ,
w = z on ∂B%(x0) .

(3.23)

Recalling that
ˆ
B%(x0)

A(x0)∇w · ∇w dx ≤
ˆ
B%(x0)

A(x0)∇w̄ · ∇w̄ dx for every w̄ ∈ w +H1
0 (B%(x0)) ,

we have

λ

ˆ
B%(x0)

|∇w|2 dx ≤
ˆ
B%(x0)

A(x0)∇w ·∇w dx ≤
ˆ
B%(x0)

A(x0)∇z ·∇z dx ≤ Λ

ˆ
B%(x0)

|∇z|2 dx. (3.24)

Moreover, according to the maximum principle, ‖w‖L∞(B%(x0)) ≤ ‖z‖L∞(B%(x0)) ≤ K.
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First, we infer from the triangle inequality,(
1

(%/2)N−2+2α

ˆ
B %

2
(x0)

A∇z · ∇z dx

) 1
2

≤

(
1

(%/2)N−2+2α

ˆ
B %

2
(x0)

A∇w · ∇w dx

) 1
2

+

(
1

(%/2)N−2+2α

ˆ
B %

2
(x0)

A(∇z −∇w) · (∇z −∇w) dx

) 1
2

≤

(
1

(%/2)N−2+2α

ˆ
B %

2
(x0)

A∇w · ∇w dx

) 1
2

+ C

(
1

%N−2+2α

ˆ
B%(x0)

A(∇z −∇w) · (∇z −∇w) dx

) 1
2

.

(3.25)

We start by estimating the first term in the right-hand-side of (3.25) using (3.24), and the fact that A
is Lipschitz continuous and uniformly elliptic. It yields

ˆ
B %

2
(x0)

A∇w · ∇w dx ≤ (1 + Cρ)

ˆ
B%(x0)

A(x0)∇w · ∇w dx

≤ (1 + Cρ)

ˆ
B%(x0)

A(x0)∇z · ∇z dx ≤ (1 + Cρ)

ˆ
B%(x0)

A∇z · ∇z dx . (3.26)

To estimate the second term in the right-hand-side of (3.25), we make use of equation (3.21) to writeˆ
B%(x0)

A(∇z −∇w) · (∇z −∇w) dx =

ˆ
B%(x0)

A∇z · ∇(z − w) dx−
ˆ
B%(x0)

A∇w · ∇(z − w) dx

=

ˆ
B%(x0)

f(z − w) dx−
ˆ
B%(x0)

A∇w · ∇(z − w) dx .

Using assumption (3.20) on f , we infer that∣∣∣∣∣ 1

%N−2+2α

ˆ
B%(x0)

f(z − w) dx

∣∣∣∣∣ ≤ 2KM%β . (3.27)

On the other hand, Equation (3.23) satisfied by w implies thatˆ
B%(x0)

A∇w · ∇(z − w) dx =

ˆ
B%(x0)

(A−A(x0))∇w · ∇(z − w) dx

≤ C%
ˆ
B%(x0)

[
|∇w|2 + |∇z|2

]
dx

≤ C%
ˆ
B%(x0)

|∇z|2 dx ≤ C%
ˆ
B%(x0)

A∇z · ∇z dx , (3.28)

where we used again (3.24) together with the ellipticity of A.
Gathering (3.25), (3.26), (3.27) and (3.28), we get that(

1

(%/2)N−2+2α

ˆ
B %

2
(x0)

A∇z · ∇z dx

)1/2

≤ (1 + C
√
%)

(
1

%N−2+2α

ˆ
B%(x0)

A∇z · ∇z dx

)1/2

+ C%β/2 .
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We now choose % = %k = 2−(k+1)R for k ∈ N, and we obtain(
1

%N−2+2α
k+1

ˆ
B%k+1

(x0)

A∇z · ∇z dx

)1/2

≤ (1+C
√
R 2−(k+1)/2)

(
1

%N−2+2α
k

ˆ
B%k (x0)

A∇z · ∇z dx

)1/2

+ CRβ/22−β(k+1)/2 .

Next, we observe that if (θk)k∈N, (σk)k∈N, and (yk)k∈N are real sequences such that θk ∈ (1,∞),
θ :=

∏∞
k=0 θk < ∞, σk ∈ (0,∞), σ :=

∑∞
k=0 σk < ∞, and satisfying yk+1 ≤ θkyk + σk for all k ∈ N,

then yk ≤ θ(y0 + σ). Applying this principle with

yk =

(
1

%N−2+2α
k

ˆ
B%k (x0)

A∇z · ∇z dx

)1/2

, θk = 1 + C
√
R 2−(k+1)/2 , σk = CRβ/22−β(k+1)/2 ,

yields

1

%N−2+2α
k

ˆ
B%k (x0)

A∇z · ∇z dx ≤ CeC
√
R

(
1

RN−2+2α

ˆ
BR

A∇z · ∇z dx+Rβ/2
)

for all k ∈ N

(we have also used the elementary estimates θ ≤ eC
√
R and σ ≤ CRβ/2). Since for all % ∈ (0, R/2],

there exists a unique k ∈ N such that %k+1 < % ≤ %k and 1
% <

1
%k+1

≤ 2
%k

, we conclude that

1

%N−2+2α

ˆ
B%(x0)

A∇z · ∇z dx ≤ CeC
√
R

(
1

RN−2+2α

ˆ
BR

A∇z · ∇z dx+Rβ/2
)
∀% ∈ (0, R/2] .

Finally, by ellipticity of A and the arbitrariness of x0, we conclude that (3.22) holds with

1

%N−2+2α

ˆ
B%(x0)

|∇z|2 dx ≤ CeC
√
R

(
1

RN−2+2α

ˆ
BR

|∇z|2 dx+Rβ/2
)
∀% ∈ (0, R/2] , ∀x0 ∈ BR/2 .

By Morrey’s Theorem (see e.g. [17, Theorem 5.7]), it then follows that v ∈ C 0,α(BR/2). �

We are now ready to prove the boundary regularity result in Theorem 3.2.

Proof of Theorem 3.2 completed. We consider (uε, vε) ∈ H1(Ω) × [H1(Ω) ∩ L∞(Ω)] satisfying (1.4)-

(1.5), and we consider the extensions ûε, ũε, v̂ε, and ṽε to the domain Ω̃ (depending on x0 and R)
provided by (3.11)-(3.12) and (3.8). Again, for simplicity, we drop the subscript ε.

We first improve the regularity of ũ which satisfies (3.13). We aim to apply the De-Giorgi-Nash-

Moser Theorem to infer that ũ is locally Hölder continuous in Ω̃ and that a suitable Morrey estimate
holds for ∇û. Since equation (3.13) is linear with respect to ũ, we first observe thatˆ

Ω̃

f(x,∇ũ) dx ≤
ˆ

Ω̃

f(x,∇w) dx for all w ∈ H1(Ω) such that supp(w − ũ) ⊂ Ω̃ ,

with

f(x, ξ) :=
1

2
(ηε + v̂ 2

ε (x))A(x)ξ · ξ − h(x) · ξ for a.e. x ∈ Ω̃ and all ξ ∈ RN ,

and

h := 2 1Ω̃\Ω(ηε + v̂ 2)A∇g̃ ∈ L∞(Ω̃; RN ) .

The function f is a Carathéodory function, and since A is uniformly elliptic and the functions v̂ and h
are essentially bounded, we can find positive constants c1, c2, and c3 such that

c1|ξ|2 − c3 ≤ f(x, ξ) ≤ c2|ξ|2 + c3 for a.e. x ∈ Ω̃ and all ξ ∈ RN .
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Hence we can apply the De Giorgi-Nash-Moser Theorem (see [18, Theorems 7.5 and 7.6]) to deduce

the existence of some β ∈ (0, 1) such that ũ ∈ C 0,β
loc (Ω̃). From [18, Theorem 7.7] and [17, Lemma 5.13],

we also obtain the Morrey estimate

sup
B%(x∗)⊂Bδ0/2(x0)

1

%N−2+2β

ˆ
B%(x∗)

|∇ũ|2 dx <∞ , (3.29)

since Bδ0(x0) ⊂ Ω̃.
Next we consider the equation (3.14) satisfied by ṽ restricted to Bδ0/2(x0), that we write

−div(A∇ṽ) = H in D ′(Bδ0/2(x0)) ,

with

H :=
1

ε
(1Ω̃∩Ω − 1Ω̃\Ω)

( j
4ε

(1− v̂)−
(
A∇û · ∇û

)
v̂
)
.

Since û = 2g̃ − ũ and ∇g̃, A, j, and v̂ are essentially bounded, we infer from (3.29) that

sup
B%(x∗)⊂Bδ0/2(x0)

1

%N−2+2β

ˆ
B%(x∗)

|H|dx <∞ .

Applying Lemma 3.3, we deduce that ṽ ∈ C 0,γ(Bδ0/4(x0)) for every γ ∈ (0, β). In particular, we have

v ∈ C 0,γ(Ω∩Bδ0/4(x0)) for every γ ∈ (0, β). Using the equation (1.3) satisfied by u together with the (up

to the boundary) Schauder estimate (see [17, Theorem 5.21]), we obtain that u ∈ C 1,γ(Ω ∩Bδ0/5(x0))
for every γ ∈ (0, β). Then, in view of the equation (1.3) satisfied by v, and owing to the classical elliptic
regularity at the boundary, we obtain v ∈ C 2,γ(Ω∩Bδ0/6(x0)) for every γ ∈ (0, β). Back to the equation

in (1.3) satisfied by u, elliptic regularity at the boundary now tells us that u ∈ C 1,α(Ω ∩ Bδ0/7(x0))

in the case g ∈ C 1,α(∂Ω ∩ B4R(x0)), and in turn v ∈ C 2,α(Ω ∩ Bδ0/8(x0)) still by (1.3). If g ∈
C 2,α(∂Ω∩B4R(x0)), then v ∈ C 2,α(Ω∩Bδ0/8(x0)) and once again, elliptic boundary regularity implies

that u ∈ C 2,α(Ω ∩Bδ0/9(x0)).

If ∂Ω∩B4R(x0) is of class C k,α and g ∈ C k,α(∂Ω∩B4R(x0)) with k ≥ 3, one can iterate the preceding
argument using elliptic boundary regularity to conclude that u and v belong to C k,α(Ω∩BθR(x0)) for
some θ > 0 small enough. �

4. Compactness results

We start by establishing a weak compactness result, in the spirit of the compactness argument in
the Γ-convergence analysis, under the only assumption of uniform energy bound (1.12).

Proposition 4.1 (Weak compactness). Let Ω ⊂ RN be a bounded open set with Lipschitz boundary,

g ∈ H 1
2 (∂Ω) ∩ L∞(∂Ω), and εn → 0+ be an arbitrary sequence. Assume that (un, vn) := (uεn , vεn) ∈

Ag(Ω) satisfies 0 ≤ vn ≤ 1 a.e. in Ω, ‖un‖L∞(Ω) ≤ ‖g‖L∞(∂Ω), and the uniform energy bound

supnATεn(un, vn) < ∞. There exist a (not relabelled) subsequence and u∗ ∈ SBV 2(Ω) ∩ L∞(Ω)
such that {

(un, vn)→ (u∗, 1) strongly in [L2(Ω)]2 ,

vn∇un ⇀ ∇u∗ weakly in L2(Ω; RN ) .

Moreover, ˆ
Ω

|∇u∗|2 dx ≤ lim inf
n→∞

ˆ
Ω

v2
n|∇un|2 dx ≤ lim inf

n→∞

ˆ
Ω

(ηεn + v2
n)|∇un|2 dx , (4.1)
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and

HN−1(Ju∗ ∪ (∂Ω ∩ {u∗ 6= g})) ≤ lim inf
n→∞

ˆ
Ω

(1− vn)|∇vn|dx

≤ lim inf
n→∞

ˆ
Ω

(
εn|∇vn|2 +

(vn − 1)2

4εn

)
dx . (4.2)

Proof. First of all, it is clear from the energy bound that vn → 1 strongly in L2(Ω). Moreover, up to a
subsequence, there exist u∗ ∈ L∞(Ω) such that un ⇀ u∗ weakly* in L∞(Ω).

Let Ω′ be a bounded open set such that Ω ⊂ Ω′, and g′ ∈ H1(Ω′)∩L∞(Ω′) be an arbitrary extension
of g satisfying ‖g′‖L∞(Ω′) ≤ ‖g‖L∞(∂Ω). We extend (un, vn) by (g′, 1) in Ω′ \ Ω and we still denote by
(un, vn) the extension.

According to Young’s inequality, we have

C ≥
ˆ

Ω′
(ηεn + v2

n)|∇un|2 dx+

ˆ
Ω′

(
εn|∇vn|2 +

(vn − 1)2

4εn

)
dx

≥
ˆ

Ω′
v2
n|∇un|2 dx+

ˆ
Ω′

(1− vn)|∇vn|dx . (4.3)

Using the coarea formula and the fact that 0 ≤ vε ≤ 1, we can reconstruct the second integral in the
right hand side by integrating along the level sets of vn, i.e.,

ˆ
Ω′

(1− vn)|∇vn|dx =

ˆ 1

0

(1− t)HN−1(∂∗{vn < t}) dt ≥
ˆ b

a

Φ′(t)HN−1(∂∗{vn < t}) dt ,

for all 0 < a < b < 1, where Φ(t) := t − t2/2. By a change of variables and the mean value Theorem,
we can find some tn ∈ [a, b] such that the set En := {vn < tn} has finite perimeter in Ω′ and

ˆ
Ω′

(1− vn)|∇vn|dx ≥ [Φ(b)− Φ(a)]HN−1(∂∗{vn < tn}) . (4.4)

Moreover, the previous energy estimate ensures that HN−1(∂∗En) ≤ C, for some constant C > 0
(possibly depending on a and b, but independent of n). Then, according to the Chebychev inequality
and since tn ≤ b,

LN (En) = LN ({1− vn > 1− tn}) ≤
1

(1− tn)2

ˆ
Ω′

(1− vn)2 dx ≤ Cεn
1− b2

→ 0 .

Since a ≤ tn ≤ vn on Ω′ \ En,

ˆ
Ω′\En

|∇un|2 dx ≤ t2n
a2

ˆ
Ω′\En

|∇un|2 dx ≤ 1

a2

ˆ
Ω′\En

v2
n|∇un|2 dx ≤ C

a2
.

Applying Lemma 2.1, we can extract a (not relabeled) subsequence and find u′ ∈ SBV 2(Ω′) ∩ L∞(Ω′)
(at this stage possibly depending on a and b) such that ũn := un1Ω′\En ∈ SBV 2(Ω′)∩L∞(Ω′) satisfies

ũn → u′ strongly in L2(Ω′) ,

∇ũn ⇀ ∇u′ weakly in L2(Ω′; RN ) ,

2HN−1(Ju′) ≤ lim infnHN−1(∂∗En) .

