
HAL Id: hal-03805590
https://hal.science/hal-03805590v1

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First-passage times of multiple diffusing particles with
reversible target-binding kinetics

Denis S Grebenkov, Aanjaneya Kumar

To cite this version:
Denis S Grebenkov, Aanjaneya Kumar. First-passage times of multiple diffusing particles with re-
versible target-binding kinetics. Journal of Physics A: Mathematical and Theoretical, 2022, 55 (32),
pp.325002. �10.1088/1751-8121/ac7e91�. �hal-03805590�

https://hal.science/hal-03805590v1
https://hal.archives-ouvertes.fr


ar
X

iv
:s

ub
m

it/
43

48
11

1 
 [

ph
ys

ic
s.

ch
em

-p
h]

  9
 J

un
 2

02
2 First-passage times of multiple diffusing particles

with reversible target-binding kinetics

Denis S. Grebenkov

E-mail: denis.grebenkov@polytechnique.edu
1 Laboratoire de Physique de la Matière Condensée (UMR 7643),

CNRS – Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
2 Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm,

Germany

Aanjaneya Kumar

E-mail: kumar.aanjaneya@students.iiserpune.ac.in

Department of Physics, Indian Institute of Science Education and Research,

Dr. Homi Bhabha Road, Pune 411008, India

Abstract. We investigate a class of diffusion-controlled reactions that are initiated

at the time instance when a prescribed number K among N particles independently

diffusing in a solvent are simultaneously bound to a target region. In the irreversible

target-binding setting, the particles that bind to the target stay there forever,

and the reaction time is the K-th fastest first-passage time to the target, whose

distribution is well-known. In turn, reversible binding, which is common for most

applications, renders theoretical analysis much more challenging and drastically

changes the distribution of reaction times. We develop a renewal-based approach to

derive an approximate solution for the probability density of the reaction time. This

approximation turns out to be remarkably accurate for a broad range of parameters.

We also analyze the dependence of the mean reaction time or, equivalently, the inverse

reaction rate, on the main parameters such as K, N , and binding/unbinding constants.

Some biophysical applications and further perspectives are briefly discussed.
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1. Introduction

Diffusion-controlled processes and reactions play the central role in microbiology,

physiology and many industrial procedures [1–9]. In a common setting of bimolecular

reactions, two particles (e.g., a ligand and a receptor) need to meet each other to initiate

a reaction event. As the encounter results from the stochastic motion of one or both

particles, the reaction time is random. Since the seminal work by von Smoluchowski

[10], such first-encounter or first-passage problems have been thoroughly investigated.

Among various studied aspects, one can mention the impact of stuctural organization

and dynamical heterogeneities of the medium [11–19], the asymptotic behavior of the

reaction rate and the mean first-passage time in the small-target limit [20–32], distinct

features of the whole distribution [33–38], and the effect of target mobility [39–43].

However, there exist more sophisticated processes (that we will still call “reactions”)

involving multiple particles. In microbiology, there are many activation mechanisms

controlled by a threshold crossing such as signalling in neurons, synaptic plasticity, cell

apoptosis caused by double strand DNA breaks, cell differentiation and division [44–46].

For instance, binding of five calcium ions to a calcium-ion-sensing protein initiates

a release of neurotransmitters in the signalling process between two neurons [47–52].

Similarly, the ryanodine receptor is activated when two calcium ions bind to the receptor

binding sites [53]. In these examples, the biochemical event such as signal transmission

starts when a fixed number K among N diffusing particles are simultaneously bound

to the target region for the first time. If N (t) denotes the number of bound particles

at time t, the reaction time TK,N = inf{t > 0 : N (t) = K} is the first-crossing

time of a fixed threshold K by the stochastic non-Markovian process N (t). In the

idealized case of irreversible binding when any particle after its binding to the target

stays bound forever, this is the problem of finding the K-th fastest first-passage time

T 0
K,N to the target [53–61]. If the particles diffuse independently, the distribution of

T 0
K,N can be easily expressed in terms of the survival probability for a single particle

(see Appendix A). In most cases, however, binding is reversible so that some particles

can unbind and resume their diffusion before the binding of the K-th fastest particle

that renders the problem of such “impatient” particles [62] much more challenging.

Recently, Lawley and Madrid proposed an elegant approximation, in which the first-

binding time and the rebinding time τ after each unbinding event were assumed to obey

an exponential law. The processN (t) could thus be approximated by a Markovian birth-

death process, for which the distribution of the first-crossing time is known explicitly [63]

(see also [46]). In the special case K = N , we derived the exact solution of the problem

of impatient particles and showed both advantages and limitations of the Lawley-Madrid

approximation (LMA) [64]. Despite its crucial role in providing us with analytical insight

into the problem of impatient particles and the validity of its approximate treatments,

the case when all particles have to bind the target is not so common in applications.

In this paper, we investigate the general problem of impatient particles in a common

setting when all particles start from independent uniformly distributed positions. First,
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we revisit the Lawley-Madrid approximation and discuss its validity range. In particular,

we argue that the key assumption of the LMA requires that the target is small and

weakly reactive. The condition of weak reactivity, which was not emphasized on in [63],

limits the applicability of this approximation. To overcome this limitation, we develop

an alternative approach to the general problem. Our approximate solution is confronted

to Monte Carlo simulations and shown to be remarkably accurate for a broad range of

parameters. It allowed us to investigate the short-time and long-time behaviors of the

probability density of the reaction time TK,N , the dependence of the mean reaction time

on the unbinding rate, and the role of the numbers K and N .

The paper is organized as follows. In Sec. 2, we formulate the problem of impatient

particles and discuss the LMA. Section 3 presents the main steps of our approach and

summarizes the approximate formulas for the probability density of the reaction time

TK,N , its short-time and long-time behaviors, and the mean reaction time. In Sec.

4, we illustrate these results for an emblematic model of restricted diffusion between

concentric spheres. We discuss the accuracy of our approximation and its limitations.

Section 5 concludes the paper and suggests further perspectives. As our derivations

are technically elaborate, most mathematical details are re-delegated to Appendices in

order to facilitate the main text for a wider audience.

2. Problem of impatient particles

We consider N particles that independently diffuse with diffusion coefficient D inside

a bounded domain Ω ⊂ R
d with a smooth boundary ∂Ω that is reflecting everywhere

except for a target region Γ with a finite reactivity κ. For instance, Ω may represent the

cytoplasm of a living cell, surrounded by a plasma membrane ∂Ω that is impermeable

for diffusing particles, and Γ be the boundary of an organelle or a sensor protein on

that membrane. The reactivity κ (in units m/s) is related to the binding probability

and characterizes how easily the particle can bind the target upon their encounter,

ranging from κ = 0 for an inert target (no binding) to κ = ∞ for a perfectly reactive

target (binding upon the first encounter). The finite reactivity may represent the effect

of an energetic or entropic barrier for binding, stochastic switching between open and

closed states of the target (e.g., an ion channel), microscopic heterogeneity of the target,

etc. [65–79]. In (bio)chemistry, the reactivity is usually expressed in terms of the forward

(bimolecular) reaction rate kon via κ = kon/(|Γ|NA), where |Γ| is the surface area of the

target and NA is the Avogadro number [1]. After binding, each particle stays on the

target region for a random exponentially distributed waiting time, characterized by the

unbinding rate koff , and then resumes its diffusion from a uniformly distributed point

on Γ. The particle diffuses in Ω until the next binding, and so on (Fig. 1). In other

words, each particle alternates between free and bound states. We aim at describing

the random reaction time TK,N , i.e., the first instance when K particles among N are

simultaneously in the bound state on the target region that is considered as a trigger of

the underlying biochemical process (a reaction event). As binding and unbinding events
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Figure 1. (a) A planar illustration of a bounded domain Ω between two concentric

spheres of radii ρ = 1 and R = 2, whose disjoint boundary ∂Ω = ∂Ω0 ∪ Γ is composed

of the reflecting outer sphere ∂Ω0 and the partially reactive inner sphere Γ. (b)

A numerical simulation for three diffusing particles. Upper plot shows the radial

coordinate, |Xt|, of simulated trajectories of three particles that start from a fixed

initial position with |x0| = 1.5 and diffuse independently, with eventual bindings to

the target. Arrows indicate the first-crossing times T1,3, T2,3, and T3,3. Bottom plot

illustrates the number of bound particles at time t, N (t). At the beginning, all three

particles are free, and N (0) = 0. At T1,3, the “red” particle binds, switching the

counter N (t) to 1. At T2,3, the “green” particle binds, switching the counter N (t) to

2. Few moments later, the “red” particle unbinds, diffuses and rebinds to the target.

Finally, the last “blue” particle binds at time T3,3, switching the counter N (t) to 3.

of all particles are independent from each other and thus asynchronized, finding the

probability density HK,N(t) of the TK,N is a challenging open problem. Note that the

above problem of impatient particles resembles some stochastic models of multi-channel

particulate transport with blockage [80–82].

