On the convergence of critical points of the Ambrosio-Tortorelli functional - Archive ouverte HAL Access content directly
Journal Articles Annales de l'Institut Henri Poincaré C, Analyse non linéaire Year : 2023

On the convergence of critical points of the Ambrosio-Tortorelli functional

Remy Rodiac
  • Function : Author
  • PersonId : 1171939

Abstract

This work is devoted to study the asymptotic behavior of critical points $(u_\varepsilon,v_\varepsilon)\}$ of the Ambrosio-Tortorelli functional. Under a uniform energy bound assumption, the usual $\Gamma$-convergence theory ensures that $(u_\varepsilon,v_\varepsilon)\}$ converges in the $L^2$-sense to some $(u_*,1)$ as $\varepsilon \to 0$, where $u_*$ is a special function of bounded variation. Assuming further the Ambrosio-Tortorelli energy of $(u_\varepsilon,v_\varepsilon)\}$ to converge to the Mumford-Shah energy of $u_*$ , the later is shown to be a critical point with respect to inner variations of the Mumford-Shah functional. As a byproduct, the second inner variation is also shown to pass to the limit. To establish these convergence results, interior $\mathscr{C}^\infty$ regularity and boundary regularity for Dirichlet boundary conditions are first obtained for a fixed parameter $\varepsilon>0$. The asymptotic analysis is then performed by means of varifold theory in the spirit of scalar phase transition problems.
Fichier principal
Vignette du fichier
BMR.pdf (501.79 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03805609 , version 1 (07-10-2022)
hal-03805609 , version 2 (28-11-2022)

Identifiers

Cite

Jean-François Babadjian, Vincent Millot, Remy Rodiac. On the convergence of critical points of the Ambrosio-Tortorelli functional. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, In press. ⟨hal-03805609v2⟩
67 View
25 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More