Since un = g′ in Ω′ \ Ω and LN (En) → 0, we infer that u′|Ω′\Ω = g′ and HN−1(Ju′ \ Ω) = 0 because

g′ ∈ H1(Ω′). Moreover, since un− ũn = un1En , then ‖un− ũn‖L2(Ω′) ≤ ‖g‖L∞(∂Ω)LN (En)1/2 → 0, and
thus u′|Ω = u∗. We finally get that u′ is independent of a and b and that Ju′ = Ju∗ ∪ (∂Ω ∩ {u∗ 6= g})
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up to an HN−1-negligible set. Consequently, u∗ ∈ SBV 2(Ω) ∩ L∞(Ω) satisfies
ũn → u∗ , un → u∗ strongly in L2(Ω) ,

∇ũn ⇀ ∇u∗ weakly in L2(Ω; RN ) ,

2HN−1(Ju∗ ∪ (∂Ω ∩ {u∗ 6= g})) ≤ lim infnHN−1(∂∗En) .

In the sequel, to lighten notation, we shall write

Ĵu∗ := Ju∗ ∪ (∂Ω ∩ {u∗ 6= g}) .

For an arbitrary test function ϕ ∈ C∞c (Ω; RN ), we have

ˆ
Ω

(vn∇un −∇u∗) · ϕdx =

ˆ
Ω

(vn∇un −∇ũn) · ϕdx+

ˆ
Ω

(∇ũn −∇u∗) · ϕdx .

The second integral tends to zero as n → ∞ because ∇ũn ⇀ ∇u∗ weakly in L2(Ω; RN ). Concerning
the first integral, using that ∇ũn = 1Ω\En∇un, we can estimate it as∣∣∣∣ˆ

Ω

(vn∇un −∇ũn) · ϕdx

∣∣∣∣ ≤ˆ
En

vn|∇un||ϕ|dx+

ˆ
Ω\En

(1− vn)|∇ũn||ϕ|dx

≤‖vn∇un‖L2(Ω;RN )‖ϕ‖L∞(Ω)LN (En)1/2

+ ‖1− vn‖L2(Ω)‖∇ũn‖L2(Ω;RN )‖ϕ‖L∞(Ω) → 0 .

Since the sequence {vn∇un} is bounded in L2(Ω; RN ) according to the energy bound, we deduce that
vn∇un ⇀ ∇u∗ weakly in L2(Ω; RN ). By lower semicontinuity of the norm with respect to weak
convergence, we have

ˆ
Ω

|∇u∗|2 dx ≤ lim inf
n→∞

ˆ
Ω

v2
n|∇un|2 dx ≤ lim inf

n→∞

ˆ
Ω

(ηεn + v2
n)|∇un|2 dx .

On the other hand, (4.4) implies that for all 0 < a < b < 1,

lim inf
n→∞

ˆ
Ω

(
εn|∇vn|2 +

(vn − 1)2

4εn

)
dx ≥ lim inf

n→∞

ˆ
Ω

(1− vn)|∇vn|dx

≥ [Φ(b)− Φ(a)] lim inf
n→∞

HN−1(∂∗En)

≥ 2[Φ(b)− Φ(a)]HN−1(Ĵu∗) .

Letting a→ 0 and b→ 1 leads to

lim inf
n→∞

ˆ
Ω

(
εn|∇vn|2 +

(vn − 1)2

4εn

)
dx ≥ lim inf

n→∞

ˆ
Ω

(1− vn)|∇vn|dx ≥ HN−1(Ĵu∗) ,

since Φ(0) = 0 and Φ(1) = 1/2. �

The regularity of solutions established in Theorem 1.1 allows us to prove that critical points of the
Ambrosio-Tortorelli functional satisfies a Noether type conservation law, which is the starting point of
their asymptotic analysis.
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Proposition 4.2. Let Ω ⊂ RN be a bounded open set with boundary of class C 2,1 and g ∈ C 2,α(∂Ω)
for some α ∈ (0, 1). If (uε, vε) ∈ Ag(Ω) is a critical point of ATε, then for all X ∈ C 1

c (RN ; RN ),

ˆ
Ω

(ηε + v2
ε)
[
2∇uε ⊗∇uε − |∇uε|2Id

]
: DX dx

+

ˆ
Ω

[
2ε∇vε ⊗∇vε −

(
ε|∇vε|2 +

(vε − 1)2

4ε

)
Id

]
: DX dx

=

ˆ
∂Ω

[
(ηε + 1)(∂νuε)

2 + ε(∂νvε)
2 − (ηε + 1)|∇τg|2

]
(X · νΩ) dHN−1

+ 2(ηε + 1)

ˆ
∂Ω

(∂νuε)(Xτ · ∇τg) dHN−1 , (4.5)

where Xτ := X− (X ·νΩ)νΩ is the tangential part of X, and ∇τg is the tangential gradient of g on ∂Ω.

Proof. Let us fix an arbitrary X ∈ C 1
c (RN ; RN ). By Theorem 1.1, (uε, vε) ∈ [C 2,α(Ω)]2 and (1.3) is

satisfied in the classical sense. Multiplying the first equation of (1.3) by X · ∇uε (which belongs to
C 1(Ω)) and integrating by parts yields

0 =

ˆ
Ω

(ηε + v2
ε)∇uε · ∇(X · ∇uε) dx− (ηε + 1)

ˆ
∂Ω

∂νuεX · ∇uε dHN−1

=

ˆ
Ω

(ηε + v2
ε)(∇uε ⊗∇uε) : DX dx+

1

2

ˆ
Ω

(ηε + v2
ε)X · ∇(|∇uε|2) dx

− (ηε + 1)

ˆ
∂Ω

(∂νuε)
2(X · νΩ) dHN−1 − (ηε + 1)

ˆ
∂Ω

(∂νuε)(Xτ · ∇τg) dHN−1 ,

since ∇τuε = ∇τg on ∂Ω. Integrating by parts the second integral in the right hand side, we get

0 =

ˆ
Ω

(ηε + v2
ε)(∇uε ⊗∇uε) : DX dx− 1

2

ˆ
Ω

(ηε + v2
ε)|∇uε|2divX dx

−
ˆ

Ω

vε(X · ∇vε)|∇uε|2 dx+
ηε + 1

2

ˆ
∂Ω

|∇uε|2(X · νΩ) dHN−1

− (ηε + 1)

ˆ
∂Ω

(∂νuε)
2(X · νΩ) dHN−1 − (ηε + 1)

ˆ
∂Ω

(∂νuε)(Xτ · ∇τg) dHN−1 .

Rearranging terms leads to

0 =

ˆ
Ω

(ηε + v2
ε)

[
(∇uε ⊗∇uε)−

1

2
|∇uε|2Id

]
: DX dx−

ˆ
Ω

vε(X · ∇vε)|∇uε|2 dx

− ηε + 1

2

ˆ
∂Ω

(∂νuε)
2(X · νΩ) dHN−1 +

ηε + 1

2

ˆ
∂Ω

|∇τg|2(X · νΩ) dHN−1

− (ηε + 1)

ˆ
∂Ω

(∂νuε)(Xτ · ∇τg) dHN−1 . (4.6)

Similarly, multiplying the second equation in (1.3) by X ·∇vε (which belongs to C 1(Ω)) and performing
similar integration by parts yields

0 = ε

ˆ
Ω

[
(∇vε ⊗∇vε)−

1

2

(
|∇vε|2 +

1

4ε
(vε − 1)2

)
Id

]
: DX dx+

ˆ
Ω

vε(X · ∇vε)|∇uε|2 dx

− ε

2

ˆ
∂Ω

(∂νvε)
2(X · νΩ) dHN−1 , (4.7)

since vε = 1 on ∂Ω. Then the conclusion follows summing up (4.6) and (4.7). �
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Remark 4.1. The fact that critical points (uε, vε) enjoy the higher regularity [C 2,α(Ω)]2 allows one to
obtain a strong form of the conservative equations for (uε, vε). In particular, some information on the
boundary are recovered since the vector field X does not need to be tangential on ∂Ω. This additional
information will be instrumental in Section 5 to characterize the boundary term occurring in the first
inner variation of the Mumford-Shah functional. A slightly weaker form can be obtained through inner
variations of the energy by using deformations of the form ut := u◦Φ−1

t −G◦Φ−1
t +G and vt := v◦Φ−1

t ,
where Φt is the integral flow of a vector field X ∈ C 1

c (RN ; RN ) satisfying X · νΩ = 0 on ∂Ω and G is
an arbitrary extension of g to the whole domain Ω. It leads to the following inner variational equation
(see A.11)ˆ

Ω

(ηε + v2
ε)
[
2∇uε ⊗∇uε − |∇uε|2Id

]
: DX dx

+

ˆ
Ω

[
2ε∇vε ⊗∇vε −

(
ε|∇vε|2 +

(vε − 1)2

4ε

)
Id

]
: DX dx

= 2

ˆ
Ω

(ηε + v2
ε)∇uε · ∇(X · ∇G) dx

for all X ∈ C 1
c (RN ; RN ) and G ∈ C 2(RN ) satisfying X · νΩ = 0 and G = g on ∂Ω. Integrating by

parts the right hand side and using equation (1.3), we arrive atˆ
Ω

(ηε + v2
ε)
[
2∇uε ⊗∇uε − |∇uε|2Id

]
: DX dx

+

ˆ
Ω

[
2ε∇vε ⊗∇vε −

(
ε|∇vε|2 +

(vε − 1)2

4ε

)
Id

]
: DX dx

= 2(ηε + 1)

ˆ
∂Ω

(∂νuε)(Xτ · ∇τg) dHN−1 .

Note that we used that X · ∇G = Xτ · ∇τg on ∂Ω since X · νΩ = 0 on ∂Ω.

Owing to the previous results, we get the following property for the weak limit u∗ as ε → 0 of a
converging sequence of critical points the Ambrosio-Tortorelli functional.

Lemma 4.1. Let Ω ⊂ RN be a bounded open set with boundary of class C 2,1 and g ∈ C 2,α(∂Ω) for
some α ∈ (0, 1). Along a sequence ε→ 0+, let (uε, vε) ∈ Ag(Ω) be a critical point of ATε satisfying the
uniform energy bound (1.12) and the conclusion of Proposition 4.1. If u∗ denotes the weak limit of uε
as ε→ 0, then ∇u∗ ∈ L2(Ω; RN ) satisfies div(∇u∗) = 0 in D ′(Ω), its normal trace ∇u∗ · νΩ belongs to
L2(∂Ω), and

∂νuε ⇀ ∇u∗ · νΩ weakly in L2(∂Ω) as ε→ 0 .

Moreover, up to a subsequence, there exists a nonnegative Radon measure λ∗ ∈M+(∂Ω) such that

[(∂νuε)
2 + ε(∂νvε)

2]HN−1 ∂Ω
∗
⇀ λ∗ weakly* in M(∂Ω) .

Proof. We first claim that (ηε+v2
ε)∇uε ⇀ ∇u∗ weakly in L2(Ω; RN ). Indeed, on the one hand we have

‖ηε∇uε‖L2(Ω;RN ) ≤
√
ηε

∥∥∥√ηε + v2
ε∇uε

∥∥∥
L2(Ω;RN )

≤ C√ηε → 0 , (4.8)

and on the other hand, for all ϕ ∈ C∞c (Ω; RN ),∣∣∣∣ˆ
Ω

vε∇uε · ϕdx−
ˆ

Ω

v2
ε∇uε · ϕdx

∣∣∣∣ ≤ ‖ϕ‖L∞(Ω;RN )‖vε∇uε‖L2(Ω;RN )‖vε − 1‖L2(Ω) → 0 .

Gathering both information and using Proposition 4.1 leads to (ηε + v2
ε)∇uε ⇀ ∇u∗ weakly* in

D′(Ω; RN ). Since the sequence {(ηε + v2
ε)∇uε} is bounded in L2(Ω; RN ), its weak L2-convergence fol-

lows. We can thus pass to the limit in (1.4) in the sense of distribution and conclude that div(∇u∗) = 0
in D ′(Ω).
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Since ∇u∗ belongs to L2(Ω; RN ), and div(∇u∗) = 0, the normal trace ∇u∗ · νΩ is well defined as an

element of H−
1
2 (∂Ω). Recalling that vε = 1 on ∂Ω, we get that

(ηε + 1)∂νuε = (ηε + v2
ε)∇uε · ν ⇀ ∇u∗ · νΩ weakly in H−

1
2 (∂Ω) .

We now improve this convergence into a weak convergence in L2(∂Ω). For that, let us consider a test
function X ∈ C 1

c (RN ; Rn) such that X = ν on ∂Ω in relation (4.5). Using that the left-hand side of
(4.5) is clearly controlled by the Ambrosio-Tortorelli energy (see (1.12)), we infer that

sup
ε>0

ˆ
∂Ω

[
(ηε + 1)(∂νuε)

2 + ε(∂νvε)
2
]

dHN−1 <∞ .

On the one hand, we obtain that {∂νuε}ε>0 is bounded in L2(∂Ω), hence ∂νuε ⇀ ∇u∗ · νΩ weakly
in L2(∂Ω). On the other hand, there exists a nonnegative Radon measure λ∗ ∈ M+(∂Ω) such that

[(∂νuε)
2 + ε(∂νvε)

2]HN−1 ∂Ω
∗
⇀ λ∗ weakly* in M(∂Ω). �

Remark 4.2. Our choice of Dirichlet boundary conditions for both u and v in (1.3) allows one to obtain
an ε-dependent boundary term which is nonnegative in the boundary integral involving X · νΩ in (4.5).
This sign information is essential to get a limit boundary term which is a measure λ∗ concentrated
on ∂Ω. If we had chosen a Neumann condition for v and a Dirichlet condition for u as in [13], one
would have obtained a more involved boundary term which would lead to a first order distribution on
∂Ω in the ε→ 0 limit. It is not clear in this case how to perform the analysis in Section 5 (in particular
Lemma 5.3).

5. Convergence of critical points

Our objective is to show that u∗ is a critical point of the Mumford-Shah functional. We now improve
the convergence results established at the previous section by additionally assuming the convergence of
the energy (1.13), i.e.,

ATε(uε, vε)→MS(u∗) .

Under this stronger assumption, we can improve the above established convergences and in particular
obtain the equipartition of the phase-field energy.

Proposition 5.1. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary and g ∈ H
1
2 (∂Ω) ∩

L∞(∂Ω). Let us consider a critical point (uε, vε) of the Ambrosio-Tortorelli functional satisfying the
energy convergence (1.13) and let u∗ ∈ SBV 2(Ω) be given by Proposition 4.1. Then, up to a further
subsequence √

ηε + v2
ε ∇uε → ∇u∗ , vε∇uε → ∇u∗ strongly in L2(Ω; RN ) . (5.1)

Moreover, setting Φ(t) := t− t2/2, and
wε := Φ(vε) , (5.2)

then {
∇wεLN Ω

∗
⇀ 0 weakly* in M(Ω; RN ) ,

|∇wε|LN Ω
∗
⇀ HN−1 Ĵu∗ weakly* in M(Ω) ,

(5.3)

where we recall that Ĵu∗ = Ju∗ ∪ (∂Ω ∩ {u∗ 6= g}). Finally, there is equipartition of the phase-field
energy, i.e.,

lim
ε→0

ˆ
Ω

∣∣∣∣ε|∇vε|2 − 1

4ε
(1− vε)2

∣∣∣∣ dx = lim
ε→0

ˆ
Ω

∣∣2ε|∇vε|2 − |∇wε|∣∣ dx = 0 . (5.4)

Proof. According to the convergence of energy assumption (1.13) and the lower semicontinuity proper-
ties (4.1)-(4.2) established in Proposition 4.1 (which applies by Lemma 3.1), we deduce thatˆ

Ω

|∇u∗|2 dx = lim
ε→0

ˆ
Ω

v2
ε |∇uε|2 dx = lim

ε→0

ˆ
Ω

(ηε + v2
ε)|∇uε|2 dx (5.5)
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and

HN−1(Ĵu∗) = lim
ε→0

ˆ
Ω

(1− vε)|∇vε|dx = lim
ε→0

ˆ
Ω

(
ε|∇vε|2 +

(vε − 1)2

4ε

)
dx . (5.6)

Convergence (5.5) combined with the weak L2-convergence of vε∇uε to ∇u∗ implies that vε∇uε → ∇u∗
strongly in L2(Ω; RN ). Moreover, it follows from (5.5) that

√
ηε∇uε → 0 strongly in L2(Ω; RN ). Hence√

ηε + v2
ε ∇uε → ∇u∗ strongly in L2(Ω; RN ) as well.