The first-binding time τ0 and the consequent rebinding times τ1, τ2, . . . of any

particle are random variables, which are characterized by the survival probabilities

S(t|x0) = Px0
{τ0 > t} and S(t) = P{τi > t}, where x0 is the starting point of the

particle, and P{. . .} denotes the probability of a random event between braces. Lawley

and Madrid proposed a remarkable approximation, which relied on the approximation

of these probabilities by an exponential function:

S(t|x0) ≈ S(t) ≈ e−νt, (1)

with an appropriate rate ν [63]. They argued that this approximation is valid for any

small and/or weakly reactive target such that

ǫ =
κ |Γ| |Ω|
D|∂Ω|2 ≪ 1, (2)

where |Ω| is the volume of the confining domain, |∂Ω| and |Γ| are the surface areas of

the whole boundary and of the target region (a reactive subset of ∂Ω), respectively. For

clarity, we focus here on a three-dimensional setting, d = 3, but the arguments are valid

in higher dimensions as well. In Appendix B, we summarize the explicit formulas of the
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LMA and discuss the validity of the condition (2), which actually combines two distinct

properties of the target: its relative size and reactivity. We argue that the LMA is

applicable when the target is small and weakly reactive. For instance, when the target

is a sphere of radius ρ, the following two conditions should be fulfilled:

ρ≪ R =
|∂Ω|2
4π|Ω| ,

κρ

D
≪ 1. (3)

The first condition is purely geometrical (smallness of the target as compared to the

confining domain), while the second condition involves both the reactivity and the size of

the target but does not depend on the confining domain. These two conditions evidently

imply Eq. (2), but the opposite claim is not true. In particular, if the target is small

but highly reactive, the second condition may not be valid, even if Eq. (2) is fulfilled.

This situation will be illustrated in Sec. 4.

3. Approximate solution

To overcome the constraint on weak reactivity, we develop an alternative approach,

which does not rely on the approximation (1). For this purpose, we extend the derivation

in Ref. [64] that was specific to the case K = N and based on a renewal-type equation

Pt(N |0) =
t
∫

0

dt′ HN,N(t
′)Pt−t′(N |N), (4)

where Pt(m|n) is the probability of transition from a state with n bound particles to

a state with m bound particles. Expressing both Pt(N |0) and Pt−t′(N |N) in terms of

known occupation probabilities for a single particle and applying the Laplace transform

led to the probability density HN,N(t) in the Laplace domain.

A direct extension of this equation to the general case K < N fails. In fact, the

probability Pt(K|0) can still be expressed as an integral of HK,N(t
′) with the probability

Pt−t′(K|K) of transition from a state with K bound particles to another state with

K bound particles. However, this probability also depends on random positions of

the remaining N − K free particles at time t′ that should be averaged out. Even for

independently diffusing particles, an exact computation of this average remains an open

problem (see Appendix C for further discussion). Moreover, the resulting probability

would be a function of both t − t′ and t′ so that an extension of Eq. (4) would be no

longer a convolution, and thus would not be simplified in the Laplace domain.

This fundamental difficulty can be partly resolved in the case when the starting

positions of N particles are uniformly distributed in the confining domain. The key

point is that the distribution of any free particle that started uniformly remains to

be almost uniform at all times, except for a boundary layer near the target region.

When the target is small and not too highly reactive, this boundary layer is narrow and

can be neglected so that all free particles can be approximately treated as uniformly
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distributed at any time t′. As a consequence, the average of Pt−t′(K|K) turns out to be

only a function of t− t′, thus keeping the convolution form of the renewal equation:

Pt(K|0) =
t
∫

0

dt′HK,N(t
′)Pt−t′(K|K), (5)

where overline denotes the average over the uniform positions of N −K free particles.

In other words, this integral equation determines an approximation HK,N(t) of the

probability density HK,N(t) of the reaction time TK,N . Both transition probabilities in

Eq. (5) can be found using combinatorial arguments, namely,

Pt(K|0) =
(

N

K

)

[P (t|◦)]K [1− P (t|◦)]N−K (6)

and

Pt(K|K) =

K
∑

j=0

(

K

j

)

[Q(t)]K−j[1−Q(t)]j
(

N −K

j

)

× [P (t|◦)]j[1− P (t|◦)]N−K−j, (7)

where we use the convention for binomial coefficients that
(

n
k

)

= 0 for n < k. Here

P (t|◦) (resp., Q(t)) is the probability of finding a particle that was free with uniform

initial distribution (resp., bound) at time 0, in the bound state at time t. For instance,

the term with j = 0 in Eq. (7) describes the configuration when all K initially bound

particles are found to be bound at time t (note that they can unbind and rebind in the

meantime), while N −K initially free particles are found to be free at time t (they can

also bind and unbind in the meantime). Similarly, the term with j = 1 describes the

configuration when K− 1 initially bound particles are found to be bound at time t, one

initially bound particle is found to be free at time t, N −K − 1 initially free particles

are found to be free at time t, while one initially free particle is found to be bound at

time t (and all these particles can undertake an arbitrary number of binding/unbinding

events in the meantime). In Appendix D, we show that

P (t|◦) = 1−Q(t)

koff〈τ〉
, (8)

whereas Q(t) can be expressed in terms of the probability density H(t) of the rebinding

time for a single particle, and 〈τ〉 is the mean rebinding time. In [64], we derived a very

simple and general expression for this quantity:

〈τ〉 = |Ω|
κ|Γ| =

NA|Ω|
kon

(9)

(we reproduce its derivation in Appendix C). Here, it is expressed in terms of the volume

|Ω| of the confining domain, the surface area |Γ| of the target region, and its reactivity κ

or, equivalently, in terms of the forward reaction constant kon. Counter-intuitively, the

mean rebinding time does not depend on the diffusion coefficient D. This is a particular

example of the invariance property of general random walks in bounded domains that

the mean traveled distance (and thus the mean exit time) does not depend on the
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dynamics of the diffusing particles that enter and exit the domain through the same

subset of the boundary (here, the target) [83–86]. Solving the convolution equation (5)

in the Laplace domain, we obtain the approximate probability density HK,N(t) of the

reaction time TK,N :

HK,N(t) = L−1

{

L{Pt(K|0)}
L{Pt(K|K)}

}

, (10)

where L and L−1 denote respectively the forward and inverse Laplace transforms. This

approximate solution of the general problem of impatient particles constitutes the main

result of the paper. For K = N , one has Pt(K|0) = [P (t|◦)]N and Pt(K|K) = [Q(t)]N

and thus retrieves an extension of the exact solution from Ref. [64] to the case of the

uniform initial distribution of the particles.

In addition to a direct numerical way of computing the approximate probability

density HK,N(t) (see Appendix E for details), Eq. (10) opens a way to access the short-

time and long-time asymptotic behaviors of this density (see Appendix F):

HK,N(t) ≈ K

(

N

K

)

tK−1

〈τ〉K (t→ 0), (11)

HK,N(t) ∝ exp(−t/TK,N) (t→ ∞), (12)

where TK,N is the decay time whose approximation reads

TK,N ≈ 1

P∞(K|K)

∞
∫

0

dt
(

Pt(K|K)−P∞(K|K)
)

, (13)

in which P∞(K|K) is given by Eq. (7) with P (∞|◦) = Q(∞) = 1/(1 + koff〈τ〉). In

addition, our approximate solution allows us to evaluate the moments of the reaction

time TK,N . For instance, we derived the following approximation for the mean reaction

time (see Appendix G)

〈TK,N〉 ≈
1

P∞(K|0)

∞
∫

0

dt
(

Pt(K|K)− Pt(K|0)
)

. (14)

Note that this expression is similar to Eq. (13) for the decay time, and they usually

yield very close results.

The dimensionless parameter η = koff〈τ〉 ∝ koff/kon determines whether the

reversible binding kinetics is relevant (η & 1) or not (η ≪ 1). As discussed in

Appendix G, Eq. (14) fails as η → 0 but gets more and more accurate as η increases.

For η ≫ 1, the integral in Eq. (14) can be approximately evaluated as

〈TK,N〉 ≈ 〈τ〉 (koff〈τ〉)
K−1

K
(

N
K

) (η ≫ 1). (15)

For K = 1, the approximate mean reaction time 〈T1,N〉 ≈ 〈τ〉/N does not depend on

koff , as the first-binding event is independent of the unbinding kinetics. This mean value

decreases inversely proportional to N , as discussed earlier in Ref. [59,60] in the context
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Figure 2. Probability density of the reaction time TK,N for restricted diffusion

between concentric spheres of radii ρ and R = 10ρ, with N = 4, κρ/D = 1, a

timescale δ = ρ2/D, three values of koff (see legend), and four values of K: K = 1

(a), K = 2 (b), K = 3 (c), and K = 4 (d). Symbols show empirical histograms

from Monte Carlo simulations with 106 particles. Thick solid line presents the exact

solution (A.2) for irreversible binding; thick dashed lines indicate our approximation

(10) evaluated numerically as described in Appendix E. Thin lines show the Lawley-

Madrid approximation (B.4), with ν given by Eq. (B.13); note that the thin line for

the case koffδ = 0.03 in panel (d) is not visible as it appears below the figure (i.e.,

H̄4,4(t|◦)δ < 10−6). Thin gray solid line presents the short-time asymptotic behavior

(11).

of the fastest first-passage time problem. In the case K ≪ N , the above expression

reads

〈TK,N〉 ≈ koff(K − 1)!