Next, setting wε = Φ(vε), with Φ(t) = t − t2/2, and using that vε → 1 strongly in L2(Ω) yields
wε → 1/2 strongly in L1(Ω). Furthermore, owing to the chain rule in Sobolev spaces, we have ∇wε =
Φ′(vε)∇vε = (1− vε)∇vε. According to (4.3), we deduce that {∇wε}ε>0 is bounded in L1(Ω; RN ), and

thus ∇wεLN Ω
∗
⇀ 0 weakly* in M(Ω; RN ). Moreover, reproducing the proof of Proposition 4.1 we

can see that for every open set U ⊂ Ω′ ⊂ RN , we have

HN−1(Ĵu∗ ∩ U) ≤ lim inf
ε→0

ˆ
U

|∇wε|dx,

and, using (5.6) shows that ˆ
Ω

|∇wε|dx→ HN−1(Ĵu∗). (5.7)

Thus [1, Theorem 1.80] implies that |∇wε|LN Ω
∗
⇀ HN−1 Ĵu∗ weakly* in M(Ω).

The equipartition of energy is obtained by observing that

ATε(uε, vε) =

ˆ
Ω

(ηε + v2
ε)|∇uε|2 dx+

ˆ
Ω

|∇wε|dx+

ˆ
Ω

∣∣∣∣√ε|∇vε| − 1

2
√
ε

(1− vε)
∣∣∣∣2 dx ,

and by using (1.13), (5.5) and (5.7). Indeed, we get that
ˆ

Ω

∣∣∣∣√ε|∇vε| − 1

2
√
ε

(1− vε)
∣∣∣∣2 dx→ 0 ,

and then, by the Cauchy-Schwarz inequality,
ˆ

Ω

∣∣∣∣ε|∇vε|2 − 1

4ε
(1− vε)2

∣∣∣∣ dx

≤

(ˆ
Ω

∣∣∣∣√ε|∇vε| − 1

2
√
ε

(1− vε)
∣∣∣∣2 dx

)1/2(ˆ
Ω

∣∣∣∣√ε|∇vε|+ 1

2
√
ε

(1− vε)
∣∣∣∣2 dx

)1/2

≤ C

(ˆ
Ω

∣∣∣∣√ε|∇vε| − 1

2
√
ε

(1− vε)
∣∣∣∣2 dx

)1/2

→ 0 .

Finally, using again that |∇wε| = (1− vε)|∇vε|, we observe that

ˆ
Ω

∣∣2ε|∇vε|2 − |∇wε|∣∣ dx =

ˆ
Ω

∣∣∣∣∣ε|∇vε|2 − (1− vε)2

4ε
+

(√
ε|∇vε| −

1

2
√
ε

(1− vε)
)2
∣∣∣∣∣ dx

≤
ˆ

Ω

∣∣∣∣ε|∇vε|2 − (1− vε)2

4ε

∣∣∣∣ dx+

ˆ
Ω

∣∣∣∣√ε|∇vε| − 1

2
√
ε

(1− vε)
∣∣∣∣2 dx→ 0 .

This implies (5.4). �

The proof of Theorem 1.2 is based on (geometric) measure theoretic arguments. Let us define the
(N − 1)-varifold Vε ∈ VN−1(Ω) associated to the phase-field variable vε ∈ H1(Ω) by

〈Vε, ϕ〉 :=

ˆ
Ω∩{∇wε 6=0}

ϕ

(
x, Id− ∇wε

|∇wε|
⊗ ∇wε
|∇wε|

)
|∇wε|dx for all ϕ ∈ C (Ω×GN−1) ,
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where wε := Φ(vε), and Φ(t) = t − t2/2 for t ∈ [0, 1]. By the coarea formula, this definition is
equivalent to the definition of a varifold associated to a function in [21]. By standard compactness of
bounded Radon measures, at the expense of extracting a further subsequence, there exists a varifold
V∗ ∈ VN−1(Ω) such that

Vε
∗
⇀ V∗ weakly* in M(Ω×GN−1) .

Note that ‖Vε‖
∗
⇀ ‖V∗‖ weakly* in M(Ω) by definition of the mass of a varifold and thanks to the

compactness of GN−1. Recalling the definition of wε in (5.2), we observe that ‖Vε‖ = |∇wε|LN Ω
∗
⇀

HN−1 Ĵu∗ weakly* in M(Ω) according to (5.3), and it follows that

‖V∗‖ = HN−1 Ĵu∗ .

According to the disintegration Theorem ([1, Theorem 2.28]), there exists a weak* HN−1-measurable

mapping x ∈ Ω 7→ Vx ∈M(GN−1) of probability measures such that V∗ = (HN−1 Ĵu∗)⊗ Vx, i.e., for
all ϕ ∈ C (Ω×GN−1),

ˆ
Ω×GN−1

ϕ(x,A) dV∗(x,A) =

ˆ
Ĵu∗

(ˆ
GN−1

ϕ(x,A) dVx(A)

)
dHN−1(x) . (5.8)

For HN−1 almost every x ∈ Ĵu∗ , we set

A(x) :=

ˆ
GN−1

AdVx(A) . (5.9)

Owing to our various convergence results, we are now in position to pass to the limit in the inner
variation equation (4.5). The limit expression is for now depending on the abstract limit varifold V∗
through its first moment A of Vx, and the abstract boundary measure λ∗ introduced in Lemma 4.1.

Lemma 5.1. Let Ω ⊂ RN is a bounded open set of class C 2,1 and g ∈ C 2,α(∂Ω) for some α ∈ (0, 1). Let
u∗ ∈ SBV 2(Ω) be a limit of critical points of the Ambrosio-Tortorelli functional as in Proposition 5.1.
For all X ∈ C 1

c (RN ; RN ), we have
ˆ

Ω

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: DX dx+

ˆ
Ĵu∗

A : DX dHN−1

= −
ˆ
∂Ω

(X · νΩ) dλ∗ +

ˆ
∂Ω

|∇τg|2(X · νΩ) dHN−1 − 2

ˆ
∂Ω

(∇u∗ · νΩ)(Xτ · ∇τg) dHN−1 . (5.10)

Proof. Using the strong convergence (5.1) established before, it is easy to pass to the limit in the first
integral and in the left hand side of (4.5). We get for all X ∈ C 1

c (RN ; RN ),
ˆ

Ω

(
2(
√
ηε + v2

ε ∇uε)⊗ (
√
ηε + v2

ε ∇uε)− (ηε + v2
ε)|∇uε|2Id

)
: DX dx

−→
ε→0

ˆ
Ω

(
2∇u∗ ⊗∇u∗ − |∇u∗|2Id

)
: DX dx . (5.11)

According to Lemma 4.1 we can also pass to the limit in the boundary integrals in the right hand side
of (4.5), we get that
ˆ
∂Ω

[
(ηε + 1)(∂νuε)

2 + ε(∂νvε)
2
]
X · ν dHN−1

− (1 + ηε)

ˆ
∂Ω

X · ν|∇τg|2 dHN−1 + 2(ηε + 1)

ˆ
∂Ω

(∂νuε)(Xτ · ∇τg) dHN−1

−→
ε→0

ˆ
∂Ω

(X · νΩ) dλ∗ −
ˆ
∂Ω

|∇τg|2(X · νΩ) dHN−1 + 2

ˆ
∂Ω

(∇u∗ · νΩ)(Xτ · ∇τg) dHN−1 . (5.12)
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It remains to pass to the limit in the second integral in the left hand side of (4.5). Using the chain
rule, we have ∇wε = Φ′(vε)∇vε. The equipartition of energy (5.4) thus implies that

lim
ε→0

ˆ
Ω

(
2ε∇vε ⊗∇vε − ε|∇vε|2Id− (vε − 1)2

4ε
Id

)
: DX dx

= lim
ε→0

ˆ
Ω∩{∇vε 6=0}

2ε|∇vε|2
(
∇vε
|∇vε|

⊗ ∇vε
|∇vε|

− Id

)
: DX dx

= lim
ε→0

ˆ
Ω∩{∇wε 6=0}

|∇wε|
(
∇wε
|∇wε|

⊗ ∇wε
|∇wε|

− Id

)
: DX dx

= −
ˆ

Ω×GN−1

A : DX(x) dV∗(x,A) = −
ˆ
Ĵu∗

A : DX dHN−1. (5.13)

Gathering (5.11), (5.12) and (5.13), we infer that (5.10) holds. �

Let us now identify the first moment A of the measure Vx. We first establish some algebraic
properties of this matrix.

Lemma 5.2. For HN−1-almost every x ∈ Ĵu∗ , the matrix A(x) satisfies

A(x) ≥ 0, tr(A(x)) = N − 1, ρ(A(x)) = 1,

where ρ denotes the spectral radius.

Proof. To simplify notation, we set

Aε :=

(
Id− ∇wε

|∇wε|
⊗ ∇wε
|∇wε|

)
.

The matrix Aε is well-defined on the set Ω∩{∇wε 6= 0}, it is a symmetric matrix corresponding to the
orthogonal projection on {∇wε}⊥. It satisfies

Aε ≥ 0, tr(Aε) = N − 1 and ρ(Aε) = 1 in Ω ∩ {∇wε 6= 0} .
For all ϕ ∈ C 0(Ω), we haveˆ

Ĵu∗

tr(A)ϕdHN−1 =

ˆ
Ω×GN−1

tr(A)ϕ(x) dV∗(x,A)

= lim
ε→0

ˆ
Ω×GN−1

tr(A)ϕ(x) dVε(x,A)

= lim
ε→0

ˆ
Ω∩{∇wε 6=0}

tr(Aε)ϕ|∇wε|dx

= (N − 1) lim
ε→0

ˆ
Ω

ϕ|∇wε|dx

= (N − 1)

ˆ
Ĵu∗

ϕdHN−1 ,

which shows that tr(A) = (N − 1) HN−1-a.e. on Ĵu∗ . If further ϕ ≥ 0 and z ∈ RN , thenˆ
Ĵu∗

(Az · z)ϕdHN−1 =

ˆ
Ω×GN−1

(Az · z)ϕ(x) dV∗(x,A)

= lim
ε→0

ˆ
Ω×GN−1

(Az · z)ϕ(x) dVε(x,A)

= lim
ε→0

ˆ
Ω∩{∇wε 6=0}

(Aεz · z)ϕ|∇wε|dx ≥ 0 .
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As a consequence, for all z ∈ RN , we have Az · z ≥ 0 HN−1-a.e. on Ĵu∗ , from which we deduce that A

is a nonnegative matrix HN−1-a.e. on Ĵu∗ .
Since for all ϕ ∈ C 0(Ω) we haveˆ

Ω∩{∇wε 6=0}
|∇wε|

(
Id− ∇wε

|∇wε|
⊗ ∇wε
|∇wε|

)
ϕdx→

ˆ
Ω×GN−1

Aϕ(x) dV∗(x,A) =

ˆ
Ĵu∗

AϕdHN−1 ,

we deduce that

Aε|∇wε|LN Ω
∗
⇀ AHN−1 Ĵu∗ weakly* in M(Ω; MN×N ) . (5.14)

Using that the spectral radius ρ is a convex, continuous, and positively 1-homogeneous function on the
set of symmetric matrices2, it follows from Reshetnyak continuity Theorem (see [1, Theorem 2.39]) that
for all ϕ ∈ C 0(Ω),ˆ

Ĵu∗

ϕ dHN−1 = lim
ε→0

ˆ
Ω

ϕ|∇wε|dx = lim
ε→0

ˆ
Ω

ϕρ(Aε)|∇wε|dx =

ˆ
Ĵu∗

ϕρ(A) dHN−1 ,

hence ρ(A) = 1 HN−1-a.e. on Ĵu∗ . �

We now focus on the interior structure of the varifold V∗.

Lemma 5.3. For HN−1-a.e. x in Ju∗ = Ĵu∗ ∩ Ω,

A(x) = Id− νu∗(x)⊗ νu∗(x) ,

where νu∗ is the approximate normal to the countably HN−1-rectifiable set Ju∗ .

Proof. Step 1: Let us show that for HN−1-a.e. x in Ju∗ , A(x) is a projection matrix onto a (N − 1)-
dimensional hyperplane.

To this aim, we perform a blow-up argument on the first variation equation (5.10). Let x0 ∈ Ju∗ be
such that

(1) x0 is a Lebesgue point of A with respect to HN−1 Ju∗ ;
(2) Ju∗ admits an approximate tangent space at x0 given by Tx0

= {νu∗(x0)}⊥;
(3)

lim
%→0

HN−1(Ju∗ ∩B%(x0))

ωN−1%N−1
= 1; (5.15)

(4)

lim
%→0

1

%N−1

ˆ
B%(x0)

|∇u∗|2 dx = 0 .

It turns out that HN−1-almost every point x0 ∈ Ju∗ satisfies these properties. Indeed, (1) is a
consequence of the Besicovitch differentiation theorem, (2) and (3) are consequences of the rectifiability
of Ju∗ (see Theorems 2.63 and 2.83 in [1]), while condition (4) is a consequence of (3) together with
the fact that the measure |∇u∗|2LN Ω is singular with respect to HN−1 Ju∗ .

Let x0 ∈ Ju∗ be such a point and let % > 0 be such that B%(x0) ⊂ Ω. For φ ∈ C∞c (RN ; RN ) such
that Supp(φ) ⊂ B1, we set

φx0,%(x) := φ

(
x− x0

%

)
for all x ∈ RN ,

so that φx0,% ∈ C∞c (RN ; RN ) and Supp(φx0,%) ⊂ B%(x0). Taking φx0,% as test vector field in (5.10)
(note that φx0,% = 0 in a neighbourhood of ∂Ω) yieldsˆ

Ju∗∩B%(x0)

A : Dφx0,% dHN−1 = −
ˆ
B%(x0)

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: Dφx0,% dx .

2For a symmetric matrix we can write ρ(A) = max|x|=1 Ax · x, hence ρ is convex as a supremum of affine functions.
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Dividing this identity by %N−2 yields

1

%N−1

ˆ
Ju∗∩B%(x0)

A : Dφ

(
· − x0

%

)
dHN−1

=
−1

%N−1

ˆ
B%(x0)

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: Dφ

(
· − x0

%

)
dx .