(

κ|Γ|N
koff |Ω|

)K

, (16)

which resembles the asymptotic behavior of the mean first-passage time of a rare event

thatK amongN independent random walkers accumulate at a given site of a lattice [87].

4. Discussion

To illustrate our general results, we consider restricted diffusion inside a confining

reflecting sphere of radius R towards a small concentric partially reactive spherical

target of radius ρ (Fig. 1(a)). This domain can be considered as an idealized model for

the intracellular transport towards the nucleus or a model of the presynaptic bouton [52].

Figure 2 illustrates the behavior of the probability density HK,N(t) forN = 4 and several
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values of K in the case of a small (ρ/R = 0.1), moderately reactive (κρ/D = 1) target.

As the unbinding kinetics can only be initiated after the first binding, the reaction

time T1,N is equal to the first-binding time of the fastest particle and thus does not

depend on the unbinding rate koff (see also Appendix A). Expectedly, three curves with

different koff coincide on the panel Fig. 2(a). Moreover, the short-time behavior does

not depend on koff for any K. In turn, the long-time decay is strongly affected by koff
when K > 1: the decay time TK,N increases with koff and thus the distribution is getting

broader for faster unbinding kinetics. In all cases, the approximate solution (10) is in a

remarkable agreement with Monte Carlo simulations over a broad range of times. We

also stress that our solution is exact for K = N . The Lawley-Madrid approximation

(see Appendix B) captures correctly the overall behavior but overestimates the decay

time. The agreement is better for smaller koff and smaller K. In turn, the disagreement

for larger koff or K is caused by moderate reactivity of the target, for which the second

condition in Eq. (3) is not satisfied. Note that the parameter ǫ from Eq. (2) is equal

to 0.03, wrongly suggesting the validity of the LMA. This example clearly illustrates

that the single condition (2) is not sufficient and should be replaced by two separate

conditions in (3). Figure H1 from Appendix H illustrates that the disagreement is

getting even bigger for a small target with higher reactive κρ/D = 10. In contrast, the

LMA is very accurate for weakly reactive targets (see, e.g., Fig. 4 in Ref. [63], which

was plotted for the case κρ/D = 0.01 and koffρ
2/D = 0.001). Finally, we emphasize that

the short-time asymptotic relation (11) is not accurate in the considered range of times,

requiring many correction terms for amendment (see Appendix F for details). Similar

behavior was observed for N = 2 and N = 3 (see Figs. H2 and H3 from Appendix H).

The impact of unbinding kinetics and the consequent rebinding events can be

characterized by the dimensionless parameter η = koff〈τ〉, which is proportional to

the ratio koff/kon (or koff/κ), see Eq. (9). In particular, this parameter fully determines

the steady-state probability P (∞|◦) = 1/(1 + η) for a particle to be in the bound

state. Intuitively, one might expect that η mainly controls the statistics of the reaction

times TK,N . To emphasize on the respective roles of binding and unbinding effects,

we fix η = 1 and compare the probability densities for three combinations of κ and

koff . Figure 3 shows that two curves with larger unbinding rates koff(ρ
2/D) = 0.03 and

koff(ρ
2/D) = 0.3 (and, accordingly, larger reactivities) almost coincide. This effect can

be attributed to a sort of statistical averaging due to multiple rebinding events. In

contrast, the curve with the lowest koff and κ differs from the others, due to a limited

number of rebinding events. We conclude that the parameter η plays an important

role but does not fully determine the statistics of the reaction time. Expectedly, the

Lawley-Madrid approximation gets less and less accurate as the reactivity increases.

We complete this section by looking at the mean reaction time 〈TK,N〉. Figure 4

shows the dependence of 〈TK,N〉 on the unbinding rate koff (rescaled by 〈τ〉) for a fixed

reactivity κρ/D = 1. When η = koff〈τ〉 is small, the mean reaction time is almost

constant and close to 〈T 0
K,N〉 for irreversible binding (koff = 0), as expected. In turn, for

η & 1, the mean reaction time starts to rapidly increase with η.
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Figure 3. Probability density of the reaction time TK,N for restricted diffusion

between concentric spheres of radii ρ and R = 10ρ, with N = 4, a timescale

δ = ρ2/D, three combinations of koff and κ (koffδ = 0.003, 0.03, 0.3 corresponding

to κρ/D = 1, 10, 100, respectively, such that η = 1 in all cases), and four values of

K: K = 1 (a), K = 2 (b), K = 3 (c), and K = 4 (d). Symbols show empirical

histograms from Monte Carlo simulations with 106 particles. Thick lines indicate our

approximation (10) evaluated numerically as described in Appendix E, whereas thin

lines show the Lawley-Madrid approximation (B.4), with ν given by Eq. (B.13); note

that the thin line for the case koffδ = 0.03 in panel (d) is not visible as it appears

below the figure (i.e., H̄4,4(t|◦)δ < 10−6).

10-1 100 101 102 103
102

104

106

Figure 4. Mean reaction time 〈TK,3〉 for restricted diffusion between concentric

spheres of radii ρ and R = 10ρ, with κρ/D = 1, a timescale δ = ρ2/D, N = 3, and

three values of K (see legend). Thick lines show our approximation (14), thin lines

present the Lawley-Madrid approximation with ν given by Eq. (B.13), while symbols

illustrate the results of Monte Carlo simulations with 106 realizations. Thin straight

solid lines present the large-η asymptotic behavior (15).
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5. Conclusion

In this paper, we investigated diffusion-controlled reactions or events that are triggered

on a target region after binding a prescribed number K among N independently

diffusing particles. The reversible target-binding kinetics, which is so common for most

applications, presented the major mathematical difficulty. We developed a powerful

theoretical approach to derive a new approximation HK,N(t) for the probability density

of the reaction time TK,N in the case when the particles were initially released uniformly.

Under the assumption that the random positions of free particles at time TK,N remain to

be uniform, we derived a renewal equation that determines HK,N(t). This convolution-

type equation was then solved in the Laplace domain to relate the probability density

via Eq. (10) to two occupancy probabilities, which were in turn expressed in terms

of the survival probability for a single particle. In this way, we managed to describe

the collective effect of multiple diffusing particles in terms of the diffusive dynamics

of a single particle and thus to extend the well-known extreme statistics for the K-th

fastest first-passage time to a more general and much more challenging setting with

reversible binding. In other words, the knowledge of the survival probability S(t|◦) (or,
equivalently, S(t)) of a single particle was sufficient for approximating the probability

density of the reaction time TK,N .

The assumption of uniform positions was the crucial step and the only source

of eventual deviations between the exact probability density and our approximation

(10). Strictly speaking, this assumption is fulfilled exactly only for an inert non-reactive

target (κ = 0). When the target is reactive, binding events lead to a formation of a

depletion boundary layer near the target, in which the probability density of finding a

diffusing particle is lower, and thus not uniform. In contrast, unbinding events tend to

homogenize the probability density and thus render our assumption more accurate. As a

consequence, our approximation is applicable whenever the binding/unbinding kinetics

ensure a nearly uniform distribution of free particles. A systematic study of quantitative

conditions for the validity of our approximation presents an important perspective of

this work in the future. Meanwhile, Monte Carlo simulations that we realized in this

paper indicate that the approximation is remarkably accurate when η = koff〈τ〉 is not

too small. As the limit η = 0 corresponds to irreversible binding (with either koff = 0,

or κ = ∞), our approximation complements this well-studied setting and thus provides

the overall insight onto diffusion-controlled reactions with multiple particles.

We also emphasize on the conceptual difference between our approach and the

Lawley-Madrid approximation. The latter relied on the exponential approximation for

the survival probability of a single particle, which is valid only for small and weakly

reactive targets. This restriction concerns only binding events and does not involve

unbinding kinetics. In turn, our approximation deals with the exact form of the survival

probability, while the underlying assumption depends on binding/unbinding kinetics.