We first show that the left hand side of the previous equality tends to zero as %→ 0. Indeed, thanks
to our choice of x0, we have∣∣∣∣∣ 1

%N−1

ˆ
B%(x0)

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: Dφ

(
x− x0

%

)
dx

∣∣∣∣∣
≤ C
‖Dφ‖L∞(B1;MN×N )

%N−1

ˆ
B%(x0)

|∇u∗|2 dx→ 0 ,

for some constant C > 0. For what concerns the right hand side, using first that x0 is a Lebesgue point
of A and (5.15), we get that∣∣∣∣∣ 1

%N−1

ˆ
Ju∗∩B%(x0)

(A−A(x0)) : Dφ

(
· − x0

%

)
dHN−1

∣∣∣∣∣
≤
‖Dφ‖L∞(B1;MN×N )

%N−1

ˆ
Ju∗∩B%(x0)

|A−A(x0)|dHN−1 → 0 ,

so that

lim
%→0

1

%N−1

ˆ
Ju∗∩B%(x0)

A : Dφ

(
· − x0

%

)
dHN−1

= A(x0) : lim
%→0

1

%N−1

ˆ
Ju∗∩B%(x0)

Dφ

(
· − x0

%

)
dHN−1 .

Using next that Ju∗ admits an approximate tangent space that we denote by Tx0
at x0, we obtain that

lim
%→0

1

%N−1

ˆ
Ju∗∩B%(x0)

Dφ

(
· − x0

%

)
dHN−1 =

ˆ
Tx0∩B1

DφdHN−1 .

Hence, ˆ
Tx0∩B1

A(x0) : DφdHN−1 = 0 for all φ ∈ C∞c (B1; RN ) . (5.16)

Let t ∈ (0, 1) be such that t <
√
N
−N

, the measure ν := 1
ωN−1

HN−1 Tx0 satisfies

tN−1 ≤ ν(Bt) ≤ ν(B1) ≤ 1.

According to [2, Lemma 3.9] with β = s = N − 1, we get that the matrix A(x0) has at most N − 1
nonzero eigenvalues. Recalling that tr(A(x0)) = N−1 and that all eigenvalues of A(x0) belong to [0, 1],
this implies that A(x0) has exactly N − 1 eigenvalues which are equal to 1, and one eigenvalue which
is zero. Hence, there exists e ∈ SN−1 such that A = Id− e⊗ e.

Step 2: Let us show that e = ±νu∗(x0). Let us consider the varifold

Ṽ := HN−1 Tx0
⊗ δA(x0) ∈M(B1 ×GN−1) ,

whose action is given byˆ
B1×GN−1

ϕ(x,A) dṼ (x,A) =

ˆ
B1∩Tx0

ϕ(x,A(x0)) dHN−1(x) for all ϕ ∈ C 0
c (B1 ×GN−1) .
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Since A(x0) is a projection matrix onto the hyperplane e⊥, it follows that Ṽ ∈ VN−1(B1) is a (N − 1)-

varifold in B1 with ‖Ṽ ‖ = HN−1 Tx0
. Moreover, condition (5.16) shows that Ṽ is a stationary varifold,

cf. Section 2.3. It follows from the monotonicity formula (see e.g. formula (40.3) page 236 in [41]) that
for all x ∈ Tx0

∩B1 and all % > 0 such that B%(x) ⊂ B1,

HN−1(Tx0 ∩B%(x))

%N−1
=
HN−1(Tx0 ∩Br(x))

rN−1
+

ˆ
Tx0∩B%(x)\Br(x)

|e · (y − x)|2

|y − x|N+1
dHN−1(y)

for all 0 < r < %. Since

HN−1(Tx0
∩Br(x))

rN−1
=
HN−1(Tx0

∩B%(x))

%N−1
= ωN−1 ,

we deduce that ˆ
Tx0∩B%(x)\Br(x)

|e · (y − x)|2

|y − x|N+1
dHN−1(y) = 0 .

Choosing x = 0, % = 1, and letting r → 0+, we infer that y · e = 0 for HN−1-a.e. y ∈ Tx0
∩ B1 which

implies that Tx0
= e⊥, hence e = ±νu∗(x0). �

Next we focus on boundary points.

Lemma 5.4. For HN−1-a.e. x ∈ Ĵu∗ ∩ ∂Ω, we have

A(x) = Id− νΩ(x)⊗ νΩ(x),

where νΩ is the outward unit normal to ∂Ω.

Proof. We perform again a blow-up argument, this time at boundary points. Let x0 ∈ Ĵu∗ ∩ ∂Ω be
such that:

(1) x0 is a Lebesgue point of A with respect to HN−1 Ĵu∗ ;

(2) Ĵu∗ admits an approximate tangent space at x0 which coincides with the (usual) tangent space
of ∂Ω at x0 (this in particular implies that νu∗(x0) = ±νΩ(x0));

(3)

lim
%→0

HN−1(Ĵu∗ ∩B%(x0))

ωN−1%N−1
= 1 ;

(4)

lim
%→0

1

%N−1

ˆ
B%(x0)∩Ω

|∇u∗|2 dx = 0 ;

(5)

lim
%→0

λ∗(B%(x0))

%N−2
= 0 , lim

%→0

1

%N−2

ˆ
∂Ω∩B%(x0)

|∇u∗ · ν|dHN−1 = 0 .

It turns out that HN−1 almost every point x0 ∈ Ĵu∗ ∩ ∂Ω satisfies these properties. Indeed, (1) is a

consequence of the Besicovitch differentiation Theorem while (2) comes from the rectifiability of Ĵu∗
(see [1, Theorems 2.83]) together with the locality of approximate tangent spaces (see [1, Proposition

2.85]). Condition (3) is again a consequence of the rectifiabilty of Ĵu∗ and the Besicovitch-Marstrand-
Mattila theorem (see [1, Proposition 2.63]). Condition (4) is a consequence of (3) together with the

fact that the measure |∇u∗|2LN Ω is singular with respect to HN−1 Ĵu∗ . To justify (5), we define
for x ∈ ∂Ω,

Θ(x) := lim sup
%→0

λ∗(B%(x))

%N−2
.

According to standard density arguments (see e.g. [1, Theorem 2.56]), we have

tHN−2({Θ ≥ t}) ≤ λ∗({Θ ≥ t}) <∞ for all t > 0 .
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Hence HN−1({Θ ≥ t}) = 0 for all t > 0. As a consequence, HN−1({Θ > 0}) = 0. The second property
of (5) can be obtained similarly replacing λ∗ by |∇u∗ · ν|HN−1 ∂Ω.

We choose such a point x0 ∈ ∂Ω ∩ Ĵu∗ and we take % > 0.

Step 1: We first prove that νΩ(x0) is an eigenvector of A(x0). Consider first a test vector field φ of
the form

φ(x) := ϕ

(
x− x0

%

)
τ̃(x) for all x ∈ B%(x0) ,

where ϕ ∈ C∞c (B1) and τ̃ ∈ C 1
c (RN ; RN ) is such that τ̃ ·νΩ = 0 on ∂Ω. Plugging φ in (5.10) and using

estimates similar to the proof of Lemma 5.3, we obtainˆ
Tx0∩B1

A(x0) : (τ̃(x0)⊗∇ϕ) dHN−1 = 0 for all ϕ ∈ C∞c (B1) . (5.17)

Note that to get (5.17), the boundary term is cancelled thanks to the second property of (5). Let
{τ1, . . . , τN−1} be an orthonormal basis of Tx0

, and ν := νΩ(x0) be the outward unit normal to Ω at x0

(i.e. ν is a normal vector to Tx0
). We choose the vector field τ̃ in such a way that τ̃(x0) = τi, and we

decompose ∇ϕ along the orthonormal basis {τ1, . . . , τN−1, ν} of RN as

∇ϕ =

N−1∑
j=1

(∂jϕ)τj + (∂νϕ)ν .

Since
´
Tx0∩B1

∂jϕdHN−1 = 0 for all 1 ≤ j ≤ N − 1, we infer from (5.17) that(
(A(x0)τi) · ν

)ˆ
Tx0∩B1

∂νϕdHN−1 = 0 .

From the arbitrariness of ϕ, it follows that (A(x0)τi) · ν = 0 for all 1 ≤ i ≤ N − 1. Since A(x0)
is symmetric, we deduce that A(x0)ν ∈ T⊥x0

, that is A(x0)ν = cν for some c ∈ [0, 1] (recall that all

eigenvalues of A(x0) belong to [0, 1] by Lemma 5.2). Thus ν is an eigenvector of A(x0), and by the
spectral theorem, we can also assume without loss of generality that τ1, . . . , τN−1 are also eigenvectors
of A(x0).

Step 2: We next show that A(x0) is the projection matrix onto the tangent space to ∂Ω at x0.
We now consider a test vector field φ of the form

φ(x) := ν̃(x)ϕ

(
x− x0

%

)
for all x ∈ B%(x0) ,

where ϕ ∈ C∞c (B1) and ν̃ ∈ C 1
c (RN ; RN ) is such that ν̃(x) is a normal vector to ∂Ω at x ∈ ∂Ω

satisfying ν̃(x0) = νΩ(x0). Using again estimates in a similar way to the proof of Lemma 5.3 (this time,
the boundary term is cancelled thanks to the first property of (5)), we obtain thatˆ

Tx0∩B1

A(x0) : (ν ⊗∇ϕ) dHN−1 = 0 for all ϕ ∈ C∞c (B1) ,

and thus, by Step 1,

c

ˆ
Tx0∩B1

∂νϕdHN−1 = 0 .

By arbitrariness of ϕ, this last equality shows that c = 0. As a consequence, there exist real numbers
c1, . . . , cN−1 ∈ [0, 1] (the eigenvalues of A(x0) associated to the eigenvectors τ1, . . . , τN−1) such that

A(x0) =

N−1∑
i=1

ciτi ⊗ τi .
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According to Lemma 5.2, tr(A(x0)) = c1 +· · ·+cN−1 = N−1, and we deduce that c1 = · · · = cN−1 = 1.
Hence,

A(x0) =

N−1∑
i=1

τi ⊗ τi = Id− ν ⊗ ν ,

as announced. �

We can now complete the proof of our second main theorem.

Proof of Theorem 1.2. i) This point is a consequence of Lemma 4.1.

ii) Using that νu∗ = ±νΩ HN−1-a.e. in ∂Ω ∩ Ĵu∗ and gathering Lemmas 5.3 and 5.4 yields

A = Id− νu∗ ⊗ νu∗ HN−1-a.e. in Ĵu∗ .

Thus according to (5.8) and (5.9), we get that
ˆ
Ĵu∗

A : DX dHN−1 =

ˆ
Ĵu∗

(Id− νu∗ ⊗ νu∗) : DX dHN−1.

Then Lemma 5.1 implies that

ˆ
Ω

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: DX dx+

ˆ
Ĵu∗

(Id− νu∗ ⊗ νu∗) : DX dHN−1

= −
ˆ
∂Ω

(X · νΩ) dλ∗ +

ˆ
∂Ω

|∇τg|2(X · νΩ) dHN−1 − 2

ˆ
∂Ω

(∇u∗ · νΩ)(Xτ · ∇τg) dHN−1

for all X ∈ C 1
c (RN ; RN ). Specifying this identity to vector fields X ∈ C 1

c (RN ; RN ) satisfying X ·νΩ = 0
on ∂Ω leads to

ˆ
Ω

(
|∇u∗|2Id− 2∇u∗ ⊗∇u∗

)
: DX dx+

ˆ
Ĵu∗

(Id− νu∗ ⊗ νu∗) : DX dHN−1

= −2

ˆ
∂Ω

(∇u∗ · νΩ)(Xτ · ∇τg) dHN−1 ,

and (1.14) follows from the definition of the tangential divergence of X on the countably HN−1-

rectifiable set Ĵu∗ . �

The results of this section also give the following convergences that will be used in Section 6.

Corollary 5.1. Let (uε, vε) ∈ Ag(Ω), wε given by (5.2), and u∗ ∈ SBV 2(Ω) ∩ L∞(Ω) be as in
Theorem 1.2. Then,

∇wε
|∇wε|

⊗ ∇wε
|∇wε|

|∇wε|LN Ω
∗
⇀ νu∗ ⊗ νu∗HN−1 Ĵu∗ weakly* in M(Ω; MN×N ) , (5.18)

ε∇vε ⊗∇vεLN Ω
∗
⇀

1

2
νu∗ ⊗ νu∗HN−1 Ĵu∗ weakly* in M(Ω; MN×N ) . (5.19)

Proof. The first point (5.18) follows from (5.14) together with Lemmas 5.3 and 5.4 by observing that

νu∗ = ±νΩ HN−1-a.e. in ∂Ω∩ Ĵu∗ . The second point (5.19) follows from the first one, the equipartition
of energy (5.4) and the fact that ∇vε

|∇vε| = ∇wε
|∇wε| . �
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6. Passing to the limit in the second inner variation

The aim of this section is to complement Theorem 1.2 proving also the convergence of the second
inner variation of ATε. As a consequence, we shall deduce that if the limit u∗ comes from stable
critical points of ATε, then u∗ satisfies a certain stability condition for MS. Our analysis and result
parallels completely the ones in [24, 25, 26] for the Allen-Cahn type energies arising in phase transitions
problems.

Proof of Theorem 1.3. Assume that ∂Ω is of class C 3,1 and g ∈ C 3,α(∂Ω) for some α ∈ (0, 1). By
Theorem 3.2, if (uε, vε) is a critical points of the Ambrosio-Tortorelli functional then it belongs to
[C 3,α(Ω)]2.

To prove the convergence of the second inner variation, we use Lemma A.11 and formula (A.25).
From Proposition 5.1, we know that

√
ηε + v2

ε∇uε → ∇u∗ strongly in L2(Ω; RN ) ,

ε|∇vε|2LN Ω
∗
⇀

1

2
HN−1 Ĵu∗ weakly* in M(Ω) ,

(vε − 1)2

4ε
LN Ω

∗
⇀

1

2
HN−1 Ĵu∗ weakly* in M(Ω) .

On the other hand, Corollary 5.1 ensures that

ε∇vε ⊗∇vεLN Ω
∗
⇀

1

2
νu∗ ⊗ νu∗HN−1 Ĵu∗ weakly* in M(Ω; MN×N ) .

LetX ∈ C 2
c (RN ; RN ) andG ∈ C 2(RN ) be such thatX ·νΩ = 0 andG = g on ∂Ω, and set Y := (DX)X.