As a consequence, it yields accurate results even for highly reactive targets, if the

unbinding rate is not too small. In summary, the validity range of our approximation
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is different from that of the Lawley-Madrid approximation (see details in Appendix I),

and it allows one to deal with highly reactive targets. At the same time, we outline

that the LMA is much more explicit and easier to implement and to analyze, even in

sophisticated geometric settings. Moreover, the LMA provides bounds to the first-

crossing times for impatient particles. These two approximations present therefore

valuable and complementary theoretical tools for studying diffusion-controlled reactions

with reversible target-binding kinetics.

The present work can be extended in several directions. First, one can further

analyze and possibly relax the assumption of uniform positions, beyond the discussion

presented in Appendix C. This analysis can potentially lead to an exact solution of the

general problem of impatient particles, which remains open for 1 < K < N . Second,

one can consider more sophisticated diffusive dynamics such as diffusing-diffusivity

and switching models that allow one to incorporate dynamic heterogeneities of the

medium or reversible binding to buffer molecules [52, 88–90]. Similarly, more elaborate

target-binding mechanisms beyond that described by a constant reactivity κ can be

investigated [91–94]. For instance, one can consider encounter-dependent reactivity that

may describe saturation effects after a number of reaction attempts that are relevant to

some chemical or biological reactions. Moreover, one can incorporate surface diffusion

in the bound state that was shown to enhance the overall reaction rate for a single

particle [95–101]. Finally, while the present paper focused on theoretical aspects of

the problem of impatient particles, its application to relevant examples of diffusion-

controlled events with multiple particles is a promising perspective. For this purpose,

one needs further progress on the numerical implementation of our approximation to

deal with a large number N of diffusing particles (e.g., several hundred of calcium ions).

A large-N asymptotic analysis of the approximate solution would also be beneficial.
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Appendix A. Irreversible binding

For irreversible binding (koff = 0), the first-crossing time TK,N is identical to the K-th

fastest first-passage time T 0
K,N whose distribution is well known:

P{T 0
K,N > t} =

K−1
∑

j=0

(

N

j

)

[S(t|◦)]N−j [1− S(t|◦)]j (A.1)
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and

H0
K,N(t) = −dP{T

0
K,N > t}
dt

= K

(

N

K

)

[S(t|◦)]N−K [1− S(t|◦)]K−1H(t|◦), (A.2)

where S(t|◦) is the survival probability for a single particle started uniformly, and

H(t|◦) = − d
dt
S(t|◦) is the probability density of the associated first-binding time (see

Appendix C and Appendix E for details).

In the short-time limit, one can use the asymptotic relation (D.11) for H(t|◦) to

get

H0
K,N(t) ≈

K
(

N
K

)

〈τ〉K tK−1 (t→ 0). (A.3)

In the case K = 1, the first-crossing time T1,N for any koff is equal to the first-

passage time of the fastest particle, T 0
1,N , because unbinding kinetics does not matter

here. As a consequence, one has the exact form:

H1,N(t) = −∂t[S(t|◦)]N = N [S(t|◦)]N−1H(t|◦). (A.4)

Appendix B. Lawley-Madrid approximation

Lawley and Madrid developed an elegant approximate solution to the general problem

of impatient particles [63]. In the limit of small and/or weakly reactive target such that

Eq. (2) is fulfilled, the probability density of the first-binding time for any starting point

x0 was approximated by an exponential density,

H(t|x0) ≈ νe−νt, (B.1)

with the rate ν determined by the smallest eigenvalue of the Laplace operator. In other

words, the first-binding time τ0 and the consequent rebinding times τk were assumed to

be independent exponential random variables. Under this approximation, the number of

bound particles N (t) can be modeled by a Markovian birth-death process N̄ (t) between

N + 1 states of 0, 1, 2, . . . , N bound particles:

0 1 2 · · · N − 1 N
Nν

koff

(N−1)ν

2koff

ν

Nkoff
(B.2)

(bar denotes the quantities corresponding to the LMA). Let W be an (N +1)× (N+1)-

dimensional matrix with zero elements except for

Wi,i+1 = ikoff , Wi+1,i = (N + 1− i)ν (i = 1, 2, . . . , N),

and Wi,i are chosen so that W has zero column sums. The distribution of the first-

crossing time T̄K,N = inf{t > 0 : N̄ (t) = K} can be written as [63]

P{T̄K,N > t} =

K
∑

j=1

[

exp(W (K)t)
]

j,1
, (B.3)
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where W (K) is the K×K matrix obtained by retaining the first K columns and K rows

from W and discarding everything else, and the initial state was assumed to be 0 (no

bound particle). The probability density is

H̄K,N(t) = ν(N −K + 1)
[

exp(W (K)t)
]

K,1
, (B.4)

while the mean time is fully explicit:

〈T̄K,N〉 =
1

ν

K
∑

m=1

(

1

bm
+

K
∑

j=m+1

(koff/ν)
j−m

bj

j−1
∏

i=m

di
bi

)

, (B.5)

with bm = N −K +m and dm = K −m.

In [64], we showed that in the case K = N , the LMA captures qualitatively

the behavior of the probability density HN,N(t). However, it overestimates the mean

reaction time and the decay time, and totally fails at short times. This is expected

because the LMA ignores the starting positions of the particles.

When the starting points of all particles are uniformly distributed, the LMA turns

out to be more accurate even at short times. In fact, the Taylor expansion of the

exponential matrix in Eq. (B.4) yields the correct power-law short-time behavior:

H̄K,N(t) ≈ ν(N −K + 1)[(W (K))K−1]K,1t
K−1 +O(tK)

=
N !

(N −K)!
νK tK−1 +O(tK), (B.6)

in which the lower-order terms were canceled due the tridiagonal structure of the matrix

W (K). If ν was set to be 1/〈τ〉, the prefactor of this power law would differ from the

exact asymptotic relation (11) only by a factor 1
(K−1)!

. Moreover, the long-time behavior

remains qualitatively correct, even though the decay time is still overestimated (see Figs.

2 and 3).

Validity of the LMA

Lawley and Madrid required the smallness of the parameter ǫ from Eq. (2) for

approximating the smallest eigenvalue λ1 of the Laplace operator in the confining

domain Ω with mixed Robin-Neumann boundary condition on the boundary ∂Ω for

the associated eigenfunction u1(x),
{

D∂nu1(x) + κ u1(x) = 0 (x ∈ Γ),

D∂nu1(x) = 0 (x ∈ ∂Ω\Γ),
where ∂n is the normal derivative oriented outwards the domain Ω. Their approximation

λ1 ≈
κ|Γ|
D|Ω| . (B.7)

can be easily obtained by integrating the eigenvalue equation −∆u1(x) = λ1u1(x) over

x ∈ Ω and using the above boundary condition:

λ1 = −
∫

Γ
dx (∂nu1(x))
∫

Ω
dx u1(x)

=
κ
∫

Γ
dx u1(x)

D
∫

Ω
dx u1(x)

. (B.8)



First-passage times of multiple particles 15

The approximation (B.7) follows immediately if u1(x) is replaced by a constant. This

relation implies

ν = Dλ1 ≈
κ|Γ|
|Ω| =

1

〈τ〉 , (B.9)

in agreement with the fact that if the rebinding time τ is assumed to obey an exponential

law, its rate should be equal to the inverse of the mean rebinding time.

However, the condition (2) is not sufficient for getting the approximation (B.7). For

instance, in the case of diffusion between concentric spheres with ρ = 1, R = 10, D = 1,

and κ = 1, one has ǫ ≈ 0.033 and 1/〈τ〉 ≈ 0.0030, whereas the numerical solution of Eq.

(E.5), that determines the exact eigenvalue, yields Dλ1 ≈ 0.0016. In other words, if one

employs the approximate relation (B.9) in this example, the twofold error in the rate ν

will be drastically amplified in the computation of the mean reaction time 〈TK,N〉 or the
decay time TK,N . For this reason, Lawley and Madrid used the numerically computed

smallest eigenvalue for plotting their figures.

To further clarify this issue, it is instructive to analyze the smallest eigenvalue λ1.

For diffusion between concentric spheres, the solution is summarized in Appendix E. In

particular, λ1 is determined by the smallest strictly positive solution of Eq. (E.5), whose

asymptotic behavior was given by Eq. (28) of Ref. [37]. When ρ ≪ R, a first-order

approximation reads

λ1 ≈
κ|Γ|

D|Ω|(1 + κρ/D)
. (B.10)

In the case κρ/D ≪ 1, we retrieve the approximate relation (B.7). However, the

smallness of the parameter ǫ = 1
3
(κρ/D)(ρ/R)/(1 + (ρ/R)2) from Eq. (2) does not

necessarily imply that κρ/D is small. Actually, in the above example, we had κρ/D = 1

that yielded the twofold smaller value of ν = Dλ1, as compared to 1/〈τ〉.
An extension of Eq. (B.10) to a general setting in three dimensions was recently

proposed in [102]:

λ1 ≈
κ|Γ|

D|Ω|(1 + κ|Γ|/(DC)) , (B.11)

where C is the harmonic capacity (or capacitance) of the target (e.g., C = 4πρ for a

sphere of radius ρ). This approximation is valid when the target is small and located far

away from the outer reflecting boundary. Qualitatively, Eq. (B.11) can be interpreted

as an interpolation between two well-known limits: λ1 ≈ C/|Ω| for a perfectly reactive

target with κ = ∞ [103–105] and Eq. (B.7) for an almost inert target (κ → 0). One

sees that the condition

κ|Γ|/(DC) ≪ 1 (B.12)

ensures Eq. (B.9) and makes thus the exponential approximation of the survival

probability self-consistent.

We stress that the original derivation of the Lawley-Madrid approximation in [63]

employed Eqs. (B.1) and (B.7) as distinct assumptions. However, our relation (9)



First-passage times of multiple particles 16

implies that these assumptions are actually tightly related. In fact, if the rebinding time

is assumed to be exponentially distributed according to Eq. (B.1), the rate ν = Dλ1
must be equal to the inverse of the mean rebinding time 〈τ〉, which in turn is equal

to |Ω|/(κ|Γ|) according to Eq. (9). As a consequence, Eq. (B.9) can be considered as

a necessary condition for the applicability of the Lawley-Madrid approximation, which

thus requires that the target should be simultaneously small and weakly reactive.

In order to ensure a proper comparison between our results and the Lawley-Madrid

approximation, we always set

ν = Dλ1 = Dα2
1/R

2, (B.13)

where α1 is the smallest strictly positive solution of Eq. (E.5), which was obtained

numerically. In this way, we tested directly the validity of a Markov birth-death process

representation of the system of impatient particles, which was the cornerstone of the

Lawley-Madrid approximation. Note that setting ν = 1/〈τ〉 yielded worse results, which

were not shown in our figures.

Appendix C. Distribution of a free particle

In this Appendix, we compute the probability density P (x, t|x0) of finding a free particle

that started from a point x0 at time 0, in the vicinity of a point x at time t. For

this purpose, we extend the computation from Ref. [52, 64] that consists in adding up

contributions according to the number of binding events:

P (x, t|x0) = G(x, t|x0) +

t
∫

0

dt1

t
∫

t1

dt′1H(t1|x0)ψ(t
′
1 − t1) g(x, t− t′1)

+

t
∫

0

dt1

t
∫

t1

dt′1

t
∫

t′
1

dt2

t
∫

t2

dt′2H(t1|x0)ψ(t
′
1 − t1)H(t2 − t′1)ψ(t

′
2 − t2) g(x, t− t′2) + . . . ,

where ψ(t) = koffe
−koff t is the probability density of the waiting time on the target, and

H(t|x0) is the probability density of the first-binding time for a particle started from

x0. The first term represents the contribution without binding, with G(x, t|x0) being

the propagator for a single particle in the presence of a partially reactive target. The

second term includes the contribution with a single binding at time t1, staying on the

target up to time t′1, at which the particle unbinds and resumes its diffusion to x, where

g(x, t) =
1

|Γ|

∫

Γ

dx0G(x, t|x0) (C.1)

is the propagator for a particle that started from a uniformly distributed point on the

target Γ. The third term counts two bindings events: binding at t1, unbinding at t′1,

binding at t2, unbinding at t′2, and arrival in x at t, where

H(t) =
1

|Γ|

∫

Γ

dx0H(t|x0) (C.2)
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is the probability density of the rebinding time (given that the unbound particle is

released from a uniformly distributed point on the target). The fourth, fifth and next

terms correspond to 3, 4, . . . binding events. In the Laplace domain, one gets

P̃ (x, p|x0) = G̃(x, p|x0) + H̃(p|x0)
koff

p+ koff
g̃(x, p)

+ H̃(p|x0)
koff

p+ koff
H̃(p)

koff
p+ koff

g̃(x, p) + . . .

= G̃(x, p|x0) + H̃(p|x0)
koff

p+ koff(1− H̃(p))
g̃(x, p),

where all terms were summed up as a geometric series, and tilde denotes Laplace

transformed quantities, e.g.,

f̃(p) = L{f(t)}(p) =
∞
∫

0

dt e−pt f(t).

Since the probability density H(t|x0) can be understood as the integral of the probability

flux density over the target region, one gets

H(t|x0) =

∫

Γ

dx (−D∂nG(x, t|x0)) =

∫

Γ

dx (κG(x, t|x0)) = κ|Γ| g(x0, t),

i.e.,

g̃(x, p) =
〈τ〉
|Ω| H̃(p|x), (C.3)

where we used Eq. (9) for the mean rebinding time 〈τ〉, and the Robin boundary

condition on the target region. We conclude that

P̃ (x, p|x0) = G̃(x, p|x0) +
H̃(p|x0) koff〈τ〉 H̃(p|x)
|Ω|(p+ koff(1− H̃(p)))

. (C.4)

Similarly, if P0(x, t) denotes the probability density for a particle that was initially

bound to the target, to be in the vicinity of a point x at time t, one gets in the Laplace

domain:

P̃0(x, p) = ψ̃(p) g̃(x, p) + ψ̃(p) H̃(p) ψ̃(p) g̃(x, p) + . . . =
ψ̃(p)g̃(x, p)

1− H̃(p) ψ̃(p)
,

that yields

P0(x, t) =
koff〈τ〉
|Ω| P (t|x), (C.5)

where P (t|x) is the occupancy probability of the target (see also Appendix D).

Normalization

It is instructive to check that the probability density P (x, t|x0) is correctly normalized.

For this purpose, we recall that the Green’s function G̃(x, p|x0) satisfies the boundary

value problem
{

(p−D∆x)G̃(x, p|x0) = δ(x− x0) (x ∈ Ω),

(D∂n + κ1Γ(x))G̃(x, p|x0) = 0 (x ∈ ∂Ω),
(C.6)
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where ∆x is the Laplace operator acting on x, δ(x− x0) is the Dirac distribution, and

1Γ(x) is the indicator function of Γ: 1Γ(x) = 1 for x ∈ Γ, and 0 otherwise. The second

relation is the mixed Robin-Neumann boundary condition representing reflections on

the inert boundary ∂Ω\Γ, and partial reactivity on the target region Γ. The integral of

the first relation over x ∈ Ω yields
∫

Ω

dx G̃(x, p|x0) = S̃(p|x0) =
1− H̃(p|x0)

p
, (C.7)

where S̃(p|x0) is the Laplace-transformed survival probability. Similarly, as H̃(p|x0)

satisfies
{

(p−D∆x0
)H̃(p|x0) = 0 (x0 ∈ Ω),

(D∂n + κ1Γ(x0))H̃(p|x0) = κ1Γ(x0) (x0 ∈ ∂Ω),
(C.8)

the integral of the first relation over x0 ∈ Ω yields
∫

Ω

dx0 H̃(p|x0) = κ|Γ|1− H̃(p)

p
, (C.9)

where we used the Green’s formula and the above boundary condition for H̃(p|x0), while

H̃(p) is the Laplace transform of H(t) defined by Eq. (C.2). In the limit p → 0, the

left-hand side approaches |Ω| due the normalization of H(t|x0), whereas the right-hand

side goes to κ|Γ|〈τ〉, from which Eq. (9) for the mean rebinding time 〈τ〉 follows. We

get thus

H̃(p|◦) ≡ 1

|Ω|

∫

Ω

dx0 H̃(p|x0) =
1− H̃(p)

p〈τ〉 =
S̃(p)

〈τ〉 , (C.10)

where ◦ denotes the average over uniformly distributed starting point. This relation

implies that

H(t|◦) = S(t)

〈τ〉 (C.11)

is a monotonously decreasing function of time. Note also that the Taylor expansion of

Eq. (C.10) allows one to express the moments of the first-binding time τ◦, e.g.,

〈τ◦〉 =
∞
∫

0

dt tH(t|◦) = 〈τ 2〉
2〈τ〉 . (C.12)

We outline that τ◦ is the first-binding time for a particle that started uniformly in the

bulk Ω, whereas τ is the rebinding time (i.e., the first-binding time for a particle that

started uniformly on the target). Combining Eqs. (C.7, C.10), the integral of Eq. (C.4)

over x ∈ Ω reads
∫

Ω

dx P̃ (x, p|x0) =
1

p
− H̃(p|x0)

p+ koff(1− H̃(p))
, (C.13)
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where the last term is the Laplace transform of the occupancy probability P (t|x0) of

the target for a particle that started from x0, see also Eq. (D.2). Moving the last term

to the left-hand side, one sees that the normalization is indeed satisfied:

P (t|x0) +

∫

Ω

dxP (x, t|x0) = 1. (C.14)

Similarly, the integral of Eq. (C.5) reads in the Laplace domain:
∫

Ω

dx P̃0(x, p) = koff〈τ〉 P̃ (p|◦) = koffQ̃(p)S̃(p)

= Q̃(p)(koffS̃(p) + 1)− Q̃(p) =
1

p
− Q̃(p),

where Q̃(p) is the Laplace transform of the occupancy probability Q(t) of the target for

a particle that was initially bound, see also Eq. (D.1). The above relation implies the

normalization of P0(x, t):

Q(t) +

∫

Ω

dxP0(x, t) = 1. (C.15)

Long-time behavior

In the long-time limit, G(x, t|x0) vanishes exponentially fast and does not contribute.