Observing that |DXT∇vε|2 = (DX(DX)T ) : (∇vε ⊗∇vε), we can pass to the limit in all the terms of
δ2ATε(uε, vε)[X,G] in (A.25) to find that

lim
ε→0

δ2ATε(uε, vε)[X,G] =

ˆ
Ω

(
|∇u∗|2Id− 2(∇u∗ ⊗∇u∗)

)
: DY dx+

ˆ
Ĵu∗

divĴu∗Y dHN−1

+

ˆ
Ω

|∇u∗|2
(
(divX)2 − tr(DX)2

)
− 4
(
(∇u∗ ⊗∇u∗) : DX

)
divX dx

+

ˆ
Ω

[
4(∇u∗ ⊗∇u∗) : (DX)2 + 2|DXT∇u∗|2

]
dx

+4

ˆ
Ω

[
∇u∗ · ∇(X · ∇G)divX

−
(
∇u∗ ⊗∇(X · ∇G)

)
:
(
DX + (DX)T

)]
dx

+2

ˆ
Ω

∇u∗ · ∇(X · ∇(X ·G)) dx+ 2

ˆ
Ω

|∇(X · ∇G)|2 dx

+

ˆ
Ĵu∗

[
(divX)2 − tr(DX)2 − 2

(
(νu∗ ⊗ νu∗) : DX

)
divX

]
dHN−1

+2

ˆ
Ĵu∗

[
(νu∗ ⊗ νu∗) : (DX)2 + |DXT νu∗ |2

]
dHN−1 . (6.1)

Using the geometric formulas stated in the proof of Theorem 1.1 p. 1851–1852 in [24], we infer that

(divX)2 − tr[(DX)2]− 2
(
(νu∗ ⊗ νu∗) : DX

)
divX + 2(νu∗ ⊗ νu∗) : (DX)2 + |DXT νu∗ |2

= (divJu∗X)2 +

N−1∑
i=1

|(∂τiX)⊥|2 −
N−1∑
i,j=1

(
τi · ∂τjX

)
(τj · ∂τiX) + ((νu∗ ⊗ νu∗) : DX)

2
. (6.2)
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According to the expression of the inner second variation of the Mumford-Shah energy stated in Lemma
A.12, (6.1) and (6.2), we infer that

lim
ε→0

δ2ATε(uε, vε)[X,G] = δ2MS(u∗)[X,G] +

ˆ
Ĵu∗

(
(νu∗ ⊗ νu∗) : DX

)2
dHN−1 .

Now assume that (uε, vε) ∈ Ag(Ω) is a stable critical point of ATε, i.e.

d2ATε(uε, vε)[φ, ψ] ≥ 0 for all (φ, ψ) ∈ H1
0 (Ω)× [H1

0 (Ω) ∩ L∞(Ω)] , (6.3)

where d2ATε(uε, vε) is the second outer variation of ATε at (uε, vε) given by formula (A.19).
Let us fix an arbitrary vector field X ∈ C 2

c (RN ; RN ) and an arbitrary function G ∈ C 3(RN )
satisfying X · νΩ = 0 and G = g on ∂Ω. According to Lemma A.10, we have

δ2ATε(uε, vε)[X,G] = d2ATε(uε, vε)[X · ∇(uε −G), X · ∇vε]
+ dATε(uε, vε)[X · ∇(X · ∇(uε −G)), X · ∇(X · ∇vε)] .

Since (uε, vε) = (g, 1) and X · νΩ = 0 on ∂Ω, we have X · ∇(uε − G) = X · ∇vε = 0 on ∂Ω. As a
consequence, the functions X ·∇(uε−G) and X ·∇vε belong to C 2(Ω) and also vanish on ∂Ω. Therefore,

X · ∇(X · ∇(uε −G)) = X · ∇(X · ∇vε) = 0 on ∂Ω .

Next, (uε, vε) being a critical point of ATε, it follows that

dATε(uε, vε)[X · ∇(X · ∇(uε −G)), X · ∇(X · ∇vε) = 0 .

Back to (6.3), it follows that

δ2ATε(uε, vε)[X,G] = d2ATε(uε, vε)[X · ∇(uε −G), X · ∇vε] ≥ 0 .

Passing now to the limit in the second inner variation yields

δ2MS(u∗)[X,G] +

ˆ
Ĵu∗

((νu∗ ⊗ νu∗) : DX)
2

dHN−1 ≥ 0 ,

and the proof of Theorem 1.3 is now complete. �

Remark 6.1. In [11, 6], the authors explore second order minimality conditions for the Mumford-Shah
functional in the case where the jump set is regular enough. Such conditions could be derived in our
context, taking care of the Dirichlet boundary data and thus of the fact that the jump set can charge
the boundary. We do not develop this point here and refer to [11, Theorem 3.6] where the authors
provide another expression for δ2MS(u) defined for smooth vector fields X compactly supported in Ω
(see Remark A.3). But we indicate that, as a consequence of Theorem 1.3, it can be seen that, if
(uε, vε) ∈ Ag(Ω) is a stable critical point of ATε such that, up to a subsequence, uε → u∗ in L2(Ω) and
(1.13) hold, then u∗ satisfies the second order minimality condition for the Mumford-Shah functional

derived in [11, 6]) provided Ĵu∗ is sufficiently smooth. This follows by choosing X ∈ C∞c (RN ; RN ) of

the form X = ϕνu∗ ◦ ΠĴu∗
in a neighborhood of Ĵu∗ and satisfying νu∗ · (DXνu∗) = 0 on Ĵu∗ , where

ΠĴu∗
denotes the nearest point projection onto Ĵu∗ and ϕ is an arbitrary smooth scalar function.

7. The one-dimensional case

The goal of this section is to investigate the one-dimensional case (N = 1) and show the existence of
non globally minimizing critical points (uε, vε) of the Ambrosio-Tororelli energy satisfying the energy
convergence (1.13). Most of the arguments are borrowed from [13] (see also [23]). However, we cannot
directly use their results because of our different boundary condition for the phase-field variable.

Let N = 1, Ω = (0, L) with L > 0 and a Dirichlet boundary data g(0) = 0 and g(L) = a > 0. As
explained in Remark 1.1, in this setting, a function u ∈ SBV 2(0, L) is a critical point of the Mumford-
Shah functional in SBV 2(0, L) if and only if u(x) = ax

L for x ∈ [0, L] or u is piecewise constant with
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a finite number of jumps Ĵu = {x1, . . . , xm} with xi ∈ [0, L] for all i = 1, . . . ,m. In the first case the
energy of u is

MS(u) =

ˆ L

0

∣∣∣ a
L

∣∣∣2 dx =
a2

L
,

while in the second case
MS(u) = #(Ĵu ∩ [0, L]) = m.

Thus, if a2 < L then u(x) = ax/L is the global minimizer whereas if a2 > L then a constant function
with exactly one jump anywhere in the closed interval [0, L] is a global minimizer (if a2 = L then all
previous functions are global minimizers). In particular, we have

min
SBV 2(0,L)

MS = min

{
a2

L
, 1

}
. (7.1)

We now consider a family of critical points of ATε, i.e., a family {(uε, vε)}ε>0 in [H1(0, L)]2 satisfying

[
(ηε + v2

ε)u′ε
]′

= 0 in (0, L) ,

−εv′′ε + vε|u′ε|2 +
vε − 1

4ε
= 0 in (0, L) ,

uε(0) = 0 , uε(L) = a ,

vε(0) = vε(L) = 1 .

(7.2)

We also assume the uniform energy bound

ATε(uε, vε) =

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx+

ˆ L

0

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx ≤ C . (7.3)

The following result extends [13, Theorem 2.2] to the case of Dirichlet boundary conditions for the
phase-field variable v. It also improves Theorem 1.2 in the one-dimensional case since assumption (1.13)
on the convergence of energies is no longer required.

Theorem 7.1. Let {(uε, vε)}ε>0 ⊂ [H1(0, L)]2 be a family satisfying (7.2) and (7.3). Then, up to a
subsequence ε→ 0,

(i) (uε, vε)→ (u∗, 1) in [L2(0, L)]2 where u∗ ∈ {ujump, uaff} with

ujump = a1[L/2,L] , uaff(x) =
ax

L
for all x ∈ [0, L] . (7.4)

(ii) (ηε + v2
ε)|u′ε|2L1 (0, L)

∗
⇀ |u′∗|2L1 (0, L) weakly* in M([0, L]),

(iii)
∣∣∣ε|v′ε|2 − (1− vε)2

4ε

∣∣∣→ 0 strongly in L1(0, L),

(iv) ε|v′ε|2L1 (0, L)
∗
⇀ αδL

2
weakly* in M([0, L]), with α = 0 or α = 1/2. Moreover, if u∗ = ujump,

then α = 1/2.

Remark 7.1. We emphasize that we must have α = 1/2 for u∗ = ujump. However we are not able to
prove that α = 0 for u∗ = uaff . Indeed α = 1/2 provided vε has a v-jump at L/2 in the terminology
of [13], i.e., as soon as vε(L/2) ≤

√
C∗ε for some constant C∗ > 0. However it could happen that this

v-jump disappears in the limit and does not create a discontinuity for u∗.

As in the case with Neumann boundary conditions we are in presence of a selection phenomenon.
Critical points of ATε cannot approximate any critical points of MS but only specific ones. Here the
selection phenomenon is much stronger in the sense that only two critical points ujump and uaff of MS
can be reached as limits of critical points of ATε.

As in [13], we also show the existence of a family of critical points of ATε approximating ujump.



CRITICAL OF POINTS OF THE AMBROSIO-TORTORELLI FUNCTIONAL 35

Theorem 7.2. There exists a family {(uε, vε)}ε>0 ⊂ [H1(0, L)]2 satisfying (7.2)-(7.3) and such that

(uε, vε)→ (ujump, 1) strongly in [L2(0, L)]2 as ε→ 0 .

Remark 7.2. According to Theorem 7.1, we obtain that the family in Theorem 7.2 satisfies the energy
convergence (1.13) i.e. ATε(uε, vε) → MS(ujump). Furthermore, if a2 < L, then (7.1) ensures that
ujump is not a global minimizer of MS. This shows the existence of non minimizing critical points of
ATε satisfying the assumption of convergence of energy in Theorem 1.2. This example can be made
N -dimensional adding artificially (N − 1)-variables and considering periodic boundary conditions in
those extra variables.

The rest of this section is devoted to the proofs of Theorem 7.1 and Theorem 7.2, reproducing some
of the arguments in [13] for completeness.

7.1. Preliminary estimates. We start by using the first equation in (7.2) to find a constant cε ∈ R
such that

(ηε + v2
ε)u′ε = cε , (7.5)

which implies that u′ε has a constant sign. Since we assume uε(0) = 0 and uε(L) = a > 0, we deduce
that u′ε ≥ 0 and cε ≥ 0. Then the second equation in (7.2) can be rewritten as

−εv′′ε +
c2εvε

(ηε + v2
ε)2

+
vε − 1

4ε
= 0 . (7.6)

We observe that, thanks to the energy bound (7.3),

acε =

ˆ L

0

u′εcε dx =

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx ≤ ATε(uε, vε) ≤ C ,

hence {cε}ε>0 is bounded and, up to a subsequence, we can assume that

cε → c0 . (7.7)

As in [13, Lemma 3.2] (and using Proposition 4.1), we have the following result.

Lemma 7.1. Let {(uε, vε)}ε>0 ⊂ [H1(0, L)]2 satisfying (7.2) and (7.3). Then, up to a subsequence,
(uε, vε) → (u∗, 1) strongly in [L2(0, L)]2 with u∗ ∈ SBV 2(0, L). Furthermore, u′ε → c0 a.e. in (0, L),
|Du∗|((0, L)) ≤ a and c0 ≤ a/L.

In the one-dimensional setting, the Noether type conservation law of Proposition 4.2 reads as(
(1− vε)2

4ε
− ε|v′ε|2 − (ηε + v2

ε)|u′ε|2
)′

= 0 in (0, L) ,

and it implies the existence of a constant dε ∈ R, sometimes called discrepancy, such that

(1− vε)2

4ε
− ε|v′ε|2 − (ηε + v2

ε)|u′ε|2 = dε . (7.8)

Thanks to the energy bound (7.3), it is easy to see that {dε}ε>0 is a bounded sequence, and thus (up
to a further subsequence)

dε → d0 . (7.9)

It also ensures the following uniform bounds (see [13, Lemma 3.4]).

Lemma 7.2. For ε > 0 small enough,

‖u′ε‖L∞(0,L) ≤
2
√
εηε

, ‖v′ε‖L∞(0,L) ≤
2

ε
.

Moreover, if c0 > 0, then the following refined estimates hold

‖u′ε‖L∞(0,L) ≤
2

c0ε
, min

[0,L]
vε ≥

c0
√
ε

2
.



36 J.-F. BABADJIAN, V. MILLOT, AND R. RODIAC

We next show the following strong maximum principle.

Lemma 7.3. Let (uε, vε) ∈ [H1(0, L)]2 satisfying (7.2), then 0 < vε < 1 in (0, L).

Proof. Let x0 be a minimum point of vε in [0, L]. If vε(x0) = 1, using that 0 ≤ vε ≤ 1, we deduce that
vε ≡ 1 in [0, L]. Inserting into the second equation of (7.2), we find that uε is a constant function in
[0, L] which is in contradiction with uε(0) = 0 and uε(L) = a > 0. As a consequence of the Dirichlet
boundary condition for vε, we have x0 ∈ (0, L) and thus v′′ε (x0) ≥ 0. If vε(x0) = 0, using again
the second equation in (7.2) we find that −εv′′ε (x0) = 1

4ε > 0 which is a contradiction. Therefore,
vε ≥ vε(x0) > 0 in (0, L).

Likewise, let x1 be a maximum point of vε in [0, L]. If x1 ∈ (0, L) and vε(x1) = 1, then we use that
v′′ε (x1) ≤ 0 together with (7.6) to obtain that cε = 0. This implies by (7.5) that u′ε = 0 which is a
contradiction since uε(0) = 0 and uε(L) = a > 0. It shows again that vε < 1 in (0, L). �

The selection phenomenon already observed in [13] is due to the following symmetry property which
is similar to [13, Lemma 4.1].

Proposition 7.1. Let {(uε, vε)}ε>0 be a family in [H1(0, L)]2 satisfying (7.2) and (7.3). Then vε
possesses a unique critical point in (0, L) located at L/2, which is a minimum of vε on [0, L]. Moreover,
vε is decreasing in (0, L/2), increasing in (L/2, L) and the graph of vε is symmetric with respect to the
vertical line x = L/2.

Proof. From Lemma 7.3, vε cannot be identically constant equal to 1. Thus by Rolle’s theorem, vε
admits critical points in (0, L).

Let x0 ∈ (0, L) be an arbitrary critical point of vε in (0, L). If x0 ∈ (0, L/2) then the function

ṽε(x) =

{
vε(x) if x ∈ (0, x0]

vε(2x0 − x) if x ∈ (x0, 2x0)

is a solution of (7.6) in the interval (0, 2x0). In particular, vε and ṽε are two solutions of an ODE
of the form v′′ε = fε(x, vε) in (x0, 2x0) for some function fε of class C 2 with vε(x0) = ṽε(x0) and
v′ε(x0) = ṽ′ε(x0) = 0. Cauchy-Lipschitz Theorem yields in turn that vε = ṽε in (x0, 2x0). In particular,
vε(2x0) = vε(0) = 1 which contradicts Lemma 7.3 since 2x0 ∈ (0, L). Thus x0 ∈ [L/2, L) and a
symmetric argument shows that x0 ∈ (0, L/2]. Finally, the only possibility left is x0 = L/2.