In turn, the second term in Eq. (C.4) yields as p→ 0:

H̃(p|x0) koff〈τ〉 H̃(p|x)
|Ω|(p+ koff(1− H̃(p)))

≈ koff〈τ〉
|Ω|p(1 + koff〈τ〉)

, (C.16)

so that

lim
t→∞

P (x, t|x0) =
1− P∞

|Ω| , (C.17)

where

P∞ =
1

1 + koff〈τ〉
. (C.18)

In other word, unbinding events ensure that the position of a free particle in the long-

time limit is distributed uniformly inside the domain, as expected.

Uniformly distributed starting points

When all particles start initially from uniformly distributed points, one defines

P̃ (x, p|◦) ≡ 1

|Ω|

∫

Ω

dx0 P̃ (x, p|x0) =
1

p|Ω| −
H̃(p|x)

|Ω|(p+ koff(1− H̃(p)))
,

where we used Eq. (C.13) and the symmetry P (x, t|x0) = P (x0, t|x). In the time

domain, we get thus

P (x, t|◦) = 1− P (t|x)
|Ω| . (C.19)
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Why P (x, t|◦) is not uniform? At short times, the main contribution to the

probability density of arriving at x comes from the trajectories started close to that

point. If x is far from the target, the probability of binding the target P (t|x) is very

small, and thus P (x, t|◦) is almost constant. In turn, if x is close to the target, the

particles started from its neighborhood have higher chances to bind to the target and

thus be in the bound state at time t. As a consequence, P (x, t|◦) is smaller near the

target; this is similar to the formation of a depletion zone near a reactive target. The

difference is that, as time goes on, all particles, irrespective of their starting points, start

to experience the same effect of reversible binding, and P (x, t|◦) is getting uniform (in

contrast to the case of a reactive target with irreversible binding when the depletion

zone would grow and finally exhaust all particles).

Appendix D. Occupancy probabilities

In Ref. [64], the focus was on the case when the particles start from a fixed point x0 and

search for a partially reactive target Γ with reactivity κ, from which they can unbind at

rate koff . The statistics of the first-crossing time TN,N was determined by two occupancy

probabilities: the probability Q(t) of finding the particle in the bound state at time t

given that it was bound at time 0, and the probability P (t|x0) of finding the particle

in the bound state at time t given that it was initially released from a point x0. Both

probabilities were found explicitly in the Laplace domain in the same way as presented

in Appendix C:

Q̃(p) =
1

p+ koff(1− H̃(p))
(D.1)

and

P̃ (p|x0) = H̃(p|x0) Q̃(p), (D.2)

where H̃(p) is the Laplace transform of the probability density of the rebinding time τ ,

see Eq. (C.2).

If the starting point x0 is uniformly distributed, P (t|x0) should be replaced by

P (t|◦) ≡ 1

|Ω|

∫

Ω

dx0 P (t|x0), (D.3)

where ◦ indicates the uniform starting point. According to Eqs. (C.5, C.15), one gets

Eq. (8). One sees that Q̃(p) and thus P̃ (p|◦) are expressed in terms of H̃(p). Note also

that Eqs. (C.10, D.2, D.3) yield

P̃ (p|◦) = Q̃(p)H̃(p|◦) , (D.4)

which in the time domain reads

P (t|◦) =
t
∫

0

dt′Q(t′)H(t− t′|◦). (D.5)
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Alternatively, if {pn} are the poles of P̃ (p|x0), the residue theorem allows one to

invert the Laplace transform to get (if all poles are simple):

P (t|x0) = P∞ +
∞
∑

n=1

vn(x0) e
pnt, (D.6)

where vn(x0) is the residue of P̃ (p|x0) at the pole pn, and P∞ is the residue at pole

p0 = 0 (that we treat separately, see [64] for details). As a consequence,

P (t|◦) = P∞ +
∞
∑

n=1

v̂n e
pnt, (D.7)

where

v̂n =
1

|Ω|

∫

Ω

dx vn(x), (D.8)

from which

Q(t) = P∞ − η
∞
∑

n=1

v̂n e
pnt, (D.9)

with η = koff〈τ〉.

Short-time asymptotic behavior

In the short-time limit, the target region can be considered as locally flat so that H̃(p|x0)

can be approximated by H̃hl(p|δ) = e−δ
√

p/D/(1 +
√
pD/κ) for the half-line, where δ is

the distance to the boundary. As a consequence, H̃(p) ≈ 1/(1 +
√
pD/κ) and thus

H̃(p|◦) ≈ 1

p〈τ〉(1 + κ/
√
pD)

≈ 1− κ/
√
pD

p〈τ〉 +O(p−2), (D.10)

from which

H(t|◦) ≈ 1

〈τ〉
(

1− 2κ
√
Dt√

πD
+O(t)

)

(t→ 0), (D.11)

and thus

1− S(t|◦) ≈ t

〈τ〉
(

1− 4κ
√
Dt

3
√
πD

+O(t)
)

(D.12)

and

P (t|◦) ≈ t

〈τ〉 +O(t3/2) (t→ 0). (D.13)

Note also that Eq. (8) implies a monotonous decrease of P (t|◦) with time: dP (t|◦)/dt ≥
0. In addition, Eqs. (C.11, D.11) imply that

S(t) ≈ 1− 2κ
√
Dt√

πD
+O(t) (t→ 0), (D.14)

H(t) ≈ κ√
π
√
Dt

+O(1) (t→ 0). (D.15)
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Appendix E. Numerical computation

Probability density

Following [64], we integrate by parts the convolution (10) to transform it into an integral

equation

Pt(K|K)−Pt(K|0) = SK,N(t)−
t
∫

0

dt SK,N(t− t′)
(

−∂t′Pt′(K|K)
)

, (E.1)

where SK,N(t) = P{TK,N > t} is the approximate survival probability, and we used that

SK,N(0) = P0(K|K) = 1. Here Pt(K|0) and Pt(K|K) are expressed via Eqs. (6, 7) in

terms of P (t|◦) and Q(t), which in turn are given by Eqs. (D.7, D.9). For diffusion

between concentric spheres, the poles {pn} and the related residues were determined

in Ref. [52, 64]. Note that the integral of the function vn(x) in Eq. (D.8) can be

found explicitly. After discretization of the integral in Eq. (E.1) over a linear grid, we

evaluate SK,N(t) and then HK,N(t) by applying the fast Fourier transform to resolve the

convolution problem (see details in Ref. [64]).

Monte Carlo simulations

For Monte Carlo simulations, we use a standard event-driven scheme described in detail

in Ref. [64]. The only difference concerns the generation of the first-binding times that

are governed by the probability density H(t|◦) instead of H(t|x0). This probability

density and the related survival probability S(t|◦) can be found from their spectral

expansions:

S(t|◦) =
∞
∑

n=1

an e
−Dtλn , (E.2)

H(t|◦) = D

∞
∑

n=1

λn an e
−Dtλn , (E.3)

where λn are the eigenvalues of the Laplace operator in Ω, and

an =
1

|Ω|

∣

∣

∣

∣

∣

∣

∫

Ω

dx un(x)

∣

∣

∣

∣

∣

∣

2

(E.4)

are the coefficients obtained from the L2-normalized eigenfunctions un(x). As their

computation is detailed in Ref. [64], we only recall that the eigenvalues are determined as

λn = α2
n/R

2, where {αn} are strictly positive solutions of the trigonometric equation [63]:

− α2 + 1

1− α ctan((1− ρ/R)α)
− R

ρ
+ 1 =

κR

D
, (E.5)

which is equivalent to Eq. (B9) from Ref. [64]. In turn, the coefficients an are

an = 6ρ4µ
(R− ρ)αn cos(αnβ)− (ρ+Rα2

n) sin(αnβ)

α3
n(R

3 − ρ3)

×
(

(µρ2 − R(R− ρ)α2
n) cos(αnβ)− (R(R − ρ)µ+ (R2 + ρ2))αn sin(αnβ)

)−1

,
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where µ = κρ/D and β = R/ρ− 1.

A generated array of independent random realizations of the reaction times TK,N is

used to compute the mean value, 〈TK,N〉, and the empirical probability density of TK,N .

As the probability density HK,N(t) typically spans several orders of magnitude in time,

we produce a renormalized histogram h(z) of ζ = ln TK,N and then draw h(z)/ez versus

t = ez, see Figs. 2 and 3.

Appendix F. Asymptotic behavior

Short-time limit

In the short-time limit, unbinding kinetics does not matter so that HK,N(t) ≈ H0
K,N(t),

where H0
K,N(t) is given by Eq. (A.2) and its short-time asymptotic behavior (A.3)

implies Eq. (11). However, Fig. 2 shows a considerable deviation from this behavior

because it is achieved only at very short times, at which the probability density is too

small and thus not relevant.

In order to clarify this point, we focus on diffusion between concentric spheres and

compute next-order terms of the probability density H(t|◦) as t→ 0. For this purpose,

we analyze the large-p behavior of its Laplace transform,

H̃(p|◦) =
3ρD

p(R3−ρ3)
((R− ρ)α + (ρRα2 − 1) tanh ξ)

Rα− tanh ξ + D
κρ

(ξ + (ρRα2 − 1) tanh ξ)
, (F.1)

where α =
√

p/D and ξ = α(R − ρ). In the limit p → ∞, tanh(ξ) can be replaced by

1, with exponentially small corrections:

H̃(p|◦) ≈ 1

p〈τ〉 −
κρ

α2 D2〈τ〉
(Rα− 1)

α(R− ρ) + ρRα2 − 1 + κρ
D
(Rα− 1)

.

This expression can be decomposed into partial fractions as

H̃(p|◦) ≈ 1

p〈τ〉 −
κρ

D2〈τ〉

(

1

(1 + µ)α2
− ρ

(1 + µ)2α
+

ρ2

(1 + µ)2(αρ+ 1 + µ)

)

,

where µ = κρ/D. The inverse Laplace transform yields

H(t|◦) ≈ 1

〈τ〉(1 + κρ/D)
+

κρ2√
πD〈τ〉(1 + µ)2

1−√
π E 1

2
, 1
2

(−(1 + µ)
√
Dt/ρ)

√
Dt

,

where Eα,β(z) is the Mittag-Leffler function:

Eα,β(z) =

∞
∑

n=0

zn

Γ(αn+ β)
(F.2)

(here the Euler function Γ(z) should not be confused with our notation Γ for the target

region). Using the identity Eα,β(z) = zEα,α+β(z) + 1/Γ(β), we get

H(t|◦) ≈ 1

〈τ〉(1 + κρ/D)

(

1 +
κρ

D
E 1

2
,1(−(1/ρ+ κ/D)

√
Dt)
)

. (F.3)
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The short-time expansion reads then

H(t|◦) ≈ 1

〈τ〉

(

1 +
µ

1 + µ

∞
∑

n=1

(−(1 + µ)
√
Dt/ρ)n

Γ(1
2
n+ 1)

)

. (F.4)

This expansion can be truncated to few terms when (1+µ)
√
Dt/ρ≪ 1. However, when

this condition is not satisfied, one needs many terms to get an accurate result. This is

precisely what happens in Fig. 2, in which the short-time behavior is established for

t/δ = Dt/ρ2 ∼ 10, at which the above condition is not fulfilled. In this case, it is more

convenient to keep the Mittag-Leffler function (note also that E 1

2
,1(−z) = erfcx(z) =

ez
2

erfc(z) is the scaled complementary error function). However, Eq. (F.3) is specific

to the case of concentric spheres and is not applicable for general domains.

From Eq. (F.3), we can also obtain the short-time behavior of the survival

probability:

1− S(t|◦) =
t
∫

0

dt′H(t′|◦) ≈ 1

〈τ〉(1 + µ)

(

t+ µtE 1

2
,2(−(1 + µ)

√
Dt/ρ)

)

,

where we used the identity:
z
∫

0

dz′Eα,1(z
α) = z Eα,2(z

α). (F.5)

Using the identity,

E 1

2
,2(−c

√
t) = 1− 4c

√
t

3
√
π

+ c2tE 1

2
,1(−c

√
t), (F.6)

one also gets

1− S(t|◦) ≈ t

〈τ〉

(

1− 4µ
√
Dt

3
√
πρ

+
µ(1 + µ)Dt

ρ2
E 1

2
,1(−(1 + µ)

√
Dt/ρ)

)

.

Long-time limit

At long times, the probability density HK,N(t) decays exponentially according to Eq.

(12), with the decay time TK,N determined by the largest (negative) pole pc of H̃K,N(p),

which is given by the largest (negative) zero of L{Pt(K|K)}(p). Following the approach

from [64], we get

pc ≈ P∞(K|K)





∞
∫

0

dt(Pt(K|K)− P∞(K|K))





−1

, (F.7)

from which the decay time TK,N can be approximated by Eq. (13).
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Appendix G. Mean reaction time

Derivation

In this Appendix, we derive and analyze an approximation for the mean reaction time:

〈TK,N〉 = − lim
p→0

∂H̃K,N(p|◦)
∂p

≈ − lim
p→0

∂H̃K,N(p|◦)
∂p

= lim
p→0

(

L{tPt(K|0)}
L{Pt(K|K)}

− L{Pt(K|0)}L{tPt(K|K)}
(L{Pt(K|K)})2

)

,

where we used our approximation (10). Setting

ak =

∞
∫

0

dt tk
(

Pt(K|0)− P∞(K|0)
)

, (G.1)

bk =

∞
∫

0

dt tk
(

Pt(K|K)−P∞(K|K)
)

, (G.2)

one can employ Taylor expansions of the above Laplace transforms to get

〈TK,N〉 ≈
P∞(K|0)b0
[P∞(K|K)]2

− a0

P∞(K|K)
. (G.3)

Using the identity

K
∑

j=0

(

K

j

)(

N −K

j

)

=

(

N

K

)

, (G.4)

one can check that

P∞(K|0) = P∞(K|K) =

(

N

K

)

PK
∞ (1− P∞)N−K , (G.5)

so that

〈TK,N〉 ≈
b0 − a0
P∞(K|0) , (G.6)

which can be rewritten in a more explicit form as Eq. (14). The same technique can

be used to get higher-order moments. We emphasize that this relation is not applicable

for irreversible binding because koff = 0 implies P∞ = 1 and thus P∞(K|0) = 0 for any

K < N . In turn, for K = N , Eq. (14) remains valid even for koff = 0 and coincides

with the exact relation derived in Ref. [64].

Validity

We stress that the above derivation is based on the approximate relation (10) so that Eq.

(14) is an approximation of the mean reaction time. We recall that our approximation

relied on the assumption that the N −K free particles are uniformly distributed at the
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Figure G1. The ratio between the approximation (14) of the mean reaction time

〈T1,N 〉 and the exact form (G.8) of the mean reaction time 〈T 0

1,N 〉 for irreversible

binding, as a function of η = koff〈τ〉, for restricted diffusion between concentric spheres

of radii ρ and R = 10ρ, with κρ/D = 1, and three values of N (see legend).

time when the threshold crossing event happens. According to Eq. (8), this assumption

is better fulfilled when

P (t|◦) ≤ P∞ =
1

1 + η
≪ 1, (G.7)

i.e., when η = koff〈τ〉 is large. In contrast, when koff → 0, unbinding events are rare and

thus do not allow to spread away the depletion zone near the target. As a consequence,

our assumption is not applicable, and the derived approximate formulas may fail. Note

that in the limit koff = 0, the mean reaction time is given by

〈T 0
K,N〉 =

∞
∫

0

dt tH0
K,N(t), (G.8)

with H0
K,N(t) being determined by the exact relation (A.2).

The failure of our approximation can be illustrated by taking the limit koff → 0,

for which the numerator of Eq. (14) should vanish, yielding an identity
∞
∫

0

dt[S(t|◦)]N−K
(

1−
(

N

K

)

[1− S(t|◦)]K
)

= 0 (G.9)

for any K < N . This identity is satisfied for S(t|◦) = e−νt, i.e., if the first-binding time

obeys an exponential distribution with a rate ν. We note that this is also related to the

assumption of the Lawley-Madrid approximation, see further discussion in Appendix I.

We emphasize that the identity (G.9) does not hold in general, thus invalidating Eq.

(14) in the limit koff → 0.

Figure G1 illustrates the validity range of the approximate relation (14). Here we

plot the ratio between the approximate value of 〈T1,N〉 from Eq. (14), and the exact value

〈T 0
1,N〉 from Eq. (G.8). As binding of the first particle does not depend on the unbinding

kinetics, this ratio should be equal to 1 for any koff . In turn, deviations from 1 highlight
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limitations of the approximate relation (14). For N = 2, the ratio remains close to 1 for

the considered range of η = koff〈τ〉. As N increases, one observes deviations from 1 for

η . 1. A more systematic study is needed for establishing quantitative criteria of the

validity range of the developed approximation.