In particular, vε admits a unique critical point in (0, L) at the point L/2, which must be a minimum
of vε on [0, L]. Moreover, the graph of vε is symmetric with respect to the vertical line {x = L/2}.
Since vε is a smooth function satisfying vε(0) = 1, vε(L/2) < 1 and v′ε 6= 0 in (0, L/2), we deduce that
vε is decreasing in (0, L/2). By symmetry vε is increasing in (L/2, L). �

A crucial step in the proof of Theorem 7.1 is the following characterization of possible limiting slopes
c0 in (7.7), which strongly rests on the symmetry property of vε. We refer to [13, Lemma 4.4] for the
proof.

Lemma 7.4. The limiting slope c0 in (7.7) satisfies that either c0 = 0 or c0 = a/L.

Using that u′ε = cε
ηε+v2ε

in (7.8), we find that

(1− vε)2

4ε
− ε|v′ε|2 −

c2ε
ηε + v2

ε

= dε .

Thus, since vε ≤ 1 and cε and dε are bounded, we obtain that, for some constant C∗ > 0 independent
of ε,

v2
ε(L/2)

(
1− vε(L/2)

)2

≤
(
ηε + v2

ε(L/2)
)(

1− vε(L/2)
)2

≤ C∗ε .
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This implies, thanks to the study of the function X 7→ X2(1−X)2 on [0, 1], that

either vε

(
L

2

)
≥ 1−

√
C∗ε or vε

(
L

2

)
≤
√
C∗ε .

In the latter case, L/2 corresponds to a so-called v-jump according to the terminology of [13]. The
previous dichotomy implies that either vε converges uniformly to 1 or there exists exactly one v-jump
which is a minimum of vε located at L/2.

7.2. Proof of Theorem 7.1. We are now ready to prove items i) and ii) of Theorem 7.1, i.e., the
selection principle for limit of critical points of ATε and the convergence of the bulk energy.

Proof of i) and ii) in Theorem 7.1. Step 1. Assume first that vε(L/2) ≥ 1−
√
C∗ε. Then we have that

0 ≤ 1− vε ≤
√
C∗ε→ 0 uniformly in [0, L]. For ε small enough we also have that vε ≥ 1/2 so that the

energy bound (7.3) yields

1

2

ˆ L

0

|u′ε|2 dx ≤
ˆ L

0

(ηε + v2
ε)|u′ε|2 dx ≤ C .

Since {uε}ε>0 is bounded in H1(0, L) up to a subsequence we have that uε ⇀ u∗ weakly in H1(0, L)
with u∗ ∈ H1(0, L). We can pass to the limit in the first equation of (7.5) using (7.7) to obtain that
u′∗ = c0 in (0, L). Since u∗(0) = 0 and u∗(L) = a we find that u∗ = uaff and c0 = a/L. Moreover,
thanks to the uniform convergence of vε,

lim
ε→0

ˆ L

0

|u′ε|2 dx = lim
ε→0

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx = lim

ε→0
cε

ˆ L

0

u′ε dx = c0

ˆ L

0

u′aff dx =

ˆ L

0

|u′aff |2 dx .

It yields uε → uaff strongly in H1(0, L) and, in particular (ηε + v2
ε)|u′ε|2 → |u′aff |2 strongly in L1(0, L),

hence also weakly* in M([0, L]).

Step 2. Assume now that vε
(
L
2

)
<
√
C∗ε. We first notice that uε(L/2) = a/2. Indeed, thanks to

the symmetry property of vε and a change of variables, we find that

a =

ˆ L

0

u′ε dx =

ˆ L

0

cε
ηε + v2

ε

dx = 2

ˆ L/2

0

cε
ηε + v2

ε

dx = 2uε

(
L

2

)
. (7.10)

We next claim that for each 0 < δ < L/2, the function vε → 1 uniformly on [0, δ]. To this purpose,
define Aε := {x ∈ (0, L) : vε(x) ≤ 1 − ε1/4}. By the monotonicity properties of vε, the set Aε is a
closed interval centered in L/2. Thanks to the energy bound (7.3),

C ≥
ˆ L

0

(1− vε)2

ε
dx ≥ L

1(Aε)

ε1/2
,

which implies that

diam(Aε) ≤ Cε1/2 <
L

2
− δ

for ε small enough. Hence Aε ∩ [0, δ] = ∅ for ε small. In particular vε → 1 uniformly on [0, δ], and then
u′ε = cε

ηε+v2ε
→ c0 uniformly on [0, δ]. We deduce that

uε(x) =

ˆ x

0

u′ε(t) dt→ c0x uniformly with respect to x ∈ [0, δ] .

Thus uε(x)→ c0x for a.e. x ∈ (0, L2 ), and we prove in the same way that uε(x)→ a− c0(L−x) for a.e.

x ∈ (L2 , L). Since c0 = 0 or c0 = a/L by Lemma 7.4, then we find that either u∗ = ujump or u∗ = uaff

(see (7.4)). Observe that the case u∗ = ujump only occurs in the case vε(L/2) ≤
√
C∗ε.
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We finally show the convergence of the bulk energy. From the first equation in (7.2) we can write
that (ηε + v2

ε)|u′ε|2 = cεu
′
ε. Thus, for all ϕ ∈ C∞c (R),ˆ L

0

(ηε + v2
ε)|u′ε|2ϕdx = cε

ˆ L

0

u′εϕdx = −cε
ˆ L

0

uεϕ
′ dx+ cεaϕ(L)→ −c0

ˆ L

0

u∗ϕ
′ dx+ c0aϕ(L) .

If c0 = 0, then u∗ = ujump and u′jump = 0. We thus get in that case,

−c0
ˆ L

0

ujumpϕ
′ dx+ c0aϕ(L) = 0 =

ˆ L

0

|u′jump|2ϕdx .

If c0 = a/L, then u∗ = uaff and thus

−c0
ˆ L

0

uaffϕ
′ dx+ c0aϕ(L) =

a

L

ˆ L

0

u′affϕdx =

ˆ L

0

|u′aff |2ϕdx .

In any case, we obtain ˆ L

0

(ηε + v2
ε)|u′ε|2ϕdx→

ˆ L

0

|u′∗|2ϕdx ,

which proves the announced items i) and ii). �

From now on, the function u stands for either uaff or ujump. The argument in the previous proof
actually shows that u = uaff if c0 = a/L, while u = ujump if c0 = 0.

At this stage, it remains to show the equipartition of energy and the convergence of the diffuse
surface energy (points iii) and iv) in Theorem 7.1). The key argument is the following result stating
that there is very few diffuse surface energy far way from L/2, the only possible limit jump point. The
proof is an adaptation of [13, Lemma 6.1].

Lemma 7.5. For every compact set K ⊂ [0, L] \ {L/2}, there exists a constant CK > 0 such thatˆ
K

(
ε|v′ε|2 +

(1− vε)2

4ε

)
dx ≤ CKε1/4 .

Proof. We already know that the set Aε := {x ∈ (0, L) : vε(x) ≤ 1−ε1/4} is a closed interval centred at
L/2 with diam(Aε) ≤ C

√
ε. Let δ < 1

2dist(L/2,K). If ε > 0 is small enough then Aε ⊂ [L/2−δ, L/2+δ],
hence K ∩Aε = ∅. Since K ⊂ Vδ := [0, L] \ [L/2− δ, L/2 + δ], it suffices to show thatˆ

Vδ

(
ε|v′ε|2 +

(1− vε)2

4ε

)
dx ≤ CKε1/4 .

We multiply the second equation in (7.2) by vε − 1 ∈ H1
0 (0, L) and we integrate by parts to obtain

ˆ
Vδ

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx = εv′ε(L/2− δ)(vε(L/2− δ)− 1)

− εv′ε(L/2 + δ)(vε(L/2 + δ)− 1) +

ˆ
Vδ

c2εvε(1− vε)
(ηε + v2

ε)2
dx .

By definition of Aε and Vδ, we have |1 − vε| ≤ ε1/4 on Vδ. Using further the gradient bound for vε in
Lemma 7.2, we find that ˆ

Vδ

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx ≤ CKε1/4 ,

which completes the proof of the lemma. �

Arguing as in [13, Lemma 6.3], we also have the following result which relates the limit slope c0 to
the limit d0 (respectively defined in (7.7) and (7.9)).

Lemma 7.6. The real numbers c0 and d0 satisfy d0 + c20 = 0.
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We are now in position to complete the proof of Theorem 7.1.

Proof of iii) and iv) in Theorem 7.1. Step 1. Let us consider the function

fε :=
(vε − 1)2

4ε
− ε|v′ε|2 = dε + (ηε + v2

ε)|u′ε|2 = dε + cεu
′
ε = dε +

c2ε
ηε + v2

ε

.

If u∗ = ujump, then ˆ L

0

(ηε + v2
ε)|u′ε|2 dx→ 0 ,

hence cεa = cε
´ L

0
u′ε dx =

´ L
0

(ηε + v2
ε)|u′ε|2 dx → 0. It shows that c0 = 0 and thus d0 = 0 owing to

Lemma 7.6. We thus infer that ˆ L

0

∣∣∣∣ (vε − 1)2

4ε
− ε|v′ε|2

∣∣∣∣ dx→ 0 .

Assume next that u∗ = uaff . In that case, we have
ˆ L

0

(ηε + v2
ε)|u′ε|2 dx 6→ 0 ,

and the same argument as before shows that c0 6= 0. Then d0 6= 0 by Lemma 7.6. In particular dε 6= 0
for ε > 0 small enough. The function fε reaches its maximum when vε is minimal, i.e., at the point
L/2. Since L/2 is a critical point of vε, we have

max
[0,L]

fε = fε(L/2) =
(vε(L/2)− 1)2

4ε
≥ 0 .

Similarly, fε reaches its minimum when vε attains its maximum. Since vε is maximal on the boundary
with vε(0) = vε(L) = 1 we find that

min
[0,L]

fε = fε(0) = −ε|v′ε(0)|2 ≤ 0 .

As a consequence, there exists sε ∈ (0, L/2) such that fε(sε) = 0. From Lemma 7.6, it follows that

v2
ε(sε) = −ηε −

c2ε
dε
→ − c

2
0

d0
= 1 .

Up to a subsequence, there exists s0 ∈ [0, L/2] such that sε → s0. By monotonicity of vε, we get that
vε1[0,sε] → 1[0,s0] for a.e. s ∈ (0, L/2). Hence using again Lemma 7.6,

dεsε + cεuε(sε) =

ˆ sε

0

(
dε +

c2ε
ηε + v2

ε

)
dx→

ˆ s0

0

(d0 + c20) dx = 0 . (7.11)

Using the symmetry of vε, (7.10) and (7.11), we compute

ˆ L

0

∣∣∣∣ (vε − 1)2

4ε
− ε|v′ε|2

∣∣∣∣ dx =

ˆ L

0

|fε|dx = 2

ˆ L/2

0

|fε|dx

= −2

ˆ sε

0

fε dx+ 2

ˆ L/2

sε

fε dx

= 2dε

(
L

2
− 2sε

)
+ 2cε

(
uε

(
L

2

)
− 2uε(sε)

)
→ Ld0 + c0a = 0 .

It completes the proof of the equipartition of energy.
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Step 2. We finally show the convergence of the diffuse surface energy. According to Lemma 7.5, we
have (

ε|v′ε|2 +
(vε − 1)2

4ε

)
L1 (0, L)

∗
⇀ µ weakly* in M([0, L]) ,

for some nonnegative measure µ ∈M([0, L]) supported on {L/2}, and thus of the form µ = cδL/2 with
c ≥ 0. On the one hand, since µ is concentrated at L/2, we have

c = µ((0, L)) = lim
ε→0

ˆ L

0

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx .

On the other hand, the equipartition of energy ensures that
ˆ L

0

(
ε|v′ε|2 +

(vε − 1)2

4ε
− |v′ε|(1− vε)

)
dx =

ˆ L

0

(√
ε|v′ε| −

1− vε
2
√
ε

)2

dx

≤
ˆ L

0

∣∣∣∣ε|v′ε|2 − |1− vε|24ε

∣∣∣∣ dx→ 0 .

Since v′ε ≤ 0 on (0, L/2) and v′ε ≥ 0 on (L/2, L), by symmetry of vε with respect to the vertical axis
{x = L/2}, we have

ˆ L

0

|v′ε|(1− vε) dx = −2

ˆ L/2

0

v′ε(1− vε) dx = (1− vε(L/2))2 .

If vε(L/2) ≤
√
C∗ε, then c = 1 and µ = δL/2, while if vε(L/2) ≥ 1 −

√
C∗ε, then c = 0 and µ = 0.

Using again the equipartition of energy, we infer that

ε|v′ε|2L1 (0, L)
∗
⇀

c

2
δL/2 weakly* in M([0, L]) ,

so that the desired convergence holds with α = c
2 ∈ {0,

1
2}. If u∗ = ujump, then we must have

vε(L/2) ≤
√
C∗ε, and it follows that α = 1/2 in that case. �

7.3. Proof of Theorem 7.2. This section is devoted to prove Theorem 7.2, following again arguments
similar to those of [13, Section 5]. By the symmetry properties of Theorem 7.1 it suffices to construct a
critical point (uε, vε) of ATε in (0, L/2) such that vε(0) = 1, v′ε(L/2) = 0, uε(0) = 0 and uε(L/2) = a/2.

To this aim, let α ∈ (0, 1) independent of ε, and set

V :=

{
v ∈ H1(0, L/2) : v(0) = 1, v

(
L

2

)
≤ α

}
,

B :=

{
(u, v) ∈ H1(0, L/2)× V : u(0) = 0, u

(
L

2

)
=
a

2

}
.

For (u, v) ∈ B and 0 ≤ r ≤ s ≤ L/2, we define the localized bulk and diffuse surface energies by

Eε(u, v; r, s) =

ˆ s

r

(ηε + v2)|u′|2 dx, Fε(v; r, s) :=

ˆ s

r

(
ε|v′|2 +

(1− v)2

4ε

)
dx ,

and the Ambrosio-Tortorelli energy localized on (0, L/2) by

ÃT ε(u, v) := Eε(u, v; 0, L/2) + Fε(v; 0, L/2) .

The following result has been established in [13, Section 5].

Lemma 7.7. For all x1, x2 and x3 ∈ (0, L/2) we have

Fε(v;x1, x3) ≥
∣∣Φ(v(x1)) + Φ((v(x3))− 2Φ(v(x2))

∣∣ ,
with Φ(t) = t− t2/2.
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Using the monotone increasing character of Φ on [0, 1] and choosing x1 = x2 = 0 and x3 = L/2, we
get for all v ∈ V

Fε
(
v; 0,

L

2

)
≥ Φ(1)− Φ

(
v

(
L

2

))
≥ 1

2
− Φ(α) . (7.12)

Moreover, arguing as in [13, Section 5], we can show the existence of a minimizer (uε, vε) over B of ÃT ε
such that

lim sup
ε→0

ÃT ε(uε, vε) ≤
1

2
. (7.13)

We will show that, for a convenient choice of α ∈ (0, 1), such a minimizer is a critical point of

ÃT ε with the desired boundary conditions. The proof of the following result is similar to that of [13,
Lemma 5.1 & Proposition 5.2].