Asymptotic behavior

When η is large enough, the inequality (G.7) implies P∞(K|0) ≈
(

N
K

)

PK
∞ and Pt(K|K) ≈

[Q(t)]K , from which

〈TK,N〉 ≈
1

(

N
K

)

PK
∞

∞
∫

0

dt
(

[Q(t)]K − PK
∞

)

. (G.10)

In this regime, the mean reaction time 〈TK,N〉 is close to the mean reaction time 〈TK,K〉
divided by the combinatorial factor

(

N
K

)

. The latter was investigated in Ref. [64], and

it was shown to behave as (1 + η)K/(koffK) for large K. Neglecting 1 in comparison to

η ≫ 1, one deduces Eq. (15). Strictly speaking, this relation is valid for N ≥ K ≫ 1

but Fig. 4 suggests that this asymptotic relation can be used for any K > 1 if η is large

enough.

Note that in the case K = 1, one can compute the integral exactly by using the

small-p asymptotic behavior of Q̃(p):

〈T1,1〉 ≈
1

P∞

∞
∫

0

dt(Q(t)− P∞) =
koff〈τ 2〉

2(1 + koff〈τ〉)
. (G.11)

As koff → 0, this express vanishes, indicating again the failure of our approximation. In

turn, as koff → ∞, one gets the limit 〈τ 2〉/(2〈τ〉) = 〈τ◦〉 according to Eq. (C.12). In other

words, we retrieve the exact value of the mean first-passage time 〈T1,1〉 = 〈T 0
1,1〉 = 〈τ◦〉

for N = 1.

Appendix H. Other illustrations

Figure H1 illustrates the behavior of the probability density HK,N(t) for N = 4 and

several values of K when the target is highly reactive (κρ/D = 10). One sees that our

approximation remains to be very accurate whereas the LMA fails in this case.

Figures H2 and H3 show the probability density HK,N(t) for N = 2 and N = 3,

respectively. Its behavior is similar to that discussed in the main text for Fig. 2 with

N = 4.

Appendix I. Further discussion on the validity of two approximations

The Lawley-Madrid approximation relied on the assumption that both the first-binding

time and the rebinding time obey an exponential law with some rate ν, i.e., S(t|◦) ≈
S(t) ≈ e−νt. In Appendix G, we emphasized that the validity of our approximation at

small koff requires that S(t|◦) ≈ e−νt. In this Appendix, we further discuss these points.
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Figure H1. Probability density of the reaction time TK,N for restricted diffusion

between concentric spheres of radii ρ and R = 10ρ, with N = 4, κρ/D = 10, a timescale

δ = ρ2/D, three values of koff (see legend), and four values of K: K = 1 (a), K = 2

(b), K = 3 (c), and K = 4 (d). Symbols show empirical histograms from Monte Carlo

simulations with 106 particles. Thick lines indicate our approximation (10) evaluated

numerically as described in Appendix E, whereas thin lines show the Lawley-Madrid

approximation (B.4), with ν given by Eq. (B.13). Thin gray solid line presents the

short-time asymptotic behavior (11). Minor deviations between three thick curves on

panel (a) at long times and on panels (c,d) at short times can be related to insufficient

discretization of integrals, see Appendix E.

The spectral expansion (E.2) indicates that its coefficients an ≥ 0, defined by Eq.

(E.4), can be understood as the relative weights of different Laplacian eigenmodes, given

that 1 = S(0|◦) =∑∞
n=1 an. When the target is small and/or weakly reactive, the ground

eigenfunction u1(x) is almost constant so that a1 ≈ 1, whereas the other eigenfunctions

are orthogonal to it, implying an ≈ 0 for n > 1 (see [59, 63]). In other words, one

has S(t|◦) ≈ e−νt, with ν = Dλ1. For instance, when the target is a sphere of radius

ρ = 1 surrounded by a larger reflecting sphere of radius R = 10, we got numerically

a1 ≈ 0.9989 for κρ/D = 1 and a1 ≈ 0.9946 for κρ/D = 100, i.e., even for a highly

reactive target, the exponential law approximation is applicable for S(t|◦). Even for a

large highly reactive target with ρ/R = 0.5 and κρ/D = 100, one has a1 ≈ 0.92, i.e.,

the ground eigenmode still yields the dominant contribution. This observation justifies

the high accuracy of our approximation even for highly reactive targets.

It is also instructive to look at the parameter ǫ given by Eq. (2), whose smallness

was required in [63] for the applicability of the Lawley-Madrid approximation. In our
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Figure H2. Probability density of the reaction time TK,N for restricted diffusion

between concentric spheres of radii ρ and R = 10ρ, with N = 2, κρ/D = 1, a timescale

δ = ρ2/D, three values of koff (see legend), and two values of K: K = 1 (a) and

K = 2 (b). Symbols show empirical histograms from Monte Carlo simulations with

106 particles. Thick lines indicate our approximation (10) evaluated numerically as

described in Appendix E, whereas thin lines show the Lawley-Madrid approximation

(B.4), with ν given by Eq. (B.13). Thin gray solid line presents the short-time

asymptotic behavior (11).
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Figure H3. Probability density of the reaction time TK,N for restricted diffusion

between concentric spheres of radii ρ and R = 10ρ, with N = 3, κρ/D = 1, a timescale

δ = ρ2/D, three values of koff (see legend), and three values of K: K = 1 (a),

K = 2 (b), and K = 3 (c). Symbols show empirical histograms from Monte Carlo

simulations with 106 particles. Thick lines indicate our approximation (10) evaluated

numerically as described in Appendix E, whereas thin lines show the Lawley-Madrid

approximation (B.4), with ν given by Eq. (B.13). Thin gray solid line presents the

short-time asymptotic behavior (11).
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geometric setting, one gets ǫ = κρ2

3DR(1+(ρ/R)2)2
, so that ǫ ≪ 1 for ρ/R = 0.1 and

κρ/D = 1, indicating the validity of this approximation. In contrast, ǫ is not small

for other examples given above thus violating the Lawley-Madrid approximation.

While the first-binding time can indeed be considered as exponentially distributed,

the situation is more subtle for the rebinding time τ that is governed by the survival

probability

S(t) = 〈τ〉H(t|◦) =
∞
∑

n=1

anDλn〈τ〉 e−Dtλn , (I.1)

where we used Eq. (C.11). The new coefficients a′n = anDλn〈τ〉 are as well the relative

weights of the eigenmodes. Since the coefficient a1 ≈ 1 is multiplied by a small eigenvalue

λ1, the resulting coefficient a′1 is not necessarily dominant. For the above example with

ρ/R = 0.1, we get a′1 ≈ 0.5474 for a moderately reactive target (κρ/D = 1), i.e., the

contribution of the ground mode is still dominant (55%) but not exclusive. In turn, for

a highly reactive target (κρ/D = 100), one has a′1 ≈ 0.0119, i.e., the contribution of

the ground mode is only 1%. In both cases, the approximation of the rebinding time

distribution by an exponential distribution is not valid, and one needs much smaller or

less reactive targets to apply this approximation. In summary, modeling the rebinding

time distribution by an exponential law imposes strong restrictions onto the target size

and reactivity. As our approximation employs the exact form of the probability density

H(t) of the rebinding time, it does not suffer from these limitations and yields more

accurate results than the Lawley-Madrid approximation. In turn, the latter has a great

advantage of being much simpler and more explicit.

The validity of the Lawley-Madrid approximation was discussed in Appendix B and

can be resumed by two inequalities (3) requiring that the target should be small and

weakly reactive. In turn, quantitative conditions for the validity of our approximation

remain unknown. In Appendix G, we discussed a plausible condition η = koff〈τ〉 & 1,

which can also be written by using Eq. (9) as

κ .
koff |Ω|
|Γ| . (I.2)

For instance, for a small spherical target of radius ρ, it reads

κ .
D

ρ
(koffT ), (I.3)

where T = |Ω|/(4πDρ) is the leading-order term of the mean first-passage time to the

perfect target from a starting point uniformly distributed in Ω (alternatively, 1/(DT )

is the smallest eigenvalue of the governing Laplace operator, see [103–105]). This is a

time scale of diffusive search for a perfect target. In turn, the second condition in (3)

for the applicability of the LMA imposes

κ≪ D/ρ. (I.4)

The comparison of these conditions illuminates the difference in the validity ranges of two

approximations. In fact, when koff is not too small (i.e., when koffT ≫ 1), the condition
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(I.3) is less restrictive than (I.4), and our approximation allows one to deal with highly

reactive targets. In contrast, it fails in the limit koff → 0, as illustrated in Appendix G,

whereas the Lawley-Madrid approximation, whose applicability is independent of koff ,

can still be valid if (I.4) is satisfied.

We stress, however, that the conjectural condition η & 1 and its equivalent forms

(I.2, I.3) are not so restrictive in practice. For instance, Fig. 3 shows a perfect agreement

between our approximation and Monte Carlo simulations in the case η = 1. We

therefore expect that the range of applicability of our approximation is much broader.

Its systematic study presents an important perspective of this work.
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