Lemma 7.8. There exists α ∈ (0, 1) independent of ε > 0 such that if (uε, vε) is a minimizer over B
of ÃT ε, then it is a critical point of ÃT ε with v′ε(L/2) = 0 for ε small enough.

Proof. It is sufficient to show the existence of α ∈ (0, 1), independent of ε, such that if (uε, vε) is a

minimizer over B of ÃT ε, then vε(L/2) < α. Indeed, in that case the minimizer (uε, vε) belongs to the
interior of B and variations of the form (uε + tφ, vε + tψ) with φ ∈ C∞c ((0, L/2)) and ψ ∈ C∞c ((0, L/2])
are allowed. Let α ∈ (0, 1) small enough so that

a2

L
− 2Φ(α) > 0 . (7.14)

Assume by contradiction that there exists εj → 0 such that vεj (L/2) = α for all j ∈ N. Then consider
the sequence

α∗j := min
x∈[0,L/2]

vεj (x) ≤ α .

Applying Lemma 7.7 with x1 = 0, x3 = L/2 and x2 = yj where vεj (yj) = α∗j leads to

ÃT εj (uεj , vεj ) ≥
1

2
+ Φ(α)− 2Φ(α∗j ) .

We claim that for all j ∈ N,

Φ(α)− 2Φ(α∗j ) ≥
Φ(α)

2
> 0 . (7.15)

Provided the claim is proved, we infer from (7.13) that

1

2
≥ lim sup

j→∞
ÃT εj (uεj , vεj ) ≥

1

2
+

Φ(α)

2
,

which is a contradiction since Φ(α) > 0. We are now reduced to show (7.15).

Proof of the Claim. Let α1 ∈ (0, α) be such that Φ(α) ≥ 4Φ(α1) and assume by contradiction
that vεj (x) ≥ α1 for all x ∈ [0, L/2]. Using variations with compact support in (0, L/2), we get that
(uεj , vεj ) solves 

(
ηεj + v2

εj )u
′
εj

)′
= 0 in (0, L/2),

−εjv′′εj + vεj |u′εj |
2 +

vεj − 1

εj
= 0 in (0, L/2) .

From the first equation we obtain that u′εj (ηεj + v2
εj ) = cj a.e. in (0, L/2), for some constant cj ∈ R.

The upper bound (7.13) shows that vεj → 1 in L2(0, L/2) and

ÃT εj (uεj , vεj ) ≥
ˆ L/2

0

(ηεj + v2
εj )|u

′
εj |

2 dx =

ˆ L/2

0

cju
′
εj dx =

acj
2
.
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It implies that {cj}j∈N is bounded so that, up to a subsequence, cj → c0 for some c0 ∈ R. Since
vεj ≥ α1, we deduce that {u′εj}j∈N is bounded in L∞(0, L/2). Then Lebesgue’s dominated convergence
yields

a

2
=

ˆ L/2

0

u′εj dx =

ˆ L/2

0

cj
ηεj + v2

εj

dx→
ˆ L/2

0

c0 dx ,

so that c0 = a/L. Now,

lim inf
j→∞

ˆ L/2

0

(ηεj + v2
εj )|u

′
εj |

2 dx = lim inf
j→∞

ˆ L/2

0

cju
′
εj dx = c0a =

a2

L
,

and thus, by (7.12) and (7.13),

1

2
≥ lim sup

j→∞
ÃT εj (uεj , vεj ) ≥

a2

L
+

1

2
− Φ(α) ,

which is in contradiction with (7.14).
We have thus proved by contradiction that min[0,L/2] vεj = α∗j ≤ α1. Since we assumed that

Φ(α) ≥ 4Φ(α1) ≥ 4Φ(α∗j ), we infer that (7.15) is satisfied. �

We can now conclude the proof of Theorem 7.2.

Proof of Theorem 7.2. Let (uε, vε) ∈ B and α ∈ (0, 1) given by Lemma 7.8 (see (7.14)) so that (uε, vε)
satisfies 

(
(ηε + v2

ε)u′ε

)′
= 0 in (0, L/2) ,

−εv′′ε + vε|u′ε|2 +
vε − 1

4ε
= 0 in (0, L/2) ,

uε(0) = 0 , uε(L/2) = a/2 ,

vε(0) = 0 , v′ε(L/2) = 0 .

By the first equation, there exists cε ∈ R such that u′ε = cε
ηε+v2ε

. Extending vε to (0, L) by symmetry

with respect to the vertical axis {x = L/2}, we obtain a function (still denoted by vε) which belongs
to H1(0, L) with vε(0) = vε(L) = 1 (this reflexion argument is possible since v′ε(L/2) = 0). Note that
the boundary conditions satisfied by uε implies

cε =
a

2

(ˆ L/2

0

dx

ηε + v2
ε

)−1

= a

(ˆ L

0

dx

ηε + v2
ε

)−1

,

where the last equality holds because vε is symmetric with respect to the vertical axis {x = L/2}. The
function uε is extended to (0, L) (into a function still denoted by uε) by setting

uε(x) =

ˆ x

0

cε
ηε + v2

ε(t)
dt .

By construction, (uε, vε) solves

(
(ηε + v2

ε)u′ε

)′
= 0 in (0, L) ,

−εv′′ε + vε|u′ε|2 +
vε − 1

4ε
= 0 in (0, L) ,

uε(0) = 0 , uε(L) = a ,

vε(0) = vε(L) = 0 .

Moreover, the symmetry properties of uε and vε together with a change of variable yield

lim sup
ε→0

ATε(uε, vε) = 2 lim sup
ε→0

ÃT ε(uε, vε) ≤ 1 . (7.16)
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By Theorem 7.1, up to a subsequence, (uε, vε)→ (u∗, 1) in [L2(0, L)]2 where u∗ ∈ {ujump, uaff}. Assume
by contraction that u∗ = uaff . According to Proposition 4.1, we have

a2

L
≤ lim inf

ε→0

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx . (7.17)

By (7.12) together with a change of variable and the symmetry property of vε, we obtain

lim inf
ε→0

ˆ L

0

(
ε|v′ε|2 +

(1− vε)2

4ε

)
dx = 2 lim inf

ε→0
Fε
(
vε; 0,

L

2

)
≥ 1− 2Φ(α) . (7.18)

Combining (7.16), (7.17) and (7.18) leads to a2/L−Φ(α) ≤ 0, which is in contradiction with our choice
of α in (7.14). Therefore u∗ = ujump, and the proof is complete. �

Appendix: First and second variations

In this appendix we derive explicit expressions for outer and inner variations of the Ambrosio-
Tortorelli and Mumford-Shah functionals.

First, we recall the expression of the first and second outer variations of ATε defined by

dATε(u, v)[φ, ψ] :=
d

dt

∣∣∣
t=0

ATε(u+ tφ, v + tψ) ,

and

d2ATε(u, v)[φ, ψ] :=
d2

dt2

∣∣∣
t=0

ATε(u+ tφ, v + tψ) .

Lemma A.9. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary and g ∈ H 1
2 (∂Ω). For all

(u, v) ∈ Ag(Ω) and all (φ, ψ) ∈ H1
0 (Ω)× [H1

0 (Ω) ∩ L∞(Ω)],

dATε(u, v)[φ, ψ] = 2

ˆ
Ω

[
(ηε + v2)∇u · ∇φ+ ε∇v · ∇ψ + |∇u|2vψ +

(v − 1)ψ

4ε

]
dx,

d2ATε(u, v)[φ, ψ] =

ˆ
Ω

[
(ηε + v2)|∇φ|2 + 4vψ∇u · ∇φ+ ε|∇ψ|2 + |∇u|2ψ2 +

ψ2

4ε

]
dx.(A.19)

The computations of inner variations rely on one-parameter groups of diffeomorphisms over Ω, or
equivalently on their infinitesimal generators. More precisely, assuming that ∂Ω is of class C k+1 with
k ≥ 1, and given a vector field X ∈ C k

c (RN ;RN ) satisfying X · νΩ = 0 on ∂Ω, we consider the integral
flow {Φt}t∈R of X defined through the resolution of the ODE for every x ∈ RN ,

d

dt
Φt(x) = X

(
Φt(x)

)
,

Φ0(x) = x .
(A.20)

Then Φ0 = id and the flow rule asserts that Φt+s = Φt ◦ Φs. Since X · νΩ = 0 on ∂Ω, {Φt}t∈R is a
one-parameter group of C k-diffeomorphism from Ω into itself, and from ∂Ω into itself.

Given a (sufficiently smooth) boundary data g, we consider an arbitrary (smooth) extension G of g
to Ω to define a one-parameter family of deformations {(ut, vt)}t∈R ⊂ Ag(Ω) satisfying (u0, v0) = (u, v)
for a given pair (u, v) ∈ Ag(Ω) by setting

ut := u ◦ Φ−t −G ◦ Φ−t +G and vt := v ◦ Φ−t .

The first and second inner variations of ATε at (u, v) are then defined by

δATε(u, v)[X,G] :=
d

dt

∣∣∣
t=0

ATε(ut, vt) ,

and

δ2ATε(u, v)[X,G] :=
d2

dt2

∣∣∣
t=0

ATε(ut, vt) .
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Remark A.3. We emphasize that δATε(u, v)[X,G] and δ2ATε(u, v)[X,G] depend on both the vector
field X and the extension G of the boundary data g, because the family of deformations {(ut, vt)}t∈R
depends on X and G. It allows one to perform inner variations of the energy up to the boundary.
This type of deformations includes the more usual variation {(u ◦ Φ−t, v ◦ Φ−t}t∈R with X compactly
supported in Ω. Indeed, in this case we may choose an extension G supported in a small neighborhood
of ∂Ω in such a way that suppG ∩ suppX = ∅. Then G ◦ Φ−t = G, and thus ut = u ◦ Φ−t.

If the pair (u, v) and ∂Ω are smooth enough, one can compute the first and second inner variations
of ATε at (u, v) using the Taylor expansion of (ut, vt) with respect to the parameter t. One may for
instance follow the general setting of [26, Lemma 2.2 and Corollary 2.3].

Lemma A.10. Let Ω ⊂ RN be a bounded open set with boundary of class C 2, g ∈ C 2(∂Ω) and
(u, v) ∈ Ag(Ω) ∩ [C 2(Ω)]2.

(i) Then for every vector field X ∈ C 1
c (RN ; RN ) and every extension G ∈ C 2(RN ) satisfying

X · νΩ = 0 and G = g on ∂Ω,

δATε(u, v)[X,G] = −dATε(u, v)[X · ∇(u−G), X · ∇v].

(ii) If further ∂Ω is of class C 3, g ∈ C 3(∂Ω), and (u, v) ∈ Ag(Ω) ∩ [C 3(Ω)]2, then for every vector
field X ∈ C 2

c (RN ; RN ) and every extension G ∈ C 3(RN ) satisfying X · νΩ = 0 and G = g
on ∂Ω,

δ2ATε(u, v)[X,G] = d2ATε(u, v)[X · ∇(u−G), X · ∇v]

+ dATε(u, v)
[
X · ∇(X · ∇(u−G)), X · ∇(X · ∇v)

]
.

Proof. Define ūt := u ◦Φ−t−G ◦Φ−t. Since (u, v) and G belong to C 2(Ω), we can differentiate (ut, vt)
with respect to t and use (A.20) with the flow rule Φt+s = Φt ◦ Φs to find

u̇t :=
d

dt
ut =

d

ds

∣∣∣
s=0

ūt+s = −X · ∇ūt ∈ C 1(Ω) ,

and

v̇t :=
d

dt
vt =

d

ds

∣∣∣
s=0

vt+s = −X · ∇vt ∈ C 1(Ω) .

In particular, we have

(u̇0, v̇0) =
(
−X · ∇(u−G),−X · ∇v

)
. (A.21)

If ∂Ω is of class C 3, g ∈ C 3(∂Ω), and (u, v) ∈ Ag(Ω)∩ [C 3(Ω)]2, then we can differentiate (u̇t, v̇t) with
respect to t to obtain

üt :=
d

dt
u̇t = −X · ∇u̇t = X · ∇

(
X · ∇ūt

)
and

v̈t :=
d

dt
v̇t = −X · ∇v̇t = X · ∇

(
X · ∇vt

)
.

Hence,

ü0 = X · ∇
(
X · ∇(u−G)

)
and v̈0 = X · ∇

(
X · ∇v

)
. (A.22)

Next elementary computations yield

d

dt
ATε(ut, vt) = dATε(ut, vt)[u̇t, v̇t] ,

and
d2

dt2
ATε(ut, vt) = d2ATε(ut, vt)[u̇t, v̇t] + dATε(ut, vt)[üt, v̈t] ,

so that the conclusion follows from (A.21)-(A.22) evaluating those derivatives at t = 0. �
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In case the pair (u, v) only belongs to the energy space Ag(Ω), we can compute the first and second
inner variations of ATε by making the change variables y = Φt(x) in the integrals defining ATε(ut, vt).
Then one expands the result with respect to t using a Taylor expansion of Φt. If X ∈ C 2

c (RN ; RN ),
the second order Taylor expansion near t = 0 of the flow map Φt induced by X is given by

Φt = id + tX +
t2

2
Y + o(t2) , (A.23)

where Y ∈ C 1
c (RN ; RN ) denotes the vector field

Y := (DX)X ,

DX being the Jacobian matrix of X (i.e., (DX)ij = ∂jXi with i the row index and j the column
index), and o(s) denotes a quantity satisfying o(s)/s→ 0 as s→ 0 uniformly with respect to x ∈ RN .

Lemma A.11. Let Ω ⊂ RN be a bounded open set with boundary of class C 2, g ∈ C 2(∂Ω) and
(u, v) ∈ Ag(Ω).

(i) Then for every vector field X ∈ C 1
c (RN ; RN ) and every extension G ∈ C 2(RN ) satisfying

X · νΩ = 0 and G = g on ∂Ω,

δATε(u, v)[X,G] =

ˆ
Ω

(ηε + v2)
[
|∇u|2Id− 2∇u⊗∇u

]
: DX dx

+

ˆ
Ω

[(
ε|∇v|2 +

(v − 1)2

4ε

)
Id− 2ε∇v ⊗∇v

]
: DX dx+ 2

ˆ
Ω

(ηε + v2)∇u · ∇(X · ∇G) dx . (A.24)

(ii) If further ∂Ω is of class C 3, g ∈ C 3(∂Ω), then for every vector field X ∈ C 2
c (RN ; RN ) and

every extension G ∈ C 3(RN ) satisfying X · νΩ = 0 and G = g on ∂Ω,

δ2ATε(u, v)[X,G] =

ˆ
Ω

(ηε + v2)

(
|∇u|2Id− 2(∇u⊗∇u)

)
: DY dx

+ 4

ˆ
Ω

(ηε + v2)
[
(∇u · ∇(X · ∇G))divX

−
(
∇u⊗∇(X · ∇G)

)
:
(
DX + (DX)T

)]
dx

+ 2

ˆ
Ω

(ηε + v2)∇u · ∇(X · ∇(X · ∇G)) dx+ 2

ˆ
Ω

(ηε + v2)|∇(X · ∇G)|2 dx

+

ˆ
Ω

[(
ε|∇v|2 +

(v − 1)2

4ε

)
Id− 2ε∇v ⊗∇v

]
: DY dx

ˆ
Ω

(ηε + v2)

{
|∇u|2

(
(divX)2 − tr((DX)2)

)
− 4
(
(∇u⊗∇u) : DX

)
divX

+ 4(∇u⊗∇u) : (DX)2 + 2|DXT∇u|2
}

dx

+

ˆ
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)(
(divX)2 − tr((DX)2)

)
dx

− 4

ˆ
Ω

ε
(
(∇v ⊗∇v) : DX

)
divX dx+ 4

ˆ
Ω

ε(∇v ⊗∇v) : (DX)2 dx

+ 2

ˆ
Ω

ε|DXT∇v|2 dx . (A.25)

Remark A.4. From (A.24) we see that if (u, v) ∈ Ag(Ω) is a critical point of ATε in the sense that
dATε(u, v)[φ, ψ] = 0 for all admissible (φ, ψ), then δATε(u, v)[X,G] is independent of the extension G.
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Indeed, an integration by parts shows that, in this case,ˆ
Ω

(ηε + v2)∇u · ∇(X · ∇G) dx = −
ˆ

Ω

div((ηε + v2)∇u)(X · ∇G) dx

+ (ηε + 1)

ˆ
∂Ω

∂νu(X · ∇G) dHN−1 .

The first term in the right-hand side vanishes thanks to the first equation in (1.3) and, since X · νΩ = 0
on ∂Ω, we can write X · ∇G = Xτ · ∇τG = Xτ · ∇τg where Xτ = X − (X · νΩ)νΩ and ∇τ is the
tangential gradient on ∂Ω.

For the second inner variation (A.25), even if (u, v) ∈ Ag(Ω) satisfies dATε(u, v)[φ, ψ] = 0 for
(φ, ψ) ∈ [C∞c (Ω)]2, the expression δ2ATε(u, v)[X,G] does depend on the extension G and not only on
the boundary data g because of the termsˆ

Ω

(ηε + v2)
[
(∇u · ∇(X · ∇G))Id− 2∇u⊗∇(X · ∇G)

]
: DX dx+

ˆ
Ω

(ηε + v2)|∇(X · ∇G)|2 dx .

If we take X ∈ C∞c (Ω; RN ) and G ∈ C 2(RN ) an extension of g such that suppG∩ suppX = ∅, and
if we assume (u, v) ∈ Ag(Ω) to be a critical of ATε, then the expression of the second-inner variation
(A.25) simplifies. Indeed the terms that contain Y = (DX)X disappear, since by regularity we have
δATε(u, v)[Y,G] = 0, and all terms containing G disappear. In this case, we end up with

δ2ATε(u, v)[X,G] =

ˆ
Ω

(ηε + v2)

{(
(divX)2 − tr((DX)2)

)
− 4((∇u⊗∇u) : DX)divX

+ 4(∇u⊗∇u) : (DX)2 + 2|DXT∇u|2
}

dx

+

ˆ
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)(
(divX)2 − tr((DX)2)

)
dx

− 4

ˆ
Ω

ε((∇v ⊗∇v) : DX)divX dx+ 4

ˆ
Ω

ε(∇v ⊗∇v) : (DX)2 dx

+ 2

ˆ
Ω

ε|DXT∇v|2 dx .

Proof of Lemma A.11. For simplicity, we assume that ∂Ω is of class C 3, g ∈ C 3(∂Ω), and we observe
that the computation of δATε below only requires C 2 regularity. We fix X ∈ C 2

c (RN ; RN ) and
G ∈ C 3(Ω) satisfying X · ν = 0 and G = g on ∂Ω. We set

ût := u ◦ Φ−t and Gt := G ◦ Φ−t .

Since ut = ût − (Gt −G), we have

ATε(ut, vt) = ATε(ût, vt)− 2

ˆ
Ω

(ηε + v2
t )∇ût · ∇(Gt −G) dx+

ˆ
Ω

(ηε + v2
t )|∇(Gt −G)|2 dx

=: A(t) + B(t) + C(t) . (A.26)

We aim to compute the first and second derivatives at t = 0 of A, B, and C, starting with A.
By the chain rule in Sobolev spaces, we have

∇ût = [DΦ−t]
T∇u(Φ−t) = [DΦt(Φ−t)]

−T∇u(Φ−t) . (A.27)

On the other hand, in view of (A.23), we have

[DΦt]
−1 = I − tDX − t2

2
Y + t2(DX)2 + o(t2) , (A.28)

and

det(DΦt) = 1 + tdivX +
t2

2

[
divY + (divX)2 − tr((DX)2)

]
+ o(t2) . (A.29)
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Using the change of variables x = Φt(y), we obtainˆ
Ω

(ηε + v2
t )|∇ût|2 dx =

ˆ
Ω

(ηε + v2)
∣∣[DΦt]

−T∇u
∣∣2det(DΦt) dy .

Hence,
ˆ

Ω

(ηε + v2
t )|∇ût|2 dx =

ˆ
Ω

(ηε + v2)|∇u|2 dx+ t

ˆ
Ω

(ηε + v2)
[
|∇u|2Id− 2∇u⊗∇u

]
: DX dx

+
t2

2

[ˆ
Ω

(ηε + v2)|∇u|2
(
divY + (divX)2 − tr((DX)2)

)
dx− 4

ˆ
Ω

(ηε + v2)((∇u⊗∇u) : DX)divX dx

− 2

ˆ
Ω

(ηε + v2)(∇u⊗∇u) : (DY − 2(DX)2) dx+ 2

ˆ
Ω

(ηε + v2)|DXT∇u|2 dx

]
+ o(t2) . (A.30)

Similarly,
ˆ

Ω

|∇vt|2 dx =

ˆ
Ω

|∇v|2 dx+ t

ˆ
Ω

[
|∇v|2Id− 2∇v ⊗∇v

]
: DX dx

+
t2

2

[ˆ
Ω

|∇v|2
(
divY + (divX)2 − tr((DX)2)

)
dx− 4

ˆ
Ω

((∇v ⊗∇v) : DX)divX dx

− 2

ˆ
Ω

(∇v ⊗∇v) : (DY − 2(DX)2) dx+ 2

ˆ
Ω

|DXT∇v|2 dx

]
+ o(t2) , (A.31)

andˆ
Ω

(vt − 1)2 dx =

ˆ
Ω

(v − 1)2 dx+ t

ˆ
Ω

(v − 1)2divX dx

+
t2

2

ˆ
Ω

(v − 1)2
[
divY + (divX)2 − tr((DX)2)

]
dx+ o(t2) . (A.32)

Gathering (A.30)-(A.31)-(A.32) leads to

A′(0) =

ˆ
Ω

(ηε + v2)
[
|∇u|2Id− 2∇u⊗∇u

]
: DX dx

+

ˆ
Ω

[(
ε|∇v|2 +

(v − 1)2

4ε

)
Id− 2ε∇v ⊗∇v

]
: DX dx , (A.33)

and

A′′(0) =

ˆ
Ω

(ηε + v2)

{
|∇u|2

(
divY + (divX)2 − tr((DX)2)

)
− 4((∇u⊗∇u) : DX)divX

− 2(∇u⊗∇u) : (DY − 2(DX)2) + 2|DXT∇u|2
}

dx

+

ˆ
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)(
divY + (divX)2 − tr((DX)2)

)
− 4ε((∇v ⊗∇v) : DX)divX dx

− 2

ˆ
Ω

ε(∇v ⊗∇v) : (DY − 2(DX)2) dx+ 2

ˆ
Ω

ε|DXT∇v|2 dx . (A.34)

Next we compute the derivatives of B. To this purpose, we observe that

∇ût+s = [DΦs(Φ−s)]
−T∇ût(Φ−s) , ∇Gt+s = [DΦs(Φ−s)]

−T∇Gt(Φ−s) ,

and by (A.28),

[DΦs]
−T∇Gt −∇G(Φs) = ∇(Gt −G)− s(DX)T∇(Gt −G)− s∇(X · ∇G) + o(s) .
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Using the change of variables x = Φs(y) and (A.28)–(A.29) again, we obtain
ˆ

Ω

(ηε + v2
t+s)∇ût+s · ∇(Gt+s −G) dx

=

ˆ
Ω

(ηε + v2
t )
(
[DΦs]

−T∇ût
)
·
(
[DΦs]

−T∇Gt −∇G(Φs)
)
det(DΦs) dy

=

ˆ
Ω

(ηε + v2
t )∇ût · ∇(Gt −G) dx− s

ˆ
Ω

(ηε + v2)∇ût · ∇(X · ∇G) dx

+ s

ˆ
Ω

(ηε + v2
t )
[
(∇ût · ∇(Gt −G))divX − (∇ût ⊗∇(Gt −G)) :

(
DX + (DX)T

)]
dx+ o(s) .

Consequently,

B′(t) = 2

ˆ
Ω

(ηε + v2
t )∇ût · ∇(X · ∇G) dx

− 2

ˆ
Ω

(ηε + v2
t )
[
(∇ût · ∇(Gt −G))divX − (∇ût ⊗∇(Gt −G)) :

(
DX + (DX)T

)]
dx ,

and in particular,

B′(0) = 2

ˆ
Ω

(ηε + v2)∇u · ∇(X · ∇G) dx . (A.35)

To compute B′′(0), we write B′(t) =: I(t)− II(t), and we set for simplicity

H := X · ∇G .

Since

∇H(Φt) = ∇H + t∇(X · ∇H)− t(DX)T∇H + o(t) ,

we can change variables y = Φt(x) and use again (A.27)-(A.28)-(A.29) to find

I(t) = 2

ˆ
Ω

(ηε + v2)∇u · ∇H dx+ 2t

ˆ
Ω

(ηε + v2)∇u · ∇(X · ∇H) dx

+ 2t

ˆ
Ω

(ηε + v2)
[
(∇u · ∇H)divX − (∇u⊗∇H) :

(
DX + (DX)T

)]
dx+ o(t) .

Since Gt −G = −tH + o(t), we easily infer that

II(t) = −2t

ˆ
Ω

(ηε + v2)
[
(∇u · ∇H)divX − (∇u⊗∇H) :

(
DX + (DX)T

)]
dx+ o(t) ,

and consequently,

B′′(0) = 2

ˆ
Ω

(ηε + v2)∇u · ∇(X · ∇H) dx

+ 4

ˆ
Ω

(ηε + v2)
[
(∇u · ∇H)divX − (∇u⊗∇H) :

(
DX + (DX)T

)]
dx . (A.36)

Similarly,

C(t) = t2
ˆ

Ω

(ηε + v2)|∇H|2 dx+ o(t2) ,

so that

C′(0) = 0 and C′′(0) = 2

ˆ
Ω

(ηε + v2)|∇H|2 dx . (A.37)

In view of (A.26), gathering (A.33)-(A.35)-(A.37) or (A.34)-(A.36)-(A.37) leads to the announced
formula for δATε(u, v)[X,G] and δ2ATε(u, v)[X,G] respectively. �
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Similar computations together with the well known first and second inner variations of a countably
HN−1-rectifiable set (see e.g. [41, Chapter 2, Section 9]) lead to explicit expressions for the first and
second inner variations of the Mumford-Shah functional.

Lemma A.12. Let Ω ⊂ RN be a bounded open set of class C 2, g ∈ C 2(∂Ω) and u ∈ SBV 2(Ω).

(i) Then for all vector field X ∈ C 1
c (RN ; RN ) and every extension G ∈ C 2(RN ) with X · νΩ = 0

and G = g on ∂Ω, we have

δMS(u)[X,G] =

ˆ
Ω

(
|∇u|2Id− 2∇u⊗∇u

)
: DX dx

+

ˆ
Ĵu

divĴuX dHN−1 + 2

ˆ
Ω

∇u · ∇(X · ∇G) dx . (A.38)

ii) If further Ω is of class C 3 and g ∈ C 3(∂Ω), then for all vector field X ∈ C 2
c (RN ; RN ) and

every extension G ∈ C 3(RN ) with X · νΩ = 0 and G = g on ∂Ω, we have

δ2MS(u)[X,G] =

ˆ
Ω

(
|∇u|2Id− 2∇u⊗∇u

)
: DY dx+

ˆ
Ĵu

divĴuY dHN−1

+

ˆ
Ω

[
|∇u|2

(
(divX)2 − tr((DX)2)

)
− 4
(
(∇u⊗∇u) : DX

)
divX

]
dx

+

ˆ
Ω

[
4(∇u⊗∇u) : (DX)2 + 2|DXT∇u|2

]
dx

+

ˆ
Ĵu

(divĴuX)2 +

N−1∑
i=1

|(∂τiX)⊥|2 −
N−1∑
i,j=1

(
τi · ∂τjX

)
(τj · ∂τiX)

 dHN−1

+2

ˆ
Ω

∇u · ∇(X · ∇(X ·G)) dx+ 2

ˆ
Ω

|∇(X · ∇G)|2 dx

+4

ˆ
Ω

[(
∇u · ∇(X · ∇G)

)
divX − (∇u⊗∇(X · ∇G)) : (DX + (DX)T )

]
dx ,

where (τ1, . . . , τN−1) is a basis of the tangent plane to Ĵu at a given point x ∈ Ĵu.

Proof. The second inner variation of the part
´

Ω
|∇u|2 dx is computed exactly as in the proof of

Lemma A.11, recalling that the chain rule still holds for the approximate gradient ∇(u ◦ Φ−t) =

[DΦ−t]
T∇u(Φ−t). For the singular part of the energy, we use that HN−1(Ĵut) = HN−1(Jût) where

ût = û ◦Φ−t and û = u1Ω +G1RN\Ω. The second variation of such a functional is computed with the
area formula as in [41, Chapter 2] together with the following geometric formulas

(divX)2 − tr[(∇X)2]− 2((νu ⊗ νu) : DX)divX + 2(νu ⊗ νu) : (DX)2 + |DXT νu|2

= (divJuX)2 +

N−1∑
i=1

|(∂τiX)⊥|2 −
N−1∑
i,j=1

(
τi · ∂τjX

)
(τj · ∂τiX) + ((νu ⊗ νu) : ∇X)

2

stated in the proof of Theorem 1.1 p. 1851–1852 in [24]. �

Remark A.5. As in Remark A.4, δMS(u)[X,G] is independent of the extension G when u is a critical
point for the outer variations of MS, while δ2MS(u)[X,G] does depend on the extension G in general.
If u satisfies δMS(u)[X,G] = 0, then for all X ∈ C∞c (Ω,RN ) with suppG ∩ suppX = ∅, then the
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formula of the second inner variation reduces to

δ2MS(u)[X,G] =

ˆ
Ω

|∇u|2
(
(divX)2 − tr((DX)2)

)
− 4((∇u⊗∇u) : DX)divX dx

+

ˆ
Ω

4∇u⊗∇u : (DX)2 + 2|DXT∇u|2 dx

+

ˆ
Ĵu

(divĴuX)2 +

N−1∑
i=1

|(∂τiX)⊥|2 −
N−1∑
i,j=1

(
τi · ∂τjX

)
(τj · ∂τiX)

 dHN−1 .
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